Recursive Networks

Joe Touch
USC/ISI

With: Yu-Shun Wang
Lars Eggert
Venkata Pingali
Internet Architecture

Accused of ossification, but:

- Ossification = stability
- Flexibility is abundant:
 - Shim layers:
 - HIP, SHIM6, IPsec, TLS
 - Muxing layers:
 - SCTP, RDDP, BEEP
 - Connections:
 - MPLS, GRE, IKE, BEEP, SCTP
 - Virtualization:
 - L2VPN, L3VPN/X-Bone/RON/Detour, L7-DHTs
Motivation

- Layers of a stack becoming more similar
 - Security, soft-state, pacing, retransmission
- Desire to support new capabilities
 - Interlayer cooperation, dynamic layer selection
- Desire to support emerging abstractions
 - Overlay layers don’t map to 1-7
 - Support for recursive nodes (BARP, LISP, TRILL)

Is layering more than a coding artifact?
Net Arch - Assumptions

- **Internet-Compliant Architecture**
 - Hosts add/delete headers
 - Routers transit (constant # headers)

- **Supports New Capabilities**
 - Concurrence (multiprocessing)
 - Revisitation (multiple roles in one net)
 - Recursion (to hide topology and/or mgt.)
Virtual Networks

- Internet-like
 - Internet = routers + hosts + links
 - VIs = VRs + VHs + tunnels
 - Full architecture (vs. VPNs, PP-VPN, etc.)

- All-Virtual
 - Supports VNs on VNs
 - “Reality” is undecidable

- Recursion-as-router
 - Some of VRs are VI networks

- See Globecom 1998 (running code 2000)
 - 15 layers deep, 800 wide, app. deploy, P2P integration
Recursive Internet (2003)

- Recursion as a router
 - L3 = BARP (X-Bone), LI SP (IRTF)
 - L2 = Rbridges/TRILL
Recursion requires new layers – where? Why?

- Wedge between (IPsec, left) or replicate (virtualization, right)
RNA Stack (2006)

- One MP, many instances
 - Needed layers, with needed services
 - Layers limit scope, enable context sensitivity
 - Scope defined by reach, layer above, layer below
RNA Metaprotocol

- Template of basic protocol service:
 - Establish / refresh state
 - Encrypt / decrypt message
 - Apply filtering
 - Pace output via flow control
 - Pace input to allow reordering
 - Multiplex/demultiplex
 - includes switching/forwarding
MDCM from *Choices*

Structured template w/plug-in functions

- Layer address translate/resolution
 - ARP, IP forwarding lookup
 - BARP/LISP/TRILL lookup
- Layer alternates selection
 - IPv4/IPv6, TCP/SCTP/DCCP/UDP
- Iterative forwarding
 - IP hop-by-hop, DNS recursive queries

```
LAYER(DATA, SRC, DST)
  Process DATA, SRC, DST into MSG
  WHILE (Here <> DST)
    IF (exists(lower layer))
      Select a lower layer
      Resolve SRC/DST to next layer S’,D’
      LAYER(MSG, S’, D’)
    ELSE
      FAIL /* can’t find destination */
    ENDIF
  ENDWHILE
/* message arrives here */
RETURN {up the current stack}
```
Click Implementation

Composition Graph

Conf File

Compose What

mux demux buffer

Scheduler Composition Logic

Data API Control API

Utilities Parser

Click

Protocol

Compose Recursively

e3 e4

m1 m2

2/7/2011 3:25 PM Copyright 2009, USC/ISI. All rights reserved. 11
Recursion supports Layering and Forwarding

- **Layering (left)**
 - Heterogeneity via $O(N)$ translators
 - *Requires successive recursive discovery*

- **Forwarding (right)**
 - N^2 connectivity via $O(N)$ links
 - *Requires successive iterative discovery*
Related Work

- Recursion in networking
 - X-Bone/Virtual Nets, Spawning Nets, TRILL, Network IPC, LI SP
 - RNs natively include resolution and discovery

- Protocol environments
 - Modular systems: Click, x-Kernel, Netgraph, Flexible Stacks
 - Template models: RBA, MDCM
 - RNs adds a constrained template with structured services

- Context-sensitive components
 - PEPs, Shims, intermediate overlay layers, etc.
 - RNs incorporates this into the stack directly

- Configurable über-protocols
 - XTP, TP++, SCTP
 - RNs make every layer configurable, but keeps multiple layers.
Conclusions

- Virtualization requires recursion
- Recursion supports layering
- Recursion supports forwarding

One recurrence to bind them all...

- Recursion is a native network property
 - Integrates and virtualization, forwarding and layering in a single mechanism