
U

S

C

I

S

I

Loom: Basic Concepts

Thomas A. Russ

USC

Information Sciences Institute

U

S

C

I

S

I

Outline of Tutorial

LOOM Terminology

Definition Language

Classifier Examples

Assertion Language

Query Language

Additional Inferences

U

S

C

I

S

I

LOOM Terminology

Two Compartments

TBox for Definitions

ABox for Assertions (Facts)

U

S

C

I

S

I

TBox

Term Forming Language

Concepts

Relations

Subsumption Is Reasoning Method

Defines “Vocabulary” of Domain

U

S

C

I

S

I

Defconcept

(defconcept name

 [:is | :is-primitive]description)

Definition Options:

Primitive/Non-primitive

:is :is-primitive

Combination of Other Concepts

(:and A B) (:or C D)

Role Number Restrictions

 (:at-least 2 arms)

Role Type Restrictions

 (:some child male)

U

S

C

I

S

I

Defconcept Examples

(defconcept Soldier) 

(defconcept Medic

 :is (:and Soldier Medical-Personnel)) 

(defconcept Casualty

 :is (:and Person (:at-least 1 injuries)))

U

S

C

I

S

I

Defconcept

(defconcept name

 [:is | :is-primitive]descr options)

Additional Options:

Characteristics 
 :closed-
world :monotonic

Roles of the concept 

 (:roles R1 R2 R3) 
roles are relations that are
closely associated with a
particular concept 

U

S

C

I

S

I

Defconcept with roles

(defconcept Helicopter

 :roles (range payload))

U

S

C

I

S

I

Defrelation

(defrelation name

 [:is | :is-primitive]description)

Definition Options:

Primitive/Non-primitive

 :is :is-primitive

Relation to Other Concepts

 (:compose R S)

Domain and Range Restrictions

 (:domain person)

Characteristics

 :symmetric :closed-world

U

S

C

I

S

I

Necessary vs. Sufficient

Necessary and Sufficient

(defconcept A

:is (:and B C))

Necessary

(implies A (:and B C))

Sufficient

(implies (:and B C) A)

U

S

C

I

S

I

Observations About Definitions

The Loom language is “variable-free”

Requires special constructs and implicit bindings

(:at-least 2 Child Male)

Sometimes this isnʼt sufficiently expressive

U

S

C

I

S

I

Adding Expressivity (:satisfies)

Loom definitions can be made more expressive
with the “:satisfies” construct

:satisfies is used to introduce variables.

Example—Transitive closure 
(defrelation R*
 :is (:satisfies (?x ?y)
 (:or (R ?x ?y)
 (:exists ?z
 (:and (R ?x ?z)
 (R* ?z ?y))))))

Expressivity is higher, but Loom cannot do as
much inference with :satisfies clauses

U

S

C

I

S

I

Subsumption

(defconcept road)

(defconcept highway

 :is (:and road

 (>= speed-limit 45)))

(defconcept super-highway

 :is (:and road

 (>= speed-limit 55)))

 (defrelation speed-limit)

Speed-limit

Road

Highway

Super-Highway

Speed-limit

>= 45

>= 55

U

S

C

I

S

I

No Subsumption

(defconcept road)

(defrelation speed-limit)

(defconcept highway

 :is (:and road

 (:satisfies (?x)

 (>= (speed-limit ?x) 45))))

(defconcept super-highway

 :is (:and road

 (:satisfies (?x)

 (>= (speed-limit ?x) 55))))

Highway

Road

Super-Highway
Satisfies . . .
 Satisfies . . .

U

S

C

I

S

I

Relation Hierarchies

In Loom, relations can also be defined in
hierarchies

(defrelation child)
(defrelation son
 :is (:and child (:range Male)))

Assertions and queries donʼt have to match
syntactically, only semantically

If one asserts Joe is Tom’s son, then
asking for Tom’s children will
return Joe

Similarly, asserting that Joe is a
male and Tom’s child will let Joe be
retrieved by asking for Tom’s son

U

S

C

I

S

I

ABox

Uses TBox Vocabulary

Assertions About “Individuals”

Is-a

Role Values

Restrictions

U

S

C

I

S

I

Assertions

Basic Forms:

tell—Adds assertions to the knowledge
base

forget—Removes assertions from the
knowledge base

U

S

C

I

S

I

Assertions

Basic Syntax

Assert is-a concept

(tell (A Joe) (B Joe))

Instance Identifier
Concept Name

U

S

C

I

S

I

Assertions

Basic Syntax

Assert is-a concept

(tell (A Joe) (B Joe))

Assert role values

(tell (R Joe 3) (R Joe 4) (S Joe 2))

Instance Identifier

Role Name Role Value

U

S

C

I

S

I

Assertions

Basic Syntax

Assert is-a concept

(tell (A Joe) (B Joe))

Assert role values

(tell (R Joe 3) (R Joe 4) (S Joe 2))

:about Syntax

Used for multiple assertions about a
single individual:

(tell (:about Joe A B (R 3) (R 4) (S 2)))

Instance Identifier Role Name
Role Value

Concept Name

U

S

C

I

S

I

Assertions

Basic Syntax

Assert is-a concept

(tell (A Joe) (B Joe))

Assert role values

(tell (R Joe 3) (R Joe 4) (S Joe 2))

:about Syntax

Used for multiple assertions about a
single individual:

(tell (:about Joe A B (R 3) (R 4) (S 2)))

Allows assertion of restrictions

(tell (:about Jim (:at-least 3 R) (R 2)))

U

S

C

I

S

I

Queries

Ask About Grounded Facts 

Retrieve Individuals Matching Query Schema

U

S

C

I

S

I

Query Language

(ask statement)

Is fido a dog?:

 (ask (dog fido))

U

S

C

I

S

I

Query Language

(ask statement)

Is fido a dog?:

 (ask (dog fido))

(retrieve var-list query)

Return all dogs in the KB:

 (retrieve ?d (dog ?d))

U

S

C

I

S

I

Query Language

(ask statement)

Is fido a dog?:

 (ask (dog fido))

(retrieve var-list query)

Return all dogs in the KB:

 (retrieve ?d (dog ?d))

Return list of dogs and their
owners:

 (retrieve (?d ?o)
 (:and (dog ?d)
 (owner ?d ?o)))

 Note: Ownerless dogs are not returned.

U

S

C

I

S

I

Different Decompositions

Two Axes:

Cover

Partition

Enable different reasoning strategies.

U

S

C

I

S

I

Cover

(defconcept a)

(defconcept b)

(defconcept c)

(defconcept or-abc :is (:or a b c))

U

S

C

I

S

I

Cover

(defrelation r)

(defrelation s) 

(defconcept x)

(defconcept a

 :is-primitive (:and x (:at-most 1 r)))

(defconcept b

 :is-primitive (:and x (:at-most 0 s)))

(defconcept c :is-primitive x)

(defconcept or-abc :is (:or a b c))

(tell (or-abc Joe))

 ;Joe is one-of A, B, or C

(tell (R Joe 1) (R Joe 2) (S Joe 1))

(ask (C Joe)) ==> T

 ;because we can rule out A and B

; A common primitive parent
; (ie, “x”) is required for
; this inference to be made

U

S

C

I

S

I

Partition

(defconcept p :partitions p)

(defconcept x :is-primitive p

 :in-partition p)

(defconcept y :is-primitive p

 :in-partition p)

(defconcept z :is-primitive p

 :in-partition p)

(tell (x i2)) ==> |C|X

(tell (z i2)) ==> INCOHERENT

(forget (x i2)) ==> |C|Z

U

S

C

I

S

I

Mapping from Logic to an Object
Framework

Loomʼs language provides a logical description of
instances in terms of properties and restrictions

CLOS classes provide a physical description in
terms of slots

Loom concept descriptions can be mapped into
CLOS class definitions

U

S

C

I

S

I

Mapping from Logic to an Object
Framework

Superclasses can come from

The superconcepts (subsumption) of
the concept definition

Explicit specification via :mixin-
classes

Slots can be determined multiple ways

All :roles become slots

All restricted relations (:at-least,
etc.) in the concept definition
become slots

(Optional) All :domain restricted
relations become slots.

U

S

C

I

S

I

Mapping from Logic to an Object
Framework—Example

(defconcept C
 :is (:and A B X
 (:at-least 2 R)
 (:at-most 1 S))
 :roles (P Q)
 :mixin-classes (browser-item))

(defclass C (A B X browser-item)
 ((R :accessor R :initarg :R
 :initform nil)
 (S :accessor S ...)
 (P :accessor P ...)
 (Q :accessor Q ...)))

U

S

C

I

S

I

Summary

TBox Determines Domain Vocabulary

Definitions

Subsumption

Disjointness

ABox Describes Specific Domain

Instances

Facts

Queries Retrieve Information from the ABox

Yes/No Questions

Find Matching Instances

