
LoomLoom
KR&RKR&R
GroupGroup 1

PowerLoom Overview, Features andPowerLoom Overview, Features and
ExamplesExamples

Hans Chalupsky

Project Leader, USC/ISI Loom KR&R Group

LoomLoom
KR&RKR&R
GroupGroup 2

OverviewOverview

 Logic-based KR&R
 What is it, advantages, disadvantages

 PowerLoom
 Quick overview
 Basic features
 Tutorial
 Advanced features relevant for scientific reasoning
 Debugging failed inferences

 Conclusion

LoomLoom
KR&RKR&R
GroupGroup 3

Logic-Based Knowledge RepresentationLogic-Based Knowledge Representation
& Reasoning& Reasoning

LoomLoom
KR&RKR&R
GroupGroup 4

Logic-Based KR&RLogic-Based KR&R

 Knowledge Representation & Reasoning
 Studies a wide variety of paradigms & algorithms for

 Modeling salient aspects of a world of interest
 Reasoning with such models

 There are many different modeling paradigms
 Logic-based, frame-based, graph-based, probabilistic, etc.

 PowerLoom is a logic-based KR&R system

 How do logic-based models represent the world?

LoomLoom
KR&RKR&R
GroupGroup 5

Logical Models 101Logical Models 101

Joe Blow

Joe’s Ford

“Real” World Logical Model

owns

denotes

Terms represent entities:
 Joe, car002

Predicates represent relations:
 owns
Sentences represent what is
true in the world (facts):
 (Person Joe)
 (= (age Joe) 17)
 (Car car002)
 (owns Joe car002)
 (model car002 Ford)
 (not (rich Joe))

Rules define terms and represent domain regularities:
 (<=> (and (> (age ?x) 12) (< (age ?x) 20)
 (Teenager ?x))
 (=> (and (Teenager ?x) (car ?y) (owns ?x ?y))
 (happy ?x))

Facts + rules + inference derive concluded facts:
 (Teenager Joe)
 (happy Joe)

LoomLoom
KR&RKR&R
GroupGroup 6

How Does Logic Model the World?How Does Logic Model the World?

 Terms correspond to entities in the (some) world
 Predicates model properties and relations between entities
 Domain rules define and constrain relations, for example,

“If Joe is a teenager who owns a car then Joe is happy”
 Logical inference rules define the propagation of truth

between logical sentences, for example:
 from X and X => Y it must be true that Y

 The more rules and sentences we add, the higher
constrained their “interpretation” (what they could mean)
becomes

 However, every consistent theory always has infinitely
many (formal) interpretations

LoomLoom
KR&RKR&R
GroupGroup 7

Advantages of Logic-based ModelsAdvantages of Logic-based Models
 Tradition

 Well-understood syntax and semantics
 Very large amount of relevant research (> 2000 yrs.)
 Many available logic-based tools

 Provers, constraint reasoners, learners, planners, KR&R systems, etc.

 Representational power
 Negation
 Disjunction
 Equality (object identity)
 Logical connectives
 Quantification
 Rules, constraints
 Abstraction
 Definitions
 Extendable vocabulary, ontologies
 “If you can’t say it in logic, you probably don’t want to say it”

LoomLoom
KR&RKR&R
GroupGroup 8

Advantages of Logic-based ModelsAdvantages of Logic-based Models

 General purpose, well-understood inference mechanisms
 Deduction
 Abduction
 Induction
 Constraint satisfaction
 Automated reasoners

LoomLoom
KR&RKR&R
GroupGroup 9

Advantages of Logic-based ModelsAdvantages of Logic-based Models

 Formalizes reasoning and gives justification
 Proofs provide justifications for derived facts
 If one accepts the premises one must/should accept the conclusions

 Explanation and understandability
 Proofs are a good starting point to provide explanations
 Logical models are “easy” to understand and interpret (e.g., rules learned by

an ILP method)
 Logical models are easier to debug than other approaches

 Translatability
 Different logical representations are (often) easily translatable into each other

(e.g., this diffuses the attribute-vs.-collection distinction)

LoomLoom
KR&RKR&R
GroupGroup 10

Disadvantages?Disadvantages?

 Disadvantages
 Difficult to handle uncertainty and probabilistic reasoning

 But, various efforts to combine logical and probabilistic models (e.g.,
PRM’s)

 Complexity of reasoning algorithms
 Sometimes too expressive, too many different ways of saying the

same thing
 Hard to handle grey areas, but the world is grey

 Have to make hard decisions (true, false)
 Hard to say “many”, “few”, “nearly”, etc. (frustrates NLP people)

LoomLoom
KR&RKR&R
GroupGroup 11

PowerLoomPowerLoom

LoomLoom
KR&RKR&R
GroupGroup 12

PowerLoom KR&R SystemPowerLoom KR&R System

 Successor to the successful Loom KR&R system with
 More expressive representation language
 Less arcane syntax
 Better scalability
 Better portability & extensibility (available in Lisp, C++, Java)

 Based on first-order predicate logic
 Not a description logic but has description logic features

 E.g., classifier, type and cardinality reasoning, subsumption
 Focus on expressivity + scalability
 Pragmatic stance

 Usability is more important than theoretical “neatness”
 Expressivity is more important than inferential completeness

LoomLoom
KR&RKR&R
GroupGroup 13

Expressivity vs. Inferential CompletenessExpressivity vs. Inferential Completeness
 Qualitative comparison of KR-system philosophies

 Description logics: restricted expressivity, sound, complete, tractable
 PowerLoom: representationally promiscuous, sound, 80/20 complete

& tractable (handle most expected inferences in reasonable time)

What we need to express

Expressible in
PowerLoom

Expressible in
Description Logic

Inferable in
Description Logic

Inferable in
PowerLoom

LoomLoom
KR&RKR&R
GroupGroup 14

Inference CapabilitiesInference Capabilities

 Query engine to retrieve asserted and inferable statements
 Prolog-style backward inference enhanced by

 Recursive subgoal detection
 Proper handling of negation
 Hypothetical reasoning
 Resource-bounded depth-first or iterative deepening search
 Proof tree (justification) recording

 Forward inference and simple constraint propagation
 Equality and inequality reasoning
 Subsumption reasoning + relation & instance classification
 Partial match for reasoning with incomplete information
 “WhyNot” abductive inference for query diagnosis
 Extensible reasoning specialists architecture

LoomLoom
KR&RKR&R
GroupGroup 15

Knowledge Base ManagementKnowledge Base Management

 Incremental monotonic and non-monotonic updates
 Interleave definitions, assertions, retractions with retrieval and inference
 Truth maintenance via inference caches

 Context mechanism
 Separate name and assertion spaces with inheritance
 Provides powerful structuring mechanism for KBs
 Facilitates scenarios and hypothetical reasoning

 Simple load and save KB mechanism via files
 Experimental RDBMS persistence in the works

LoomLoom
KR&RKR&R
GroupGroup 16

Built-in Built-in OntologiesOntologies

 PL-KERNEL-KB
 Minimal upper level that defines the core representational vocabulary

 Relation, concept, function, set, holds, proposition, range-cardinality,…
 Emphasis on minimality

 Represent what’s absolutely necessary to make PowerLoom work
 The less it contains, the less opportunities for modeling conflicts there are

when preexisting ontologies get imported
 Not yet minimal enough, various things still need to be extracted into their

own loadable ontology
 Other available ontologies

 Small time ontology: supports time points, durations, temporal
arithmetic

 Units ontology: units support loadable on demand
 Various translations of upper models (e.g., Cyc, SENSUS),

application ontolgies (e.g., EELD, Seismology, …)

LoomLoom
KR&RKR&R
GroupGroup 17

Tools and APIsTools and APIs

 Ontosaurus KB browser
 Web-based, dynamic generation of HTML pages viewable in standard

browser
 PowerLoom GUI

 Java-based browse/edit/query environment
 Client/server based, deployable via Java WebStart in standard browser

 Interactive command-line interface
 Programmatic PowerLoom Interface (PLI)

 Lisp, C++ and Java bindings
 Lisp-based Loom API

 Facilitates import of legacy Loom KBs
 OntoMorph translation system

 Facilitates import of KBs in other languages (e.g. Flogic)
 Initial Semantic Web support

 Import translator for RDF/RDFS

LoomLoom
KR&RKR&R
GroupGroup 18

 PowerLoom GUIPowerLoom GUI

LoomLoom
KR&RKR&R
GroupGroup 19

 Ontosaurus Ontosaurus BrowserBrowser

Textual
Definition

Structured
Description

Formal logical encoding of
one constraint implied by the
textual definition

(Basin-depth = 0m) ⇔ (Vs30 > 2.5km/s)

LoomLoom
KR&RKR&R
GroupGroup 20

Status and DistributionStatus and Distribution

 Written in STELLA
 Available in Lisp, C++ and Java

 Current release: PowerLoom 3.0.2.beta
 Basic KR&R system only
 Distributed as Lisp, C++ and Java source
 ~500 downloads world-wide
 ~400 subscribers to the mailing lists

 Licensing Terms
 Open Source, user choice of 3 standard licences

1. GPL
2. LGPL
3. Mozilla

LoomLoom
KR&RKR&R
GroupGroup 21

PowerLoom FeaturesPowerLoom Features

 Full-function, robust and stable KR&R system
 Representation, reasoning, query language, storage, extensive API
 Available in Java (useful for integration with Protégé)

 Expressivity
 KR failures often due to “we could not express X”

 Meta-representation & reasoning
 Concepts, relations, contexts, rules, queries, etc. are all first-class citizens which

can be represented and reasoned about
 Explanation support

 Built-in recording and rendering of proof trees
 Explanation of failed inferences (“WhyNot”)

 Sophisticated context & module system
 Encapsulation and organization of knowledge
 Efficient inference
 Representation of assumptions: e.g., “all reactions modeled here assume 20°C

ambient temperature”
 Sophisticated support for units & measures

LoomLoom
KR&RKR&R
GroupGroup 22

PowerLoom Features /2PowerLoom Features /2

 Extensible architecture
 Easy to add new specialized reasoning procedures

 Scalability
 Caveat: PowerLoom inference is worst-case exponential complexity
 But: many design features to deal with performance

 Common inferences (e.g. subsumption) supported by specialists
 Expensive inference (e.g., classifier) available on demand
 Various search control directives, e.g., forward/backward-only rules, resource

bounded inference
 Different inference levels
 Modules to focus reasoning
 Database interface to offload data-intensive operations onto RDBMS

 Successfully handled very large KBs
 Reasoned with full Cyc KB (~1,000,000 facts, 35,000 rules)
 Large EELD ontologies and datasets (not loadable into XSB deductive database)

O(1000) ontology & rules, O(10,000) instances, O(100,000) assertions (see
example later)

LoomLoom
KR&RKR&R
GroupGroup 23

PowerLoom Language ConceptsPowerLoom Language Concepts

LoomLoom
KR&RKR&R
GroupGroup 24

PowerLoom Representation LanguagePowerLoom Representation Language
 PowerLoom language is based on KIF

 The Knowledge Interchange Format (Genesereth 91)
 Developed as part of DARPA’s knowledge sharing effort
 Proposed ANSI standard, now one of the accepted syntaxes of the

Common-Logic effort
 Syntax and declarative semantics for First-Order Predicate Logic
 Lisp-based, uniform prefix syntax, similar to CycL

 Example:
Facts: (person fred)
 (citizen-of fred germany)
 (national-language-of germany german)

Rules: (forall (?p ?c ?l)
 (=> (and (person ?p)
 (citizen-of ?p ?c)
 (national-language-of ?c ?l))
 (speaks-language ?p ?l)))

LoomLoom
KR&RKR&R
GroupGroup 25

PowerLoom Representation Language /2PowerLoom Representation Language /2

 Many extensions to standard FOL:
 Type, set & cardinality relations, e.g., subset-of, instance-of, range-

cardinality, etc.
 Second-order definitions via holds
 Selective closed-world assumption (OWA is default)
 Classical negation and negation-by-failure
 Defaults (still need work)

 Frame-style definition language as syntactic sugar
 defconcept, defrelation, deffunction, definstance, defrule

 Allows concise definitions but expands internally into standard (more
verbose) logic assertions

LoomLoom
KR&RKR&R
GroupGroup 26

PowerLoom PowerLoom Knowledge BasesKnowledge Bases

 Terminology Definitions
 Concepts (classes), functions, and relations define the vocabulary

of a domain, e.g., person, citizen-of, age, etc.
 Assertions

 Describe what is true in a domain
 Facts, e.g, (person Fred)
 Rules, e.g., (forall ?x (=> (rich ?x) (happy ?x)))

 Contexts & Modules
 Knowledge is organized into modules
 Facts & rules are not asserted globally but relative to modules, can

have different truth values in different modules
 Hierarchical module structure, assertions from higher modules are

inherited to lower modules

LoomLoom
KR&RKR&R
GroupGroup 27

Terms, Relations & PropositionsTerms, Relations & Propositions

 A KB captures a useful representation of a physical or
virtual world

 Entities in the world are modeled in the KB by terms
 “Georgia”, “Ben Franklin”, 3, ”abc” , concept “Person”

 Terms are categorized and related via relations
 “has age”, “greater than”, “is married to”, “plus”, “Person”
 Concepts such as “Person” are considered unary relations

 Propositions are sentences with an associated truth value
 “Ben Franklin is a person”, “Bill is married to Hillary”, “two plus three

equals six” (which is false)
 PowerLoom uses KIF terms and sentences to represent

propositions
 (person Ben-Franklin) (married-to Bill Hillary)

(= (+ 2 3) 6)

LoomLoom
KR&RKR&R
GroupGroup 28

Logical Connectives & RulesLogical Connectives & Rules

 Predicate logic uses logical connectives to construct
complex sentences from simpler ones:

 and, or, not, <=, =>, <=>, quantifiers exists and forall

 Examples:
 “Richard is not a crook”:

(not (crook Richard))

 “Every person has a mother”:
(forall ?p
 (=> (person ?p)
 (exists ?m
 (has-mother ?p ?m))))

LoomLoom
KR&RKR&R
GroupGroup 29

DefinitionsDefinitions

 Terminology (relations, concepts) need to be defined before they
are used via defconcept, deffunction & defrelation

 Examples:

(defconcept person)
(defrelation married-to ((?p1 person) (?p2 person))
(deffunction + ((?n1 number) (?n2 number))
 :-> (?sum number))

 Advantage & Disadvantage
 Allows certain amount of error checking (e.g., misspelled relations, argument

type violations)
 A bit more tedious and can sometime generate ordering problems

LoomLoom
KR&RKR&R
GroupGroup 30

Definition OrderingDefinition Ordering

 Circular references are only allowed within definitions
 Evaluation of rules within definitions is deferred until query time

 Example:

(defconcept parent (?p)
 :<=> (and (person ?p)
 (exists ?c (parent-of ?p ?c))))
(defrelation parent-of ((?p parent) (?c person)))

 Equivalent definition but illegal circular reference:
(defconcept parent)
(assert
 (forall (?p)
 (<=> (parent ?p)
 (and (person ?p) (exists ?c (parent-of ?p ?c))))))
(defrelation parent-of ((?p parent) (?c person)))

LoomLoom
KR&RKR&R
GroupGroup 31

RedefinitionsRedefinitions

 Definition constructs primarily serve two roles
1. Convenience; more compact syntax for often used idioms
2. Linking sets of related axioms to a name to facilitate redefinition

 Redefinition is useful during interactive ontology and KB development

 Example Definition:
 (defrelation parent-of ((?p person) (?c person))

 :<=> (relative-of ?p ?c))

 Example Redefinition:
(defrelation parent-of ((?p parent) (?c person)))

 Result:
 Redefines parent-of with a different domain
 Erases the rule (<=> (parent-of ?p ?c) (relative-of ?p ?c))

LoomLoom
KR&RKR&R
GroupGroup 32

Truth ValuesTruth Values

 Each PowerLoom proposition (sentence) is associated with a truth value
(relative to a context or module)

 Five possible truth values:
 true, false, default-true, default-false, unknown

 Standard assertion assigns truth value true
 (assert (person Bill))

 Negation asserts truth value false
 (assert (not (crook Richard)))

 Presume command asserts default truth values
 (presume (=> (bird ?x) (flies ?x)))

 Propositions that are assigned true and false generate a clash (or
contradiction)

 Useful to detect certain constraint violations or errors
 Used by proof-by-contradiction specialist
 Contradictory propositions do not bring down the system and are treated as

unknown

LoomLoom
KR&RKR&R
GroupGroup 33

Changing Truth ValuesChanging Truth Values

 The truth value of assertions can be changed
 Implicitly, by strengthening the truth value, e.g.,

from default-true to true
 By explicit retraction of the old truth value and new assertion, e.g.,

 (assert (not (crook Richard)))
 (retract (not (crook Richard)))
 (assert (crook Richard))

 Truth values of inferred propositions cannot be retracted

 (defconcept employee (?e) :=> (person ?e))
 (assert (employee Mary))
 (ask (person Mary)) ⇒ true
 (retract (person Mary))
 (ask (person Mary)) ⇒ true

LoomLoom
KR&RKR&R
GroupGroup 34

Contexts & ModulesContexts & Modules

 Contexts & Modules
 Knowledge is organized into contexts

 Modules define name-spaces + assertion spaces
 Worlds define assertion spaces only

 Facts & rules are not asserted globally but relative to modules, can have
different truth values in different modules

 Hierarchical module structure, assertions from higher modules are inherited to
lower modules

 Non-monotonic inheritance is possible (e.g., override some inherited assertions for
scenario reasoning)

 Contexts are first-class objects that can be asserted to and queried about in
the KB

 Allows attachment of meta-information, e.g., source, assumptions, etc.
 Very efficient, light-weight implementation derived from OPLAN

 Support built in at a very low level (STELLA)

LoomLoom
KR&RKR&R
GroupGroup 35

An Annotated ExampleAn Annotated Example

LoomLoom
KR&RKR&R
GroupGroup 36

Using ModulesUsing Modules

 We define a separate BUSINESS module for our example
 Inherits built-in PowerLoom definitions from PL-KERNEL/PL-USER
 Sets up a separate name and assertion space to avoid unwanted

interference with/from other loaded knowledge bases
 Allows easy experimentation (clearing/changing/editing/saving)
 All PowerLoom commands are interpreted relative to current module

(defmodule "BUSINESS"
 :documentation "Module for the Business demo example."
 :includes ("PL-USER"))

(in-module "BUSINESS")

(clear-module "BUSINESS")

List of inherited modulesList of inherited modules

Set current moduleSet current module

Clear out local contentClear out local content

LoomLoom
KR&RKR&R
GroupGroup 37

ConceptsConcepts

 Concepts define classes of entities
 Defined via the defconcept command
 Can have zero or more parent concepts (they all inherit THING)
 Used to introduce typed instances

(defconcept company)
(defconcept corporation (?c company))

(assert (company ACME-cleaners))
(assert (corporation megasoft))

(retrieve all ?x (company ?x))
There are 2 solutions:
 #1: ?X=ACME-CLEANERS
 #2: ?X=MEGASOFT

(retrieve all ?x (corporation ?x))
There is 1 solution:
 #1: ?X=MEGASOFT

Concept variable (optional)Concept variable (optional)

Parent conceptParent concept

Found via simpleFound via simple
subsumption subsumption inferenceinference

Create some instancesCreate some instances

Simple Simple ““parentlessparentless”” concept concept

Retrieve all companiesRetrieve all companies

LoomLoom
KR&RKR&R
GroupGroup 38

RelationsRelations

 Relations define sets of relationships between entities
 Defined via the defrelation command (& deffunction see later)
 Can have one or more arguments (unary to n-ary)
 Can be fixed or variable arity
 Can be single or multi-valued
 Usually specify types for each argument
 Used to specify relationships between entities

(defrelation company-name ((?c company) (?name STRING)))

(assert (company-name ACME-cleaners "ACME Cleaners, LTD"))
(assert (company-name megasoft "MegaSoft, Inc."))

Simple binary relationSimple binary relation

Argument type = rangeArgument type = range

Argument type = domainArgument type = domain
Argument/role variableArgument/role variable

LoomLoom
KR&RKR&R
GroupGroup 39

Relations /2Relations /2

(retrieve all (company-name ?x ?y))
There are 2 solutions:
 #1: ?X=MEGASOFT, ?Y="MegaSoft, Inc."
 #2: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"

(retrieve all (?y ?x) (company-name ?x ?y))
There are 2 solutions:
 #1: ?Y="MegaSoft, Inc.", ?X=MEGASOFT
 #2: ?Y="ACME Cleaners, LTD", ?X=ACME-CLEANERS

 Retrieve all relations asserted in the BUSINESS module:

Retrieval variables specified implicitlyRetrieval variables specified implicitly

Explicit retrievalExplicit retrieval
variables allow valuevariables allow value
reorderingreordering

Number of solutions soughtNumber of solutions sought

LoomLoom
KR&RKR&R
GroupGroup 40

Relation HierarchiesRelation Hierarchies

 Hierarchies for concepts as well as relations are supported
 PowerLoom represents a subconcept/subrelation relationship by

asserting an “implication” relation (or an “implies” link)
 Link is equivalent to a logic rule but allows more efficient inference
 Various syntactic shortcuts are available to support often-used

implication relations

(defrelation fictitious-business-name ((?c company) (?name STRING))
 :=> (company-name ?c ?name))

(forall (?c ?name)
 (=> (fictitious-business-name ?c ?name)
 (company-name ?c ?name))

(subset-of fictitious-business-name company-name)

EquivalentEquivalent
definitionsdefinitions

Internal representationInternal representation
(2(2ndnd order) order)

LoomLoom
KR&RKR&R
GroupGroup 41

Relation Hierarchies /2Relation Hierarchies /2

 Retrieve all names of MegaSoft, fictitious or not
 Illustrates that company-name is a multi-valued relation

(assert (fictitious-business-name megasoft “MegaSoft”))

(retrieve all ?x (company-name megasoft ?x))
There are 2 solutions:
 #1: ?X="MegaSoft, Inc."
 #2: ?X="MegaSoft"

Inferred via theInferred via the
subrelation subrelation rule/linkrule/link

Directly assertedDirectly asserted

LoomLoom
KR&RKR&R
GroupGroup 42

FunctionsFunctions

 Functions are term-producing, single-valued relations
 Defined via the deffunction command
 Very similar to relations defined via defrelation but:
 Term producing: a function applied to its first n-1 input arguments specifies a

unique, intensional term, e.g., “Fred’s age”
 Single-valued: each set of input arguments has at most one output argument

(the last argument), e.g., “Fred’s age is 42”
 By default, functions are assumed to be partial, i.e., could be undefined for

some legal input values (e.g., 1/0)

(deffunction number-of-employees ((?c company)) :-> (?n INTEGER))

(assert (= (number-of-employees ACME-cleaners) 8))
(assert (= (number-of-employees megasoft) 10000))

Input argumentInput argument

Function valueFunction value

Output argumentOutput argument

Function termFunction term

LoomLoom
KR&RKR&R
GroupGroup 43

Functions /2Functions /2

 Functions syntax often results in shorter expressions than using similar
relation syntax:

(retrieve all (and (company ?x)
 (exists ?n
 (and (number-of-employees ?x ?n)
 (< ?n 50)))))
There is 1 solution:
 #1: ?X=ACME-CLEANERS

(retrieve all (and (company ?x)
 (< (number-of-employees ?x) 50)))
There is 1 solution:
 #1: ?X=ACME-CLEANERS

 Compare to:

(retrieve all (> (number-of-employees ?x) (number-of-employees ?y)))
There is 1 solution:
 #1: ?X=MEGASOFT, ?Y=ACME-CLEANERS

 Multiple function terms:

LoomLoom
KR&RKR&R
GroupGroup 44

Defined ConceptsDefined Concepts

 Concepts (and functions/relations) can be defined completely in
terms of rules

 Useful to name often-used queries or subexpressions and build up powerful
vocabulary

(defconcept small-company (?c company)
 :<=> (and (company ?c)
 (< (number-of-employees ?c) 50)))

(forall ?c (=> (and (company ?c)
 (< (number-of-employees ?c) 50))
 (small-company ?c)))

(forall ?c (=> (small-company ?c)
 (and (company ?c)
 (< (number-of-employees ?c) 50))))

New keywordNew keyword Expands intoExpands into
these rulesthese rules

LoomLoom
KR&RKR&R
GroupGroup 45

Defined Concepts /2Defined Concepts /2

 Retrieve small companies even if we don’t know exactly
how many employees they have

(assert (and (company zz-productions)
 (< (number-of-employees zz-productions) 20)))

(retrieve all (small-company ?x))
There are 2 solutions:
 #1: ?X=ZZ-PRODUCTIONS
 #2: ?X=ACME-CLEANERS

All we know isAll we know is
that ZZthat ZZ
Productions hasProductions has
less than 20less than 20
employeesemployees

Rule-basedRule-based
inference +inference +
transitivity of transitivity of ‘‘<<‘‘

LoomLoom
KR&RKR&R
GroupGroup 46

Negation & Open/Closed-World SemanticsNegation & Open/Closed-World Semantics
 PowerLoom uses classical negation and an open-world assumption

(OWA) by default
 KB is not assumed to be a complete model of the world: if something can’t be

derived the answer is UNKNOWN, not FALSE
 Can distinguish between failure and falsity!
 Inference engine uses asymmetric effort to derive the truth or falsity of a query

 Focuses effort on deriving truth, picks up falsity only via quick, shallow disproofs
 Full effort for falsity available by asking for the negated query
 Possible extension: 3-valued ask (similar to Loom)

(defconcept s-corporation ((?c corporation)))

(ask (s-corporation zz-productions)) ⇒ UNKNOWN
(ask (not (s-corporation zz-productions))) ⇒ UNKNOWN

(assert (not (s-corporation zz-productions)))

(ask (s-corporation zz-productions)) ⇒ FALSE
(ask (not (s-corporation zz-productions))) ⇒ TRUE

Due to open-Due to open-
world assumptionworld assumption

Quick disproofQuick disproof
from assertionfrom assertion

LoomLoom
KR&RKR&R
GroupGroup 47

Negation & Open/Closed-World Semantics /2Negation & Open/Closed-World Semantics /2
 Falsity can also come from sources other than explicit

assertion
 Single-valued functions and relations
 Inequalities
 Disjoint types
 Negated rule heads, etc.

(ask (= (number-of-employees ACME-cleaners) 8)) ⇒ TRUE
(ask (= (number-of-employees ACME-cleaners) 10)) ⇒ FALSE
(ask (not (= (number-of-employees ACME-cleaners) 10)))⇒ TRUE
(ask (= (number-of-employees zz-productions) 100)) ⇒ FALSE
(ask (= (number-of-employees zz-productions) 10)) ⇒ UNKNOWN

Quick disproofQuick disproof
since functions aresince functions are
single-valuedsingle-valued

Quick disproof viaQuick disproof via
inequalityinequality
constraintsconstraints
Truly unknownTruly unknown
since there is notsince there is not
enough informationenough information

LoomLoom
KR&RKR&R
GroupGroup 48

Negation & Open/Closed-World Semantics /3Negation & Open/Closed-World Semantics /3
 Selective closed-world semantics and negation-by-failure are also

available (as used by Prolog, deductive databases, F-Logic, etc.)
 Useful in cases where we do have complete knowledge
 If something can’t be derived, it is assumed to be false
 Closed-world semantics specified by marking relations as closed
 Negation-by-failure via fail instead of not

(defrelation works-for (?p (?c company)))

(assert (works-for shirly ACME-cleaners))
(assert (works-for jerome zz-productions))

(ask (not (works-for jerome megasoft))) ⇒ UNKNOWN

(assert (closed works-for))
(ask (not (works-for jerome megasoft))) ⇒ TRUE

(retract (closed works-for))
(ask (not (works-for jerome megasoft))) ⇒ UNKNOWN
(ask (fail (works-for jerome megasoft))) ⇒ TRUE

Mark relation as closedMark relation as closed

Due to open worldDue to open world

Via selective closed-worldVia selective closed-world
semanticssemantics

Via explicit negation-by-Via explicit negation-by-
failurefailure

LoomLoom
KR&RKR&R
GroupGroup 49

RetractionRetraction

 Retraction allows the erasure or change of a previously
asserted truth-value of a proposition

 Useful for error correction or iterative “change of mind” during
development

 Useful to change certain aspects of a scenario without having to
reload the whole knowledge base

 Allows efficient, fine-grained change
 Some cached information is lost and needs to be regenerated
 Loss can be minimized by careful structuring of module hierarchy (put more

stable knowledge higher up in the hierarchy)
 Allows the exploration of hypothetical conjectures

 What would change if F were true or false?
 Module system allows us to consider both possibilities at the same time

LoomLoom
KR&RKR&R
GroupGroup 50

Retraction /2Retraction /2

 Some geographic terminology and information
(defconcept geographic-location)
(defconcept country ((?l geographic-location)))
(defconcept state ((?l geographic-location)))
(defconcept city ((?l geographic-location)))
(defrelation contains ((?l1 geographic-location)
 (?l2 geographic-location)))

(assert (and
 (country united-states)
 (geographic-location eastern-us)
 (contains united-states eastern-us)
 (state georgia) (contains eastern-us georgia)
 (city atlanta) (contains georgia atlanta)
 (geographic-location southern-us)
 (contains united-states southern-us)
 (state texas) (contains eastern-us texas)
 (city dallas) (contains texas dallas)
 (city austin) (contains texas austin)))

LoomLoom
KR&RKR&R
GroupGroup 51

Retraction /3Retraction /3

 Retraction to fix an incorrect assertion

(ask (contains eastern-us texas)) ⇒ TRUE

(retract (contains eastern-us texas))
(assert (contains southern-us texas))

(ask (contains eastern-us texas)) ⇒ UNKNOWN

LoomLoom
KR&RKR&R
GroupGroup 52

Value ClippingValue Clipping

 Functions allow implicit retraction via value clipping
 Assertion of a function value automatically retracts a preexisting value
 Justified, since functions are single-valued

(deffunction headquarters ((?c company)) :-> (?city city))

(assert (= (headquarters zz-productions) atlanta))
(retrieve all (= ?x (headquarters zz-productions)))
There is 1 solution:
 #1: ?X=ATLANTA

(assert (= (headquarters zz-productions) dallas))
(retrieve all (= ?x (headquarters zz-productions)))
There is 1 solution:
 #1: ?X=DALLAS

DALLAS valueDALLAS value
replaced ATLANTAreplaced ATLANTA

Assertion automaticallyAssertion automatically
clips previous valueclips previous value

LoomLoom
KR&RKR&R
GroupGroup 53

Value Clipping /2Value Clipping /2

 Clipping also works for single-valued relations

(defrelation headquartered-in ((?c company) (?city city))
 :axioms (single-valued headquartered-in))

(assert (headquartered-in megasoft atlanta))
(retrieve all (headquartered-in megasoft ?x))
There is 1 solution:
 #1: ?X=ATLANTA

(assert (headquartered-in megasoft dallas))
(retrieve all (headquartered-in megasoft ?x))
There is 1 solution:
 #1: ?X=DALLAS

LoomLoom
KR&RKR&R
GroupGroup 54

ContradictionsContradictions

 Propositions that are both TRUE and FALSE are contradictory
 Contradictions can result from explicit assertions, during forward-

chaining, or as the result of a refutation proof
 Contradictory propositions are treated as UNKNOWN to allow the system

to continue to function

(assert (not (state texas)))

Derived both TRUE and FALSE for the proposition `|P#|(STATE TEXAS)'.
 Clash occurred in module `|MDL|/PL-KERNEL-KB/BUSINESS'.

(ask (state texas)) ⇒ UNKNOWN
(ask (not (state texas))) ⇒ UNKNOWN

LoomLoom
KR&RKR&R
GroupGroup 55

Rule-Based InferenceRule-Based Inference

 Logic rules can be used to model complex relationships
 Rules can be unnamed or named via defrule
 Most definition commands expand into one or more rules
 Inference engines apply rules to derive conclusions

(retrieve all (contains southern-us ?x))
There is 1 solution:
 #1: ?X=TEXAS

(defrule transitive-contains
 (forall (?l1 ?l2 ?l3)
 (=> (and (contains ?l1 ?l2)
 (contains ?l2 ?l3))
 (contains ?l1 ?l3))))

(retrieve all (contains southern-us ?x))
There are 3 solutions:
 #1: ?X=TEXAS
 #2: ?X=AUSTIN
 #3: ?X=DALLAS

(defrule transitive-contains
 (=> (and (contains ?l1 ?l2)
 (contains ?l2 ?l3))
 (contains ?l1 ?l3)))

Finds only directlyFinds only directly
asserted valuesasserted values

Defines Defines contains to be transitive to be transitive

Same rule via implicit quantificationSame rule via implicit quantification

LoomLoom
KR&RKR&R
GroupGroup 56

Named Rules & Axiom SchemataNamed Rules & Axiom Schemata

 Logic rules can be defined and named via defrule
 Rules are propositions which are in the domain of discourse

 Allows meta-annotations and reasoning
 Naming rules (or any proposition) provides extra level of convenience

 Axiom schemata allow simple definition of commonly used rule patterns
(retract transitive-contains)

(retrieve all (contains southern-us
?x))
There is 1 solution:
 #1: ?X=TEXAS

(assert (transitive contains))

(retrieve all (contains southern-us
?x))
There are 3 solutions:
 #1: ?X=TEXAS
 #2: ?X=AUSTIN
 #3: ?X=DALLAS

Retract rule by nameRetract rule by name
Reassert transitivity via meta-Reassert transitivity via meta-
relation + axiom schemarelation + axiom schema

(defrelation transitive ((?r RELATION))
 :=>> (and (binary-relation ?r)
 (not (function ?r)))
 :=>> (=> (and (?r ?x ?y)
 (?r ?y ?z))
 (?r ?x ?z)))

Transitivity relation and axiomTransitivity relation and axiom
schema from PL-KERNEL KBschema from PL-KERNEL KB

LoomLoom
KR&RKR&R
GroupGroup 57

Justifications and ExplanationJustifications and Explanation

 Explanation of true/false queries
 Backward inference can store proof trees that can be rendered into

explanations
 Simple built-in explanation mechanism

 Various rendering possibilities, ASCII, HTML, XML
 Eliminates explanation of duplicate and low-level goals
 Explanation strings for different audiences (technical, lay)

(ask (contains southern-us dallas)) ⇒ TRUE

(why)
1 (CONTAINS SOUTHERN-US DALLAS)
 follows by Modus Ponens
 with substitution {?l1/SOUTHERN-US, ?l3/DALLAS, ?l2/TEXAS}
 since 1.1 ! (FORALL (?l1 ?l3)
 (<= (CONTAINS ?l1 ?l3)
 (EXISTS (?l2)
 (AND (CONTAINS ?l1 ?l2)
 (CONTAINS ?l2 ?l3)))))
 and 1.2 ! (CONTAINS SOUTHERN-US TEXAS)
 and 1.3 ! (CONTAINS TEXAS DALLAS)

LoomLoom
KR&RKR&R
GroupGroup 58

Explanation /2Explanation /2

 Explanation of retrieved results
 Separate explanation for each derived solution
 why explains most recently retrieved solution

(retrieve 3 (contains southern-us ?x))
There are 3 solutions so far:
 #1: ?X=DALLAS
 #2: ?X=TEXAS
 #3: ?X=AUSTIN

(why)
1 (CONTAINS SOUTHERN-US AUSTIN)
 follows by Modus Ponens
 with substitution {?l1/SOUTHERN-US, ?l3/AUSTIN, ?l2/TEXAS}
 since 1.1 ! (FORALL (?l1 ?l3)
 (<= (CONTAINS ?l1 ?l3)
 (EXISTS (?l2)
 (AND (CONTAINS ?l1 ?l2)
 (CONTAINS ?l2 ?l3)))))
 and 1.2 ! (CONTAINS SOUTHERN-US TEXAS)
 and 1.3 ! (CONTAINS TEXAS AUSTIN)

LoomLoom
KR&RKR&R
GroupGroup 59

Contexts & ModulesContexts & Modules

 Hypothetical or scenario reasoning can be achieved by
 creating a new context which inherits existing set of facts and
 allows the exploration of "assumptions".

 In this example, we show how certain inherited assertions can be
retracted and changed

(defmodule "ALTERNATE-BUSINESS"
 :includes "BUSINESS")

(in-module "ALTERNATE-BUSINESS")

(assert (and (company web-phantoms)
 (company-name web-phantoms "Web Phantoms, Inc.")))

(retract (company-name megasoft "MegaSoft, Inc."))
(assert (company-name megasoft "MegaZorch, Inc."))

LoomLoom
KR&RKR&R
GroupGroup 60

Contexts & Modules /2Contexts & Modules /2

 The ALTERNATE-BUSINESS module
 inherits all of the information of its parent module
 is subject to the specific changes made in the local module.

(in-module "BUSINESS")

(retrieve all (company-name ?x ?y))
There are 3 solutions:
 #1: ?X=MEGASOFT, ?Y="MegaSoft, Inc."
 #2: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"
 #3: ?X=MEGASOFT, ?Y="MegaSoft"

(in-module "ALTERNATE-BUSINESS")

(retrieve all (company-name ?x ?y))
There are 4 solutions:
 #1: ?X=MEGASOFT, ?Y="MegaZorch, Inc."
 #2: ?X=WEB-PHANTOMS, ?Y="Web Phantoms, Inc."
 #3: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"
 #4: ?X=MEGASOFT, ?Y="MegaSoft"

Changed local assertionChanged local assertion

From From ““fictitious businessfictitious business
namename”” assertion assertion

New local assertionNew local assertion

LoomLoom
KR&RKR&R
GroupGroup 61

Cross-Contextual ReasoningCross-Contextual Reasoning

 Normally queries operate in the current module.
 The IST (IS-TRUE) relation (J. McCarthy) allows us to query about the state of

knowledge in other modules.
 This also allows cross-module inference by binding variables across forms
 Example: “find all companies whose names differ in the two modules”

(in-module "BUSINESS")

(retrieve all (ist alternate-business (company-name ?x ?y)))
There are 4 solutions:
 #1: ?X=MEGASOFT, ?Y="MegaZorch, Inc."
 #2: ?X=ALTERNATE-BUSINESS/WEB-PHANTOMS, ?Y="Web Phantoms, Inc."

 #3: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"
 #4: ?X=MEGASOFT, ?Y="MegaSoft"

(retrieve all (and (ist business (company-name ?x ?y))
 (fail (ist alternate-business (company-name ?x ?y)))))
There is 1 solution:
 #1: ?X=MEGASOFT, ?Y="MegaSoft, Inc."

LoomLoom
KR&RKR&R
GroupGroup 62

RDBMS to PowerLoom MappingRDBMS to PowerLoom Mapping

(DEFDB edb1
 :dsn "EELD_EDB17JUN03_COMPLIANT_PUBLIC_PL“
 :user "scott" :host "blackcat.isi.edu")

Defining a PowerLoom database instance edb1:

(DEFTABLE EDB-Person edb1 "PERSON“
 (?ENTITYID ?REPORTID ?SOURCEID
 ?LASTNAME ?FIRSTNAME ?MIDDLENAME ?NICKNAME ?GENDER
 ?COUNTRYCITIZENSHIP ?AGE ?BIRTHLOCATION ?RESIDENCE))

(ASSERT
 (=> (QUERY
 (EXISTS (?rep ?s ?l ?f ?m ?n ?g ?c ?a ?b ?res)
 (EDB-Person ?p ?rep ?s ?l ?f ?m ?n ?g ?c ?a ?b ?res))
 :MATCH-MODE :EELD :HOW-MANY :ALL)
 (Person ?p)))

Defining a PowerLoom relation EDB-Person
that maps onto the EDB table Person:

Defining a PowerLoom lifting axiom that maps the
ontology concept Person onto EDB-Person:

LoomLoom
KR&RKR&R
GroupGroup 63

Advanced TopicsAdvanced Topics

LoomLoom
KR&RKR&R
GroupGroup 64

Concept DefinitionsConcept Definitions

(defconcept event
 :documentation "The class of events.")

(defconcept movement-event (?ev event)
 :documentation "The class of movement events."
 :=> (= (* (time ?ev) (speed ?ev))
 (distance ?ev)))

Define new concept term event

Documentation string

Define movement-event as subconcept of event

Constraint rule in KIF syntax

LoomLoom
KR&RKR&R
GroupGroup 65

Definitions are Syntactic SugarDefinitions are Syntactic Sugar

(defconcept event)

(defconcept movement-event)

(assert (documentation movement-event
 "The class of movement events.“))

(assert (forall ?ev
 (=> (movement-event ?ev)
 (event ?ev))))

(assert (forall ?ev
 (=> (movement-event ?ev)
 (= (* (time ?ev) (speed ?ev))
 (distance ?ev)))

Meta assertion about the concept
movement-event

Represents the subconcept
relationship

Represents the constraint

 Constructs such as defconcept facilitate concise expression of
commonly needed definition tasks

 Example: Previous definitions expand into the following more verbose
set of assertions:

LoomLoom
KR&RKR&R
GroupGroup 66

Relation DefinitionsRelation Definitions

(deffunction time ((?ev movement-event) ?time)
 :documentation “The duration of a movement event.”)

(deffunction speed ((?ev movement-event) ?speed)
 :documentation “The speed of a movement event.”)

(deffunction distance ((?ev movement-event) ?distance)
 :documentation “The distance covered by a movement.”)

(defrelation sub-event ((?sub event) (?super event))
 :documentation “Links a sub-event to its super-event.”)

Define binary relation sub-event with domain and range event:

Relations can have arbitrary as well as variable arity.

Functions are single-valued, term-generating relations:

LoomLoom
KR&RKR&R
GroupGroup 67

Instance DefinitionsInstance Definitions

(assert (movement-event ev1))
(assert (= (speed ev1) 10))
(assert (= (time ev1) 20)))

(definstance ev1
 :movement-event true :speed 10 :time 20)

Define event instance ev1 with various properties:

The above concise, frame-style definition expands into
the following individual assertions:

Function term “time of event ev1”

LoomLoom
KR&RKR&R
GroupGroup 68

Attaching Information to RulesAttaching Information to Rules

 Rules are also in the domain of discourse and can be named for easy
attachment of other information
 For example, documentation strings or explanation templates:

(defrule speed-rule
 (forall ?ev
 (=> (movement-event ?ev)
 (= (* (time ?ev) (speed ?ev))
 (distance ?ev))))
 :documentation “Distance = time * speed of a movement.”)

(assert
 (explanation-template speed-rule
 “The distance ?(distance ?ev) of the movement event ?ev equals
 its duration ?(time ?ev) times its speed ?(speed ?ev).”))

LoomLoom
KR&RKR&R
GroupGroup 69

Arithmetic Constraint ReasoningArithmetic Constraint Reasoning

 Arithmetic reasoning is important for scientific, engineering and
everyday reasoning

 PoweLoom’s built-in arithmetic specialists can compute a result from
any two bound arguments
 Allows us to model this formula via a single “speed” rule

(instead of three – was an issue with Cyc in Phase-1)
 Example: (+ 5 ?x 2) => ?x = -3

(definstance ev1 :movement-event true :speed 10 :time 20)
(definstance ev2 :movement-event true :speed 10 :distance 50)

(retrieve all (distance ev1 ?x))
There is 1 solution:
 #1: ?X=200

(retrieve all (time ev2 ?x))
There is 1 solution:
 #1: ?X=5

LoomLoom
KR&RKR&R
GroupGroup 70

General QueriesGeneral Queries

 Many other systems have problems with general queries
that ask about classes of things:
 “Is it true that the ionization of diluted solutions is higher than those

of concentrated solutions?”
 This is often worked around by introducing a specific solution

individual and asking the question about the instance

 In PowerLoom we can ask the universal question directly:
(defconcept solution :documentation "The class of chemical solutions.")

(deffunction concentration-level ((?s solution) ?level)
 :documentation “Concentration ?level of some particular solution ?s.")

(deffunction ionization ((?s solution) ?level)
 :documentation “Ionization ?level of some particular solution ?s.")

(defrelation greater-than (?x ?y)
 :documentation "Qualitative `>' relation.")

LoomLoom
KR&RKR&R
GroupGroup 71

General Queries /2General Queries /2

 Two (mock) rules describing relationships between
concentration levels of solutions and their ionization level
 Note that these rules operate at the instance level: given a specific

solution instance and its concentration, we can infer the solution’s
ionization level

(defrule ionization-rule1
 (=> (and (solution ?x)
 (concentration-level ?x diluted))
 (= (ionization ?x) high))
 :documentation “Diluted solutions have high ionization.")

(defrule ionization-rule2
 (=> (and (solution ?x)
 (concentration-level ?x concentrated))
 (= (ionization ?x) low))
 :documentation “Concentrated solutions have low ionization.")

(assert (greater-than high low))
Qualitative orderingQualitative ordering

LoomLoom
KR&RKR&R
GroupGroup 72

General Queries /3General Queries /3

 Can phrase the general query directly as a universally
quantified statement
 PowerLoom’s Universal Introduction reasoner is used to prove it
 Automatically introduces hypothetical solution individuals with the

necessary properties in a hypothetical world

(ask (forall (?x ?y)
 (=> (and (solution ?x)
 (solution ?y)
 (concentration-level ?x diluted)
 (concentration-level ?y concentrated))
 (greater-than (ionization ?x) (ionization ?y)))))
 ⇒ TRUE

(assert (and (solution sol1) (concentration-level sol1 diluted)))
(assert (and (solution sol2) (concentration-level sol2
concentrated)))

(ask (greater-than (ionization sol1) (ionization sol2)))
 ⇒ TRUE

 Contrast this with the “hand-reification” approach:

LoomLoom
KR&RKR&R
GroupGroup 73

Representing QueriesRepresenting Queries

 Question answering applications
 Reasoning about the queries itself is often important (e.g., answering

a multiple-choice question by identifying the incorrect answers)
 PowerLoom can represent queries as terms to facilitate

such query-level reasoning
 Example: Wh-query can be represented via a KAPPA term and then

evaluated via the query engine to generate the answers
(deffunction wh-query (?q) :-> (?kappa SET))

(assert (wh-query q1
 (kappa ?x
 (and (solution ?x) (concentration-level ?x diluted)))))

(assert (and (solution s1) (concentration-level s1 diluted)))
(assert (and (solution s2) (concentration-level s2 concentrated)))
(assert (and (solution s3) (concentration-level s3 diluted)))

(retrieve all ?x (member-of ?x (wh-query q1)))
There are 2 solutions:
 #1: ?X=S3
 #2: ?X=S1

LoomLoom
KR&RKR&R
GroupGroup 74

Units and DimensionsUnits and Dimensions

 Scientific reasoning uses various units and dimensions
 PowerLoom has full support for units

 Large number of predefined units
 SI and other measurement systems
 Fundamental quantities:

mass, distance, time, angle, solid angle, amount of substance, electric current,
luminous intensity, data

 Arithmetic operations on units
 Arbitrary combinations of units introduced by formulae

 —not limited to predefined combinations
 Extensible via STELLA code

 Integration with Ontology
 Datatype introduced via the units function
 All logical operations and inferences work with units

LoomLoom
KR&RKR&R
GroupGroup 75

Reasoning with UnitsReasoning with Units
Assertions and ComparisonsAssertions and Comparisons

 The units function introduces the data types
 Assertions
 Comparisons

(assert (= (age Fred) (units 35 "yr")))
(assert (= (age Pebbles) (units 18 "month")))
(assert (= (answer problem) (units 42 "m2kg/s3")))

(ask (< (units 10 "mm") (units 10 "ft")))
TRUE
(ask (< (units 10 "ft") (units 11 "m")))
TRUE
(ask (< (units 11 "m") (units 10 "ft")))
FALSE

(ask (< (units 11 "kg") (units 10 "ft")))
UNKNOWN

Units (as string)Units (as string)

Incompatible units, so noIncompatible units, so no
meaningful answermeaningful answer

Comparisons normallyComparisons normally
give true or false answersgive true or false answers

Magnitude of expressionMagnitude of expression

Arbitrary unitArbitrary unit
combinationscombinations

LoomLoom
KR&RKR&R
GroupGroup 76

Reasoning with UnitsReasoning with Units
ConversionsConversions

 Conversions
 All units are stored internally in canonical form (SI mks)
 Conversions are performed on input or output

(retrieve (= (units ?x "mile") (units 100 "km")))
There is 1 solution so far:
 #1: ?X=62.13711922373341
(retrieve (= (units ?x ?y) (units 100 "km")))
There is 1 solution so far:
 #1: ?X=100000.0, ?Y="m"
(retrieve all (= (age Fred) (units ?x "yr")))
There is 1 solution:
 #1: ?X=35.0
(retrieve (= (units 1000 ?y) (units 1 "km")))
No solutions.

Miles to kilometersMiles to kilometers

More useful exampleMore useful example

Too open-endedToo open-ended

Both magnitude and unitBoth magnitude and unit
(in canonical units)(in canonical units)

LoomLoom
KR&RKR&R
GroupGroup 77

Reasoning with UnitsReasoning with Units
ArithmeticArithmetic

 Arithmetic
 Units combine appropriately
 Arbitrary units combinations

(retrieve (= (units ?x ?y) (u-div (units 20 "km") (units 1 "h"))))
There is 1 solution so far:
 #1: ?X=5.555555555555555, ?Y="m/s"

(retrieve (= (units ?x "km/h") (u-div (units 20 "km") (units 1 "h"))))
There is 1 solution so far:
 #1: ?X=20.0

(retrieve (= (units ?x "km") (u* (units 20 "km/h") (units 1.5 "hr"))))
There is 1 solution so far:
 #1: ?X=30.0

? (retrieve (= (units ?x ?y) (u-div (units 1 "h") (units 20 "km"))))
There is 1 solution so far:
 #1: ?X=0.18, ?Y="s/m"

Creates 20 km/h unit,Creates 20 km/h unit,
a common unita common unit

Creates 20h/km, aCreates 20h/km, a
quite uncommon unitquite uncommon unit

Canonical internalCanonical internal
representation.representation.

Converted back to km/hConverted back to km/h SynonymsSynonymsSynonymsSynonyms

LoomLoom
KR&RKR&R
GroupGroup 78

Time Points and DurationsTime Points and Durations

 Time is an important aspect of the world
 PowerLoom has support for exact time points and durations

 Time point specification uses flexible strings and timepoint-of function
 ISO-8601 extended format for dates
 Many other (US-centric) date formats supported:

"5-Jan-2000", "1/5/2000", "January 10, 1997", "now", "today", "yesterday"
 Time zones are specified numerically as offset from UTC

 (i.e., what you add to UTC to get local time)
Common time zone strings are also supported: UTC, Z, PST, EDT

 Duration uses simple strings of days and milliseconds and duration-of function
"plus 5 days; 85000 ms", "minus 3 days; 0 ms"

 Integrated and interchangeable with units function
 Arithmetic operations on time points and durations
 Comparisons of time points or durations

 Integration with Ontology
 Datatypes introduced via the timepoint-of and duration-of functions
 All logical operations and inferences work with time points and durations
 Durations interoperate with the units function

LoomLoom
KR&RKR&R
GroupGroup 79

Reasoning with TimeReasoning with Time
Assertions and ComparisonsAssertions and Comparisons

 The timepoint-of function introduces time points and
the duration-of function introduces durations

 Assertions
 Comparisons

(assert (= (birthday Fred) (timepoint-of "2001-Jan-8 7:00Z")))
(assert (= (duration Project85) (duration-of "180 days")))
(assert (= (duration Concert75) (duration-of "0 days; 7200000 ms")))

(ask (< (timepoint-of "2005-Jul-3")
 (timepoint-of "2005-Jul-4")))
TRUE

(ask (< (timepoint-of "2005-07-03T12:30Z")
 (timepoint-of "2005-07-03T18:30+8:00")))
FALSE

(ask (< (timepoint-of "2006-10-May") (duration-of "2 days")))
UNKNOWN

Specification (as string)Specification (as string)

Incompatible time types,Incompatible time types,
so no meaningful answerso no meaningful answer

Comparisons normallyComparisons normally
give true or false answersgive true or false answers

Type of time expressionType of time expression

Timezones Timezones are respectedare respected

LoomLoom
KR&RKR&R
GroupGroup 80

Reasoning with Time DurationsReasoning with Time Durations
ConversionsConversions

 Conversions
 Durations and time units can be converted between each other.
 Time points can be destructured using the timepoint-of* function

(retrieve (= (duration-of ?x) (units 10 "day")))
There is 1 solution so far:
 #1: ?X="plus 10 days; 0 ms"
(retrieve (= (duration-of ?x) (units 2 "h")))
There is 1 solution so far:
 #1: ?X="plus 0 days; 7200000 ms"
(retrieve all (= (duration Concert75) (units ?x "h")))
There is 1 solution:
 #1: ?X=2.0
(retrieve all (= (duration Concert75) (units ?x ?y)))
There is 1 solution:
 #1: ?X=7200.0, ?Y="s"
(retrieve (= (timepoint-of* ?y ?m ?d ?hh ?mm ?ss "PST")
 (timepoint-of "Feb/5/2002 00:25:30 EST")))
There is 1 solution so far:
 #1: ?Y=2002, ?M=2, ?D=4, ?HH=21, ?MM=25, ?SS=30.0

Simple conversionSimple conversion

More useful exampleMore useful example

DestructuringDestructuring
with time zonewith time zone
conversionconversion

Magnitude and unitMagnitude and unit
(canonical units)(canonical units)

Convert to unitsConvert to units

LoomLoom
KR&RKR&R
GroupGroup 81

Reasoning with TimeReasoning with Time
ArithmeticArithmetic

 Arithmetic
 Addition and Subtraction of points and durations
 Time types combine appropriately

(retrieve all (time- (timepoint-of "2006-10-20")
 (timepoint-of "2006-10-15")
 (duration-of ?interval)))
There is 1 solution:
 #1: ?INTERVAL="plus 5 days; 0 ms"
(retrieve all (time+ (timepoint-of "2006-12-25")
 (duration-of "12 days")
 (timepoint-of ?date)))
There is 1 solution:
 #1: ?DATE="2007-JAN-06 7:00:00.000 UTC"
 (retrieve all (time+ (duration-of "12 days")
 (units ?n "h")
 (duration-of "14 days")))
There is 1 solution:
 #1: ?N=48.0

Amount of time betweenAmount of time between
two time pointstwo time points

Works together with unitsWorks together with units

Adding a duration to a timeAdding a duration to a time
points to get a new time pointpoints to get a new time point

Output variable can be inOutput variable can be in
any positionany position

LoomLoom
KR&RKR&R
GroupGroup 82

Forward Inference (FIX)Forward Inference (FIX)

 simple propositional reasoning, e.g.,
(or p q), ~p |= q

 simple equality reasoning
 forward skolemization, e.g.,

(forall (?x Person)
 (exists (?y Person) (mother-of ?x ?y)))

LoomLoom
KR&RKR&R
GroupGroup 83

WhyNot WhyNot Query DebuggingQuery Debugging

LoomLoom
KR&RKR&R
GroupGroup 84

Debugging Queries in Large Debugging Queries in Large KBsKBs
 Logic-based knowledge representation & reasoning system

 Use language of some logic L to represent knowledge (e.g., KIF)
 Use implementation of proof procedure for L as reasoning engine

 Some (partially) developed knowledge base:

Facts: (person fred)
 (citizen-of fred germany)
 (national-language-of germany german)

Rules: (forall (?p ?c ?l)
 (=> (and (person ?p)
 (citizen-of ?p ?c)
 (national-language-of ?c ?l))
 (speaks-language ?p ?l)))

Queries: (speaks-language fred german)?
 (speaks-language fred french)?

TRUE
UNKNOWN

LoomLoom
KR&RKR&R
GroupGroup 85

The ProblemThe Problem

Diagnosis is simple: the query failed because:
 Not asserted as a fact
 Not enough facts to infer it via the known rule
 Open world assumption!

Failed query: (speaks-language fred french)? UNKNOWN

Ask similar query in Cyc (1,000,000 facts, 35,000 rules)
 “Does Doug Lenat speak German?”
 Answer: UNKNOWN

Diagnosis is very difficult: the query failed because
 Not asserted as a fact
 All attempts to infer the answer failed

 Search tree explored by Cyc is very large, timeout at 30 CPU seconds
 Hard to debug for knowledge engineers, impossible for non-experts

LoomLoom
KR&RKR&R
GroupGroup 86

Solution: Explaining Query Failures viaSolution: Explaining Query Failures via
Plausible Partial ProofsPlausible Partial Proofs
 Standard explanation technique for logic-based reasoners:

 Find and record a proof for the query
 Present the proof to the user in an understandable way
 Problem: No proof ⇒ no explanation

 Solution: Need to create a proof even though none could be found

 Generate plausible partial proofs for a query
 Partial proofs can be explained
 Proof "holes" identify potential knowledge or inference gaps
 Multiple plausible partial proofs to explain different failure modes
 Top-ranked partial proofs focus on most plausible failures

 Challenges:
 What is a plausible partial proof?
 Scaling, find plausible proofs without looking at too many options

⇒ there are infinitely many possible proofs!

LoomLoom
KR&RKR&R
GroupGroup 87

Example Explanation of Query FailureExample Explanation of Query Failure

LoomLoom
KR&RKR&R
GroupGroup 88

PowerLoomPowerLoom’’s s ““WhyNotWhyNot”” Query Diagnosis Tool Query Diagnosis Tool
 PowerLoom KR&R system

 First-order-logic-based KR&R system
 Representation language is KIF (variant of FOL)
 Natural deduction reasoner combining forward, backward reasoning

plus variety of reasoning specialists
 Type & cardinality reasoning, relation subsumption, classifier
 Selective closed-world reasoning
 Modules and light-weight worlds for hypothetical reasoning

 “WhyNot” built into inference engine of PowerLoom
 Partial inference mode to generate plausible partial proofs
 Score propagation instead of truth-values
 Various plausibility heuristics

 PowerLoom explanation component used to explain partial proofs

 Only diagnosis of missing facts at the moment

LoomLoom
KR&RKR&R
GroupGroup 89

““WhyNotWhyNot”” Plug-in to Debug Queries in Plug-in to Debug Queries in
Large Large Cyc Cyc Knowledge BasesKnowledge Bases

 Cyc-based KRAKEN KA Tool
 input and output in natural language
 very large amount of background knowledge (over 1,000,000 facts, O(10,000)

rules)
 query diagnosis is very difficult

 PowerLoom “WhyNot”
 external knowledge source

integrated via blackboard
 dynamically fetches and

translates Cyc knowledge
 performs partial inference

against very large KB
 pinpoints potential

knowledge gaps
 ships explanations to

KRAKEN UIA display
Cyc Integrated Knowledge Base

Cyc APIPL/Cyc Knowledge Pager API

OntoMorph Translator

PL/Cyc
KB-Store/ Cache

PowerLoom
KB-Store

PowerLoom KB Indexing

PowerLoom
Inference Engine

VirB3

Blackboard

WhyNot Classifier Structural
Refinement

Consistency
Tests

PowerLoom WhyNot

Cyc/KRAKEN

UIA

LoomLoom
KR&RKR&R
GroupGroup 90

WhyNot Result in KRAKEN UIAWhyNot Result in KRAKEN UIA

LoomLoom
KR&RKR&R
GroupGroup 91

Does Doug Does Doug Lenat Lenat Speak German?Speak German?

Many similar explanations
Need to generalize

LoomLoom
KR&RKR&R
GroupGroup 92

Improved Explanation by GeneralizingImproved Explanation by Generalizing
Similar ProofsSimilar Proofs

LoomLoom
KR&RKR&R
GroupGroup 93

Alternative Lower-Score ExplanationAlternative Lower-Score Explanation

 Explanation 2 (score 0.38):

?

LoomLoom
KR&RKR&R
GroupGroup 94

Alternative Lower-Score Explanation DetailAlternative Lower-Score Explanation Detail

 Example Explanation 2 Detail (score 0.38)

LoomLoom
KR&RKR&R
GroupGroup 95

Partial Inference Application #2:Partial Inference Application #2:
Pattern Matching for Link Discovery (EELD)Pattern Matching for Link Discovery (EELD)

 Link Discovery Problem
 Given: large amounts of evidence

 people, organizations, places, events, relationships, accounts, transactions, etc.
 Discover: high-level activities of interest

 Contract murders, gang wars, industry takeovers, terrorist activities, etc.

 KOJAK approach:
 Represent evidence as large-scale PowerLoom evidence KBs
 Represent domain knowledge via logic rules
 Represent patterns via logic rules and queries
 Use partial inference to detect patterns of interest

 Challenges:
 Scale, incompleteness, noise, corruption

KOJAK

LoomLoom
KR&RKR&R
GroupGroup 96

Example: Using Example: Using ““WhyNotWhyNot”” Partial Inference in Partial Inference in
EELD Evaluation DomainEELD Evaluation Domain

 Example domain (small/medium size):
 150 concepts, 200 relations, 6000 individuals
 10,000 asserted facts
 125 rules

 Example query:

 Strict proof is fairly large:
 121 facts (or leaves)
 80 rule applications
 Chaining depth up to 9
 Impossible to debug manually if it fails

 Great domain for WhyNot partial match to show its utility:
 Example: explain query failure caused by 1 missing assertion

 (contract-murder UID517 UID3)?

LoomLoom
KR&RKR&R
GroupGroup 97

LoomLoom
KR&RKR&R
GroupGroup 98

LoomLoom
KR&RKR&R
GroupGroup 100

LoomLoom
KR&RKR&R
GroupGroup 101

Failure

LoomLoom
KR&RKR&R
GroupGroup 102

 Strict proof: ~1 second
 Partial proof: ~2 minutes

 Large space of potential
partial proofs explored

LoomLoom
KR&RKR&R
GroupGroup 103

ConclusionConclusion

 PowerLoom is well-suited for the representation &
reasoning tasks:

 Full-function, robust and stable KR&R system
 Expressive representation, reasoning, query language, storage, extensive

API
 Available in Java (useful for integration with Protégé)

 Meta-representation & reasoning
 Concepts, relations, contexts, rules, queries, etc. are all first-class

citizens which can be represented and reasoned about
 Explanation support for successful and failed reasoning
 Sophisticated context & module system

 Encapsulation, efficient inference, representation of assumptions
 Sophisticated support for units & measures
 Support for simple timepoint reasoning.

	Overview: Outline
	Logc-Based Knowledge Representation & Reasoning
	PowerLoom
	Ontosaurus
	Features

	PowerLoom Concepts
	Knowledge Bases
	Terms, Relations & Propositions
	Connectives & Rules
	Definitions
	Truth Values
	Contexts & Modules

	Annotated Example
	Using Modules
	Concepts
	Relations
	Functions
	Defined Concepts
	Open/Closed World Semantics
	Retraction
	Contradictions
	Rule-Based Inference
	Justifications & Explanation
	Contexts & Modules
	RDBMS Mapping

	Advanced Topics
	Concept, Relation and Instance Definitions
	Attaching Information to Rules
	Arithmetic Constraint Reasoning
	General Queries
	Representing Queries
	Units & Dimensions
	Time Points and Durations
	Forward Inference

	WhyNot Query Debugging
	WhyNot in Cyc
	WhyNot Example
	Pattern Matching for Link Discovery

	Conclusion

