A Recursive Network Architecture

Joe Touch, Yu-Shun Wang, Venkata Pingali

USC/ISI
Motivation

- Layers of a stack becoming more similar
 - Security, soft-state, pacing, retransmission
- Desire to support interlayer cooperation
 - Message boundary, cong. control, compression vs. encryption interactions
- Desire to support overlay layers
 - Clearly needed, but don’t map to 1-7

Is layering more than a coding artifact?
Internet Architecture

Accused of ossification, but:

- Ossification = stability
- Flexibility is abundant:
 - Shim layers:
 - HIP, SHIM6, IPsec, TLS
 - Muxing layers:
 - SCTP, RDDP, BEEP
 - Connections:
 - MPLS, GRE, IKE, BEEP, SCTP
 - Virtualization:
 - L2VPN, L3VPN/X-Bone/RON/Detour, L7-DHTs
Challenges of Layering

- Which to add…
 - IPv4/IPv6, TCP/DCCP/SCTP
- When to add…
 - Security, muxing, cong. control
- Real vs. virtual
 - What’s the difference?
Observations

1. Services are relative

2. A template can avoid recapitulation

3. Composition requires coordination
The OSI 7-layer Model

- Layer indicates function

- But...
 - Functions are recapitulated:
 - Formatting at link and presentation
 - Muxing at transport and session
Scope defines a layer

- Its endpoints
 - A “hop” @layer N = E2E extent of layer N-1
- The layer above
 - What services this layer provides
- The layer below
 - What services this layer requires
- E.g.: Shared state at diff. layers for diff. services
 - Application binding
 - Transport delivery
 - Net security

The difference is scope
Adding Services is Hard

- Wedge between (IPsec, left) or replicate (virtualization, right)
Recapitulation

- Component services repeat:
 - handshake / state management
 - security
 - policy (admission control, filtering)
 - multiplexing and demultiplexing
 - retransmission
 - reordering
 - pacing / congestion control
 - switching / forwarding
- Compounded by virtualization
 - Layer on layer on layer
Composition Requires Coordination

- Many services integrate layers
 - Congestion control
 - Message boundaries
 - Security
 - State establishment
- Current interlayer interface is limited
 - Defined by each layer
 - No general security, state, etc. interface
RNA Stack

- Only needed layers
 - With only needed services
- One MP, many instances
 - Configurable like TP++
 - Retain layers to limit scope
 - Context-sensitive
Layer Context Sensitivity

- E.g., mp-1 morphs varies when over wireless vs. optical
 - Opportunity for auto-tuning
RNA Metaprotocol

- Template of basic protocol service:

 - Shared State
 - Security
 - Flow Control
 - Next Layer Resolution
MDCM from *Choices*

Dynamic interlayer glue

- One template for ARP, BGP, IP, DNS
 - Also for ‘BARP’
- Structured template
 - With plug-in funcs.

```plaintext
LAYER(DATA, SRC, DST)
    Process DATA, SRC, DST into MSG
    WHILE (Here <> DST)
        IF (exists(lower layer))
            Select a lower layer
            Resolve SRC/DST to next layer S’, D’
            LAYER(MSG, S’, D’)
        ELSE
            FAIL /* can’t find destination */
        ENDIF
    ENDWHILE
    /* message arrives here */
    RETURN {up the current stack}
```
Components of RNA MP

Instantiate MDCM’s “Process DATA”

- Establish / refresh state
- Encrypt / decrypt message
- Apply filtering
- Pace output via flow control
- Pace input to allow reordering
- Multiplex/demultiplex as indicated
 - includes switching/forwarding
Challenges

- MP design
 - Building a sensible, generic template
- Stack management
 - Supporting instantiation and composition
- Supporting interlayer coordination
 - Designing a sensible, recursive API
 - Makes it easier to interface (to yourself, e.g., LEGO)
- Supporting context sensitivity
 - Detecting environment and autotuning
Related Work

- Modular protocol environments
 - Click, x-Kernel, Netgraph, Flexible Protocol Stacks
 - RNA adds a constrained template

- Template protocol models
 - MDCM, RBA
 - RNA adds structured sequence of services

- Context-sensitive protocols
 - PEPs, Shims, intermediate overlay layers, etc.
 - RNA incorporates this into the stack directly

- Configurable protocols
 - XTP, TP++, SCTP
 - RNA makes every layer configurable, but keeps multiple layers.
Status

- Ongoing stack/protocol survey
 - Scope vs. layer structure
 - Intra-/Interlayer ‘feature creep’
 - Intra-/Interlayer bindings

- Observation: Inclusive Scoping Issues
 1. Layers have static, linear lineage
 - Works well for messages streams; poorly for connections
 2. Services are satisfied top-down
 - Consequence of ‘E2E argument’ + #1

www.isi.edu/rna