
1

1

USC/ISI Loom KR&R Group

2

  Knowledge Representation (KR) Background
  Evolution and Issues

  PowerLoom® Language
  Concept and Relation Language
  Assertions
  Rules
  Example

  PowerLoom Application
  Conclusion

PowerLoom is a registered trademark of the University of Southern California

2

3

  1) The idea of descriptive logics and how they
differ from, say, systems like prolog.	

  2) A little on the evolution of PowerLoom.	
  3) Details of Powerloom: The Concept/Relation

language, Assertions, retrievals, open/closed
world semantics	

  4) Rules: Forward and Backward chaining, the
many ways to express rules. How to invoke rules
explicitly.	

  5) Classification: What it is and how it works
in Powerloom. Do the rabies example (it's on my
website at:
http://www-scf.usc.edu/~csci561a/slides/
rabies.plm	

  6) How a PowerLoom application looks (especially
one written in Java)	

4

3

5

300 B.C.

•  All men are mortal
•  Socrates is a man
•  Therefore, Socrates is

mortal

Syllogism (Aristotle)

1800s

•  ∀ x (Man(x) → Mortal(x))
•  Man(Socrates)
•  ∴ Mortal(Socrates)

Predicate Calculus (Frege)

6

animal

mammal

dog

sick animal

rabies

disease has

“A dog is
a mammal”

“A sick animal
has a disease”

“rabies is
a disease”

is-a is-a

is-a is-a

medicine
cures

4

7

&

&

&

 &
&

&

&&

“  '
 ”'

“ 
  
”'

“
 
”'

&&

&&

&

&

See: William Woods, “What's in a link: Foundations for Semantic Networks”, 1975

8

animal

mammal

dog

sick animal

rabies

disease has

subclass-of subclass-of

subclass-of subclass-of

medicine
cures

• Subclass relations “A dog is a mammal”
• Structural description:

•  Cardinality, Fillers, Type restrictions “A sick
animal has a disease”

5

9

animal

mammal

dog

sick animal

rabies

disease has

rabid dog

has

10

animal

mammal

dog

sick animal

rabies

disease has

has

rabid dog

6

11

animal

mammal

dog

sick animal

rabies

disease has

has

rabid dog rabid animal

has

12

animal

mammal

dog

sick animal

rabies

disease has

has

rabid dog

rabid animal has

7

13

  Subsumption is the organizing and reasoning principle
  Subset-of relation.

  Special language constructs for structural description
  Classifier reasons about subsumption
  Reasoning is based on structure of definitions
  Limited language to allow tractable inference

  (all R C)
  (some R C)
  (exactly n R)
  …

  Examples of description logics
  KL-ONE, KRYPTON, Loom, Classic, OWL

14

  Reasoning based on logic
  Theorem provers
  Logic Programming (Prolog)

  PowerLoom combines logical reasoning with ideas from
description logics

  Prolog + additional logical inferences
  Named concepts and definitions
  First-order predicate calculus

8

15

Prolog
•  Horn clauses
•  Closed world reasoning
•  Backward chaining rules

•  Universal quantification
•  Resolution theorem

proving
•  More efficient reasoner

PowerLoom
•  1+st order logic
•  Open and closed world
•  Backward and forward

chaining rules
•  Universal and existential
•  Deductive, specialist and

other reasoning
•  Relations are 1st class

objects

16

  Ideal Knowledge Representation System
1.  Expressive language: You can say what you need to
2.  Sound reasoning: The reasoner doesn't make mistakes
3.  Complete reasoning: All allowed inferences are made
4.  Efficient: The answers are produced quickly (tractable algorithms)

  Problem: You can only have 3 of the above.
  Two main schools of thought

1.  Sound, Complete & Tractable: Classic, OWL
2.  Expressive, Sound & Tractable: Loom, PowerLoom

  PowerLoom is culmination of push for more expressivity

9

17

  Closed World means the system knows all relevant facts
  Allows “negation as failure” reasoning
  Answers are either true or false
  Example: President Sample is in this lecture hall — false
  Database systems and Prolog are closed-world

  Open World means that there may be unknown facts
  Lack of proof does not mean false
  Answers are true, false or unknown
  Example: President Sample is on campus — unknown
  Many KR systems (including PowerLoom) are open world

  PowerLoom can also do selectable closed world reasoning

18

10

19

Joe Blow

Joe’s Ford

“Real” World Logical Model

owns

denotes

Terms represent entities:
 Joe, car002

Predicates represent relations:
 owns
Sentences represent what is
true in the world (facts):
 (Person Joe)
 (= (age Joe) 17)
 (Car car002)
 (owns Joe car002)
 (model car002 Ford)
 (not (rich Joe))

Rules define terms and represent domain regularities:
 (<=> (and (> (age ?x) 12) (< (age ?x) 20)
 (Teenager ?x))
 (=> (and (Teenager ?x) (car ?y) (owns ?x ?y))
 (happy ?x))

Facts + rules + inference derive concluded facts:
 (Teenager Joe)
 (happy Joe)

20

  First Order Logic base
  Syntax
  Declarative semantics

  Prefix notation

  Example:

Facts: (person fred)
 (citizen-of fred germany)
 (national-language-of germany german)

Rules: (forall (?p ?c ?l)
 (=> (and (person ?p)
 (citizen-of ?p ?c)
 (national-language-of ?c ?l))
 (speaks-language ?p ?l)))

11

21

  Terminology (relations, concepts) need to be defined before they
are used via defconcept, deffunction & defrelation

  Examples:

(defconcept person)
(defrelation married-to ((?p1 person) (?p2 person))
(deffunction + ((?n1 number) (?n2 number))
 :-> (?sum number))

  Advantage & Disadvantage
  Allows certain amount of error checking (e.g., misspelled relations, argument

type violations)
  A bit more tedious and can sometime generate ordering problems

22

  Predicate logic uses logical connectives to construct
complex sentences from simpler ones:

  and, or, not, <=, =>, <=>, quantifiers exists and forall

  Examples:
  “Richard is not a crook”:

(not (crook Richard))

  “Every person has a mother”:
(forall ?p
 (=> (person ?p)
 (exists ?m
 (has-mother ?p ?m))))

12

23

  Starting PowerLoom using Java
﻿ java -Xmx512m -jar AI.jar
 or

 powerloom

  Some useful interactive commands
  Printing or changing modules (contexts)

(cc)
(cc "DOG")

  Loading and saving work
(load "my-work.plm")
(save-module "DOG" "my-work.plm")

  Getting help
(help)
(demo)

  Stopping PowerLoom
quit, bye, exit

24

13

25

animal

mammal

dog

sick animal

rabies

disease has

“A dog is
a mammal”

“A sick animal
has a disease”

“rabies is
a disease”

26

rabid dog

animal

mammal

dog

sick animal

rabies

disease has

has

rabid animal

has

14

27

28

  Classification in PowerLoom is not automatic

  It must be invoked manually
  (classify-relations "MY-MODULE" true)
  (classify-instances "MY-MODULE" true)

  Specific subset-of queries will still give the correct
answer

  But value retrieval won't find them
  Different effort expended – an example of PowerLoom

incompleteness.

15

29

30

  We define a separate BUSINESS module for our example
  Inherits built-in PowerLoom definitions from PL-KERNEL/PL-USER
  Sets up a separate name and assertion space to avoid unwanted

interference with/from other loaded knowledge bases
  Allows easy experimentation (clearing/changing/editing/saving)
  All PowerLoom commands are interpreted relative to current module

(defmodule "BUSINESS"
 :documentation "Module for the Business demo example."
 :includes ("PL-USER"))

(in-module "BUSINESS")

(clear-module "BUSINESS")

16

31

  Concepts define classes of entities
  Defined via the defconcept command
  Can have zero or more parent concepts (they all inherit THING)
  Used to introduce typed instances

(defconcept company)
(defconcept corporation (?c company))

(assert (company ACME-cleaners))
(assert (corporation megasoft))

(retrieve all ?x (company ?x))
There are 2 solutions:
 #1: ?X=ACME-CLEANERS
 #2: ?X=MEGASOFT

(retrieve all ?x (corporation ?x))
There is 1 solution:
 #1: ?X=MEGASOFT

32

  Relations define sets of relationships between entities
  Defined via the defrelation command (& deffunction see later)
  Can have one or more arguments (unary to n-ary)
  Can be fixed or variable arity
  Can be single or multi-valued
  Usually specify types for each argument
  Used to specify relationships between entities

(defrelation company-name ((?c company) (?name STRING)))

(assert (company-name ACME-cleaners "ACME Cleaners, LTD"))
(assert (company-name megasoft "MegaSoft, Inc."))

17

33

(retrieve all (company-name ?x ?y))
There are 2 solutions:
 #1: ?X=MEGASOFT, ?Y="MegaSoft, Inc."
 #2: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"

(retrieve all (?y ?x) (company-name ?x ?y))
There are 2 solutions:
 #1: ?Y="MegaSoft, Inc.", ?X=MEGASOFT
 #2: ?Y="ACME Cleaners, LTD", ?X=ACME-CLEANERS

  Retrieve all relations asserted in the BUSINESS module:

34

  Hierarchies for concepts as well as relations are supported
  PowerLoom represents a subconcept/subrelation relationship by

asserting an “implication” relation (or an “implies” link)
  Link is equivalent to a logic rule but allows more efficient inference
  Various syntactic shortcuts are available to support often-used

implication relations

(defrelation fictitious-business-name ((?c company) (?name STRING))
 :=> (company-name ?c ?name))

(forall (?c ?name)
 (=> (fictitious-business-name ?c ?name)
 (company-name ?c ?name))

(subset-of fictitious-business-name company-name)

18

35

  Retrieve all names of MegaSoft, fictitious or not
  Illustrates that company-name is a multi-valued relation

(assert (fictitious-business-name megasoft “MegaSoft”))

(retrieve all ?x (company-name megasoft ?x))
There are 2 solutions:
 #1: ?X="MegaSoft, Inc."
 #2: ?X="MegaSoft"

36

  Functions are term-producing, single-valued relations
  Defined via the deffunction command
  Very similar to relations defined via defrelation but:
  Term producing: a function applied to its first n-1 input arguments specifies a

unique, intensional term, e.g., “Fred’s age”
  Single-valued: each set of input arguments has at most one output argument

(the last argument), e.g., “Fred’s age is 42”
  By default, functions are assumed to be partial, i.e., could be undefined for

some legal input values (e.g., 1/0)

(deffunction number-of-employees ((?c company)) :-> (?n INTEGER))

(assert (= (number-of-employees ACME-cleaners) 8))
(assert (= (number-of-employees megasoft) 10000))

19

37

  Functions syntax often results in shorter expressions than using similar
relation syntax:

(retrieve all (and (company ?x)
 (exists ?n
 (and (number-of-employees ?x ?n)
 (< ?n 50)))))
There is 1 solution:
 #1: ?X=ACME-CLEANERS

(retrieve all (and (company ?x)
 (< (number-of-employees ?x) 50)))
There is 1 solution:
 #1: ?X=ACME-CLEANERS

  Compare to:

(retrieve all (> (number-of-employees ?x) (number-of-employees ?y)))
There is 1 solution:
 #1: ?X=MEGASOFT, ?Y=ACME-CLEANERS

  Multiple function terms:

38

  Concepts (and functions/relations) can be defined completely in
terms of rules

  Useful to name often-used queries or subexpressions and build up powerful
vocabulary

(defconcept small-company (?c company)
 :<=> (and (company ?c)
 (< (number-of-employees ?c) 50)))

(forall ?c (=> (and (company ?c)
 (< (number-of-employees ?c) 50))
 (small-company ?c)))

(forall ?c (=> (small-company ?c)
 (and (company ?c)
 (< (number-of-employees ?c) 50))))

20

39

  Retrieve small companies even if we don’t know exactly
how many employees they have

(assert (and (company zz-productions)
 (< (number-of-employees zz-productions) 20)))

(retrieve all (small-company ?x))
There are 2 solutions:
 #1: ?X=ZZ-PRODUCTIONS
 #2: ?X=ACME-CLEANERS

40

  PowerLoom uses classical negation and an open-world assumption
(OWA) by default

  KB is not assumed to be a complete model of the world: if something can’t be
derived the answer is UNKNOWN, not FALSE

  Can distinguish between failure and falsity!
  Inference engine uses asymmetric effort to derive the truth or falsity of a query

  Focuses effort on deriving truth, picks up falsity only via quick, shallow disproofs
  Full effort for falsity available by asking for the negated query
  Possible extension: 3-valued ask (similar to Loom)

(defconcept s-corporation ((?c corporation)))

(ask (s-corporation zz-productions)) ⇒ UNKNOWN
(ask (not (s-corporation zz-productions))) ⇒ UNKNOWN

(assert (not (s-corporation zz-productions)))

(ask (s-corporation zz-productions)) ⇒ FALSE
(ask (not (s-corporation zz-productions))) ⇒ TRUE

21

41

  Falsity can also come from sources other than explicit
assertion

  Single-valued functions and relations
  Inequalities
  Disjoint types
  Negated rule heads, etc.

(ask (= (number-of-employees ACME-cleaners) 8)) ⇒ TRUE
(ask (= (number-of-employees ACME-cleaners) 10)) ⇒ FALSE
(ask (not (= (number-of-employees ACME-cleaners) 10)))⇒ TRUE
(ask (= (number-of-employees zz-productions) 100)) ⇒ FALSE
(ask (= (number-of-employees zz-productions) 10)) ⇒ UNKNOWN

42

  Selective closed-world semantics and negation-by-failure are also
available (as used by Prolog, deductive databases, F-Logic, etc.)

  Useful in cases where we do have complete knowledge
  If something can’t be derived, it is assumed to be false
  Closed-world semantics specified by marking relations as closed
  Negation-by-failure via fail instead of not

(defrelation works-for (?p (?c company)))

(assert (works-for shirly ACME-cleaners))
(assert (works-for jerome zz-productions))

(ask (not (works-for jerome megasoft))) ⇒ UNKNOWN

(assert (closed works-for))
(ask (not (works-for jerome megasoft))) ⇒ TRUE

(retract (closed works-for))
(ask (not (works-for jerome megasoft))) ⇒ UNKNOWN
(ask (fail (works-for jerome megasoft))) ⇒ TRUE

22

43

  Retraction allows the erasure or change of a previously
asserted truth-value of a proposition

  Useful for error correction or iterative “change of mind” during
development

  Useful to change certain aspects of a scenario without having to
reload the whole knowledge base

  Allows efficient, fine-grained change
  Some cached information is lost and needs to be regenerated
  Loss can be minimized by careful structuring of module hierarchy (put more

stable knowledge higher up in the hierarchy)
  Allows the exploration of hypothetical conjectures

  What would change if F were true or false?
  Module system allows us to consider both possibilities at the same time

44

  Some geographic terminology and information
(defconcept geographic-location)
(defconcept country ((?l geographic-location)))
(defconcept state ((?l geographic-location)))
(defconcept city ((?l geographic-location)))
(defrelation contains ((?l1 geographic-location)
 (?l2 geographic-location)))

(assert (and
 (country united-states)
 (geographic-location eastern-us)
 (contains united-states eastern-us)
 (state georgia) (contains eastern-us georgia)
 (city atlanta) (contains georgia atlanta)
 (geographic-location southern-us)
 (contains united-states southern-us)
 (state texas) (contains eastern-us texas)
 (city dallas) (contains texas dallas)
 (city austin) (contains texas austin)))

23

45

  Retraction to fix an incorrect assertion

(ask (contains eastern-us texas)) ⇒ TRUE

(retract (contains eastern-us texas))
(assert (contains southern-us texas))

(ask (contains eastern-us texas)) ⇒ UNKNOWN

46

  Functions allow implicit retraction via value clipping
  Assertion of a function value automatically retracts a preexisting value
  Justified, since functions are single-valued

(deffunction headquarters ((?c company)) :-> (?city city))

(assert (= (headquarters zz-productions) atlanta))
(retrieve all (= ?x (headquarters zz-productions)))
There is 1 solution:
 #1: ?X=ATLANTA

(assert (= (headquarters zz-productions) dallas))
(retrieve all (= ?x (headquarters zz-productions)))
There is 1 solution:
 #1: ?X=DALLAS

24

47

  Clipping also works for single-valued relations

(defrelation headquartered-in ((?c company) (?city city))
 :axioms (single-valued headquartered-in))

(assert (headquartered-in megasoft atlanta))
(retrieve all (headquartered-in megasoft ?x))
There is 1 solution:
 #1: ?X=ATLANTA

(assert (headquartered-in megasoft dallas))
(retrieve all (headquartered-in megasoft ?x))
There is 1 solution:
 #1: ?X=DALLAS

48

  Propositions that are both TRUE and FALSE are contradictory
  Contradictions can result from explicit assertions, during forward-

chaining, or as the result of a refutation proof
  Contradictory propositions are treated as UNKNOWN to allow the system

to continue to function

(assert (not (state texas)))

Derived both TRUE and FALSE for the proposition `|P#|(STATE TEXAS)'.
 Clash occurred in module `|MDL|/PL-KERNEL-KB/BUSINESS'.

(ask (state texas)) ⇒ UNKNOWN
(ask (not (state texas))) ⇒ UNKNOWN

25

49

  Logic rules can be used to model complex relationships
  Rules can be unnamed or named via defrule
  Most definition commands expand into one or more rules
  Inference engines apply rules to derive conclusions

(retrieve all (contains southern-us ?x))
There is 1 solution:
 #1: ?X=TEXAS

(defrule transitive-contains
 (forall (?l1 ?l2 ?l3)
 (=> (and (contains ?l1 ?l2)
 (contains ?l2 ?l3))
 (contains ?l1 ?l3))))

(retrieve all (contains southern-us ?x))
There are 3 solutions:
 #1: ?X=TEXAS
 #2: ?X=AUSTIN
 #3: ?X=DALLAS

(defrule transitive-contains
 (=> (and (contains ?l1 ?l2)
 (contains ?l2 ?l3))
 (contains ?l1 ?l3)))

50

  Logic rules can be defined and named via defrule
  Rules are propositions which are in the domain of discourse

  Allows meta-annotations and reasoning
  Naming rules (or any proposition) provides extra level of convenience

  Axiom schemata allow simple definition of commonly used rule patterns

(retract transitive-contains)

(retrieve all (contains southern-us ?x))
There is 1 solution:
 #1: ?X=TEXAS

(assert (transitive contains))

(retrieve all (contains southern-us ?x))
There are 3 solutions:
 #1: ?X=TEXAS
 #2: ?X=AUSTIN
 #3: ?X=DALLAS

(defrelation transitive ((?r RELATION))
 :=>> (and (binary-relation ?r)
 (not (function ?r)))
 :=>> (=> (and (?r ?x ?y)
 (?r ?y ?z))
 (?r ?x ?z)))

26

51

  Explanation of true/false queries
  Backward inference can store proof trees that can be rendered into

explanations
  Simple built-in explanation mechanism

  Various rendering possibilities, ASCII, HTML, XML
  Eliminates explanation of duplicate and low-level goals
  Explanation strings for different audiences (technical, lay)

(ask (contains southern-us dallas)) ⇒ TRUE

(why)
1 (CONTAINS SOUTHERN-US DALLAS)
 follows by Modus Ponens
 with substitution {?l1/SOUTHERN-US, ?l3/DALLAS, ?l2/TEXAS}
 since 1.1 ! (FORALL (?l1 ?l3)
 (<= (CONTAINS ?l1 ?l3)
 (EXISTS (?l2)
 (AND (CONTAINS ?l1 ?l2)
 (CONTAINS ?l2 ?l3)))))
 and 1.2 ! (CONTAINS SOUTHERN-US TEXAS)
 and 1.3 ! (CONTAINS TEXAS DALLAS)

52

  Explanation of retrieved results
  Separate explanation for each derived solution
  why explains most recently retrieved solution

(retrieve 3 (contains southern-us ?x))
There are 3 solutions so far:
 #1: ?X=DALLAS
 #2: ?X=TEXAS
 #3: ?X=AUSTIN

(why)
1 (CONTAINS SOUTHERN-US AUSTIN)
 follows by Modus Ponens
 with substitution {?l1/SOUTHERN-US, ?l3/AUSTIN, ?l2/TEXAS}
 since 1.1 ! (FORALL (?l1 ?l3)
 (<= (CONTAINS ?l1 ?l3)
 (EXISTS (?l2)
 (AND (CONTAINS ?l1 ?l2)
 (CONTAINS ?l2 ?l3)))))
 and 1.2 ! (CONTAINS SOUTHERN-US TEXAS)
 and 1.3 ! (CONTAINS TEXAS AUSTIN)

1

53

  Hypothetical or scenario reasoning can be achieved by
  creating a new context which inherits existing set of facts and
  allows the exploration of "assumptions".

  In this example, we show how certain inherited assertions can be
retracted and changed

(defmodule "ALTERNATE-BUSINESS"
 :includes "BUSINESS")

(in-module "ALTERNATE-BUSINESS")

(assert (and (company web-phantoms)
 (company-name web-phantoms "Web Phantoms, Inc.")))

(retract (company-name megasoft "MegaSoft, Inc."))
(assert (company-name megasoft "MegaZorch, Inc."))

54

  The ALTERNATE-BUSINESS module
  inherits all of the information of its parent module
  is subject to the specific changes made in the local module.

(in-module "BUSINESS")

(retrieve all (company-name ?x ?y))
There are 3 solutions:
 #1: ?X=MEGASOFT, ?Y="MegaSoft, Inc."
 #2: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"
 #3: ?X=MEGASOFT, ?Y="MegaSoft"

(in-module "ALTERNATE-BUSINESS")

(retrieve all (company-name ?x ?y))
There are 4 solutions:
 #1: ?X=MEGASOFT, ?Y="MegaZorch, Inc.”
 #2: ?X=/PL-KERNEL-KB/PL-USER/BUSINESS/ALTERNATE-BUSINESS/WEB-
PHANTOMS, ?Y="Web Phantoms, Inc.”
 #3: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD”
 #4: ?X=MEGASOFT, ?Y="MegaSoft"

28

55

  Normally queries operate in the current module.
  The IST (IS-TRUE) relation (J. McCarthy) allows us to query about the state of

knowledge in other modules.
  This also allows cross-module inference by binding variables across forms
  Example: “find all companies whose names differ in the two modules”

(in-module "BUSINESS")

(retrieve all (ist alternate-business (company-name ?x ?y)))
There are 4 solutions:
 #1: ?X=MEGASOFT, ?Y="MegaZorch, Inc."
 #2: ?X=MEGASOFT, ?Y="MegaSoft, Inc."
 #3: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"
 #4: ?X=MEGASOFT, ?Y="MegaSoft"

(retrieve all (and (ist business (company-name ?x ?y))
 (fail (ist alternate-business (company-name ?x ?y)))))
There is 1 solution:
 #1: ?X=MEGASOFT, ?Y="MegaSoft, Inc."

56

29

57

  Details in the PowerLoom Manual
  Mapping PowerLoom names

  Follows standard Java conventions
  s-assert-proposition ⇒ sAssertProposition

  “*” character maps to “$”
  *module* ⇒ $MODULE$ — it’s a global variable!

  “?” character maps to “P” (for Predicate)
  next? ⇒ nextP

  Java import statements

import edu.isi.powerloom.*;
import edu.isi.powerloom.logic.*;
import edu.isi.stella.Module;
import edu.isi.stella.Stella_Object;

58

  PowerLoom needs to be initialized before using. This can
take a while. This form initializes basic PowerLoom
  PLI.initialize();

  Other systems may also need initialization.
  For example, PowerLoom extensions to get units and dimensions:

  StartupPowerloomSystem.startupPowerloomSystem();

  PowerLoom files may need loading
  PLI.load("mykb.plm", null);

30

59

  Almost all needed interface methods are in the PLI class as
static methods.

  Many have both object and String interfaces. Strings are
generally easier to use.

  The general sEvaluate form can process any command
that can be given at the interactive prompt.

  Most methods take a module and environment argument.
The environment can be left as null to use the default.

PLI.sAssertProposition("(Person Fred)", "PL-USER", null);
PLI.sAssertProposition("(name Fred \"Frederick\")", "PL-USER", null);

PLI.sRetractProposition("(Hungry Fred)", "PL-USER", null);

PLI.sCreateRelation("friend", 2, "PL-USER", null);
PLI.sEvaluate("(deffunction age ((?p Person) (?n INTEGER)))",
 "PL-USER", null);

60

  Ask queries return values of type TruthValue
  PLI has predicates to test the returned values.

PLI.isTrue(PLI.sAsk("(> 8 7)", "PL-USER", null));

TruthValue tv = PLI.sAsk("(friend Jobs Eisner)", "PL-USER", null);

if (isTrue(tv)) System.out.println("Yes!");
if (isFalse(tv)) System.out.println("No.");
if (isUnknown(tv)) System.out.println("How should I know?");
if (isDefault(tv)) System.out.println(" by default reasoning");

31

61

  Retrieve queries return values of type PlIterator

String query = "all (and (Senator ?sen) (represents ?sen California)"
 + "(political-party ?sen ?party))";
PlIterator answer = PLI.sRetrieve(query, "POLITICS", null);

System.out.println("Answers to query `" + query + "'");
while (answer.nextP()) { // Iterate over the answers
 System.out.println(answer.value);
}

62

  Uses a different iterator protocol than Java
  iterator.nextP() advances iteration and returns a boolean. This

must be done first.
  iterator.value gets the current value, and can safely be called more

than once.
  Can be wrapped to use Java protocol

  import edu.isi.stella.javalib.*;
  javaIt = StellaIterator(PLI.sRetrieve(…));

  Values are of type Stella_Object and are tuples.
Tuples can be decomposed using PLI.getNthValue(…)

32

63

  Literals are returned wrapped but can be coerced.
  integer ⇒ int
  float ⇒ double
  string ⇒ String

  Logic Objects
  type is edu.isi.powerloom.logic.LogicObject
  PowerLoom objects like relations, instances, descriptions, skolems

  Stella Objects
  type is edu.isi.stella.Stella_Object
  Most general type. Usually wrapped literals, but may be modules.

64

  Warning: You don’t always get what you expect!
  Skolems can appear when you expect, say, a number
  Best to test the type first!

PLI.sAssertProposition("(and (age Fred 10) (> (weight Fred) 150))"…)

PlIterator answer;
answer = PLI.sRetrieve("1 (and (age Fred ?a) (weight Fred ?w))", …)

answer.nextP();

 // The next line works since age is 10, but is dangerous
int age = PLI.getNthInteger(answer.value, 0, "PL-USER", null);

 // The next line blows up because the answer is a skolem!
int weight = PLI.getNthInteger(answer.value, 1, "PL-USER", null);

if (PLI.isInteger(PLI.getNthValue(answer.value, 1, "PL-USER", null))) {
 weight = PLI.getNthInteger(answer.value, 1, "PL-USER", null);
}

33

65

  The interactive interface
  Try things out before programming

  PowerLoom Manual
  Has general information
  Has information about Java-specific information

  Javadoc for PowerLoom
  Caveat: For technical reasons almost all methods are public, but the intended

API is contained mostly in the PLI class

  The example file PowerLoomExample.java

  PowerLoom website:
 http://www.isi.edu/isd/LOOM/PowerLoom/documentation

66

34

67

Textual
Definition

Structured
Description

Formal logical encoding of
one constraint implied by the
textual definition

(Basin-depth = 0m) ⇔ (Vs30 > 2.5km/s)

68

35

69

70

  Terms correspond to entities in the (some) world
  Predicates model properties and relations between entities
  Domain rules define and constrain relations, for example,

“If Joe is a teenager who owns a car then Joe is happy”
  Logical inference rules define the propagation of truth

between logical sentences, for example:
 from X and X => Y it must be true that Y

  The more rules and sentences we add, the higher
constrained their “interpretation” (what they could mean)
becomes

  However, every consistent theory always has infinitely
many (formal) interpretations

36

71

  Tradition
  Well-understood syntax and semantics
  Very large amount of relevant research (> 2000 yrs.)
  Many available logic-based tools

  Provers, constraint reasoners, learners, planners, KR&R systems, etc.

  Representational power
  Negation
  Disjunction
  Equality (object identity)
  Logical connectives
  Quantification
  Rules, constraints
  Abstraction
  Definitions
  Extendable vocabulary, ontologies
  “If you can’t say it in logic, you probably don’t want to say it”

72

  General purpose, well-understood inference mechanisms
  Deduction
  Abduction
  Induction
  Constraint satisfaction
  Automated reasoners

37

73

  Formalizes reasoning and gives justification
  Proofs provide justifications for derived facts
  If one accepts the premises one must/should accept the conclusions

  Explanation and understandability
  Proofs are a good starting point to provide explanations
  Logical models are “easy” to understand and interpret (e.g., rules learned by an ILP

method)
  Logical models are easier to debug than other approaches

  Translatability
  Different logical representations are (often) easily translatable into each other (e.g., this

diffuses the attribute-vs.-collection distinction)

74

  Disadvantages
  Difficult to handle uncertainty and probabilistic reasoning

  But, various efforts to combine logical and probabilistic models (e.g.,
PRM’s)

  Complexity of reasoning algorithms
  Sometimes too expressive, too many different ways of saying the

same thing
  Hard to handle grey areas, but the world is grey

  Have to make hard decisions (true, false)
  Hard to say “many”, “few”, “nearly”, etc. (frustrates NLP people)

