Modeling in a Medical Domain

Basic Concepts

Using Recognition

j@\ More Sophisticated Relations

Methods, Actions and Production Rules

S
C

-_—) -

Basic Concepts — Personnel

Primitive Concepts

(defconcept person)

j§C}\ (defconcept official-responder
:is-primitive person)

Closed World Concepts

(defconcept medical-person
:is-primitive person
:characteristics :closed-world)

Defined Concepts

(defconcept medic
:is (:and official-responder
medical-person))

OwC

-_—) =—

KON

OwC

-_—) =—

Basic Concepts—Personnel
(alternate)

Primitive Concepts and Relations
(defconcept person)

(defrelation training)

Defined Concepts

(defconcept medical-person
:is (:and person
(:some training medical)))

(defconcept emergency-responder
:is (:and person
(:some training emergency)))

(defconcept medic
:is (:and emergency-responder
medical-person)))

Basic Concepts —Injury

Full set

(defconcept injury
:is (:one-of ‘airway ‘breathing
‘circulation ‘neurologic-disability
‘exposure ‘head ‘neck ‘chest ‘other))

Subsets (subsumption calculated automatically)

(defconcept primary-injury
:is (:one-of ‘airway ‘breathing
‘circulation ‘neurologic-disability
‘exposure))

KON

(defconcept secondary-injury
:is (:one-of ‘head ‘neck ‘chest ‘other))

OwC

-_—) -

U
S
C

-_—) -

KON

Basic Concepts—Injury (alternate)

Subsets

(defconcept primary-injury
:is (:one-of ‘airway ‘breathing
‘circulation ‘neurologic-disability
‘exposure))

(defconcept secondary-injury
:is (:one-of ‘head ‘neck ‘chest ‘other))

Union specified by “or”
(defconcept injury
:is (:or primary-injury
secondary-injury))

Basic Relations —Injuries

Primitive

(defrelation injuries

: :characteristics

Defined (range restricted)
(defrelation primary-injuries
:is (:and in‘juries
(:range primary-injury)))

:closed-world)

(defrelation secondary-injuries
:is (:and injuries
(:range secondary-injury)))

OwC

Closed world by inheritance

-_—) -

Basic Concepts—Casualties

Defined by number restrictions
(defconcept casualty

JVC%\ :is (:and person
(:at-least 1 injuries)))
(defconcept critical-casualty
:is (:and person
(:at-least 1
primary-injuries)))

Negated concepts can also be formed
(defconcept non-critical-casualty

OwC

| (:at-most O
? Needs closed world! — primary-injuries)))

Basic Concepts— Negations

Negated concepts can also be expressed
(defconcept helper

JVC%» :is (:and person
(:at-most 0 injuries)
(:not medical-person)))

Recall that “medical-person” was declared to be
closed world

This is crucial to reasoning with “:not”

Without the closed world assumption, any
individual not explicitly asserted to not be a
medical-person could conceivably be one.

This uncertainty would inhibit recognition.

OwC

-_—) =—

Using Recognition

Loom can recognize when assertions about
individuals causes them to fulfill definitions

m This allows information to be added as it becomes
available

The logical consequences of the existing
information is always maintained

Example:
(tell (:about p2 Person

g (injuries ‘airway)
C (injuries ‘other)))
| p2 is no longer a “Helper”

S p2 is now a “Casualty” and a

[

“Critical Casualty”

Sophisticated Relations

Some relations can involve sophisticated
calculations

m Loom provides a method for defining a relation
that is the result of a calculation rather than

an assertion

:predicate indicates a test for the
relation

:function indicates a generator for
the relation

Such relations are assumed to be
single-valued.

OwC

-_—) =—

Sophisticated Relations — Geography

We need to associate a location with individuals

(defrelation location
:characteristics :single-valued)

We want to calculate distance between locations
(defrelation distance-from-locations

rarity 3
: function grid-distance)

The auxiliary function does the calculation

(defun grid-distance (locl loc2)
(sgrt (* (- (loc-x loc2)
(loc—-x locl)))
ce2)))

KON

OwC

-_—) =—

Sophisticated Relations — Geography

We also want to find the distance between
individuals

(defrelation distance :arity 3
:is (:satisfies (?x ?y °?d)

KON

(distance-from-location
(location ?x)

(location ?y)
?d)))

Direction can be handled analogously

Loom uses computed relations in backward
chaining mode only—Information is not
propagated forward.

OwC

-_—) =—

Sophisticated Relations —
Inference Direction

Concepts and relations can be defined in terms of
computed relations:

(defrelation in-range
:is (:satisfies (?x ?y)
(< (distance ?x ?y)
(range ?x))))
This relation can be queried, but it will not
propagate information forward.

(ask (in-range helo-1 Hospital))

KON

OwC

(retrieve ?c
(:and (casualty ?c)
(in-range helo-1 ?c¢)))

-_—) =—

Sophisticated Relations — Alternate
Inheritance

Problem: How can we automatically update the
locations of individuals being transported by a
vehicle?

/@\ ®* Each time the vehicle moves, update all
passenger locations

* Determine the passenger location based on
the vehicle location

OwC

-_—) =—

Sophisticated Relations — Transitive
Closures

Base relation “contained-in” is single-valued

(defrelation contained-in
:characteristics :single-valued)

Transitive Closures

(defrelation contained-in* :is
(:satisfies (?x ?y)
(:exists (?z)
(:and (contained-in ?x ?2z)
(contained-in* ?z ?y))))))

U
S
C

Note the recursive definition

-_—) -

Transitive Relation Idiom

Standard Definition of a Transitive Relation
R* Based on the Relation R:

/?C}\ (defrelation R* :is
(:satisfies (?x ?y)
(:exists (?z)
(:and (R ?x ?z)
(R* 2z 2y))))))

OwC

-_—) -

Sophisticated Relations — Following
a Transitive Link

Base relation “position” is single-valued
(defrelation position

JVC%\ :characteristics :single-valued)
Transitive Closures
(defrelation position* :is

(:satisfies (?x ?y)
(:exists (?z)
(:and .(contained-in* ?x ?z)
(position ?z ?y))))))

The transitive link is followed in this relation to

find a ?z with a position. Note that this will find
ALL such ?z’s!

OwC

-_—) =—

Sophisticated Relations — Alternate
Inheritance Path

Base relation requires inverse
(defrelation contained-in)

ZVC}\ (defrelation contains
:is (:inverse contained-in))
“position” inherits via “contained-in”

(defrelation position
:inheritance-link contained-in)

This allows the creation of meaningful “part-of”
hierarchies, with inheritance of appropriate
properties.

OwC

-_—) =—

Methods, Actions and Production
Rules

Methods specify procedures that are specialized
by Loom queries

m Loom methods have a richer vocabulary than
CLOS methods

Actions specify properties of methods such as
selection rules

Production rules trigger on changes in the state of
the knowledge base

Production rules allow a reactive or event-driven
style of programming

OwC

-_—) =—

Example Method

(defmethod assess-casualty (?medic ?casualty)

:situation
(:and (Medic ?medic) (casualty ?casualty))
/@\ : response
((format t "~%Medic ~8A examines ~8A"

?medic ?casualty)
(tell (examined Z?casualty 'yes)))

ow

-_—) -

Example Method

(defmethod assess-casualty (?medic 7?casualty)
:situation
(:and (Medic ?medic) (casualty ?casualty))
: response
((format t "~%Medic ~8A examines ~8A"
?medic ?casualty)
(tell (examined ?casualty 'yes)))

Query determines applicability

Example Method

(defmethod assess-casualty (?medic 7?casualty)
:situation
(:and (Medic ?medic) (casualty ?casualty))
: response
((format t "~%Medic ~8A examines ~8A"
?medic ?casualty)
(tell (examined ?casualty 'yes)))

Query determines applicability
Lisp code in the response

Example Method

(defmethod assess-casualty (?medic 7?casualty)
:situation
(:and (Medic ?medic) (casualty ?casualty))
: response
((format t "~%Medic ~8A examines ~8A"
?medic ?casualty)
(tell (examined ?casualty 'yes)))

Query determines applicability
Lisp code in the response
Loom assertions in the response

Methods Can Be Performed
Immediately or Scheduled

To call a method immediately use the “perform”
function

To schedule a method for execution use the
“schedule” function

Scheduled methods can be given a priority (the
built-in priorities are :high and :low)

Methods are performed the next time there is a
knowledge base update (ie, “tellm”)

Methods are executed in accordance with the
priority

Within a priority methods are executed in the
ordered they were scheduled

U
S
C

-_—) =—

The :situation Determines Method
Applicability

(defmethod treat-patient (?medic 7?patient)
:situation (:and (medic ?medic)
(critical-casualty ?patient)
(examined ?patient 'no))
: response
((schedule (goto ?”medic ?patient)
:priority :high)
(schedule (assess-casualty ?”medic ?patient)
:priority :high)))
(defmethod treat-patient (?medic ?patient)
:situation (:and (medic ?medic)

KON

U (non-critical-casualty ?patient)
S (examined ?patient 'no))
C : response

((schedule (goto ?”medic ?patient)
| :priority :low)
S (schedule (assess-casualty ?”medic ?patient)
[

:priority :low)))

More on Choosing a Method

Often several methods are applicable to a
particular situation. “defaction” forms can
specify how to resolve ambiguities

/@\ ®* Choose all applicable methods
* Choose the most specific method
®* Choose the last method defined
®* Choose a method at random
* Issue a warning
* Cause an error

These resolution methods can be combined and
are used in order

OwC

-_—) =—

OwC

-_—) =—

Example of Combined Resolution
) Method treat-injury
/has a definition for

all three concepts
Secondary
Injury

If both secondary and primary injuries exist, :most-
specific does not give a single result
Multiple selection criteria resolves the problem

(defaction treat-injury (?medic ?patient)
:filters (:most-specific :select-all))

The criteria are prioritized

Avoids the need to define methods for all
combinations of concepts

Methods Can Also Have
Query-Based Iteration

Finding all casualties reported on Medic’s
clipboard

(defmethod locate-casualties (?medic)
:situation (medic ?medic)
:with (casualties
(clipboard 7?medic) °?c)
:response (...))

The response is executed once for each ?c
that the query in the :with clause finds.

In the response ?medic is bound to the
method argument and ?c to a particular
casualty reported on the medic’s clipboard.

KON

OwC

-_—) =—

Production Rules Trigger on
Changes in the Knowledge Base

The changes can be additions to the KB

(:detects)
This applies to relation additions and concept

j@\ additions

The changes can be deletions from the KB (
(:undetects)
This applies to relation deletions and concept

deletions

The change can be In a relation value
(:changes)

OwC

-_—) =—

Noticing a New Injury

(defproduction notice-injury

:when ((:and (:detects (injury ?self ?i))
(phone ?i ?phone)))
IGCE\ :do ((perform (report-injury ?phone ?i)))

The :detects clause triggers the production

The additional query (phone ?i ?phone) is a
guard clause and also provides an additional
variable binding

The variables from the :when clause are bound

sz for the execution of the production body. In this

C example, the injury is reported using a phone by
calling the method “report-injury”.

| A different method could be used if a radio were

? available.

