15/

Information Sciences Institute

PowerLoom Overview, Features and
Examples

Hans Chalupsky
Project Leader, USC/ISI Loom KR&R Group

Loom
KR&R
Group

151

Information Sciences Insfitute

Overview

> Logic-based KR&R

> What is it, advantages, disadvantages
> PowerLoom
Quick overview
Basic features
Tutorial
Advanced features relevant for scientific reasoning
Debugging failed inferences

> (Conclusion

YV V V V V

Loom
KR&R
Group

A

Information Sciences Institute

Logic-Based Knowledge Representation
& Reasoning

Loom
KR&R
Group

151

Information Sciences Insfitute

Logic-Based KR&R

> Knowledge Representation & Reasoning

> Studies a wide variety of paradigms & algorithms for

Modeling salient aspects of a world of interest
Reasoning with such models

> There are many different modeling paradigms
> Logic-based, frame-based, graph-based, probabilistic, etc.

> PowerLoom is a logic-based KR&R system

> How do logic-based models represent the world?

Loom
KR&R
Group

A

Information Sciences Institute

Logical Models 101

“Real” World Logical Model

Terms represent entities:
Joe, car002
Predicates represent relations:

owns
Sentences represent what is

true in the world (facts):
(Person Joe)
(= (age Joe) 17)
(Car car002)
l owns (owns Joe car(002)
< (model car002 Ford)
Joe’s Ford (not (rich Joe))
Rules define terms and represent domain regularities:
(<=> (and (> (age ?x) 12) (< (age ?x) 20)
(Teenager ?x))
(=> (and (Teenager ?x) (car ?y) (owns ?x ?y))
(happy ?x))

Joe Blow

denotes

. Facts + rules + inference derive concluded facts:
oom
KR&R (Teenager Joe)

Group (happy Joe)

151

Information Sciences Insfitute

Loom
KR&R
Group

How Does Logic Model the World?

Terms correspond to entities in the (some) world
Predicates model properties and relations between entities

Domain rules define and constrain relations, for example,
“If Joe is a teenager who owns a car then Joe is happy”

Logical inference rules define the propagation of truth
between logical sentences, for example:
from X and X =>Y it must be true that Y

The more rules and sentences we add, the higher
constrained their “interpretation” (what they could mean)
becomes

However, every consistent theory always has infinitely
many (formal) interpretations

15/

Information Sciences Institute

Advantages of Logic-based Models

> Tradition
» Well-understood syntax and semantics
> Very large amount of relevant research (> 2000 yrs.)

> Many available logic-based tools
= Provers, constraint reasoners, learners, planners, KR&R systems, etc.

> Representational power

Negation

Disjunction

Equality (object identity)

Logical connectives

Quantification

Rules, constraints

Abstraction

Definitions

Extendable vocabulary, ontologies
“If you can’t say it in logic, you probably don’t want to say it”

V V V VYV V V V VYV V V

Loom
KR&R
Group

15/

Information Sciences Institute

Advantages of Logic-based Models

» General purpose, well-understood inference mechanisms

Deduction

Abduction

Induction

Constraint satisfaction
Automated reasoners

YV V V V V

Loom
KR&R
Group

151

Information Sciences Insfitute

Advantages of Logic-based Models

> Formalizes reasoning and gives justification

» Proofs provide justifications for derived facts
> If one accepts the premises one must/should accept the conclusions

> Explanation and understandability

> Proofs are a good starting point to provide explanations

> Logical models are “easy” to understand and interpret (e.g., rules learned by
an ILP method)

> Logical models are easier to debug than other approaches

> Translatability

» Different logical representations are (often) easily translatable into each other
(e.g., this diffuses the attribute-vs.-collection distinction)

Loom
KR&R
Group

151

Information Sciences Insfitute

Disadvantages?

> Disadvantages

> Difficult to handle uncertainty and probabilistic reasoning

But, various efforts to combine logical and probabilistic models (e.g.,
PRM’s)

Complexity of reasoning algorithms

Sometimes too expressive, too many different ways of saying the
same thing
> Hard to handle grey areas, but the world is grey
Have to make hard decisions (true, false)
Hard to say “many”, “few”, “nearly”, etc. (frustrates NLP people)

Loom
KR&R
Group

15/

Information Sciences Institute

Loom
KR&R
Group

PowerLoom

11

151

Information Sciences Insfitute

Loom
KR&R
Group

PowerLoom KR&R System

» Successor to the successful Loom KR&R system with

> More expressive representation language

> Less arcane syntax

> Better scalability

> Better portability & extensibility (available in Lisp, C++, Java)

> Based on first-order predicate logic

> Not a description logic but has description logic features
> E.g., classifier, type and cardinality reasoning, subsumption

> Focus on expressivity + scalability

» Pragmatic stance

> Usability is more important than theoretical “neatness”
> Expressivity is more important than inferential completeness

12

15/

Information Sciences Institute

Loom
KR&R
Group

Expressivity vs. Inferential Completeness

» Qualitative comparison of KR-system philosophies

> Description logics: restricted expressivity, sound, complete, tractable

> PowerLoom: representationally promiscuous, sound, 80/20 complete
& tractable (handle most expected inferences in reasonable time)

hat we need to express

S\

Expressible in
PowerLoom

\‘~.*“‘~

L)ES \\\\\ 0\:\\\\\\\}\\;\
N

13

151

Information Sciences Insfitute

Loom
KR&R
Group

Inference Capabilities

> Query engine to retrieve asserted and inferable statements
> Prolog-style backward inference enhanced by

vV V V V V VY

> Recursive subgoal detection

> Proper handling of negation

> Hypothetical reasoning

> Resource-bounded depth-first or iterative deepening search
> Proof tree (justification) recording

Forward inference and simple constraint propagation
Equality and inequality reasoning

Subsumption reasoning + relation & instance classification
Partial match for reasoning with incomplete information
“WhyNot” abductive inference for query diagnosis
Extensible reasoning specialists architecture

14

151

Information Sciences Insfitute

Knowledge Base Management

> Incremental monotonic and non-monotonic updates
> Interleave definitions, assertions, retractions with retrieval and inference
» Truth maintenance via inference caches

» Context mechanism

» Separate name and assertion spaces with inheritance
> Provides powerful structuring mechanism for KBs
> Facilitates scenarios and hypothetical reasoning

» Simple load and save KB mechanism via files
> Experimental RDBMS persistence in the works

Loom
KR&R
Group 15

151

Information Sciences Insfitute

Built-in Ontologies

> PL-KERNEL-KB

> Minimal upper level that defines the core representational vocabulary
Relation, concept, function, set, holds, proposition, range-cardinality, ...
> Emphasis on minimality

Represent what’s absolutely necessary to make PowerLoom work

The less it contains, the less opportunities for modeling conflicts there are
when preexisting ontologies get imported

Not yet minimal enough, various things still need to be extracted into their
own loadable ontology

» Other available ontologies

> Small time ontology: supports time points, durations, temporal
arithmetic

Units ontology: units support loadable on demand

Various translations of upper models (e.g., Cyc, SENSUS),
application ontolgies (e.g., EELD, Seismology, ...)

Loom
KR&R
Group

16

151

Information Sciences Insfitute

Tools and APlIs

> Ontosaurus KB browser

> Web-based, dynamic generation of HTML pages viewable in standard
browser

» PowerLoom GUI
> Java-based browse/edit/query environment
» Client/server based, deployable via Java WebStart in standard browser

> Interactive command-line interface

» Programmatic PowerLoom Interface (PLI)
> Lisp, C++ and Java bindings
> Lisp-based Loom API
> Facilitates import of legacy Loom KBs
» OntoMorph translation system
> Facilitates import of KBs in other languages (e.g. Flogic)

» Initial Semantic Web support

Loom

KR&R » Import translator for RDF/RDFS
Group 17

51

PowerLoom GUI

KB Edit Objects Query Yiew Help
&=/l

Browsing Knowledge Base@localhost:800

e
Modules |S| : Concepts for AIRCRAFT-KB Relations for AIRCRAFT-KB Instances for AIRCRAFT-KB
H ROOT-MODULE | 9 CONCEPT_ROOQT REIATION-ROQT B Al
H SESMOLOG Browsing Knowledge Base@localhost:8000
H POWERLOO e
@ H PL-KERNEL} Modules S : Concepts for SEISMOLOGY Relations for SEISMOLOGY Instances for SEISMOLOGY
: ETFC; M ROOT-MODULE 1s ¢ g;ETE):BI;J\EET “[C3 RELATION-ROOT T NORTHRIDGE-EARTHQUAKE
LOOM- i SELMOLOGY @ ¢ PARAMETER F ALTITUDE-OF I NORTHRIDGE-FALLT
H H POWERLOOM-SER © DEPTH-OF
@ n PLUsEll o\ pL_KERNEL-KB @ ¢ QUANTITY L DERWATIVE-FN T NORTHRIDGE-HYPOCENTER
H ARG C QUARTERNAY F LATITUDEOF T QUARTERNARY
© ¢ SOl ' LONGITUDE-OF I SAN-ANDREAS-1857-RUPTURE
C TERTIARY F MEASURED-ATTRIBUTE T SAN-ANDREAS-CARRIZO
¢ THREE-D-OBJECT
I MEASURED-LOCATION I SAN-ANDREAS-CHOLAME
@ C TWO-D-OBJECT MEASUREMENT -DEPTH
C PLANE . MEASUREMENT -UNCERTAINTY [SAN-ANDREAS-COACHELLA
@ ¢ SURFACE R NEHRP-CLASS_LETTER T SAN-ANDREAS-FALLT-SYSTEM
@ C FAULT F - . T SAN-ANDREAS-MOJAYE
BLIND_FALLT ' PARAMETER-CHARACTERISTIC
_ 4 c BUND-PALLT ¢ PARAMETER-DESCRIBES T SAN-ANDREAS-PARKFIELD-SEGMENT
c g ' PARAMETER-OBJECT-TYPE T SAN-ANDREAS-SAN-BERNADING
Propositions © ¢ REVERSE-FAULT
¢ STRIKE-SLIP-FAULT F PARAMETER-VALUE T SAN-ANDREAS-SAN-BERNARDING
‘ ¢ VERTICAL-FAULT FQUANTITY-AMOUNT < | T SAN-ANDREAS-SOUTHERN
—_— o
Propositions for SAN- ANDREAS- CHOLAME Editing Concept NEW- CONCEPT "
P (= (THE-FALLT-SLIP-RATE SAN-ANDREAS-CHOLAME) (THE-FAULT-SLIP-RATE SAN-ANDREAS-CHOLAME)) — e —
P (= (THE-FALLT -MAXIMUM-MAGNITUDE SAN-ANDREAS-CHOLAME) 6.9) [WERD-FALLT B
P (= (THE-FALLT-CHARACTERISTIC-RATE SAN-ANDREAS-CHOLAME) (THE-FALLT -CHARACTERISTIC-RATE SAN-ANDREAS-CHOLAME
P (= (THE-FALLT -RAKE SAN-ANDREAS-CHOLAME) (THE-FAULT -RAKE SAN-ANDREAS-CHOLAME)) Documentation
P (= (THE-FAULT-DIP SAN-ANDREAS-CHOLAME) (THE-FAULT-DIP SAN-ANDREAS-CHOLAME) Fhe class of very strange faults. |
Query i B
ANDREAS-FAULT-SYSTEM) Module: [SEISMOLOGY v
Query: AME (UNITS 62 "km*)
(FAULT ?fault) ﬁ Search - Relations
(==
= Search String: [north | =
Module: | SEISMOLOGY v
Module: |SEISMOLOGY v
Results:
ORTHRIDGE-FALLT “fault e ® Contains Propositions
_ = _| Concepts
_ _ - () Starts With EE
S e o L U [_] Relations [_] Case Sensitive
SAN-ANDREAS-CARRIZO) Ends With
SAN-ANDREAS-CHOLAME [v] Instances
SAN-ANDREAS-COACHELLA) Exactly Matches
SAN-ANDREAS-MOJAYE Object Module Type —
SAN-ANDREAS-PARKFIELD-SEGMENT —| |NORTHRIDGE-EARTHQUAKE |SESMOLOGY INSTANCE Nl =
SAN-ANDREAS-SAN-BERNARDING NORTHRIDGE-FALLT SEISMOLOGY INSTANCE [+]=]
SAN-ANDREAS-SOUTHERN NORTHRIDGE-HYPOCENTER SESMOLOGY INSTANCE
~| hd
Loom| i B aq D

KR& A Execute | | Cancel A’ IW | ﬂ liim

Group

Current Module: AIRCRAFT-KB |

A

Information Sciences Institute

Ontosaurus Browser

O [podute: SEISMOLOGY s |[show]

| [Hold Window |

G&“ any $ ||basin

|Find| Match[Substring ﬂ

-

Relation BASIN-DEPTH-2.5

Module: SEISMOLOGY TeXtual
Seen from: [SEISMOLOGY ¢ Definition
A/

Facts BASIN-DEPTH-2.5

(DOCUMENTATION BASTIN-DEPTH-2.5 "Depth to the 2.5km/s Vs boundary in a basin."™)

(DUPLICATE-FREE BAST

(NTH-DOMATN

‘ Formal logical encoding of
° " one constraint implied by the

Depth to the 2. 5km/fs Vs boundary in a basin. <

Types BASIN-DEPTH-2.5

DEPTH-MEASURE
DISTANCE-I@EAVQ}RE StI'llCtllI'Gd
QUANTITY

FUNCTION < 5 5
FUNCTION < /DGSCI‘lpthH
SET
DUPLICATE-FREE-COLLECTION

/ COLLECTION

AGGREGATE

DUPLICATE-FREE
SITE-PARANETER
PARANETER

Subrelations BASIN-DEPTH-2.5

Mone

Superrelations BASIN-DEPTH-2.5

€ J “«

>

2ITE)
textual definition

(NTH-DOMATHN
BASTN-DEPTH-Z.

i
(= (PARAMETER-DESCRIEES BASIN-DEPTH-2.5) skl246//3ITE) ™
! bh “Razin\Depth™)
(Basin-depth = O0m) < (Vs30 > 2.5km/s)

Rules BASIN-DEPTH-2.5

{FORALL {25)
{=> (EXISTS (2V57)
{ AND
{= (BASIN-DEPTH-2.5 28) 2V57)
{= (UNITS O "m") 2V57)))
{EXISTS (2V58 2V59)
{ AND
(= (VS30-0F-30IL 2§) 2V58)
{= (UNITS 2.5 "km/s™) 2¥59)
{(UNIT> ?V¥58 2¥59))))

151

Information Sciences Insfitute

Status and Distribution

> Written in STELLA
» Available in Lisp, C++ and Java

» Current release: PowerLoom 3.0.2.beta
Basic KR&R system only

Distributed as Lisp, C++ and Java source
~500 downloads world-wide

~400 subscribers to the mailing lists

YV V VY V

» Licensing Terms
» Open Source, user choice of 3 standard licences

1. GPL
2. LGPL
3. Mozilla

Loom
KR&R
Group

20

151

“~PowerLoom Features

Loom
KR&R
Group

>

>

>

>

>

>

>
>

>

>

>
>

>
>
>

Full-function, robust and stable KR&R system
Representation, reasoning, query language, storage, extensive API
Available in Java (useful for integration with Protége)
Expressivity
KR failures often due to “we could not express X”
Meta-representation & reasoning

Concepts, relations, contexts, rules, queries, etc. are all first-class citizens which
can be represented and reasoned about

Explanation support
Built-in recording and rendering of proof trees
Explanation of failed inferences (“WhyNot”)
Sophisticated context & module system
Encapsulation and organization of knowledge
Efficient inference

Representation of assumptions: e.g., “all reactions modeled here assume 20°C
ambient temperature”

Sophisticated support for units & measures

21

151

“““PowerLoom Features /2

Loom
KR&R
Group

> Extensible architecture

>

Easy to add new specialized reasoning procedures

> Scalability

» Caveat: PowerLoom inference is worst-case exponential complexity

>

>

But: many design features to deal with performance
Common inferences (e.g. subsumption) supported by specialists
Expensive inference (e.g., classifier) available on demand

Various search control directives, e.g., forward/backward-only rules, resource
bounded inference

Different inference levels

Modules to focus reasoning

Database interface to offload data-intensive operations onto RDBMS
Successfully handled very large KBs

Reasoned with full Cyc KB (~1,000,000 facts, 35,000 rules)

Large EELD ontologies and datasets (not loadable into XSB deductive database)

O(1000) ontology & rules, O(10,000) instances, O(100,000) assertions (see
example later)

22

A

Information Sciences Institute

Loom
KR&R
Group

PowerLoom Language Concepts

23

A

Information Sciences Institute

PowerLoom Representation Language

> PowerLoom language is based on KIF

» The Knowledge Interchange Format (Genesereth 91)
> Developed as part of DARPA’s knowledge sharing effort

» Proposed ANSI standard, now one of the accepted syntaxes of the
Common-Logic effort

» Syntax and declarative semantics for First-Order Predicate Logic
> Lisp-based, uniform prefix syntax, similar to CycL

> Example:

Facts: (person fred)
(citizen-of fred germany)
(national-language-of germany german)

Rules: (forall (?p ?c ?1)
(=> (and (person ?p)
(citizen-of ?p ?c)
(national-language-of ?c ?1))
(speaks-language ?p ?1)))
Loom

KR&R
Group

15/

Information Sciences Institute

PowerLoom Representation Language /2

» Many extensions to standard FOL.:

> Type, set & cardinality relations, e.g., subset-of, instance-of, range-
cardinality, etc.

Second-order definitions via holds

Selective closed-world assumption (OWA is default)
Classical negation and negation-by-failure

Defaults (still need work)

YV V V VY

> Frame-style definition language as syntactic sugar
> defconcept, defrelation, deffunction, definstance, defrule

> Allows concise definitions but expands internally into standard (more
verbose) logic assertions

Loom
KR&R
Group

15/

Information Sciences Institute

PowerLoom Knowledge Bases

> Terminology Definitions

» Concepts (classes), functions, and relations define the vocabulary
of a domain, e.g., person, citizen-of, age, eflc.

> Assertions
> Describe what is true in a domain

> Facts, e.g, (person Fred)
> Rules, e.qg., (forall ?x (=> (rich ?x) (happy ?x)))

> Contexts & Modules

> Knowledge is organized into modules

> Facts & rules are not asserted globally but relative to modules, can
have different truth values in different modules

> Hierarchical module structure, assertions from higher modules are
inherited to lower modules

Loom
KR&R
Group

26

151

Information Sciences Insfitute

Loom
KR&R
Group

Terms, Relations & Propositions

> A KB captures a useful representation of a physical or
virtual world

> Entities in the world are modeled in the KB by terms
> “Georgia”, “Ben Franklin?, 3, “abc” , concept “Person”

> Terms are categorized and related via relations

EE 11 EE A 1T EE A1

> “has age’, “greater than”, “is married to”, “plus”, “Person”
> Concepts such as “Person” are considered unary relations

> Propositions are sentences with an associated truth value

L 1

> “Ben Franklin is a person”, “Bill is married to Hillary”, “two plus three
equals six” (which is false)

> PowerLoom uses KIF terms and sentences to represent
propositions

> (person Ben-Franklin) (married-to Bill Hillary)
(= (+ 2 3) 6)

27

A

Information Sciences Institute

Logical Connectives & Rules

> Predicate logic uses logical connectives to construct
complex sentences from simpler ones:

> and, or, not, <=, =>, <=>, quantifiers exists and forall

> Examples:

> “Richard is not a crook”:
(not (crook Richard))

> “Every person has a mother”:
(forall ?p
(=> (person ?p)
(exists ?m
(has-mother ?p ?m))))

Loom
KR&R
Group

28

15/

Information Sciences Institute

Definitions

> Terminology (relations, concepts) need to be defined before they
are used via defconcept, deffunction & defrelation

> Examples:

(defconcept person)
(defrelation married-to ((?pl person) (?p2 person))
(deffunction + ((?nl number) (?n2 number))

:=> (?sum number))

> Advantage & Disadvantage

» Allows certain amount of error checking (e.g., misspelled relations, argument
type violations)

> A bit more tedious and can sometime generate ordering problems

Loom
KR&R
Group

A

Information Sciences Institute

Definition Ordering

> Circular references are only allowed within definitions
» Evaluation of rules within definitions is deferred until query time
> Example:

(defconcept parent (7?p)
:<=> (and (person ?p)
(exists ?c (parent-of ?p ?c))))
(defrelation parent-of ((?p parent) (?c person)))

> Equivalent definition but illegal circular reference:
(defconcept parent)
(assert
(forall (7?p)
(<=> (parent ?p)
(and (person ?p) (exists ?c (parent-of ?p ?¢))))))
(defrelation parent-of ((?p parent) (?c person)))

Loom
KR&R
Group

15/

Information Sciences Institute

Redefinitions

> Definition constructs primarily serve two roles
1. Convenience; more compact syntax for often used idioms
2. Linking sets of related axioms to a name to facilitate redefinition
> Redefinition is useful during interactive ontology and KB development

> Example Definition:

(defrelation parent-of ((?p person) (?c person))
:<=> (relative-of ?p ?c))

> Example Redefinition:
(defrelation parent-of ((?p parent) (?c person)))

> Result:
> Redefines parent-of with a different domain
» Erasestherule (<=> (parent-of ?p ?c) (relative-of ?p ?c))

Loom
KR&R
Group

31

15/

Information Sciences Institute

Truth Values

> Each PowerLoom proposition (sentence) is associated with a truth value
(relative to a context or module)
> Five possible truth values:
> true, false, default-true, default-false, unknown

> Standard assertion assigns truth value true
(assert (person Bill))

> Negation asserts truth value false
(assert (not (crook Richard)))

» Presume command asserts default truth values
(presume (=> (bird ?x) (flies ?x)))
> Propositions that are assigned true and false generate a clash (or
contradiction)
> Useful to detect certain constraint violations or errors
» Used by proof-by-contradiction specialist
» Contradictory propositions do not bring down the system and are treated as
unknown

Loom
KR&R
Group

32

A

Information Sciences Institute

Changing Truth Values

> The truth value of assertions can be changed

> Implicitly, by strengthening the truth value, e.g.,
from default-true {0 true

> By explicit retraction of the old truth value and new assertion, e.g.,
(assert (not (crook Richard)))
(retract (not (crook Richard)))
(assert (crook Richard))

> Truth values of inferred propositions cannot be retracted

(defconcept employee (?e) :=> (person ?e))
(assert (employee Mary))

(ask (person Mary)) = true

(retract (person Mary))

(ask (person Mary)) = true

Loom
KR&R
Group

151

Information Sciences Insfitute

Loom
KR&R
Group

Contexts & Modules

> Contexts & Modules

>

Knowledge is organized into contexts
Modules define name-spaces + assertion spaces
Worlds define assertion spaces only

Facts & rules are not asserted globally but relative to modules, can have

different truth values in different modules

Hierarchical module structure, assertions from higher modules are inherited to
lower modules

Non-monotonic inheritance is possible (e.g., override some inherited assertions for
scenario reasoning)

Contexts are first-class objects that can be asserted to and queried about in
the KB

Allows attachment of meta-information, e.g., source, assumptions, etc.
Very efficient, light-weight implementation derived from OPLAN
Support built in at a very low level (STELLA)

34

A

Information Sciences Institute

Loom
KR&R
Group

An Annotated Example

35

A

Information Sciences Institute

Using Modules

> We define a separate susiness module for our example
Inherits built-in PowerLoom definitions from PL-KERNEL/PL-USER

Sets up a separate name and assertion space to avoid unwanted
interference with/from other loaded knowledge bases

Allows easy experimentation (clearing/changing/editing/saving)
All PowerLoom commands are interpreted relative to current module

(defmodule "BUSINESS"
:documentation '"Module for the Business demo example."

:includes ("PL-USER")) <€—
(in-module "BUSINESS") €—

(CJ.ear_mOdUJ-e "BUSINESS") \

List of inherited modules

Set current module

Clear out local content

Loom
KR&R
Group

36

A

Information Sciences Institute

Concepts

» Concepts define classes of entities
» Defined via the defconcept command
»> Can have zero or more parent concepts (they all inherit THING)

> Used to introduce typed instances
(defconcept company
(defconcept corporation (?c company))

Simple “parentless” concept

(assert (company ACME-cleaners)) Parent concept

(assert (corporation megasoft))

i

Concept variable (optional)

(retrieve all ?x (company ?x))
There are 2 solutions:

#1: ?X=ACME-CLEANERS

#2: ?X=MEGASOFT <—

Create some instances

/

Retrieve all companies

Found via simple

(retrieve all ?x (corporation ?x)) i .
subsumption inference

There is 1 solution:
#1: ?X=MEGASOFT

Loom
KR&R
Group 37

A

Information Sciences Institute

Relations

> Relations define sets of relationships between entities

Defined via the defrelation command (& deffunction see later)
Can have one or more arguments (unary to n-ary)

Can be fixed or variable arity

Can be single or multi-valued

Usually specify types for each argument

Used to specify relationships between entities

Argument/role variable
Simple binary relation Argument type = domain
J Argument type = range

(defrelation company-name ((?c company) (?name STRING)))

YV V. V VYV VYV VY

(assert (company-name ACME-cleaners "ACME Cleaners, LTD"))
(assert (company-name megasoft '"MegaSoft, Inc."))

Loom
KR&R
Group 38

A

Information Sciences Institute

Relations /2

> Retrieve all relations asserted in the BUSINESS module:

Number of solutions sought

/i Retrieval variables specified implicitly

(retrieve all (company-name ?x ?y))
There are 2 solutions:
#1: ?X=MEGASOFT, ?Y="MegaSoft, Inc."
#2: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"

< ' Explicit retrieval
(retrieve all (?y ?x) (company-name ?x ?y)) variables allow value
There are 2 solutions: reordering
#1: ?¥Y="MegaSoft, Inc.", ?X=MEGASOFT

#2: ?Y="ACME Cleaners, LTD", ?X=ACME-CLEANERS

Loom
KR&R
Group

39

A

Information Sciences Institute

Relation Hierarchies

> Hierarchies for concepts as well as relations are supported

> PowerLoom represents a subconcept/subrelation relationship by
asserting an “implication” relation (or an “implies” link)

> Link is equivalent to a logic rule but allows more efficient inference

> Various syntactic shortcuts are available to support often-used
implication relations

(defrelation fictitious-business-name ((?c company) (?name STRING))
:=> (company-name ?C ?name)) —

Equivalent
(forall (?c ?name) < definitions

(=> (fictitious-business—-name ?c ?name)

(company-name ?c ?name))
Internal representation
(2"d order)

(subset-of fictitious-business-name company-name)

Loom
KR&R
Group 40

A

Information Sciences Institute

Relation Hierarchies /2

> Retrieve all names of MegaSaoft, fictitious or not
» lllustrates that company-name is a multi-valued relation

(assert (fictitious-business-name megasoft “MegaSoft”))

(retrieve all ?x (company-name megasoft ?x))
There are 2 solutions:
#1: ?X="MegaSoft, Inc." «— |
#2: ?X="MegaSoft" | Directly asserted

Inferred via the
subrelation rule/link

Loom
KR&R
Group

A

Information Sciences Institute

Loom
KR&R
Group

Functions

> Functions are term-producing, single-valued relations
» Defined via the deffunction command
Very similar to relations defined via defrelation but:

Term producing: a function applied to its first n-1 input arguments specifies a
unique, intensional term, e.g., “Fred’s age”

» Single-valued: each set of input arguments has at most one output argument
(the last argument), e.g., “Fred’s age is 42”

» By default, functions are assumed to be patrtial, i.e., could be undefined for
some legal input values (e.g., 1/0)

Input argument Output argument

(deffunction number-of-employees ((?c company)) :-> (?n INTEGER))

A/I Function term /I Function value
(assert (= (number-of-employees ACME-cleaners) 8))

(assert (= (number-of-employees megasoft) 10000))

42

A

Information Sciences Institute

Functions /2

> Functions syntax often results in shorter expressions than using similar
relation syntax:

(retrieve all (and (company ?x)
(< (number-of-employees ?x) 50)))
There is 1 solution:
#1: ?X=ACME-CLEANERS

» Compare to:

(retrieve all (and (company ?x)
(exists ?n
(and (number-of-employees ?x ?n)
(< ?n 50)))))
There is 1 solution:
#1: ?X=ACME-CLEANERS

> Multiple function terms:

(retrieve all (> (number-of-employees ?x) (number-of-employees ?y)))
There is 1 solution:
#1: ?X=MEGASOFT, ?Y=ACME-CLEANERS
Loom

KR&R
Group

A

Information Sciences Institute

Defined Concepts

Loom
KR&R
Group

» Concepts (and functions/relations) can be defined completely in
terms of rules

» Useful to name often-used queries or subexpressions and build up powerful
vocabulary

(defconcept small-company (?c company)
:<=> (and (company ?c)
N (< (number-of-employees ?c) 50)))

—> Expands into

these rules

New keyword

(forall ?c (=> (and (company ?c)
(< (number-of-employees ?c) 50))
(small-company ?c)))

(forall ?c (=> (small-company ?c)
(and (company ?c)
(< (number-of-employees ?c) 50))))

44

A

Information Sciences Institute

Defined Concepts /2

> Retrieve small companies even if we don’t know exactly
how many employees they have

(assert (and (company zz-productions)
(< (number-of-employees zz-productions) 20)))

(retrieve all (small-company ?x)) ‘k\\\\\\\\\

There are 2 solutions: All we know is
#1: ?X=ZZ-PRODUCTIONS that ZZ

#2: ?X=ACME-CLEANERS Productions has

less than 20
employees

Rule-based
inference +
transitivity of ‘<’

Loom
KR&R
Group 45

A

Information Sciences Institute

Negation & Open/Closed-World Semantics

> PowerLoom uses classical negation and an open-world assumption
(OWA) by default

» KB is not assumed to be a complete model of the world: if something can’t be
derived the answer is UNKNOWN, not FALSE
» Can distinguish between failure and falsity!
» Inference engine uses asymmetric effort to derive the truth or falsity of a query
. Focuses effort on deriving truth, picks up falsity only via quick, shallow disproofs
. Full effort for falsity available by asking for the negated query
. Possible extension: 3-valued ask (similar to Loom)

(defconcept s-corporation ((?c corporation)))

_ _ Due to open-
(ask (s-corporation z.z—productlons))_ => UNKNOWN world assumption
(ask (not (s-corporation zz-productions))) => UNKNOWN

(assert (not (s-corporation zz-productions)))

I o o
(ask (s-corporation zz-productions)) = FALSE 44— Quick dISer)Of
(ask (not (s-corporation zz-productions))) => TRUE from assertion
Loom

KR&R
Group 46

A

Information Sciences Institute

Negation & Open/Closed-World Semantics /2

> Falsity can also come from sources other than explicit
assertion

Single-valued functions and relations

Inequalities

Disjoint types

Negated rule heads, etc.

YV V V V

(ask (= (number-of-employees ACME-cleaners) 8)) = TRUE / Quick disproof
(ask (= (number-of-employees ACME-cleaners) 10)) = FALSE since functions are
(ask (not (= (number-of-employees ACME-cleaners) 10)))=> TRUE single-valued
(ask (= (number-of-employees zz-productions) 100)) = FALSE
(ask (= (number-of-employees zz-productions) 10)) = UNKNOWN | Quick disproof via
inequality
constraints

Truly unknown
since there is not

Loom enough information
KR&R

Group 47

A

Information Sciences Institute

Negation & Open/Closed-World Semantics /3

Loom
KR&R
Group

> Selective closed-world semantics and negation-by-failure are also
available (as used by Prolog, deductive databases, F-Logic, etc.)

» Useful in cases where we do have complete knowledge
> If something can’t be derived, it is assumed to be false
» Closed-world semantics specified by marking relations as closed
> Negation-by-failure via fail instead of not

(defrelation works-for (?p (?c company)))

(assert (works-for shirly ACME-cleaners))
(assert (works-for jerome zz-productions))

A/I Due to open world

Mark relation as closed

(ask (not (works-for jerome megasoft))) = UNKNOWN

(assert (closed works-for)) &4—

(ask (not (works-for jerome megasoft))) = TRUE «— Via selective closed-world
semantics

(retract (closed works-for))
(ask (not (works-for jerome megasoft))) = UNKNOWN

(ask (fail (works-for jerome megasoft))) => TRUE 4—| Via explicit negation-by-
failure

48

151

Information Sciences Institute

Retraction

> Retraction allows the erasure or change of a previously
asserted truth-value of a proposition

> Useful for error correction or iterative “change of mind” during
development

> Useful to change certain aspects of a scenario without having to
reload the whole knowledge base

> Allows efficient, fine-grained change
= Some cached information is lost and needs to be regenerated
Loss can be minimized by careful structuring of module hierarchy (put more
stable knowledge higher up in the hierarchy)

» Allows the exploration of hypothetical conjectures

What would change if F were true or false?
Module system allows us to consider both possibilities at the same time

Loom
KR&R
Group

49

A

Information Sciences Institute

Retraction /2

Loom
KR&R
Group

» Some geographic terminology and information

(defconcept geographic-location)

(defconcept country ((?1 geographic-location)))
(defconcept state ((?1 geographic-location)))
(defconcept city ((?1 geographic-location)))
(defrelation contains ((?1l1 geographic-location)
(?12 geographic-location)))

(assert (and
(country united-states)

(geographic-location eastern-us)

(contains united-states

eastern-us)

(state georgia) (contains eastern-us georgia)
(city atlanta) (contains georgia atlanta)
(geographic-location southern-us)

(contains united-states
(state texas) (contains
(city dallas) (contains
(city austin) (contains

southern-us)
eastern-us texas)
texas dallas)
texas austin)))

50

A

Information Sciences Institute

Loom
KR&R
Group

Retraction /3

> Retraction to fix an incorrect assertion

(ask (contains eastern-us texas)) = TRUE

(retract (contains eastern-us texas))
(assert (contains southern-us texas))

(ask (contains eastern-us texas)) = UNKNOWN

51

A

Information Sciences Institute

Value Clipping

> Functions allow implicit retraction via value clipping

> Assertion of a function value automatically retracts a preexisting value
> Justified, since functions are single-valued

(deffunction headquarters ((?c company)) :-> (?city city))

(assert (= (headquarters zz-productions) atlanta))
(retrieve all (= ?x (headquarters zz-productions)))
There is 1 solution:

1: ?X=ATLANTA . .
A/I Assertion automatically

(assert (= (headquarters zz-productions) dallas)) clips previous value

(retrieve all (= ?x (headquarters zz-productions)))
There is 1 solution:
#1: ?X=DALLAS —

| DALLAS value
replaced ATLANTA

Loom
KR&R
Group

A

Information Sciences Institute

Value Clipping /2

> Clipping also works for single-valued relations

(defrelation headquartered-in ((?c company) (?city city))
:axioms (single-valued headquartered-in))

(assert (headquartered-in megasoft atlanta))
(retrieve all (headquartered-in megasoft ?x))
There is 1 solution:

#1: ?X=ATLANTA

(assert (headquartered-in megasoft dallas))
(retrieve all (headquartered-in megasoft ?x))
There is 1 solution:

#1: ?X=DALLAS

Loom
KR&R
Group 53

A

Information Sciences Institute

Contradictions

> Propositions that are both true and raLse are contradictory
> Contradictions can result from explicit assertions, during forward-
chaining, or as the result of a refutation proof

» Contradictory propositions are treated as UNKNOWN to allow the system
to continue to function

(assert (not (state texas)))

Derived both TRUE and FALSE for the proposition " |P#| (STATE TEXAS) '.
Clash occurred in module ° |MDL|/PL-KERNEL-KB/BUSINESS'.

(ask (state texas)) = UNKNOWN
(ask (not (state texas))) = UNKNOWN

Loom
KR&R
Group 54

A

Information Sciences Institute

Rule-Based Inference

> Logic rules can be used to model complex relationships
> Rules can be unnamed or named via defrule
» Most definition commands expand into one or more rules
> Inference engines apply rules to derive conclusions

(retrieve all (contains southern-us ?x))
There is 1 solution:
#1: ?X=TEXAS

Finds only directly
asserted values

Defines contains to be transitive
(defrule transitive-contains

(forall (2?11 2?12 213) (defrule transitive-contains
(=> (and (contains 2?11 °?12) (=> (and (contains 7?11 ?12)
(contains 2?12 °?13)) (contains ?12 ?13))
(contains ?11 ?13)))) (contains ?11 ?13)))

(retrieve all (contains southern-us ?x))
There are 3 solutions:
#1: ?X=TEXAS
#2: ?X=AUSTIN Same rule via implicit quantification
#3: ?X=DALLAS
Loom
KR&R
Group

55

A

Information Sciences Institute

Named Rules & Axiom Schemata

> Logic rules can be defined and named via defrule

> Rules are propositions which are in the domain of discourse
= Allows meta-annotations and reasoning
> Naming rules (or any proposition) provides extra level of convenience

> Axiom schemata allow simple definition of commonly used rule patterns

(retract transitive-contains)

(retrieve all (contains southiig:gg____——,_——’lReﬂactﬂmebynawm
?X))

Reassert transitivity via meta-

There is 1 solution: relation + axiom schema

#1: ?X=TEXAS

(defrelation transitive ((?r RELATION))
:=>> (and (binary-relation ?r)
(not (function ?r)))

(assert (transitive contains))

(retrieve all (contains southern-us :=>> (=> (and (?r ?x ?y)
?x)) (?r ?y ?z))
There are 3 solutions: (?r ?x ?z)))
#1: ?X=TEXAS
#2: ?X=AUSTIN Transitivity relation and axiom
#3: ?X=DALLAS schema from PL-KERNEL KB
Loom
KR&R

Group 56

A

Information Sciences Institute

Justifications and Explanation

> Explanation of true/false queries

» Backward inference can store proof trees that can be rendered into
explanations

» Simple built-in explanation mechanism

. Various rendering possibilities, ASCII, HTML, XML
. Eliminates explanation of duplicate and low-level goals
. Explanation strings for different audiences (technical, lay)

(ask (contains southern-us dallas)) = TRUE

(why)
1 (CONTAINS SOUTHERN-US DALLAS)

follows by Modus Ponens

with substitution {?11/SOUTHERN-US, ?13/DALLAS, 2?12/TEXAS}

since 1.1 ! (FORALL (2?11 ?13)

(<= (CONTAINS 2?11 ?13)
(EXISTS (?12)
(AND (CONTAINS 2?11 ?12)
(CONTAINS 7?12 ?13)))))

1. ! (CONTAINS SOUTHERN-US TEXAS)
1

and 2
.3 ! (CONTAINS TEXAS DALLAS)

Loom and
KR&R
Group

57

A

Information Sciences Institute

Explanation /2

> Explanation of retrieved results

» Separate explanation for each derived solution
> why explains most recently retrieved solution

(retrieve 3 (contains southern-us ?x))
There are 3 solutions so far:

#1: ?X=DALLAS

#2: ?X=TEXAS

#3: ?X=AUSTIN

(why)
1 (CONTAINS SOUTHERN-US AUSTIN)

follows by Modus Ponens

with substitution {?11/SOUTHERN-US, ?13/AUSTIN, 2?12/TEXAS}

since 1.1 ! (FORALL (2?11 ?13)

(<= (CONTAINS ?11 ?13)
(EXISTS (?12)
(AND (CONTAINS 2?11 ?12)
(CONTAINS 212 213)))))

and 1.2 ! (CONTAINS SOUTHERN-US TEXAS)
Loom and 1.3 ! (CONTAINS TEXAS AUSTIN)
KR&R
Group

58

A

Information Sciences Institute

Contexts & Modules

> Hypothetical or scenario reasoning can be achieved by
> creating a new context which inherits existing set of facts and
» allows the exploration of "assumptions".

> In this example, we show how certain inherited assertions can be
retracted and changed

(defmodule "ALTERNATE-BUSINESS"
:includes "BUSINESS")

(in-module "ALTERNATE-BUSINESS")

(assert (and (company web-phantoms)
(company-name web-phantoms "Web Phantoms, Inc.")))

(retract (company-name megasoft '"MegaSoft, Inc."))
(assert (company-name megasoft "MegaZorch, Inc."))

Loom
KR&R
Group

59

A

Information Sciences Institute

Contexts & Modules /2

> |he ALTERNATE-BUSINESS module

» inherits all of the information of its parent module
> is subject to the specific changes made in the local module.

(in-module "BUSINESS")

(retrieve all (company-name ?x ?y))

There are 3 solutions:
#1: ?X=MEGASOFT, ?Y="MegaSoft, Inc."
#2: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"
#3: ?X=MEGASOFT, ?Y="MegaSoft"

(in-module "ALTERNATE-BUSINESS") Changed local assertion

(retrieve all (company-name ?x ?y))
There are 4 solutions:
#1: ?X=MEGASOFT, ?Y="MegaZorch, Inc.'
#2: ?X=WEB-PHANTOMS, ?Y="Web Phantoms, Inc." e s :
#3: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD" Frosm Wotiields Suslses
#4: ?X=MEGASOFT, ?Y="MegaSoft" <«— Jiiiie” 2 saeaion

New local assertion

Loom
KR&R
Group 60

A

Information Sciences Institute

Cross-Contextual Reasoning

> Normally queries operate in the current module.

> The IST (IS-TRUE) relation (J. McCarthy) allows us to query about the state of
knowledge in other modules.

> This also allows cross-module inference by binding variables across forms
> Example: “find all companies whose names differ in the two modules”

(in-module "BUSINESS")

(retrieve all (ist alternate-business (company-name ?x ?y)))
There are 4 solutions:
#1: ?X=MEGASOFT, ?Y="MegaZorch, Inc."

#2: ?X=ALTERNATE-BUSINESS/WEB-PHANTOMS, ?Y="Web Phantoms, Inc."

#3: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"
#4: ?X=MEGASOFT, ?Y="MegaSoft"

(retrieve all (and (ist business (company-name ?x ?y))
(fail (ist alternate-business (company-name ?x ?y)))))
There is 1 solution:
#1: ?X=MEGASOFT, ?Y="MegaSoft, Inc."

Loom
KR&R
Group

A

Information Sciences Institute

RDBMS to PowerLoom Mapping

Defining a PowerLoom database instance edb1:

(DEFDB edbl
:dsn "EELD EDB17JUNO3 COMPLIANT PUBLIC PL"
:user "scott" :host "blackcat.isi. edu")

Defining a PowerLoom relation EDB-Person
that maps onto the EDB table person:

(DEFTABLE EDB-Person edbl "PERSON“
(?ENTITYID ?REPORTID ?SOURCEID
?LASTNAME ?FIRSTNAME ?MIDDLENAME ?NICKNAME °?GENDER
?COUNTRYCITIZENSHIP ?AGE ?BIRTHLOCATION ?RESIDENCE))

Defining a PowerLoom lifting axiom that maps the
ontology concept Person onto EDB-Person:

(ASSERT
(=> (QUERY
(EXISTS (?rep ?s ?1 ?f ?m ?n ?g ?c ?a ?b ?res)
(EDB-Person ?p ?rep ?s ?1 ?f ?m ?n ?g ?c ?a ?b ?res))
Loom :MATCH-MODE :EELD :HOW-MANY :ALL)

KR&R (Person ?p)))
Group 62

15/

Information Sciences Institute

Loom
KR&R
Group

Advanced Topics

63

A

Information Sciences Institute

Concept Definitions

/ Define new concept term event

(defconcept event
:documentation '"The class of events.")

™

Documentation string

Define movement-event as subconcept of event

(defconcept movement-event (?ev event)
:documentation '"The class of movement events."
:=> (= (* (time ?ev) (speed ?ev))

//,(distance ?ev)))

Constraint rule in KIF syntax

Loom
KR&R
Group 64

A

Information Sciences Institute

Definitions are Syntactic Sugar

» Constructs such as defconcept facilitate concise expression of
commonly needed definition tasks

> Example: Previous definitions expand into the following more verbose
set of assertions:

(defconcept event) Meta assertion about the concept
movement—-event

(assert (documentation movement-event ‘////
"The class of movement events."))

(defconcept movement-event)

(assert (forall ?ev
(=> (movement-event 2%ev) ¥ [Represents the subconcept
(event ?ev)))) relationship

(assert (forall ?ev
(=> (movement-event ?ev) «——— | Represents the constraint
Loom (= (* (time ?ev) (speed ?ev))

KR&R (distance ?ev)))
Group 65

A

Information Sciences Institute

Relation Definitions

Define binary relation sub-event with domain and range event:

~ <

(defrelation sub-event ((?sub event) (?super event))
:documentation “Links a sub-event to its super-event.”)

Relations can have arbitrary as well as variable arity.

Functions are single-valued, term-generating relations:

(deffunction time ((?ev movement-event) ?time)
:documentation “The duration of a movement event.”)

(deffunction speed ((?ev movement-event) ?speed)
:documentation “The speed of a movement event.”)

(deffunction distance ((?ev movement-event) ?distance)
Loom :documentation “The distance covered by a movement.”)

KR&R
Group 66

A

Information Sciences Institute

Instance Definitions

Define event instance ev1 with various properties:

/

(definstance evl
:movement-event true :speed 10 :time 20)

The above concise, frame-style definition expands into
the following individual assertions:

(assert (movement-event evl))
(assert (= (speed evl) 10))
(assert (= (time evl) 20)))

™

Loom Function term “time of event ev1”

KR&R
Group

67

A

Information Sciences Institute

Attaching Information to Rules

» Rules are also in the domain of discourse and can be named for easy
attachment of other information

» For example, documentation strings or explanation templates:

(defrule speed-rule
(forall ?ev
(=> (movement-event ?ev)
(= (* (time ?ev) (speed ?ev))
(distance ?ev))))
:documentation “Distance = time * speed of a movement.”)

(assert
(explanation-template speed-rule
“The distance ?(distance ?ev) of the movement event ?ev equals
its duration ?(time ?ev) times its speed ? (speed ?ev).”))
Loom

KR&R
Group

A

Information Sciences Institute

Arithmetic Constraint Reasoning

» Arithmetic reasoning is important for scientific, engineering and
everyday reasoning

» Poweloom’s built-in arithmetic specialists can compute a result from
any two bound arguments
> Allows us to model this formula via a single “speed” rule
(instead of three — was an issue with Cyc in Phase-1)
» Example: (+ 5 ?x 2) =>?x = -3

(definstance evl :movement-event true :speed 10 :time 20)
(definstance ev2 :movement-event true :speed 10 :distance 50)

(retrieve all (distance evl ?x))
There is 1 solution:
#1: ?X=200

(retrieve all (time ev2 ?x))
There is 1 solution:
#1: ?2X=5
Loom

KR&R
Group

69

A

Information Sciences Institute

General Queries

Loom
KR&R
Group

» Many other systems have problems with general queries
that ask about classes of things:

» “Is it true that the ionization of diluted solutions is higher than those
of concentrated solutions?”

» This is often worked around by introducing a specific solution
individual and asking the question about the instance

» In PowerLoom we can ask the universal question directly:

(defconcept solution :documentation "The class of chemical solutions.")

(deffunction concentration-level ((?s solution) ?level)

:documentation “Concentration ?level of some particular solution ?s.")
(deffunction ionization ((?s solution) ?level)

:documentation “Ionization ?level of some particular solution ?s.")

(defrelation greater-than (?x ?y)
:documentation "Qualitative >' relation.")

70

A

Information Sciences Institute

General Queries /2

» Two (mock) rules describing relationships between
concentration levels of solutions and their ionization level

» Note that these rules operate at the instance level: given a specific
solution instance and its concentration, we can infer the solution’s
jonization level

(defrule ionization-rulel
(=> (and (solution ?x)
(concentration-level ?x diluted))
(= (ionization ?x) high))
:documentation “Diluted solutions have high ionization.")

(defrule ionization-rule2
(=> (and (solution ?x)
(concentration-level ?x concentrated))
(= (ionization ?x) low))
:documentation “Concentrated solutions have low ionization.")

(assert (greater-than high low)) €—

Loom
KR&R
Group

|
| Qualitative ordering

A

Information Sciences Institute

General Queries /3

» Can phrase the general query directly as a universally
guantified statement
» PowerLoom’s Universal Introduction reasoner is used to prove it

» Automatically introduces hypothetical solution individuals with the
necessary properties in a hypothetical world

(ask (forall (?x ?y)
(=> (and (solution ?x)
(solution ?y)
(concentration-level ?x diluted)
(concentration-level ?y concentrated))
(greater-than (ionization ?x) (ionization ?y)))))
= TRUE

» Contrast this with the “hand-reification” approach:

(assert (and (solution soll) (concentration-level soll diluted)))
(assert (and (solution so0l2) (concentration-level sol2
concentrated)))

Loom (ask (greater-than (ionization soll) (ionization so0l2)))

KR&R = TRUE
Group

72

A

Information Sciences Institute

Loom
KR&R
Group

Representing Queries

» Question answering applications

> Reasoning about the queries itself is often important (e.g., answering
a multiple-choice question by identifying the incorrect answers)

» PowerLoom can represent queries as terms to facilitate

such query-level reasoning

> Example: Wh-query can be represented via a KAPPA term and then
evaluated via the query engine to generate the answers

(deffunction wh-query (?q) :-> (?kappa SET))

(assert (wh-query ql
(kappa °?x
(and (solution ?x) (concentration-level ?x diluted)))))

(assert (and (solution sl) (concentration-level sl diluted)))
(assert (and (solution s2) (concentration-level s2 concentrated)))
(assert (and (solution s3) (concentration-level s3 diluted)))

(retrieve all ?x (member-of ?x (wh-query qgql)))
There are 2 solutions:

#1: ?2X=S3

#2: ?X=S1

73

15/

Information Sciences Institute

Loom
KR&R
Group

Units and Dimensions

> Scientific reasoning uses various units and dimensions
» PowerLoom has full support for units

» Large number of predefined units

Sl and other measurement systems

Fundamental quantities:

mass, distance, time, angle, solid angle, amount of substance, electric current,
luminous intensity, data

> Arithmetic operations on units

» Arbitrary combinations of units introduced by formulae

—not limited to predefined combinations
» Extensible via STELLA code

> Integration with Ontology
» Datatype introduced via the units function
> All logical operations and inferences work with units

74

Isl
““Reasoning with Units

Assertions and Comparisons

> The units function introduces the data types

> Assertions Magnitude of expression

» Comparisons Units (as string)

(assert (= (age Fred) (units 35 "yr"))) . .
(assert (= (age Pebbles) (units 18 "month"))) Ak’,,f””‘Aﬂm”?n/yn”
(assert (= (answer problem) (units 42 "m2kg/s3%))) combinations

(ask (< (units 10 "mm") (units 10 "£ft"))) 4—|Comparisons normally

TRUE give true or false answers
(ask (< (units 10 "£ft") (units 11 "m")))

TRUE

(ask (< (units 11 "'m") (units 10 "£ft")))

FALSE

(ask (< (units 11 "kg") (units 10 "£t"))) Incompatible units, so no
UNKNOWN meaningful answer

Loom
KR&R
Group

75

A

~““Reasoning with Units

Loom
KR&R
Group

Conversions

> Conversions

> All units are stored internally in canonical form (S| mks)
» Conversions are performed on input or output

(retrieve (= (units ?x "mile") (units 100 "km"))) oy .
There is 1 solution so far: | Miles to kilometers
#1: ?X=62.13711922373341 44—

There is 1 solution so far: (in canonical units)
#1: 2X=100000.0, 2Y="m"

(retrieve all (= (age Fred) (units ?x "yr"
More useful example

There is 1 solution:

#1: ?X=35.0
(retrieve (= (units 1000 ?y) (units 1 "km")))
. < |
No solutions. I TOO Open_ended

76

Isl
““Reasoning with Units

Arithmetic

> Arithmetic

» Units combine appropriately Creates 20 km/h unit
> Arbitrary units combinations a common unit
(retrieve (= (units ?x ?y) (u-div (unit<$™20 "km") (units 1 "h"))))
There is 1 solution so far:

I . .
#1: ?X=5.555555555555555, ?Y="m/s" |Ca”°”'ci| |tpternal
representation.

(retrieve (= (units ?x "km/h") (u-div (units 20 "km") (units 1 "h"))))

There is 1 solution so far:
#1l: ?X=20.0 < i Converted back to km/h 3 Synonyms

(retrieve (= (units ?x "km") (u* (units 20 "km/h") (units 1.5 "hr"))))
There is 1 solution so far:
#1: ?X=30.0

? (retrieve (= (units ?x ?y) (u-div (units 1 "h") (units 20 "km"))))
There is 1 solution so far: Creates 20h/km. a
#1: ?X=0.18, 2Y="s/m" quite uncommon unit

Loom
KR&R

Group 77

151

Information Sciences Insfitute

Time Points and Durations

> Time is an important aspect of the world
» PowerLoom has support for exact time points and durations

» Time point specification uses flexible strings and timepoint-of function

ISO-8601 extended format for dates

Many other (US-centric) date formats supported:
"5-dan-2000", "1/5/2000", "January 10, 1997", "now", "today", "yesterday"

Time zones are specified numerically as offset from UTC
(i.e., what you add to UTC to get local time)
Common time zone strings are also supported: UTC, Z, PST, EDT
» Duration uses simple strings of days and milliseconds and duration-of function

"plus 5 days; 85000 ms", "minus 3 days; 0 ms"
Integrated and interchangeable with units function

> Arithmetic operations on time points and durations
» Comparisons of time points or durations
> Integration with Ontology
Datatypes introduced via the timepoint-of and duration-of functions
> All logical operations and inferences work with time points and durations
» Durations interoperate with the units function

Y

Loom
KR&R
Group

78

A

““Reasoning with Time
Assertions and Comparisons

> The timepoint-of function introduces time points and
the duration-of function introduces durations

> Assertions Type of time expression
» Comparisons ‘/|Specification (as string)
(assert (= (birthday Fred) (timepoint-of "2001-Jan-8 7:00Z")))
(assert (= (duration Project85) (duration-of "180 days")))
(assert (= (duration Concert75) (duration-of "0 days; 7200000 ms")))
(ask (< (timepoint-of "2005-Jul-3") / Comparisons normally
(timepoint-of "2005-Jul-4"))) give true or false answers
TRUE
Timezones are respected
(ask (< (timepoint-of "2005—07—03T12:30Z")/ -
(timepoint-of "2005-07-03T18:30+8:00"))) _ _
FALSE Incompatible time types,
SO no meaningful answer
(ask (< (timepoint-of "2006-10-May") (duration-of "2 days")))
UNKNOWN
Loom
KR&R

Group

A

~~~Reasoning with Time Durations

Conversions

Conversions
Durations and time units can be converted between

>

>

each other.

Time points can be destructured using the timepoint-of* function

(retrieve (= (duration-of ?x) (units 10 "daY")))4—ﬂSimpIe conversion

There is 1 solution so far:
#1: ?X="plus 10 days; 0 ms"

(retrieve (= (duration-of ?x)

There is 1 solution so far:

(units 2 "h"))) <—| More useful example

#1: ?X="plus 0 days; 7200000 ms"
(retrieve all (= (duration Concert75) (units ?x "h")))<_| Convert to units
There is 1 solution:
#1: ?X=2.0
(retrieve all (= (duration Concert75) (units ?x ?y))){-‘ Magnitude and unit
There is 1 solution: (Canonma|un“3)
#1: 2X=7200.0, 2y="s"
(retrieve (= (timepoint-of* ?y ?m ?d ?hh ?mm ?ss "PST") _
(timepoint-of "Feb/5/2002 00:25:30 EST"))) Destructuring
There is 1 solution so far: with time zone
'P-(;%"; #1: 2Y=2002, ?M=2, ?D=4, ?HH=21, ?MM=25, 2S5S5=30.0 conversion

Group

80



Isl
““Reasoning with Time

Arithmetic

>  Arithmetic

»  Addition and Subtraction of points and durations
»  Time types combine appropriately

(retrieve all (time- (timepoint-of "2006-10-20")

(timepoint-of "2006-10-15") €—] Amount of time between

(duration-of ?interval)))
There is 1 solution:
#1: ?2INTERVAL="plus 5 days; 0O ms"
(retrieve all (time+ (timepoint-of "2006-12-25")
(duration-of "12 days")
(timepoint-of ?date)))
There is 1 solution:
#1: ?DATE="2007-JAN-06 7:00:00.000 UTC"
(retrieve all (time+ (duration-of "12 days")

two time points

Adding a duration to a time
points to get a new time point

Works together with units

(units ?n "h") 4T

(duration-of "14 days")))
There is 1 solution:
#1: ?N=48.0

Loom
KR&R
Group

Output variable can be in
any position

81



15/

Information Sciences Institute

Forward Inference (FIX)

> simple propositional reasoning, e.g.,
(or p 9), ~p |= g

> simple equality reasoning

» forward skolemization, e.g.,

(forall (?x Person)
(exists (?y Person) (mother-of ?x ?y)))

Loom
KR&R
Group

82



A

Information Sciences Institute

Loom
KR&R
Group

WhyNot Query Debugging

83



A

Information Sciences Institute

Debugging Queries in Large KBs

> Logic-based knowledge representation & reasoning system

= Use language of some logic L to represent knowledge (e.g., KIF)
= Use implementation of proof procedure for L as reasoning engine

> Some (partially) developed knowledge base:

Facts: (person fred)
(citizen-of fred germany)
(national-language-of germany german)

Rules: (forall (?p ?c ?1)
(=> (and (person ?p)
(citizen-of ?p ?c)
(national-language-of ?c ?1))
(speaks-language ?p ?1)))

Queries: (speaks-language fred german)? —> TRUE
(speaks-language fred french)? —> UNKNOWN

Loom
KR&R
Group

84



Information Sciences Institute

The Problem

Loom
KR&R
Group

Failed query: (speaks-language fred french)? =—> UNKNOWN

Diagnosis is simple: the query failed because:

> Not asserted as a fact
> Not enough facts to infer it via the known rule
» Open world assumption!

Ask similar query in Cyc (1,000,000 facts, 35,000 rules)
> “Does Doug Lenat speak German?”
> Answer: UNKNOWN

Diagnosis is very difficult: the query failed because
> Not asserted as a fact
> All attempts to infer the answer failed
» Search tree explored by Cyc is very large, timeout at 30 CPU seconds
» Hard to debug for knowledge engineers, impossible for non-experts

85



15/
“=Solution: Explaining Query Failures via
Plausible Partial Proofs

> Standard explanation technique for logic-based reasoners:

» Find and record a proof for the query
» Present the proof to the user in an understandable way
» Problem: No proof = no explanation

> Solution: Need to create a proof even though none could be found

> Generate plausible partial proofs for a query

Partial proofs can be explained

Proof "holes" identify potential knowledge or inference gaps
Multiple plausible partial proofs to explain different failure modes
Top-ranked partial proofs focus on most plausible failures

>
>
>
>

> Challenges:

> What is a plausible partial proof?

» Scaling, find plausible proofs without looking at too many options
=> there are infinitely many possible proofs!

Loom
KR&R
Group

86



151

Information Sciences Insfitute

Exa

T T

mple Explanation of Query Failure

—_—

Explanation #1 score=0.708:

1 (speaks-language fred german)
is true to some part because an if-then rule applies

with substitution {?p/fred, ?lfgerman, ?#phil}

since 1.1 Rule: {(forall (?p ?1)
(<= (speaks-language ?p ?1)
{exists (?f)

{(and (parent-of ?p ?f)
(native-language-of ?2f 21)))))

and 1.2 Fact: (parent-of fred phil)
and 1.3 (native-language-of phil german)

1.3 (native-language-of phil german)
is true to some part because an if-then rule applies
with substitution {?p/phil, ?l‘german, ?c/germany}

since 1.3.1 Rule: (forall (?p ?1)
(<= (native-language-of ?p ?1)
(exists (?¢)
{and (person ?p)
(birth-place-of ?p ?c¢)
(national-language-of ?c¢ ?21)))))

and 1.3.2 Fact: (person phil)
and 1.3.3 Unknown: (birth-place-of phil germany)
and 1.3.4 Fact: (national-language-of germany german)

4

Loom
KR&R
Group

4] 1 »

B & & @F EY | Document: Done (0.512 secs)



151

Information Sciences Insfitute

PowerLoom’s “WhyNot” Query Diagnosis Tool

> PowerLoom KR&R system
> First-order-logic-based KR&R system
> Representation language is KIF (variant of FOL)

> Natural deduction reasoner combining forward, backward reasoning
plus variety of reasoning specialists

> Type & cardinality reasoning, relation subsumption, classifier
> Selective closed-world reasoning
» Modules and light-weight worlds for hypothetical reasoning

> “WhyNot” built into inference engine of PowerLoom
> Partial inference mode to generate plausible partial proofs
» Score propagation instead of truth-values
> Various plausibility heuristics

> PowerLoom explanation component used to explain partial proofs

> Only diagnosis of missing facts at the moment

Loom
KR&R
Group



15/

Information Sciences Institute

“WhyNot” Plug-in to Debug Queries in
Large Cyc Knowledge Bases

> Cyc-based KRAKEN KA Tool

>
>

>

> PowerLoom “WhyNot”

>

input and output in natural language

very large amount of background knowledge (over 1,000,000 facts, O(10,000)
rules)

query diagnosis is very difficult PowerLoom WhyNot
——-ooooog [roneenn .l-.-.-.-.-.-:-.-.-.-.lu.-.-.-.-'-->

. E Structural ¢ E Consistencyas sass
WhyNOt Classifier = Refinement ] = Tests a

---------- " tasmsrmmnna”

external knowledge source

integrated via blackboard VirB3 PowerLoom KB Indexing
dynamically fetches and Blackboard PL/Cyc bowerLoom
translates Cyc knowledge <5 Store Cache oo
performs partial inference
against very large KB

R - Cyc/KRAKEN
E:’]noe/algésg][e)cggggal | PL/Cyc Knowledge Pager API | Cyc AP

ships explanations to Cyc Integrated Knowledge Base
KRAKEN UIA display




REDHOUSE Cyc KB Br

@OO @ Q O|'%http:f/redhouse.isi.edu/cgi-binfcyccgifcg?cb-start

owser - Netscape B

. File Edit View Search Go Bookmarks Tasks Help

) ([seen) o

=

Update Tools MNav Opt

Login: Lenat Machine: redhouse

Complete I

Clear | Show | GREP | & |gnore Case

Launchers [Refresh] [Reect]  [Debuo] 1| Agenda Summary [reresh) [Reset] vy
Fefresh Thoughts][visualize
ISI Why Not Topic : cell biology
Setup
Browsing Query Critique from ISI's WhyNot Module [Mext] [Journal]
New
Knowledge For the question Essential Steps :
Wizards B Test Suite: WhyNot Queries [U1 4]
Review and Does Doug Lenat speak the German language?
li%atailggtion Relevant Suggestions :
Debugging | the Why-Not module has determined that if any of the following facts were known, the query would succeed. B 151 ¥y-Not Proposal [UI 8]
Color Key
= [+] ?X speaks the German language. %] Can be done immediately
= [+] Doug Lenat is a child of ?x. [¥¥] Presently blocked
[Continue] =
P Explanation Detail:
|
P Explanation 1, score=0.50:
1 Doug Lenat speaks the German language.
is true to some part because an if-then rule applies
with substitution {¥/Doug Lenat,, Z/High German., X.Xone of Kurt Godel., Georg Cantor,,
Johann Sebastian Bach,, etc.}}
since 1.1 If ¥'is a child of X and X speaks Z, then ¥ speaks Z.
and 1.2 Unknown: Doug Lenat js a child of X.
and 1.3 X speaks the German language.
Legend:
= The color marks rules and facts that are known either because they were asserted or
they follow by some logical inference.
= The color marks logically inferred facts that are only partly true, since their inferences
depend on some unknowns.
= The color red marks completely unknown facts that might be missing from the knowledge
base (if they actually do make sense). Asserting all of them would allow Cyc to answer the =
@ Say This E

B A Q7 ER

| javascript:void(")

=

90



A

Information Sciences Institute

Does Doug Lenat Speak German?

Query Critique from ISI's WhyHNot Module

For the guestion

Is it true that Douglas Lenat speaks the German language?

the Why-Not module has determined that if any of the following facts were known, the query would
succeed.

= [+] Douglas Lenat is a child of Kurt Godel.

Explanation 1, score=0.50:

1 Douglas Lenat speaks the German language.
is true to some part hecause an if-then rule applies

with substitution {¥/Douglas Lenat, Zithe German language, X/Kurt Godel}

since 1.1 | If some intelligent agent ¥ is a child of some intelligent agent X" and X
speaks some natural language, then ¥ speaks the natural language.

and 1.2 7 Douglas Lenat is a child of Kurt Godel. \ — -
and 1.3 | Kurt Godel speaks the German language. Many similar explanatlons
Need to generalize

Loom
KR&R
Group

91



1s/
'"‘“'"‘""“"S““"‘“'"”'"”“Improved Explanation by Generalizing

Similar Proofs

For the question

Does Doug Lenat speak the German language?

the Why-MNot module has determined that if the following facts were known, the query would succeed.

a [+] ?X speaks the German language.
a [+] Douq Lenat is a child of ?x.

[Continue

Explanation Detail:

Explanation 1, score=0.50:

1 Doug Lenat speaks the German language.
is true to some part because an if-then rule applies
with substitution {¥./Doug Lenat,, Z/High German., X/{one of Kurt Godel., Georg Cantor.,
Johann Sebastian Bach,, etc.}}

I

since 1.1 If Vis a child of X and X speaks Z, then ¥ speaks Z.
and 1.2 Unknown: Doug Lenat is a child of X.
and 1.3 X speaks the German language.
Loom
KR&R

Group

92



A

Information Sciences Institute

Loom
KR&R
Group

Alternative Lower-Score Explanation

> Explanation 2 (score 0.38):

For the question

Does Doug Lenat speak the German language?

the Why-Mot module has determined that if the following facts were known, the query would succeed.

s [+] ?X speaks the German language.
a [+] Julius Caesar is a child of 7x.
a [+] Augustus and Doug Lenat are siblings.

93



15/

Information Sciences Institute

Loom
KR&R
Group

Alternative Lower-Score Explanation Detail

> Example Explanation 2 Detail (score 0.38)

Explanation 2, score=0.38:

1 Doug Lenat speaks the German language.
is true to some part because an if-then rule applies
with substitution {¥./Doug Lenat,, Z/High German., X/Julius Caesar.}

since 1.1 If ¥'is a child of X and X speaks Z, then ¥ speaks Z.
and 1.2 Doug Lenat is a child of Julius Caesar.
and 1.3 Julius Caesar speaks the German language.

1.2 Doug Lenat is a child of Julius Caesar.
is true to some part because an if-then rule applies
with substitution {¥./Julius Caesar.,, Z/Douq Lenat, X/Augustus.}

since 1.2.1 If Xis a child of ¥and X and Z are siblings, then Zis a child of ¥
and 1.2.2 Unknown: Augustus and Doug Lenat are siblings.
and 1.2.3 Augustus is a child of Julius Caesar.

1.3 Julius Caesar speaks the German language.
is true to some part because an if-then rule applies
with substitution {¥./Julius Caesar,, Z/High German., X./{one of Kurt Godel.,, Georg Cantor.,
Johann Sebastian Bach,, etc.}}

since 1.1 If ¥'is a child of X and X speaks Z, then ¥ speaks 2.
and 1.3.1 Unknown: Julius Caesar is a child of X.
and 1.3.2 X speaks the German language.

Kl

94



151
“~Partial Inference Application #2: Eﬁ& 1 KOJAK

Pattern Matching for Link Discovery (EELD)

> Link Discovery Problem

»  Given: large amounts of evidence

people, organizations, places, events, relationships, accounts, transactions, etc.
> Discover: high-level activities of interest

Contract murders, gang wars, industry takeovers, terrorist activities, etc.

> KOJAK approach:

Represent evidence as large-scale PowerLoom evidence KBs
Represent domain knowledge via logic rules

Represent patterns via logic rules and queries

Use partial inference to detect patterns of interest

YV V VY V

> Challenges:
» Scale, incompleteness, noise, corruption

Loom
KR&R
Group



151
““Example: Using “WhyNot” Partial Inference in

EELD Evaluation Domain

» Example domain (small/medium size):

> 150 concepts, 200 relations, 6000 individuals
> 10,000 asserted facts
> 125 rules

> Example query:
(contract-murder UID517 UID3)?

> Strict proof is fairly large:

121 facts (or leaves)

80 rule applications

Chaining depth up to 9

Impossible to debug manually if it fails

YV V VYV V

» Great domain for WhyNot partial match to show its utility:
> Example: explain query failure caused by 1 missing assertion

Loom
KR&R
Group

96



=i

Explanafion#1 score=0.9966 32996632996 5:

1

1.2

1.2.7

1.2.2.2

1.2.2.2.2

. J|

= |

(contrackkill WIDS17 UID3)
is frue to some part becawse an if then rule applies

with substitution {zmafiaUID517, rtargetGroupliD 3, rinstalimenta252, *firstmmpa21575, rtotalpaw24709, rcibyUolacarad, 7|
oD S24)

fforall {?mafia ?bargetsroup)
= {contract-kill ?mafis ?targetsroup)
{exiszts {(?installnent ?firstwvmpay ?totalpay ?city ?region ?killer ?middlen
fcontract-kill-nethod-019 ?veor ?uvictin ?middlenanl ?middlenan2 ?targetd

— T

sinced.1 Rule:

and1.2

is frue to some part because an it then rule applies

with substitution {zvorUID524, wictimID 15, *middleman1ID535, *middleman2ID 530, fargetGroupliD 3, *mafiaUIDS17,
zinstallment!a252)

since1.2.1 Rule: {forall {?ver ?wictin middlenanl ?middlenan2 ?targetsroup mafia ?killer ?regi

{¢= {contract-kill-method-019 ?vor ?victin Zmiddlenanl ?niddlenan2 ?targets

{3nd (hasnenbers ?bargetsroup ?vickind
{uoxr ?mafia ?vor)
ddlenan mafia middlenanl)
ddlenan mafia middlenan2)
tnan mafia ?killer)
cperatesInheqion ?Eargetsroup ?region)
GeographicalsubRegions ?region Zeity)
plarming ?ver Zmiddlenanl)
exr-woney ?uvor ?middlenanl ?totalpay)
arning middlenanl niddlenan2)
exr-noney ?niddlenanl ?niddlenan2 ?firstvnpay)
plasming ?niddlenan? ?killerx)
exr-noney ?middlenan2 ?killer ?installnent)
t-degree-murder ?killer ?victin ?city)
~contact ?killer ?middleman2 Repoxt}
~contact middleman2 ?middlenanl Repoxt)
-~contact middlemanl ?vor Report)
{lrecord-ckd ?ver ?wictin middlenand Zmiddlenan2) i)}

(operatesin Region UID 3 Regioni1)
(LorUIDS17 UIDS24)
(has Members UID3 UID15)
(middleman UIDS517 LIDS30)
(hitman UIDS17 LIDS31)
(planning UIDS30 UIDS531)
(chtcontact UIDSS31 UIDS30 Reporh) s
(middleman UID517 UID535)
(planning UIDS35 UID530)
(planning UIDS24 LIDS35)
(cht contact VIDS30 LIDS3S Reporh) P
(citconfact WIDSSS UIDS24 Reporh)
(record-ck3 UIDS24 UID15 UIDS35 UIDS30)
(geographical Sub Regions Region1 Volgograd)
(first degree murder UIDS31 UID1S Volgoarad)
(hansfer money UIDS35 UIDS30 21875)
(hransfer money UIDS24 UIDS35 24709)

(hransfer money UIDS30 LIDS531 9252)
(planning UIDS30 LIDS31)
is true because an if then rule applies
with substitution {zX10UID530, *¥2ID5351
since1.2.2.1 Rule: fforall {?x1 ?x2}
t¢= {planning ?X1 ?Xx2)
{plarming-nethod-021 2X1 2X23))
and1.2.2.2 Infewed: (planning method-021 UIDS30 UIDS31)

[EIEIE

e e P P e P P e P e e e R
>||:'n

and1.2.2
and1.2.3
and1.2.4
and1.2.§
and1.2.6
and1.2.?
and1.2.&
and1.2.3
and1.2.10
and1.2.11
and1.2.12
and1.213
and1.2.14
and1.2.15
and1.2.16
and1.2.4?
and1.21%
and1.2.19

Inferved:

Inferved:
Fact

Inferved:
Infered:
Inferved:
Inferved:
Inferved:
Fact

Inferved:
Inferved:
Inferved:

(planning method-021 LIDS30 UIDS31)
is true becawuse an it then rule applies

with substitution {zcontractoriliDs30, rcontracteefliDS 3 1)

since1.2.2.2.1 Rule: {forall {?contracter ?contractee)

{¢= {planning-neth. 21 ?contractor ?contractee)

{and {ctrl-contact ?contractoer ?contractee Proposel
fectrl-contact ?contractee ?contractor Rccept)
{ctxrl-contact ?contractor ?contractee Instruction)
{lrecord-planming ?contracter ?conbracteelidl

(chtconfact VIDS30 UIDS31 Propose)
(et contact VIDS31 LIDS30 Acceph
(cht contact LIDS 30 LIDS 31 Instuction)

(record-planning UIDS30 UIDS31)
(cihtcontect UIDS30 LIDS31 Propose)
is true because an if then rule applies

with substifution {(zX10ID530, *X20ID551, *¥3{Propose}

since1.2.2.2.21 Rule: {forall {?x1 ?X2 ?X3}
<= {ctrl-contact ?X1 ?x2 ?x3)
{ctrl-contact-nethod-010 2X1 ?X2 X333}

and1.2.2.2.2.2 Inferved: (chtcontackmethod 010 LIDS30 LVIDS31 Propose)

and1.2.7.2.2
and1.2.7.2.3
and1.2.72.2.4
and1.2.2.2.5

Infewed:
Infered:
Infered:
Infewed:

L

1.22.2.2.2 (chtcontack method 010 UIDS30 UIDS31 Propose)
is frue becanse an i then rule applies

with substifution {z¥1ID530, *X2UID5351, T X3{Propose}

since1.2.2.22.21 Rule:  {(ferall {?x1 X2 X3}
{¢= {ctrl-contact-nethed-010 ?X1 ?2X2 ?X3)
{contack-email ?X1 ?X2 ?x3)))

and1.2.2.2.2.2.2 Inferved: (contack email VIDS30 UIDS31 Propose)

1.2.2.2.2.2.2 (contact email VIDS30 UIDS31 Propose)
is true becanse an if then rule applies

with substitution {z¥1JID530, *X2ID531, *X3{Propose
since1.2.2.2.2.2.21 Rule: (forall (?x1 2x2 ?x3)

{¢= {contact-ensil ?X1 ?X2 ?X3)
{contact-endil-nethod-029 2X1 2X2 ?X3)))

and1.2.2.2.2.2.2.2 Infewed: (contactemail method 029 UIDS30 UIDS531 Propose)

1.2.72.2.2.2.22 (contactemail method 029 UIDS30 UIDS31 Propose)
is frue because an if then rule applies

with substitution {zX 1010530, *¥2MID531, *X3{Proposer
since1.2.2.2.2.2.2.21 Rule: (forall (?x1 ?x2 ?X3})

{¢= {contact-ensil-nethod-023 ?2X1 ?2X2 ?2X3)
{lrecord-enail ?2X1 2X2 ?2X39)))

and1.2.2.2.2.2.2.2.2 Infewved: (recordemail WIDS30 UIDS31 Propose)

1.2.7.22.2.22.2 (trecord email VIDS30 UID531 Propose)
is true because an if then rule applies
with substfitufion {zfromID530, *toflIDS31, *contentiPropose, »time2{5/2002, rnewidJIDE0 39
since1.2.2,.2.2.2.2.2.21 Rule: {forall {?frem ?to ?content)
{¢= {!record-endil ?from ?te¢ Zcontent)
{exists {?time Tnewid)
{and (EMyilsending ?newid)
{dateofEvent ?newid ?tine)
{zenderofInfo ?newid ?from}
{recipientofinfo newid ?to)
{iteIllocutionaryPorce newid Z?content)))))

(recipientofinfo UIDS039 LIDS31)
(sender0finfo UIDE0 39 LIDS530)

(EMail Sending UIDE039)
(itelllocutionaryForce LIDE0 39 Propose)
(dateOfEvent LIDE0 39 2/5/2002)

and1.2.2.2.2.2.2.2.2.2
and1.2.2.2.2.2.2.2.23
and1.2.7.2.2.2.2.2.2.4
and1.2.2.2.2.2.2.2.25
and1.2.2.2.2.2.2.2.2.6
1.22.23 (chicontactUIDSS1 LIDS30 Acceph)
is true becanse an if then rule applies
with subsfitution {zX1UID531, *X20ID530, *X3Accepd

since1.2.2.2.31 Rule: (ferall {?x1 ?x2 X3}
<= {ctrl-contact ?X1 ?X2 ?x3)
{ctrl-contact-nethod-009 2x1 ?2X2 2X3)))

and1.2.2.2.3.2 Infewed: (chtcontactmethod 009 LIDS31 LIDS30 Accept)

1.2.2.2.3.2 (chtcontact method 009 LIDS31 LIDS30 Acceph)
is frue becanse an if then rule applies

with substitution {z¥1ID531, *X2QID530, T X 3Accepd
since1.2.2.2.3.21 Rule: {ferall (?X1 ?x2 ?X3)}

{¢= {ctrl-contact-nethod-003 ?2xX1 ?X2 ?X3)
{contact-phone ?X1 ?X2 2X33))

and1.2.2.2.3.2.2 Infewed: (contactphone UIDS31 VD530 Accept)

1.2.7.2.3.2.2 (confact phone UIDS31 UIDS30 Accept)
is frue becanse an if then rule applies
with substitution {zp1AIDS531, p2AIDS530, 2contentitccept, 2pn2JIDSS1, *pR1JIDS4
since1.2.2.2.3.2.21 Rule: tferall {?pl ?p2 ?content)
{¢= {contact-phone ?pl ?p2 ?content)
{exiztsz (?pn2Z ?pnl)
{contact-phone-nethod-030 ?pnl ?pn2 ?coentent ?pl ?p2))
and1.2.2.2.3.2.2.2 Infewed: (contact phone method 030 UIDS45 UIDSS51 Accept UIDS31 LIDS30)
1.2.72.23.2.22 (contactphone method 030 UIDS45 LIDSS1 Accept UIDS31 LIDS30)
is frue because an if then rule applies
with substitufion {zpn1ID545, *pn2IDSS51, rcontentiaccept, 2p1IDS 31, 2p2UIDS 30}
since1.2.2.2.3.2.2.21 Rule: {forall {?pnl ?pn2 ?content ?pl ?p2}
{¢= {contact-phone-nethod-030 ?pnl ?pn2 ?content ?pl ?p2)
{and {aygentPhoneMumber ?pl ?pnl)

{agentPhoneMumber ?p2 ?pn2}
{lrecord-phone-call ?pnl ?pn2 ?content))))

and1.2.2.2.3.2.2.2.2 Fact (agentPhoneMumber UIDS 31 UIDS548)
and1.2.2.2.3.2.2.2.3 Fact (agentPhoneMumber UIDS30 UIDSS51)
and1.2.2.2.3.2.2.2.4 Inferved: (recordphone call WIDS43 UIDSS51 Acceph

H & & eF | Document: Done (3.013 secs)

<
T - = & eF | Document: Done (3.013 secs)

[» ]
R - &



]

5. [

- J ]

= |

1.2.2.2.3.2.2.2.4 (recordphone call WIDS45 UIDSS1 Acceph)
is true becanse an i then rule applies
with substitution {zfromUID 543, rto)IDS51, contentisccept, 2time2/72002, newidJIDE04 1)
since1.2.2.2.3.2.2.2.41 Rule: {forall {?from ?to ?content)
{¢= {!record-phone-call ?from ?te ?content)
{exizts {?tine Znewid)
{and {HakinghPhonetall ?newid)
{dateofEvent ?newid ?tine)
{eallextumber ?newid ?from)
{receiverthmber ?newid ?to}
fitelllocutionaryPorce ?newid ?contentii)il
and1.2.7.2.3.2.2.2.42 Fact (callerlumber UIDE04 1 UIDS548)
and1.2.2.2.3.2.2.2.43 Fact (MakingaPhoneCall UIDE041)
and1.2,2.2.3.2.2.2.44 Fact (receivertlumber UIDE041 UIDSS1)
and1.2.2.2.3.2.2.2.45 Fact (itellocutionaryForce UIDE041 Acceph)

and1.2.7.2.3.2.2.2.46 rFact (dateOfEvent LIDS041 2{7/2002)
1.2.2.2.4 (cticontactUIDS30 LIDS31 Instruction)
is true becawse an it then rule applies
with substitution {zX10UID530, *X2ID531, *X3anshuction)

since1.2.2.2.41 Rule: (forall {(?x1 ?x2 ?X3)
f¢= {ctrl-contact ?X1 2X2 ?x3)
{ctrl-contact-methed-011 ?x1 ?2X2 ?2xX3)))

and1.2.2.2.4.2 Infewed: (chtcontact method 011 LIDS30 LIDS31 Instruction)

1.2.2.242 (chtcontack method-011 LIDS30 LIDS31 Instruction)
is rue becawse an if then rule applies
with substitution {zX1UIDS30, *X2ID531, *¥3anstructiony
since1.2.2.2.4.2.1 Rule: fferall {(?X1 2x2 ?X3}
{¢= {ctrl-contact-nethod-011 ?x1 ?2X2 ?2X3)
thold-meeting ?X1 ?X2 ?2X33))
and1.2.72.2.4.2.2 Infewed: (holdmeeting LIDS30 LIDS31 Instuction)

1.2.72.2.4.2.2 (holdmeeting WIDS30 LIDS31 Instruction)
is frue because an if then rule applies
with substifution {z®X10IDS530, *X20ID531, *¥3dnstuction)
since1.2.2.2.4.2.2.1 Rule: tforall (X1 ?X2 ?2X3}
{¢= (hold-meeting ?X1 ?X2 X3}
{hold-meeting-nethod-031 2X1 2?2X2 2X3)33)
and1.2.2.2.4.2.2.2 Infewed: (holdmeeting method- 031 UIDS30 UIDS31 Inshuction)

1.2.2.2.4.2.2.2 (holdmeeting method-031 LIDS30 LIDS31 Instuction)
is true becanse an if then rule applies
with substitution {z®10UID530, *X20ID531, *®3anshuctiony
since1.2,.2.2.4.2.2.21 Rule: {forall {?x1 ?x2 X3}
{¢= (hold-neeting-nethod-031 ?x1 ?X2 ?X3)
{lrecord-neeting ?X1 ?X2 2?2X333)
and1.2.2.2.4.2.2.2.2 Infewed: (record meeting LIDS30 LIDS31 Instruction)

1.2.2.2.42.2.22 (record meeting UIDS30 UIDS31 Instruction)
is frue because an it then rule applies
with substitution {zfrom{UID530, rtolIDS 31, contentinstruction, *time2/12/2002, rnewidUIDE04 3}
since1.2,2.2.4.2.2.2.21 Rule: (forall {(?from ?te ?content)
(<= {!record-neeting ?from ?te Zcontent)
{exizts {?tine Znewid)
{a3nd (HeetingTakingPlace ?newid)
(dateofEvent ?newid ?tine)
{zocislParticipants ?newid Zfrom)
{zocialParticipants ?newid ?to)
{zenderofinfo ?newid ?from)
{recipientofinfo ?newid ?teo)
{iteIllocubionaryForce ?newid Zconbentlliild}
and1.2.7.2.42.2.22.2 Fact (socialParficipants UIDE043 UIDS31)
and1.2.2.2.4.2.2.2.2.3 Fact (socialParficipants UIDE043 LIDS30)
and1.2.7.2.4.2.2.2.2.4 Fact (MeefinaTakingPlace UIDEO43)
and1.2.2.2.4.2.2.2.2.5 Fact (senderDfinfo UIDE043 UIDS530)
and1.2.7.2.4.2.2.2.2.6 Fact (recipientOfinfo UIDE043 LIDS31)
and1.2.2.2.4.2.2.2.2.7 Fact (ifellocutionaryForce LIDE04 3 Instruction)

and1.2.2.2.4.2.2.2.2.8 Fact (dateOfEvent IDS043 2/12¢2002)

1.2.2.25 (recordplanning UIDS530 UIDS531)
is frue becanse an if then rule applies
with substitution {zconfractorfliD530, *subordinatefUIDS531, TnewidJIDE044)
since1.2.2.2.5.1 Rule: {foxrall {?contractor ?subordinate)
{¢= {!rxecord-planming ?contractoer ?subordinate)
fexists {?newid)
{and (PlanningToDosonething ?newid)
{deliberstehctors ?newid ?contractoer)
{deliberstenctors ?newid ?subordinate))ild)
and1.2.2.2.5.2 Fact (deliberatesctors LIDS044 LIDS31)
and1.2.2.2.5.3 Fact (deliberatesctors UIDE044 LIDS30)

and1.2.72.2.5.4 Fact (PlanninaToDoSomething UIDE044)

<] T

= 8 oF | Document: Done (3.013 secs)

1.2.8 (chicontactUIDS31 LIDS30 Report)
is true because an if then rule applies
with substifution (¥ 10IDS31, *¥2UIDS30, *X3{Repord
since1.2,2.2.21 Rule: fforall (?x1 ?x2 ?X3)
{¢= {ctrl-contact 2X1 2X2 2x3)
{ctrl-contact-nethod-010 2?x1 ?X2 ?2X33))

and1.2.8.1 Infewed: (chicontactmethod 010 LIDS31 LIDS30 Report)
1.2.81 (chiconteckmethod-010 UIDS31 UIDS30 Reporh
is true because an it then rule applies
with substitution {(zX10IDS531, *X20D5350, T ¥3{Repord

since1.2,.72.2.2.21 Rule: fforall (?x1 ?x2 ?X3}
f¢= {ctxl tact-method-010 2?2X1 2X2 ?X3)
{contact-enail ?X1 ?2X2 ?X3)3)

and1.2.8.1.1 Infewed: (confackemail WIDS31 VIDS30 Reporh)
12811 (confact email VIDS31 UIDS30 Reporh)
is frue because an it then rule applies
with substitution {(z®X1UIDS531, *X2UIDS5350, X3{Repord

since1.2.2.2.2.2.21 Rule: (forall {?x1 ?x2 ?X3}
{¢= {contact-email ?x1 ?2X2 ?X3)
{contact-endil-nethod-029 2xX1 2?2X2 2X3)))

and1.2.8.1.4.1 Infewed: (contact email method 029 LIDS31 VIDS30 Reporh

1.2.81.1.1 (conteck email method- 029 LIDS31 VIDS30 Report)
is frue because an if then rule applies

with substitution {z®X1UJID531, *X2UID530, *X3(Repord

since1.2.2.2,.2.2.2.2.1 Rule: fforall (?x1 ?x2 X3}
(<= {(contact-email-nethod-029 ?x1 ?2X2 ?X3)
{lrecord-email ?X1 ?X2 2X3)))

and1.2.81.4.4.1 Inferved: (record-email JIDS31 UIDS30 Report)

(record-email WIDS31 UIDS30 Report)
is frue because an if then rule applies

with substitution {zfromID531, ztofID 530, zcontentiReport, *time!3!32002, znewidfJIDE0S 3

since1.2.2.2.2,2.2.2.21 Rule: {forall {(?frxom ?be ?content)
{¢= {!record-email ?from ?te¢ ?content)
fexists (?bine Tnewid)
{and (EHyilSending Znewid)
{dateofEvent Tnewid ?tine)
{zendexofInfo ?newid ?from}
{recipientofInfo ?newid ?to)

> {iterllocutionaryForce newid Zcontentl)iii}

(senderDfinfo UIDE0S3 UIDS531)
(EMail Sending UIDE0S53)
(recipientofinfo WIDE0S S UIDS30)
(itelllocutionaryForce UIDE0S53 Report)
(dateOfEvent LIDE0S S 3/3/2002)

1240 (planning UIDS35 UIDS30)
is frue because an if then rule applies
with substfitution {zX10ID5355, *X20ID550)
{forall {?x1 ?x2}
f¢= {planming ?X1 ?X2}
{planning-nethod-021 2X1 2X2)))
and1.2.10.4 Inferved: (planning method-021 UIDS35 UIDS30)

since1.2.2.1 Rule:

12904 (planning method-021 UIDS35 LIDS30)
is true becanse an i then rule applies
with substitution {zconfractorliDs3s, rcontracteefiDS 30}
{forall {?centracter ?contractee)
f¢= {planning-nethed-021 ?contracter ?contractee’

{and {(ctrl-contact ?contractor ?contractee Froposel
{ctrl-contac ontractee ?contracter Rocept)
fetrl-contact ?contractor ?contractee Instruction)
{lrecord-planning ?¢ontractoer ?contracteed) i}

and1.2.40.14.1 Infewed: (chtcontact UIDS35 LIDS30 Propose)
and1.2,40.1.2 Infewed: (chtcontact UIDS30 LIDS3S Acceph
and1.2.10.1.3 Infewed: (chtcontactUIDS3S LIDS30 Instuction)
and1.2.10.1.4 Infered: (record planning UIDS35 UIDS30)
1.1 (chitconfact UIDS35 UIDS30 Propose)
is true because an it then rule applies
with substitution {(z¥1IDS35, *X2MD550, *X3{Propose}

since1.2.2.2.3.1 Rule: ffoxrall {2?X1 ?X2 ?X3)
(<= {(ctrl-contact ?X1 ?X2 ?x3)
{ectrl-contact-nethod-009 2x1 2X2 2X3}))

and1.2.10.1.4.4 Infewed: (chtcontact method 009 LIDS35 UIDS30 Propose)

since1.2.2.2.4 Rule:

1.2404.0.0 (chtcontact method- 009 LIDS3S LIDS30 Propose)
is frue because an it then rule applies

with substitution {zX10ID5355, *X20ID5350, *X3({Proposey

since1.2.2.2.3.2.1 Rule: tforall (?x1 ?x2 2x3}
{<= {ctrl-contact-nethod-009 ?2x1 ?2Xx2 ?x3)
{contact-phone ?X1 ?X2 2X33))

and1.2.10.1.4.4.1 Infewed: (contfackphone UIDS35 UIDS30 Propose)
4] [ m

Soe -

= B oF | Document: Done (3.013 secs) R — = | =5 |



] I~ |

== = |

1210141 [cM- confact method- 009 UIDS35 UIDS 30 Propose)
is frue because an if then rule applies

with substitution {zX1UID535, *X2UID530, *X3(Proposer

since1.2.2.2.3.21 Rule: tferall {?x1 X2 ?X3)
f¢= {ctrl-contact-nethoed-009 ?x1 2x2 ?X3}

{contact-phone ?X1 2X2 ?x3)))
and1.2.10.4.4.4.1 Infewed: (contackphone UIDS35 UIDS30 Propose)

12104441 (contack phone UID535 UIDS30 Propose)
is frue becanse an i then rule applies
with substitution {:p1AJIDS535, *p2AND 530, *contentiPropose, *pn2I0SS1, *pn1UIDS 36}
since1.2.2.2.3.2.21 Rule: tforall {?pl ?p2 ?centent)
(<= {contact-phone ?pl ?p2 ?content)
{exists {(?pn2 ?pnl}
{contact-phone-nethed-030 2pni ?pn2 Zcentent 2pl 2p23)

and1.2.10.4.4.4.4.1 Inferwed: (contactphone method- 030 UIDS36 UIDS51 Propose UIDS3S UIDS30)

121044441 (contact phone method 030 LIDS36 LIDSS1 Propose UIDS35 UIDS530)
is true becawse an it then rule applies
with substitution {zpn1IDS536, *pn2AIDS51, 2confent{Propose, *p1UIDS3S, *p2IDS 30
since1.2.2.2.3.2.2.21 Rule: {forall {?pnl ?pn2 ?content ?p1 ?p2}
{¢= {contact-phone-nethed-030 ?pnil ?pn2 ?content ?p1 ?p2)
{3and {agentPhonerunber ?pl ?pnll
{>qentFhoneMumber ?p2 ?pnl}
{Irecord-phone-call ?pnl ?pn2 Z?content)dd)
and1.240.1.1.1.1.1.1 Fact (agentPhoneMumber UIDS35 UIDS36)
and1.2.2.2.3.2.2.2.3 Fact agentPhoneMumber UIDS30 UIDS51)
and1.210.1.4.10.1.1.2 Inferved: (recordphone call WIDS36 UIDSS1 Propose)

1.24040.1.1.4.1.2 (record phone call WIDS36 UIDSS51 Propose)
is true becanse an if then rule applies
with substfitution {zfromUID536, *tofIDS551, rcontentPropose, *timef1/25/2002, znewidJIDE029}
5ince1.2.2.2.3.2.2.2.41 Rule: {forall {?irom ?te ?content)
{¢= {!record-phone-c3ll ?from ?te¢ ?content)
{exists (7tine Znewid}
{and {HMakingAFhonetall ?newid}
{dsteofEvent Znewid ?tine’
{call exr newid ?from)
{receivertumber ?newid ?to)
{itelllocutionaryForce ?newid ?content))iid
s and1.210.1.1.0.1.1.20 Fact (calleriumber UIDE023 UIDS36)
and1.210.14.1.1.1.1.2.2 Fact (MakingaPhonecCall UIDE029)
and1.210.1.1.1.1.1.2.3 Fact (receivertumber UID5029 UIDSS51)
P and1.2.10.1.1.1.1.1.2.4 Fact (itellocutionaryForce UIDE023 Propose)

and1.2101.1.1.1.1.25 Fact (dateOfEvent UIDS029 1/25/2002)

1.2101.2 (chtcontact UIDS30 LIDS3S Accept)
is true becanse an if then rule applies

with substifution (¥ 10IDS30, *¥2UIDS3S, *X3Accepd

since1.2.2.2.3.1 Rule: tforall {(?X1 X2 X3}
(<= {ctrl-contact ?X1 ?2X2 ?x3)
{ctrl-contact-nethod-0039 ?X1 2X2 ?2X33))

and1.2,10.4.2.4 Infewed: (chtconfact method 009 UIDS30 UIDS3S Acceph
1.2104.24 (chtcontack method- 009 UIDS30 UIDS3S Acceph)
is true becawse an it then rule applies
with substitufion {zX10UID530, > X20ID535, *¥3ccep

since1.2,.2.2.3.21 Rule: {forall (?x1 ?X2 ?X3})
{¢= {ctrl-contact-nethod-009 X1 ?X2 2X3)

{contact-phone ?X1 ?X2 2X3)))
and1.2.10.4.2.4.1 Infered: (contackphone UIDS30 UIDS3S Acceph

1.210.4.24.1 (contack phone UID530 UIDS35 Acceph
is frue becanse an i then rule applies

with substitufion {zp10ID530, *p2IDS3S5, rcontentisccept, *pR2UIDS3E, 2pR1UIDSS 1)

since1.2.2.2.3.2.21 Rule: {forall {?pl ?p2 ?content)
(<= {contact-phone ?pl ?p2 ?content)
{exists (?pn2 ?pnl}
{contact-phone-nethod-030 ?pnl ?pn2 ?content ?pl ?p2))

and1.2.10.1.2.4.4.1 Infered: (confacktphone method- 030 UIDS551 UIDS36 Accept UIDS30 LIDS35)
1.210.1.24.4.1 (contact phone method- 030 LIDSS1 LIDS36 Accept UIDS30 UIDS3S)
is true becawse an it then rule applies
with substitufion {:PN1AID551, *pR2ADS 36, rcontenttaccept, 2p1AIDS530, *p2AIDS55

since1.2.2.2.3.2.2.21 Rule:  (forall {?pnl ?pn2 ?content ?pl ?p2)
{¢= {contact-phone-nethoed-030 ?pni1 ?pn2 ?content ?p1 ?2p2)
{and {agentPhonerumber ?pl ?pnll
{3qentPhoneMumber ?p2 ?pnl2}
{!record-phone-call ?pnl ?pn2 Z?content)ii}

and1.2.2.2.3.2.2.2.3 Fact (agentPhoneMumber UIDS30 UIDSS1)
and1.210.1.10.1.1.0.1 Fact (2gentPhoneMumber UIDS35 UIDS36)
and1.240.4.20.10.4.0 Inferved: (record-phone call WIDSS1 VIDS36 Accept)

4] T
H & 8 eF | Document: Done (3.013 secs)

W
R - e

1.20404.210.4.4.0  (recordphonecall UIDSS1 UIDS36 Accept)
is true becawse an it then rule applies
with substitufion {zfromIDS51, *toMIDS 36, rcontenttaccept, time/1727/2002, rnewidIDE03 1}
since1.2.2.2.3.2.2.2.41 Rule: (foxrall {?from ?Ee Zconbent)
(<= {!record-phone-call ?from ?to Zcontent)
{exists (?tine Znewid)
{and {nakinghPhonertall ?newid)

{dateofBuent ?newid ?tine)
{eallextunber ?newid ?from}
{receivertumber ?newid ?to}
fiteIllocutionsryPorce ?newid ?content)iiil

A1 Fact (callerumber UIDE031 UIDSS1)
A4.1.2 Fact (Makings PhoneCall UIDE031)
and1.2,10.1.2.1.1.1.1.3 Fact (receiverumber UIDE031 UIDS36)
and1.2,10.1.2.1.1.1.1.4 Fact (itellocutionaryForce UIDE031 Acceph
A8 Fact (dateofEvent UIDE031 1/2772002)

1.2101.3 (chtcontactUIDS35 LIDS30 Inshuction)
is true becawse an it then rule applies
with substitution {z®10ID535, *X20I0530, X 3anshuction
since1.2.2.2.3.1 Rule: tforall {?x1 ?Xx2 ?Xx3}
{¢= {ctrl-contact ?X1 ?X2 ?2X3)
{ctrl-contact-method-009 2X1 ?2X2 2X3}33)

and1.2.10.1.3.1 Inferwed: (chiconfact method 009 LIDS3S VIDS30 Inshuction)

1.2101.3.1 (chtcontact method 009 LIDS3S LIDS30 Inshuction)
is true becanse an if then rule applies
with substfitution {zX10IDS35, * X200 530, *¥3anshuctiony
¢forall (?X1 ?X2 ?X3)
{¢= {ctrl-contact-nethod-003 ?X1 2X2 ?2X3)
{contact-phone ?X1 ?X2 ?X3}33)

and1.2.10.1.3.1.1 Infewed: (confactphone UIDS35 LIDS30 Instruction)

since1.2,.2.2.3.2.1 Rule:

12101311 (contackphone UIDS35 LIDS30 Instruction)
is frue because an if then rule applies
with substfitution {zp10IDS35, 2p20IDS 30, *contentinshuction, zpn2IDSS51, 2pR1AIDS 3:
{forall {?pl ?p2 ?content)
(<= {contact-phone ?pl ?p2 Zconbent)
{exists (?pn2 ?pni}
{contact-phone-nethod-030 ?pnl ?pn2 Z?content ?pl ?p2))

and1.2.10.1.3.4.1.1 Infewed: (contactphone method 030 UIDS36 UIDSS1 Instruction UIDS3S LIDS30)

since1.2,.2.2.3.2.21 Rule:

1.2101.3.1.4.1 (confact phone method- 030 UIDS36 UIDSS1 Instruction LIDS35 UIDS30)
is true becawse an it then rule applies
with substifution {pPn1JIDS3E, *pn20IDS5S1, rcontentinshuction, *p1AJIDSSS, *p2AIIDSS
¢forall {?pnl ?pn2 %content ?pl 2p2}
{¢z {contact-phone-nethod-030 ?pni ?pn2 ?content ?pl 2?p2)
{3nd {srgentPhonerumber ?pl ?pnl}
{3gentFhonetmber ?p2 2pn2}
{lrecord-phone-call ?pnl ?pn2 ?contentii))

and1.2104.4.4.4.4.0 Fact (a2gentPhoneMumber UIDS3S UIDS36)
and1.2.2.2.3.2.2.2.3 Fact (a2gentPhoneMumber UIDS30 UIDSS51)
and 1,201,340 Inferwed: (recordphone call JIDS36 UIDSS51 Instruction)

since1.2,.2.2.3.2.2.21 Rule:

12101434441 (record phone call WIDS36 UIDSS51 Instuction)
is frue becanse an if then rule applies
with substitution {zfromID 536, *toIDSS51, rcontentinstuction, ztime1¢3002002, znewidIDE0 33}
since1.2.2.2,3.2.2.2.41 Rule: {forall {?irom ?bo Zconbent)
{¢= {!recoxrd-phone-call ?from ?to ?content)
fexists (?Fine Znewid)
{and {HakinghPhonertsll ?newid)

{dsteofEuent ?newid ?time)
{callextunber ?newid ?from)
{receivertuwber Znewid ?to)
{itelllocubtionaryPorce ?newid 2conbent)’)d)

and1.2.10.1.3.1.0.0.1.1 Fact (callerdumber UIDE033 UIDS36)
and1.2.10.1.3.1.1.1.1.2 Fact (MakingsPhoneCall WIDE033)
and1.2.10.1.3.1.1.1.1.3 Fact (receiveriumber UIDE033 UIDSS51)
and1.2.10.1.3.1.1.1.1.4 Fact (ifelllocutionaryForce UIDE033 Inshuction)
Fact (dateOfEvent UIDE033 1/3002002)

1.210.1.4 (record planning UIDS35 UIDS30)
is true becawse an it then rule applies
with substitution {zcontractorfliDS 35, rsubordinatef)IDS 30, newidJIDE0S 5y
since1.2.2.2.5.4 Rule: (forall {?contractor ?subordinate)
{¢= {!record-planming ?contractoer ?subordinate’
fexists {(?newid)
{and {PlarmingToDosonething ?newid)
{deliberatenctors ?newid ?contractor)
{deliberstehctors ?newid ?subordinatell)l)
and1.2.10.1.41 Fact (deliberatesctors UIDE03S LIDS3S)
and1.2.10.1.42 Fact (PlanninaToDo Something UIDE035)
and1.2.10.1.43 Fact (deliberatesctors UIDE03S LIDS30)

4] T

0 S = < e

| Document: Done (3.013 secs)



= 8 oF | Document: Done (3.013 secs)

= |
(planning UIDS24 UIDS535)

= |

121
is frue because an it then rule applies
with substfitution {zX10ID524, *X20ID555
{forall {?X1 ?x2})
{<= {planning ?X1 ?X2)
{plarming-nethod-023 2X1 ?X233)
and1.2.41.2 Infewed: (planning method 023 UIDS24 UIDS35)

since1.2.11.1 Rule:

1.241.2 (planning method 023 UIDS24 UIDS35)
is frue because an it then rule applies
with substitution {zcontractorliDs24, rcontracteefIDS 35
tforall {?coentracter ?contractee)
f¢= {planning-nethod-023 ?contracter ?contractee)
{and (ctrl-contact ?contractor ?conbtractee Inztruction)
{Irecord-plarming ?contracter ?contracteeddd)

and1.2.11.2.2 Infewed: (chtcontact UIDS24 LIDS3S Instruction)
and1.2.11.2.3 Infered: (record planning UIDS24 UIDS35)

since1.2,11.2.1 Rule:

1.241.2.2 (chtcontact VD524 LIDS3S Instruction)
is true becanse an if then rule applies
with substitution {zX10UID524, *X20ID555, *R3anshuction)

since1.2.2.2.3.1 Rule;  (forall (2x1 ?x2 2x3})
(<= {ctrl-contact ?X1 ?X2 ?Xx3}
{ctrl-contact-nethod-009 ?X1 2X2 2X33))

infewed: (chtcontact method- 009 LIDS24 UIDS3S Instruction)

and1.2.11.2.2.1

1.211.2.24 (chtcontact method 009 LIDS24 LIDS3S Instruction)
is true because an if then rule applies

with substitution {zX1UID524, *X20ID535, *X3inshuction)
since1.2,.2.2.3.21 Rule: (forall {(?x1 ?x2 ?X3)

(<= {cbrl-conbact-nethod-009 2x1 X2 2X3)
{contact-phone ?X1 ?X2 2X3)))

and1.2.41.2.2.1.1 Infewed: (contactphone UIDS24 LIDS3S Instuction)

12412211 (contackphone UIDS524 LIDS3S Instuction)
is true because an if then rule applies
with substitution {zp10ID524, *p2AIDS35, *contentinshuction, *pn2fIDS3E, *pR1UIDS2S)
since1.2.7.2.3.2.21 Rule: (forall {?pl ?p2 ?content)
{¢= {contact-phone ?pl ?p2 Zcontent)
{exists {?pn2 ?pni}
{contsct-phone-nethod-030 ?pnl ?pn2 ?content ?pl 2p2)3)

and1.2.11.2.2.4.4.1 Infewed: (contack phone method 030 LIDS25 VIDS36 Instuction LIDS24 UIDS35)

121,224 (contfact phone method 030 LIDS25 LIDS 36 Instruction LIDS24 LIDS35)
is true because an it then rule applies
with substitution {zpR1AIDS25, 2pn2IDS 36, rcontentinstruction, *p1AIDS24, 2p2IDS35)
since1.2,.2.2.3.2.2.2.1 Rule: {forall {?pnl ?pn2 ?content ?pl ?p2}
{¢= {contact-phone-nethed-030 ?pnl ?pn2 ?content ?pl ?p2)
{3™nd (sgentPhonerumber ?pl ?pnl}

{agqentPhonetunber ?p2 ?pn2)

{Trecord-phone-call ?pnl ?pn2 Zcontent))))
and1.2.41.2.2.0.4.1.1 Fact (2gentPhoneMumber UIDS24 UIDS25)
and1.2.10.1.1. 4 Fact (a2gentPhoneMumber UIDS35 UIDS36)

infewed: (recordphone call WIDS25 VDS 36 Instuction)

1.241.2.210.0.1.2 (record phone call WIDS25 UIDS 36 Instruction)
is true becanse an if then rule applies
with substitution {zfromID525, *toIDS 36, 2contentinstuction, rfime/1/19/2002, znewidIDE024}
since1.2,.2.2.3.2.2.2.41 Rule: {forall {?from ke Zcontent)
(<= {!record-phone-ca3ll ?from ?to ?content)
fexizts {?Fine Znewid)
{and {HakingAPhonetall ?newid)
{dxteofEvent Tnewid ?tine)
{callerthmber ?newid ?from}
{receivertunber ?newid ?to)
{itelllocutionaryPorce ?newid ?content)ii)}
and1.211.2.2.4.4.0.21 Fact (callerumber UIDE024 UIDS25)
and1.2.11.2.24.1.1.2.2 Fact (Wakings PhoneCall UID5024)
and1.2.11.2.24.1.1.2.3 Fact (receivertumber UIDS024 UID S 36)
and1.2.11.2.2.1.1.1.2.4 Fact (itellocutionaryForce UIDE024 Instruction)

and1.2.11.2,2.1.1.1.2.5 Fact (dateOfEvent UIDE024 1/192002)

1.211.2.3 (record planning UIDS524 UIDS35)
is true because an if then rule applies
with substitution {zcontractoriliD524, rsubordinateIDS3S, rnewidIDE02E)
since1.2.2.2.5.4 Rule: {forall {?contractor ?subordinatel
{¢= {!record-planning ?contracter ?subordinate)}
fexists (?newid)
{and (FlanningToDoesonething ?newid)

{deliberstenctors ?newid ?contractoer)
{deliberstehctors newid ?subordinateldldl)

and1.2.11.2,.3.4 Fact (deliberatesctors UIDE026 UIDS24)
and1.2.11.2,3.2 Fact (PlanninaToDo Something UIDE026)
and1.2.11.2,3.3 Fact (deliberatesctors UIDE02E UIDS35)

4] T

5
e - T

1212 (chtcontact IDS30 UIDS3S Reporh
is true because an it then rule applies

with substitution {z®1ID530, *¥20ID5355, *X3{Repord

since1.2.2.2.41 Rule: fforall {(?x1 ?x2 X3}
{¢= {ctrl-contact 2X1 2X2 ?X3}
{ctrl-contact-nethod-011 2X1 X2 ?X3)))

and1.2.42.1 Infewed: (chtcontacktmethod- 011 WIDS30 LIDS3S Report)

12121 (chtcontact method- 011 WIDS30 LIDS3S Report)
is true because an it then rule applies

with substituti {zR10ID530, TX2UIDS535, X 3¢Repord
since1.2.2.2.4.21 Rule: (forall (X1 ?xX2 ?X3})
{¢= {ctx ontact-nethod-011 ?2X1 ?2X2 ?2X3)
(hold-wmeeting ?X1 2X2 ?X33))
and1.2.42.1.1 Infewed: (hold meeting LIDS30 UIDS35 Reporh

1.242.1.4 (hold meeting UIDS30 UIDS35 Report)
is true because an i then rule applies

with substfitution (¥ 10ID530, *X2UIDS35, *X3(Repord
since1.2.2.2.4.2.21 Rule: f{ferall {?x1 ?x2 ?X3)
{¢= {hold-neeting ?X1 ?X2 ?X3)
(hold-meeting-nethod-031 ?X1 2X2 2?2X3)))
and1.2.12.1.1.1 Infewed: (holdmeeting method-031 UIDS30 LIDS3S Report)

1.2421.4.0  (hold meeting method- 031 LIDS30 UIDS3S Reporh)
is frue becawse an it then rule applies

with substitution {z¥10ID530, *X2QIDS35, ¥ 3{Repord
since1.2.2.2.4.2.2.21 Rule: tforall (X1 2?x2 2X3)

(<= {hold-meebing-method-031 ?X1 X2 2X3)
{lrecord-meeting ?X1 ?X2 ?X3))}

and1.2420.0.0.0 Infewed: (record meefing UIDS30 UIDS3S Report)

1.2120.0.0.0  (record meeting UIDS30 UIDS3S Report)
is frue becanse an it then rule applies
with substitution {zfromIDS30, 2toIDS3S, *contentiReport, *fime!3¢1 12002, *newidlIIDE0ST)
since1.2,2.2.4.2.2.2.21 Rule: {forall {?from ?to ?content)
{¢= {lrecord-meeting ?from ?to ?content)
{exists {?Fine Znewid)
{and cneetmgg nqFlace newid)
{d 0fBvent ?newid ?tine}
(soc alParticipants ?newid ?from)
{zocialParticipants ?newid ?tol
{zendexofInfo ?newid ?from}
{recipientofinfo ?newid ?to)
{iteIllocutionaryPorce ?newid ?content))dl)

andv.2.92.1.1 Fact (social Parficipants UIDE0S? LIDS30)
and1.2421.4.1.1.2 Fact (MeetingTakingPlace UIDE0S?)
and1.2121.1.0.4.3 Fact (socialParficipants UIDE0S? UIDS55)
and1.2.12.1.1.1.1.4 Fact (senderofinfo UIDE0S7 UID530)
and1.2.12.1.1.1.1.5 Fact (recipientOfinfo LIDE0S? UIDS35)
and1.2,42.1.1.1.1.6 Fact (ifellocutionayForce WIDE0OST Report)
and1.2.42.1.1.0.10.7 Fact (dateOfEvent UIDEOS?T 311 172002)

1.213 (chicontectUIDSSS UIDS24 Reporh)
is true because an if then rule applies
with substitution {z®1UIDS35, *X2I0524, *X3(Repord
since1.2.2.2.3.1 Rule: fferall {?x1 ?x2 ?X3}
{¢= {ctrl-contact ?X1 ?X2 ?X3)
{ctrl-contact-method-009 2x1 2X2 2X33))

and1.2.13.4 Infewed: (chtconfact method 009 LIDS3S LIDS24 Report)

(chtcontact method- 009 UIDS3S LIDS24 Report)
is frue because an it then rule applies
with substitution {zX1UIDS35, * X200 524, *X3{Repord
since1.2.2.2.3.21 Rule: tforall (2x1 ?x2 ?X3}
{¢= {ctrl-contact-nethod-0039 2X1 2X2 2X3)
{contact-phone ?X1 ?X2 2X3)))
and1.2.13.1.0 Inferwed: (contectphone UIDS35 UIDS24 Reporh)

1.213.1.1 (contectphone UIDS3S UIDS524 Reporh)
is frue becawse an it then rule applies
with substitution {zp10ID535, rp2UIDS24, rcontent{Report, *pn2AIDS2S, 2pN1UIDS 368
since1.2,.2.2.3.2.21 Rule: {forall {?pl ?p2 Z?content)
{¢= {contact-phone ?pl ?p2 ?content)
{exists {?pn2 ?pni)
{contact-phone-nethed-030 ?pnl ?pn2 Zcontent 2pl 2p2))))

and1.2,18.1.4.1 Infewed: (confact phone method-030 UIDS36 UIDS25 Report UIDS3S LIDS24)

1.2131

1243104 ((onmf phone method- 030 UIDS36 UIDS25 Report UIDS35 LIDS524)
is frue because an it then rule applies
with substitution {zpPn1UIDS36, *pn20IDS2S, contentiReport, *p1UIDS3S, *p2UIDS24)
since1.2.2.2.3.2.2.21 Rule: (forall (?pnl ?pn2 ?content 2pl ?p2)
{¢= {contact-phone-nethod-030 ?pnl ?pn2 ?conbtent ?pl ?p2}
{3nd {sgentPhonermber 7pl ?pnl}

{3gentPhonethumber ?p2 2pn2}
{!record-phone-call ?pnl ?pn2 ?content )il

and1.2101.0.0.0.1.1 Fact (agentPhonetumber UIDSSS UIDS36)

and1.211.2.24.0.1.0 Fact (agentPhonetumber UIDS24 LIDS25)

and1.2.43.4.4.3.1_Infewed: (record phone call UIDS36 LIDS25 Report)

[ K1 |
= & oF | Document: Done (3.013 secs)



= |

124314041 (record phone call WIDS36 UIDS25 Reporh)
is frue because an it then rule applies
with substitution {zfromJID536, rtoIDS25, rcontentReport, *time!3/142002, TnewidJIDE0SS)

since1.2.2.2,3.2.2.2.41 Rule: (foxrall {?from ?to ?content)

{¢= {!record-phone-call ?from ?to ?content)
{exizts (?fine Znewid)

¢and (HakinghPhonetsll Z?newid)
{dateofEuent Tnewid Ztine)
{call exr newid Zfrom}
{xeceive exr ?newid ?to
fitelllocutionaryForce ?newid Zcontentiild)
(receivertumber UIDE0SS UIDS25)
(callerumber UIDE0SS UIDS36)
(Makinga PhoneCall UIDE0S5S)
(itelllocutionaryForce UIDE0SS Report)
(dateOfEvent UIDE0SS 3/14/2002)
1,244 (record-ck3 UIDS24 UID1S UIDS35 UIDS30)
is true because an if then rule applies
with substitution {zcustomergliDS24, rvictimID 15, *middleman1ID535, rmiddleman20IDS 30,
rnewidUIDE0E0)
since1.2.14.1 Rule:

Fact
Fact
Fact
Fact
Fact

tforall {?custoner ?victin middlenanl ?niddlenan2}
{¢= {!rxecord-ckd ?customer ?uictin middlenanl ?middlenan2)
(exiszsts {(?newid)
{and {HurderFPorHire ?newid}
fuictin ?newid Zvictin)
thitContractor ?newid ?customer)
(medistors ?newid ?middlenanl)
{medistors ?newid ?middlenan2)idll
(hitContactor LIDE0E0 LIDS24)
(victim UIDE060 LID15)
(MurderForHire UIDS0S0)
(mediators UIDE0E0 UIDS35)

(mediators LIDE0E0 LIDS30)

and1.2.14.2
and1.2.14.3
and1.2.14.4
and1.2.14.5
and1.2.14.6

Fact
Fact
Fact
Fact
Fact

1.2.16 (first degree murder UIDS31 UID1 S Volgograd)

is frue to some part because an i then rule applies
with substifution {zX10IDS31, *X20I0D15, T X3 Volaoarad)y
since1.2.16.1 Rule: tforall {2x1 X2 ?X3)
{¢= {(first-degree-nurder ?X1 ?X2 ?2X3)
{first-degree-nurder-nethod-017 ?X1 ?X2 2X3)))

and1.2.16.2 (first degree murder method- 017 UIDS31 UID 15 Volaoarad)

1.2.46.2 (first degree murder method- 017 LIDS31 LD 1S Volaoarad)
is frue to some part because an if then rule applies
P with substitution {zkillerfIDS531, victimID 15, zcityUolaoarady
since1.2.16.2.1 Rule: {forall {(?killexr ?wictin ?city)
{¢= {first-degree-nurder-nethod-017 ?killer ?victin
{and {obszexve ?killer Zwictin)
fkilling ?killer ?wictin Xnife ?city)
{lrecord-fd-nurder ?killer Zuickindd))
and1.2.16.2.2 Inferved: (observe UIDS31 UID15)
and1.2.16.2.3 (killing UIDS31 UID15 Knife Volaograd)

and1.2.16.2.4 Inferved: (record fd murder WIDS31 UID1S)

2city)

1.2.16.2.2 (observe UIDS31 UID15)
is frue becanse an if then rule applies
with substitution {(zX10UIDS531, *X20ID15
since1.2.16.2.2.1 Rule: fforall {2?x1 ?xX2}
{¢= {obszexue ?X1 ?X2)
¢ ethod-013 2X1 2X233)

infewed: (observe method- 013 UIDS31 UID15)

and1.2.16.2.2.2

1.2.16.2.2.2 (observe method 013 UIDS31 UID15)
is frue becanse an if then rule applies

with substifution {zX10IDS31, X210 15

since1.2.16.2.2.2.1 Rule: {forall {(?x1 ?x2}
<= {obsexue-

wethod-013 ?2x1 2?2X2)
{lrecorx

bsexue ?X1 2X233)
and1.2.16.2,2.2.2 Infewed: (recordobserve UIDS31 UID15)

(record-observe UIDS31 UID15)

is frue because an it then rule applies

with substitution {zkillerfJIDS 31, 2vicimID 15, fime/2/27/2002, newidJIDE047)

since1.2,16.2.2.2.21 Rule: (forall (?killer ?victin}
{¢= {!lrecord-obserue ?killer ?wictin}
(exizts (?tine Znewid)
{and {obsexrving newid)

{dateofEvent ?newid ?tine)
fobjectsobsexued ?newid ?wvictin}
{perpetrator ?newid ?killex)ii)}

(objectsObserved UIDS047 UID15)

(Observing UIDE047)

(perpetrator LIDE047 LIDS31)

(dateOfEvent LIDE047 2¢27/2002)

1.2.16.2.2.2.2

and1.2,16.2.2.2.2.2
and1.2.16.2.2.2.2.3
and1.2.16.2.2.2.2.4
and1.2.16.2.2.2.2.§

[
| Document: Done {3.013 secs)

Fact
Fact
Fact
Fact

<]
H = a8 eF

: [»] |
e —il— =

P fexists

is true fo some part becanse an if then rule applies
with substitution {zX10ID531, *X20I0D15, *®3{Knife, *X4{Volaoarady

since1.2.16.2.3.1 Rule: {forall (?Xx1 ?X2 ?X3 ?2X4)
f¢= (killing ?X1 2?X2 ?X3 ?X4)
(killing-method-032 ?X1 ?X2 2?2X3 2X4)))

(killing-method-032 LIDS31 UID1S Knife Volaoarad)
1.2.16.2.3.2 (killing method- 032 LIDS31 UID15 Knife Volaoarad)
is true to some part because an it then rule applies
with substifution {zX10ID531, *X20ID15, > 3(Knife, *X4{Volacarady

since1.2.16.2.3.2.1 Rule: {forall {(?Xx1 ?X2 ?X3 X4}
{e= (killing-nethod-032 ?x1 ?X2 2X3 2x4}
{irecord-killing 2X1 ?X2 X3 2X433}

(record-killing UIDS31 LD 15 Knife Volgoarad)

(record-killing UIDS31 UID1 S Knife Volaograd)

is frue to some part because an it then rule applies

with substitution {zkillerflID531, victimJID 15, *weapon{Knife, rcihyUolaoarad, ztime!3/12002, znewidJIDE043}
since1.2.16.2.3.2.2.1 Rule:

and1.2.16.2.3.2

and1.2.16.2.3.2.2
1.2.16.2.3.2.2

{forall {?killer ?wictin ?weapon ?city)

{¢= {lrecoxrd-killing ?killer ?victin ?weapon ?city)
{exists {?Fine Znewid)
{and (Hurder ?newid}
(dateofBvent Znewid ?tine)
fvictin newid ?Zvictin)
{perpetrator ?newid ?killerxr)
{ectrl-desd Zvictin)
fdeviceTypelrzed ?newid 2weapon}
{eventoccurshat newid ?citylilildil
and1.216.2.3.22.2 Fact (chtdead LID15)

Unknown: (deviceTypeUsed UIDS045 Knife)

and1.2.16.2,.3.2.2.4 Fact (eventOccursAt UIDE04S Volaoarad
and1.2.16.2,.3.2.25 Fact (perpetrator UIDE043 UIDS31)
and1.2.16.2.3.2.2.6 Fact (Murder UIDE048)
and1.2.16.2,.3.2.2.7 Fact (victim LIDE045 UID15)
and1.2.16.2.3.2.2.8 Fact (dateOfEvent UIDE043 3/1/2002)

1.2.16.2.4 (record fd-murder UIDS31 UID1S)
is true because an if then rule applies

with substitution {zkillerfID531, rwicimID 15, 2newidJIDE0S 1)

since1.2,16.2,41 Rule: {ferall (?killer ?wictin}
f¢= {!record-fd-nwurder ?killer Z?victin}

{newid}

{and (Premeditstedrurder Inewid}
{uictin Znewid Zvictin}

{perpetrator ?newid ?killer}}ii}

h > and1.2.16.2.4.2 rFact (Premedifatedurder UIDE0S1)

and1 6.2.4.3 Fact (victimUIDE0S1 UID15)
and1.2.16.2.4.4 Fact (perpehator VIDS0OST LIDS31)

12147 (hansfermoney UIDS35 UIDS30 21875)

is true becanse an if then rule applies

with substitution {*pagerflIDS3S, *pageedliDS 30, ramount2 1575, Tpagee accountiID 529, *pager accountiIDS 373

since1.2.42.1 Rule: {forall {?payer ?payee Zamount)

(<= {transfer-noney ?paver ?payee Tamount)
fexists (?payee-account ?payer-account)
{Eransfer-noney-nethed-012 ?payer-account ?payee-account Zamount
and1.2.42.2 Infewed: (fransfermoney method- 012 UIDS37 UIDS529 21875 UIDS35 UIDS30)

1.242.2

(hransfer money method- 012 LIDS37 UIDS29 21875 UIDS35 LIDS530)
is frue because an it then rule applies
with substitution {zpayeraccountliDS 37, pagee accountUID 529, ramount21875, payerflIDS 35, payeeliDS 30}
since1.2.12.2.4 Rule: {forall {?payer-account ?payec-account Zamount ?payer ?payee)
{¢= {tramsfer-noney-method-012 ?payer-account Zpayee-sccount ?Zameunt
{3nd (sccountdolder 2payer-sccount Zpayer’d
{3ccountiolder ?payee-account 2payee?
{Trecord-payment ?payer-account Zpayee-account Zamoeunt)iid
and1.212.2.2 ract (accounttolder WIDS57 UIDSSS)
and1.212.2.3 Fact (accounttolder UIDS23 LIDS530)

and1.2.12.2.4 Infered: (record payment UIDS37 UIDS23 21875)

1.212.2.4 (‘record payment UIDS37 UIDS29 21575)
is true because an it then rule applies
with substitution {zsenderflIDS37, 2recipientllID529, zamount?21575, *time2{1/2002, rnewidJIDE037)
since1.2,12.2.41 Rule: (forall {(?sender ?recipient ?amount)
{¢= {lrecord-paynent ?sender ?recipient Zamount)
fexists {?Fine Tnewid)}
fand (Faying ?newid)
{dateofEvent ?newid ?tine)
{payer ?newid ?sender)
{toPossessoxr ?newid ?recipient)
{noneyTranzferred ?newid Zamount)iid)
(payer UIDE0 37 UIDS37)
(Paying UIDE037)
(foPossessor UIDE0O 37 UIDS529)
(dateOfEvent LIDE0 37 2/1/2002)

(moneyTransferred UIDE037 2187 5)
< T

and1.2.12.2.4.2
and1.2.17.2.4.3
and1.2.17.2.4.49
and1.2.12.2.45
and1.2.12.2.4.6

Fact
Fact
Fact
Fact
Fact

= B OF | Document: Done (3.013 secs)



1.219.1.2

| =

1.21% (hansfermoney UIDS524 UIDS35 24709)
is frue because an if then rule applies

with substitufion {zpayerfliDS24, rpageeIDS35, ramountp24709, *payee accountIDS 37, pageraccountID S 39
since 1,212 Rule: {forall {?payer ?payee ?amount)
{¢= {transfer-noney ?payer ?payee Zamount)
{exizts (?payee-account ?payer-account)

{transfer-noney-nethod-012 ?payer-account ?payee-account ?amount ?
and1.2481 Inferwed: (hansfermoney method-012 UIDS39 UIDS37 24709 UID524 UIDS535)

12181

(hansfer money method-012 LIDS39 LIDS37 24709 UIDS524 UIDS35)
is true becanse an if then rule applies

with substitution {zpaseraccountUIDS 39, *pages accountUID S 37, zamounti24709, *payerlID 524, pageelIDS 35
since1.2,12.21 Rule:

{forall {?payer-account ?payee-account ?amount ?payer ?payee)
{¢= {transfer-noney-nethod-012 ?payer-account ?payee-account ?amount ?
{and {(accountHolder ?payer-account ?payer)
{accountHolder ?payee-account ?payee)
{lrecord-paynent ?payer-account ?payee-account Zamount)ii)
(accountHolder IDS 39 LIDS24)
(accounttHolder VIDS37 UIDS35)

and1.218.1.2 Infewed: (recordpayment UIDS33 UIDS37 24709)

and1.2181.1 Fact
and1.212.2.2 Fact

1.2181.2

(record payment UIDS 39 UIDS37 24709)
is frue because an it then rule applies

with substfitution {zsenderflIDS 39, rrecipientUID 537, zamounty24709, fime/1/20/2002, newidUIDE027)
since1.2,42.2.41 Rule: (forall {?sender ?recipient Zamount)
{¢= {!record-paynent ?sender ?recipient ?amount)
{exizts (?Fine newid)
{and (Paying ?newid)
{dateofEvent newid ?tine)
{paver ?newid ?sender)
{toPozzessor ?newid ?recipient

H
{noneyTransferred ?newid Zamount))il)
Fact (pawer UIDE027 LID539)

Fact (Paying UIDE027)

Fact (toPossessorUIDE027 UIDS37)
Fact (dateOfEvent LIDE0O27 1720£2002)
Fact (moneyTransferred UIDE027 24709)

1.2149 (hansfermoney UIDS30 UIDS531 9252)
is frue because an if then rule applies

and1.2.18.1.2.0
and1.2.18.1.2.2
and1.2.18.1.2.3
and1.2.18.1.2.4
and1.2.18.1.2.5

with substitufion {zpayerflIDS 30, rpageelIDS31, ramountd252, payee accountID 554, 2pageraccountID 529
since 1,242 Rule: (forall (?payer ?payee ?amount)
¢z {transfer-noney ?payer ?payee Zamount)
{exizts {(?payee-account ?payer-account)

{transfer-noney-nethod-012 ?payer-account ?payee-account ?amount ?
and1.2.49.1 Infewed: (hansfermoney method- 012 LIDS29 UIDS54 9252 UIDS30 UIDS31)

1.2.13.1

(hansfer money method- 012 LIDS29 UIDS54 9252 UIDS30 UIDS31)
is true becanse an if then rule applies

with substitution {zpaseraccountilIiD529, *payee accountUIDS54, zamountid252, 2pagerIDS 30, pageef)IDS3 1}
since1.2,12.21 Rule:

{forall {?payer-account ?payee-account ?amount ?payer ?payee)
{

¢= {transfer-money-nethod-012 ?payer-account ?payee-account ?amount 7
{and (accountHolder ?payer-account ?payer)

{accountHolder ?payee-account ?payee)
{lrecord-paynent ?payer-account ?payee-account Zamount)ii)
(accountHolder LIDS29 LIDS30)
(accounttHolder VIDS54 LIDS31)

and1.2,19.4.2 Infewed: (recordpaymentUIDS29 UIDSS54 9252)

and1.212.2.3 Fact
and1.219.4.1 Fact

(‘record- payment UIDS529 UIDS54 9252)
is frue because an it then rule applies

with substfitution {zsenderplIDS529, rrecipientUID 554, zamount}9252, *time2{14/2002, znewidJIDE04 5
since1.2,42.2.41 Rule: {forall {?sender ?recipient Zamount)
{¢= {!record-paynent ?sender ?recipient ?amount)
{exiszts (?Fine newid)
{and (Paying ?newid)
{dateofBvent newid ?tine)
{paver ?newid ?sender)
{toPozzessor ?newid ?recipient)
{noneyTransferred ?newid Zamount)))d)
Fact (paver UIDB045 UIDS29)
Fact (Paying UIDE045)
Fact (toPossessorUIDE045 UIDS54)

Fact (dateOfEvent UIDE04 5 2{14/2002)

and1.2.19.4.2.1
and1.2,19.1.2.2
and1.2.19.1.2.3
and1.2.19.1.2.4
and1.2.13.1.2.5

Fact (moneyTransferred UIDG045 9252)

(1|

L

|

—r

» Strict proof: ~1 second
> Partial proof: ~2 minutes

Large space of potential
partial proofs explored

>

d

|
B 4 & ©@F EJ | Document: Done (3.013 secs)

i
[

102



151

Information Sciences Institute

Conclusion

> PowerLoom is well-suited for the representation &
reasoning tasks:

» Full-function, robust and stable KR&R system

Expressive representation, reasoning, query language, storage, extensive
API

Available in Java (useful for integration with Protége)
> Meta-representation & reasoning

» Concepts, relations, contexts, rules, queries, etc. are all first-class
citizens which can be represented and reasoned about

> Explanation support for successful and failed reasoning
> Sophisticated context & module system

Encapsulation, efficient inference, representation of assumptions
» Sophisticated support for units & measures

> Support for simple timepoint reasoning.

Loom
KR&R
Group 103



	Overview: Outline
	Logc-Based Knowledge Representation & Reasoning
	PowerLoom
	Ontosaurus
	Features

	PowerLoom Concepts
	Knowledge Bases
	Terms, Relations & Propositions
	Connectives & Rules
	Definitions
	Truth Values
	Contexts & Modules

	Annotated Example
	Using Modules
	Concepts
	Relations
	Functions
	Defined Concepts
	Open/Closed World Semantics
	Retraction
	Contradictions
	Rule-Based Inference
	Justifications & Explanation
	Contexts & Modules
	RDBMS Mapping

	Advanced Topics
	Concept, Relation and Instance Definitions
	Attaching Information to Rules
	Arithmetic Constraint Reasoning
	General Queries
	Representing Queries
	Units & Dimensions
	Time Points and Durations
	Forward Inference

	WhyNot Query Debugging
	WhyNot in Cyc
	WhyNot Example
	Pattern Matching for Link Discovery

	Conclusion

