An Optically Turbocharged Internet Router
CCW 2001, Charlottesville, VA, Oct. 15

Joe Touch
Director, Postel Center for Experimental Networking
Computer Networks Division
USC/ISI
Outline

- Optical vs. Internet
- Goals of an Internet optical router
- Architecture
- Benefits and Issues
- Simulation results
- Remaining work
Motivation

Need Tbps true routers, but…

- Routing tables growing exponentially
- Lack of scaling (past 15 years):
 - Links increased 1,000,000x
 - CPUs increased 1,000x
 - RAM access increased 10x
Internet vs. Optical

- Internet
 - Longest-prefix search of 200,000 entries
 - Decrement TTL
 - Update checksum (IPv4)
 - Buffering for statistical muxing

- Optical
 - Too little time to do full lookup (160ps/pkt@1Tbps)
 - Per-packet switch setup *maybe*
 - Can’t compute checksum
 - No storage
Current optical focus

- WDM as a bonus
 - Needed to overcome dispersion
 - Can be used to partition (benefit?)
 - Can be used to route (benefit?)

- Connection-based/-like traffic
 - ATM/MPLS flow-based setups (MP\(\lambda\)S, SWAP)
 - BUT: Setup doubles connection latency
 - Packet-train setup on-the-fly (OBS, TBS)
 - BUT: Setup requires large gap after first packet
 - BUT: Both expect long flows or flow aggregation
Goal – Optical Internet

(the rest of this talk)

- IP over light
 - No setup
 - Single terabit channels (no WDM)
 - Works for short flows, or for single packets
Inside current routers

- Forwarder + switch fabric

Forwarder
Forwarding table
Switch fabric
O/E converter
Optical Assist

- Optics as ‘fast path’; electronics as backup
Bypass Design

Optical correlators

Header copy

CAM Lookup

Control switch & Mask default path
Bypass decision tree

- Lookup hit? Yes
 - Out-port avail? Yes
 - Drop electronic copy
 - & configure switch
 - No
 - Drop optical copy
Key components

- Accelerator lookup
 - All-optical via correlators
 - Electronic via CAM
- Electronic backup path
 - Full lookup when correlator/CAM fails
 - Queue when output port is busy
- Optical switch
 - LiNbO$_3$ elements
Benefits of Accelerator

- Incremental deployment
 - No “cloud” required
- Partial solution
 - Electronic is full backup
- Lower latency
 - ns per hop, not ms
- Higher throughput
 - Offloads electronic path
Optical correlator

- Sequence of Bragg filters
- Tuned to match 0,1,X
 - 0,1 requires pairs, X is pass-through
Some limits

- Correlators
 - ~8 correlators
 - ~8 bits per correlator
- CAM
 - 1-8K entries, 1ns lookup (7x pipeline)
- Switch
 - LiNbO$_3$ at 1ns currently (parallelize?)

How useful?
Switching gain

Throughput efficiency
(ratio of possible, per interface)

Input load
(ratio of time busy, per interface)
Cost

- Packet reordering
 - Two separate paths, each path non-reordering, but together can reorder

- HOL blocking
 - Optical has priority on outputs
 - Use second-best paths
Reordering

% of flows reordered (any one packet)

Cache size (number of entries)
Partition function

- Take advantage of optics
 - Easier to match 0’s than 1’s
 - Hard to match all 24 bits, easy to pick movable subset
- Incomplete function is OK
 - Avoid false positives
 - False negatives just reduce efficiency
Missing links

- TTL decrement-and-test
 - Trivial in electronics
 - All-optical design underway with USC
- Checksum
 - Update via optical header replacement
 - “Deferred maintenance” approach
 - Use IPv6? 😊
- High-speed traces and routing tables
- LSB first encoding
- **Electrical:**

- **Optical:**
Current status

- Simulation analysis
 - What percent of traffic will be optically switched?
 - How much reordering?
- Optical correlator design
 - Implemented at USC campus
- Partition algorithm
 - Under development
For more info:

- http://www.isi.edu/pow
 - Joe Bannister, Joe Touch
 - GRAs Purushotham Kamath, Aatash Patel
 - GRA Stephen Suryaputra (alumnus)

- Papers:
Advance Q&A

Why accelerate in parallel vs. pipelined?
- Most current caches are in parallel
- May ease incremental add if pipelined

Why not correlate in electronics?
- Electronic path can’t run at 1 Tbps
- Still need accelerator