Next Steps in Enabling A Virtual Internet

Joe Touch
USC/ISI

with Lars Eggert, Yu-Shun Wang, Venkata Pingali, Greg Finn, Steve Hotz, Norihito Fujita
Outline

- Background
- Future Directions:
 - Lessons Learned
 - Issues
 - Impossibilities
 - Opportunities
Background
Creating a Ring

Request

Internet

Ring Ovl.

sin

eql

udel

cos

div

sec

isipc2

bbn
VI – definition

- Virtual Internet is network composed of:
 - Virt. hosts, virt. routers, virt. links (tunnels), i.e., an end-to-end system
 - provides at least the same services as IA
 - in a virtual context
- First-principles extension
 - More than a patch
 - More than interim
VIA Principles

- **TENET 1. Internet-like**
 - VIs = VRs + VVs + tunnels
 - Tunnels are links; separate net addresses
 - Emulating the Internet

- **TENET 2. All-Virtual**
 - decoupled from their base network

- **TENET 3. Recursion-as-router**
 - some of VRs are VI networks
Extra constraints

- Internet-based
 - Routing (link up) vs. provisioning (link add)
 - ...one header to bind them all...
 (use IP, provide IP recursion)
- Complete E2E system
 - All VNs are E2E
- VN “Turing Test”
 - A net can’t tell it’s virtual
- Use existing protocols, OSs, apps.
Sub-overlays look like routers
- L3 version of rbridges (IETF TRILL WG)
- Similar to LISP/NERD/etc.
Software Features

- Running code since 2000
 - FreeBSD port, Linux RPM, Cisco via buddy host
- Secure
 - TLS control plane, IPsec data plane
 - "Red teamed" software
- IPv4, IPv6 (both with IPsec)
 - Integrated with DNS updates, dynamic routing
- Per socket association to overlays
 - Allows process to bind to multiple overlays
- Application deployment
 - Slice configuration, control distributed services
- Supports recursion, revisitation
What We Don’t Do...

- **Optimize the overlay topology**
 - we use a plug-in module (AI folk can provide)
 - it requires network status (not quite mature)
 - fault tolerance only via ground truth (future work)
 - X-Bone is capability more than performance (now)

- **Non-IP overlays**
 - Single, common interoperation layer
 - IP recurses / stacks nicely
 - "The lowest level at which experimentation is permitted is also the highest level at which experimentation occurs." – J. Touch, 1996
TetherNet

- Rents a block of addresses
 - Auto-configures secure tunnel
- Undoes effect of NAT/NAPT
 - Also effect of net non-neutrality
DynaBone
Spread Spectrum

Outerlay

TCP S/F – 3DES

Others – MD5

UDP – SHA1

Base network

800 Innerlays
Costs of Encapsulation

- Packet MTU limits
 - Layers eat packet space
 - May stress impls.
- Bandwidth costs
 - 20% (10% IPSEC’d)
- Latency costs
 - 0.02-0.06 msec per hop
VI Observations

- Virtualization *changes* the architecture
 - Hosts are really processes,
 everything else is really a router or system
 - Devices aren’t localized
 - Subnet as a router
 - NAT as a host front-end
 - Link and net layers are tightly coupled
- Core concepts from previous glue/shims
 - A single model yields layering, forwarding, routing, and dynamic composition
Future Directions
A Decade of Lessons

- Revisitation support
 - Two layers – Vnet, Vlink
- Recursion as map-and-encap
 - Subnet as router – TRILL, LISP
- Links as tunnels
 - Signaling interactions
- Hosts as host/router set
 - Router shares within/between overlays
Timeline

- 1997 – first whitepaper
- 1998-2001 – X-Bone (DARPA)
 - IP overlays with revisitation, recursion (LISP)
 - 2000 – running code (FreeBSD, Linux)
 - 2000 – application deployment
 - 2001 – TetherNet “NAT-buster” to support demos
- 2001-2004 – DynaBone (DARPA)
 - 800-way spread-spectrum parallel overlays
 - 15-level deep overlays
- 2001-2003 – NetFS (NSF)
 - File system configuration of network properties
- 2002-2005 – X-Tend (NSF)
 - X-Bone for testbed uses
- 2003-2005 – DataRouter (int.)
 - Support for overlay P2P forwarding
- 2005-2006 – Agile Tunnels (NSA)
 - Partial overlays for DDOS safety
- 2006-2009 – RNA (NSF)
 - Extending X-Bone Choices model to general protocol stack architecture
Recursive Internet

Control / deployment

- Recursion as a router (vs. ASes)
- Network recursion examples
 - L3 = BARP (X-Bone), LISP (IRTF)
 - L2 = Rbridges/TRILL

Network
Issues

- Binding overlays to hosts
 - Per process (X-Bone), per host/OS (slice)
- Selecting an overlay
 - Impact of naming
- Supporting cross-overlay gateways
 - Translate vs. Internet
Cross-overlay

Internet:

Sub-1

Sub-2

Translate:

Sub-1

Sub-2
Impossibilities

- Optimization (tuning)
 - Can see path properties
 - Can’t know actual path
- QoS (constraints)
 - Can tie to lower-layer resource mgt.
 - Otherwise, can enforce peer QoS only
Opportunities

- VI as VM for daily use
 - Useful ubiquitous services
 - Not just for experiments
- Extend recursion
 - Hints at unifying general model
- Development as a full architecture
 - Host requirements for VI
 - OS extensions
Potential Uses

- **Test new protocols**
 - Test denial-of-service solutions

- **Deploy new services incrementally**
 - Dynamic routing, proxylets, security

- **Increase lab & testbed utility**
 - Overlapping nets, add delay & loss

- **Scale to very many nodes**
 - Simplify view of topology

- **Support fault tolerance**
 - Added level of recovery
Daily Use of VIs

- **Compose:**
 - DTN, Plutarch

- **Alternate:**
 - Control Plane, FEC, Boosters, Dynabone

- **Shift:**
 - ATP
Recursion supports Layering and Forwarding

- **Layering (left)**
 - Heterogeneity via O(N) translators
 - *Requires successive recursive discovery*

- **Forwarding (right)**
 - N^2 connectivity via O(N) links
 - *Requires successive iterative discovery*