
U

S

C

I

S

I

Modeling in a Medical Domain

Basic Concepts

Using Recognition

More Sophisticated Relations

Methods, Actions and Production Rules

U

S

C

I

S

I

Basic Concepts—Personnel

Primitive Concepts

(defconcept person)
(defconcept official-responder
 :is-primitive person)

Closed World Concepts

(defconcept medical-person
 :is-primitive person
 :characteristics :closed-world)

Defined Concepts

(defconcept medic
 :is (:and official-responder
 medical-person))

U

S

C

I

S

I

Basic Concepts—Personnel �
(alternate)

Primitive Concepts and Relations

(defconcept person)
(defrelation training)

Defined Concepts

(defconcept medical-person
 :is (:and person
 (:some training medical)))

(defconcept emergency-responder
 :is (:and person
 (:some training emergency)))

(defconcept medic
 :is (:and emergency-responder
 medical-person)))

U

S

C

I

S

I

Basic Concepts—Injury

Full set

(defconcept injury
 :is (:one-of ‘airway ‘breathing
 ‘circulation ‘neurologic-disability
 ‘exposure ‘head ‘neck ‘chest ‘other))

Subsets (subsumption calculated automatically)

(defconcept primary-injury
 :is (:one-of ‘airway ‘breathing
 ‘circulation ‘neurologic-disability
 ‘exposure))

(defconcept secondary-injury
 :is (:one-of ‘head ‘neck ‘chest ‘other))

U

S

C

I

S

I

Basic Concepts—Injury (alternate)

Subsets

(defconcept primary-injury
 :is (:one-of ‘airway ‘breathing
 ‘circulation ‘neurologic-disability
 ‘exposure))

(defconcept secondary-injury
 :is (:one-of ‘head ‘neck ‘chest ‘other))

Union specified by “or”

(defconcept injury
 :is (:or primary-injury
 secondary-injury))

U

S

C

I

S

I

Basic Relations—Injuries

Primitive

(defrelation injuries
 :characteristics :closed-world)

Defined (range restricted)

(defrelation primary-injuries
 :is (:and injuries
 (:range primary-injury)))

(defrelation secondary-injuries
 :is (:and injuries
 (:range secondary-injury)))

Closed world by inheritance

U

S

C

I

S

I

Basic Concepts—Casualties

Defined by number restrictions

(defconcept casualty
 :is (:and person
 (:at-least 1 injuries)))

(defconcept critical-casualty
 :is (:and person
 (:at-least 1
 primary-injuries)))

Negated concepts can also be formed

(defconcept non-critical-casualty
 :is (:and casualty
 (:at-most 0
 primary-injuries))) Needs closed world!

Implies ≥ 1 injuries

U

S

C

I

S

I

Basic Concepts—Negations

Negated concepts can also be expressed

(defconcept helper
 :is (:and person
 (:at-most 0 injuries)
 (:not medical-person)))

Recall that “medical-person” was declared to be
closed world

This is crucial to reasoning with “:not”

Without the closed world assumption, any

individual not explicitly asserted to not be a
medical-person could conceivably be one.

This uncertainty would inhibit recognition.

U

S

C

I

S

I

Using Recognition

Loom can recognize when assertions about
individuals causes them to fulfill definitions

This allows information to be added as it becomes
available

The logical consequences of the existing
information is always maintained

Example:

(tell (:about p2 Person
 (injuries ‘airway)
 (injuries ‘other)))

p2 is no longer a “Helper”

p2 is now a “Casualty” and a
“Critical Casualty”

U

S

C

I

S

I

Sophisticated Relations

Some relations can involve sophisticated
calculations

Loom provides a method for defining a relation
that is the result of a calculation rather than
an assertion

:predicate indicates a test for the
relation

:function indicates a generator for
the relation

Such relations are assumed to be
single-valued.

U

S

C

I

S

I

Sophisticated Relations—Geography

We need to associate a location with individuals

(defrelation location
 :characteristics :single-valued)

We want to calculate distance between locations

(defrelation distance-from-locations
 :arity 3
 :function grid-distance)

The auxiliary function does the calculation

(defun grid-distance (loc1 loc2)
 (sqrt (* (- (loc-x loc2)
 (loc-x loc1)))
 ...)))

U

S

C

I

S

I

Sophisticated Relations—Geography

We also want to find the distance between
individuals

(defrelation distance :arity 3
 :is (:satisfies (?x ?y ?d)

 (distance-from-location
 (location ?x)
 (location ?y)
 ?d)))

Direction can be handled analogously

Loom uses computed relations in backward

chaining mode only—Information is not
propagated forward.

U

S

C

I

S

I

Sophisticated Relations—�
Inference Direction

Concepts and relations can be defined in terms of
computed relations:

(defrelation in-range
 :is (:satisfies (?x ?y)

 (< (distance ?x ?y)
 (range ?x))))

This relation can be queried, but it will not
propagate information forward.

(ask (in-range helo-1 Hospital))
(retrieve ?c
 (:and (casualty ?c)
 (in-range helo-1 ?c)))

U

S

C

I

S

I

Sophisticated Relations—Alternate
Inheritance

Problem: How can we automatically update the
locations of individuals being transported by a
vehicle?

• Each time the vehicle moves, update all

passenger locations

• Determine the passenger location based on

the vehicle location

U

S

C

I

S

I

Base relation “contained-in” is single-valued

(defrelation contained-in
 :characteristics :single-valued)

Transitive Closures

(defrelation contained-in* :is
 (:satisfies (?x ?y)
 (:exists (?z)
 (:and (contained-in ?x ?z)
 (contained-in* ?z ?y))))))

Note the recursive definition

Sophisticated Relations—Transitive
Closures

U

S

C

I

S

I

Transitive Relation Idiom

Standard Definition of a Transitive Relation  
R* Based on the Relation R:

(defrelation R* :is
 (:satisfies (?x ?y)
 (:exists (?z)
 (:and (R ?x ?z)
 (R* ?z ?y))))))

U

S

C

I

S

I

Base relation “position” is single-valued

(defrelation position
 :characteristics :single-valued)

Transitive Closures

(defrelation position* :is
 (:satisfies (?x ?y)
 (:exists (?z)
 (:and (contained-in* ?x ?z)
 (position ?z ?y))))))

The transitive link is followed in this relation to
find a ?z with a position. Note that this will find
ALL such ?zʼs!

Sophisticated Relations—Following
a Transitive Link

U

S

C

I

S

I

Base relation requires inverse

(defrelation contained-in)
(defrelation contains
 :is (:inverse contained-in))

“position” inherits via “contained-in”

(defrelation position
 :inheritance-link contained-in)

This allows the creation of meaningful “part-of”
hierarchies, with inheritance of appropriate
properties.

Sophisticated Relations—Alternate
Inheritance Path

U

S

C

I

S

I

Methods, Actions and Production
Rules

Methods specify procedures that are specialized
by Loom queries

Loom methods have a richer vocabulary than
CLOS methods

Actions specify properties of methods such as
selection rules

Production rules trigger on changes in the state of
the knowledge base

Production rules allow a reactive or event-driven
style of programming

U

S

C

I

S

I

Example Method

(defmethod assess-casualty (?medic ?casualty)
 :situation
 (:and (Medic ?medic)(casualty ?casualty))
 :response
 ((format t "~%Medic ~8A examines ~8A"
 ?medic ?casualty)
 (tell (examined ?casualty 'yes)))
)

U

S

C

I

S

I

Example Method

(defmethod assess-casualty (?medic ?casualty)
 :situation
 (:and (Medic ?medic)(casualty ?casualty))
 :response
 ((format t "~%Medic ~8A examines ~8A"
 ?medic ?casualty)
 (tell (examined ?casualty 'yes)))
)

Query determines applicability

U

S

C

I

S

I

Example Method

(defmethod assess-casualty (?medic ?casualty)
 :situation
 (:and (Medic ?medic)(casualty ?casualty))
 :response
 ((format t "~%Medic ~8A examines ~8A"
 ?medic ?casualty)
 (tell (examined ?casualty 'yes)))
)

Query determines applicability

Lisp code in the response

U

S

C

I

S

I

Example Method

(defmethod assess-casualty (?medic ?casualty)
 :situation
 (:and (Medic ?medic)(casualty ?casualty))
 :response
 ((format t "~%Medic ~8A examines ~8A"
 ?medic ?casualty)
 (tell (examined ?casualty 'yes)))
)

Query determines applicability

Lisp code in the response

Loom assertions in the response

U

S

C

I

S

I

Methods Can Be Performed
Immediately or Scheduled

To call a method immediately use the “perform”
function

To schedule a method for execution use the
“schedule” function

Scheduled methods can be given a priority (the

built-in priorities are :high and :low)

Methods are performed the next time there is a

knowledge base update (ie, “tellm”)

Methods are executed in accordance with the

priority

Within a priority methods are executed in the

ordered they were scheduled

U

S

C

I

S

I

The :situation Determines Method
Applicability

(defmethod treat-patient (?medic ?patient)
 :situation (:and (medic ?medic)
 (critical-casualty ?patient)
 (examined ?patient 'no))
 :response
 ((schedule (goto ?medic ?patient)
 :priority :high)
 (schedule (assess-casualty ?medic ?patient)
 :priority :high)))

(defmethod treat-patient (?medic ?patient)
 :situation (:and (medic ?medic)
 (non-critical-casualty ?patient)
 (examined ?patient 'no))
 :response
 ((schedule (goto ?medic ?patient)
 :priority :low)
 (schedule (assess-casualty ?medic ?patient)
 :priority :low)))

U

S

C

I

S

I

More on Choosing a Method

Often several methods are applicable to a
particular situation. “defaction” forms can
specify how to resolve ambiguities

• Choose all applicable methods

• Choose the most specific method

• Choose the last method defined

• Choose a method at random

• Issue a warning

• Cause an error

These resolution methods can be combined and
are used in order

U

S

C

I

S

I

Example of Combined Resolution

If both secondary and primary injuries exist, :most-
specific does not give a single result

Multiple selection criteria resolves the problem

(defaction treat-injury (?medic ?patient)
 :filters (:most-specific :select-all))

The criteria are prioritized

Avoids the need to define methods for all

combinations of concepts

Injury

Secondary
Injury

Primary
Injury

Method treat-injury
has a definition for
all three concepts

U

S

C

I

S

I

Methods Can Also Have�
Query-Based Iteration

Finding all casualties reported on Medicʼs
clipboard

(defmethod locate-casualties (?medic)
 :situation (medic ?medic)
 :with (casualties
 (clipboard ?medic) ?c)
 :response (...))

The response is executed once for each ?c
that the query in the :with clause finds.

In the response ?medic is bound to the
method argument and ?c to a particular
casualty reported on the medicʼs clipboard.

U

S

C

I

S

I

Production Rules Trigger on
Changes in the Knowledge Base

The changes can be additions to the KB

(:detects) 

This applies to relation additions and concept
additions

The changes can be deletions from the KB (

(:undetects) 

This applies to relation deletions and concept
deletions

The change can be in a relation value

(:changes)

U

S

C

I

S

I

Noticing a New Injury

(defproduction notice-injury
 :when ((:and (:detects (injury ?self ?i))
 (phone ?i ?phone)))
 :do ((perform (report-injury ?phone ?i)))

The :detects clause triggers the production

The additional query (phone ?i ?phone) is a

guard clause and also provides an additional
variable binding

The variables from the :when clause are bound
for the execution of the production body. In this
example, the injury is reported using a phone by
calling the method “report-injury”. 
A different method could be used if a radio were
available.

