
U

S

C

I

S

I

Procedural Programming

Outline of talk:

•  Deductive Kb with Multiple Paradigms

•  Production rules

•  Methods

•  Lisp-to-Loom Interface

•  Interpretations of Updates

U

S

C

I

S

I

Multiple Paradigm Programming

Idea: Suite of programming paradigms that each
exploit a dynamically changing deductive
knowledge base.

Loom paradigms:

Data driven
(production rules, monitors)

Methods
(pattern-directed dispatch)

Procedural
(Lisp)

U

S

C

I

S

I

Upgrading Traditional Paradigms

(defproduction P1

:when (:detects (Foo ?x))

:do ((print "New Foo")))

(defmethod M1 (?self)

:situation (Foo ?self)

:response ((print "It’s a Foo all right")))

Innovations:

• “Foo” can expand to an arbitrarily
complex description;

• “Edge-triggered” productions;

•  Pattern-based method dispatching.

U

S

C

I

S

I

Production Rule Semantics

(defproduction <name>

 :when <condition> :perform <action>)

Semantics: Whenever a set of variable bindings in

<condition> becomes true (provable), call 
<action> with that set of bindings.

Example:

(defproduction P2

 :when (and (Switch ?s)

 (:detects (status ?s 'on)))

 :perform (turn-on (appliance-of ?s)))

The :when condition of a production must include
at least one of the transition
operators :detects, :undetects, or :changes.

U

S

C

I

S

I

Semantics of :detects

(:detects (A ?x))

 is defined as

(and (A ?x)

 (:previously (:fail (A ?x))))

(:previously (B ?x))

is defined as

(:at-agent-time (- *now* 1)

 (B ?x)))

U

S

C

I

S

I

Semantics of Detects (cont.)

 (:detects (:and (A ?x) (B ?x)))

will trigger if A and B become true simultaneously
or if A becomes true and B is already true
or if B becomes true and A is already true

 (:and (:detects (A ?x)) 
 (:detects (B ?x)))

will trigger only if A and B become true
simultaneously

U

S

C

I

S

I

Production Rule Semantics (cont).

All production rule instantiations at the end of an

update cycle are fired in parallel.

•  No conflict resolution (this is a feature!)

•  Effects of one production cannot inhibit firing of

another (parallel) production.

Rationale:

•  We want productions to be “well-behaved” (no race
conditions);

•  Preference semantics is the province of the method
paradigm.

Division of responsibility:

•  Production determines when to perform task;

•  Method determines how to perform task.

U

S

C

I

S

I

Task Scheduling

Productions can post tasks on a queue rather than
executing them immediately.

(defproduction P5

:when (and (:changes (home-team-score ?game))

 (basketball-game ?game))

:schedule (celebrate)

:priority :low)

(defproduction P6

:when (and (:changes (home-team-score ?game))

 (football-game ?game))

:schedule (celebrate)

:priority :high)

U

S

C

I

S

I

Monitors

Monitors are productions that fire only when
specifically designated instances undergo
property transitions.

(defmonitor Watch-for-Redraw

 :when (or (:changes (color ?object))

 (:changes (size ?object)))

 :do ((redraw (slot-value ?object 'window)))

(tellm (color Thing5 'Red))

nothing happens

(attach-monitor 'Thing' Watch-for-Redraw)

(tellm (color Thing5 'Green))

calls redraw

Monitors generalize the active value paradigm

U

S

C

I

S

I

Methods

defaction: Defines Loom equivalent of ``generic
function''.

defmethod: Defines procedurally-invoked situation-
response rule.

(defmethod <name> (<parameters>)

 :situation <situation>

 :response <response>)

U

S

C

I

S

I

Method Filters

Most frequent modes of method use. Given a call
to invoke an action M:

(1) execute all methods named M whose

situations are satisfied, or
(2) execute the most specific among those

methods named M whose situations are
satisfied.

A ``filter sequence'' determines the criteria for
choosing which methods to fire (among those
that are eligible).

U

S

C

I

S

I

Method Filters Example

(defaction M2 (?x ?y) :filters (:perform-all))

(defmethod M2 (?x ?y)

 :situation (= ?x ?y)

 :response ((print "EQ")))

(defmethod M2 (?x ?y)

 :situation (<= ?x ?y)

 :response ((print "LE")))

(perform (M2 3 4))

 --> "LE"

(perform (M2 4 4))

 --> "LE"

 "EQ" both methods fire

(defaction M2 (?x ?y) :filters (:most-specific))

(perform (M2 4 4))

 --> "EQ" only the most specific method fires

