
U

S

C

I

S

I

Tuning for Performance

  Outline of talk:
• Classifier Performance
•  Recognizer Performance
•  Performance Tips
• CLOS Instances and the Backchainer

U

S

C

I

S

I

Performance
Where does the time go?

  In some systems, slow performance is due to
poorly-tuned code.

  In Loom, slow performance can result from
the enormous amount of inferencing that
occurs under the hood.

U

S

C

I

S

I

Classifier Performance

  Classifier Phases
(1) normalization (compute closure of ~100

inference rules)
(2) classification (compute subsumption

links — very fast)
(3) completion (normalize constraints)
(4) sealing (compile access functions)

U

S

C

I

S

I

Classifier Performance

  Classifier Phases
(1) normalization (3) completion
(2) classification (4) sealing

  Bulk of time is spent in phases (1) and (3),
normalizing features:

(i) start with local features (:at-most, :at-least, :all, ...);
(ii) inherit features from parent concepts;
(iii) compute larger set of features (deductive closure);
(iv) keep only the most specific features;
(v) classify the remaining features.

U

S

C

I

S

I

Speeding Up Normalization

  Each constraint in Loom represents a rule of
inference (not just a type check).

  The overhead of normalization depends on
the number of features per concept (it’s
estimated to be quadratic in the number of
features).

  So, a simple way to speed up an application is
to specify fewer constraints :-).

U

S

C

I

S

I

Speeding Up Normalization
(cont.)

  Loom permits you to lobotomize the classifier
• “(power-level :medium)” causes Loom to

ignore a few of the most expensive
normalization rules.
• “(power-level :low)” causes Loom to make

a single pass over the normalization rules
(rather than computing their closure).

U

S

C

I

S

I

Load-Time vs. Run-Time
Classification

  Most applications perform the bulk of
classification at load time; for them, speed of
classification may not be critical.

– Normally, run-time production of new system-
generated descriptions will quiesce (no more “.”s
and “+”s);

U

S

C

I

S

I

Recognizer Performance

  An explicit call by an application (e.g., (tellm))
triggers reclassification of updated instances .

  Recognition strategy:
• For each instance on the queue

(1) normalize asserted and inherited features;
(2) classify the instance;
(3) install dependency bombs (TMS monitors);
(4) test for incoherence;
(5) propagate forward constraints.

  Steps 1-5 are applied to each instance at least
two times (once each in strict and default mode).

U

S

C

I

S

I

Classifying Instances
During the recognition process, each feature in a concept

definition represents a miniature query.

Examples:

 (:at-least k R)

 Retrieve fillers of the role R;

 Succeed if the number of fillers is at least k.

 (:at-most k R)

 If role R is closed, retrieve fillers of the role R;

 Succeed if the number of fillers is at most k.

 (:all R A)

 If role R is closed, retrieve fillers of the role R;

 Succeed if each of the fillers satisfies the concept A.

The bulk of recognition time consists of computing feature
satisfaction and truth maintaining the results.

U

S

C

I

S

I

Testing for Closed Roles

  Probing features such as (:all R A) or (:at-
most k R) usually entails proving that the role
R is closed.

  This test is fast if
• R has the :closed-world property, or
• R is :single-valued and a role filler exists.

  Tip : Always specify the :single-valued
and :closed-world properties on relations
whenever they are valid for your application
domain.

U

S

C

I

S

I

Subtlety in the semantics of role
closure:

(defconcept A

 :implies (:at-least 1 R))

(defrelation R

 :characteristics (:closed-world))

(tell (Thing Joe)

 (A Fred))

• The role “(R of Joe)” is closed, but the role
"(R of Fred)” is not closed.

U

S

C

I

S

I

Domain and Range Constraints

  Tip : Always specify domain and range
constraints for a relation (unless they are
inherited from a parent relation).

(defrelation R :domain A :range B)

(tellm (R Fred Joe))
➛  Loom infers that Fred satisfies A and that

Joe satisfies B.

(defconcept A :implies (:exactly 1 R))

(defrelation R :domain A)
➛  Loom infers that R is :single-valued.

U

S

C

I

S

I

Performance Warnings

  A ``no generator found'' performance warning
indicates that a query will exhibit abysmal
performance.
• Slower (sometimes) :
 (retrieve (?x ?y) (R ?x ?y))
• Faster (sometimes) :
 (retrieve (?x ?y)

 (and (A ?x) (R ?x ?y)))

• If no domain is specified for R, the slower
query will scan the entire kb to generate
bindings for ?x.

U

S

C

I

S

I

Performance Tips:
  Tip : Always rephrase definitions or queries

to eliminate performance warnings.

  Tip : Never wrap an eval around an ask or
retrieve unless you are single, childless, and
have no desire to graduate, e.g.,
• (eval `(retrieve (?y) (and (R ,foo ?y) (A ?y)))

  Tip: To programmatically compose a query
on the fly, use “query” or bind variables:
• (query ‘(?y) `(and (R ,foo ?y) (A ?y)))
• (let ((?x foo))

 (retrieve (?y) (and (R ?x ?y) (A ?y)))) Better!

U

S

C

I

S

I

:perfect relations

  Marking a concept or relation :perfect tells
Loom that facts about it cannot change.
• Tip : Use of the :perfect properties reduces

match overhead.
• Tip : Computed relations are prime

candidates for the :perfect attribute .

(defrelation <>

 :domain Number :range Number

 :characteristics (:symmetric :perfect)

 :predicate /=)

U

S

C

I

S

I

How to Get No Recognition

  The overhead of instance classification
(recognition) is eliminated if you specify as a
creation policy :clos-instance or :lite-
instance.

  Deduction over CLOS instances and LITE
instances is backward chained, with no
caching.

  However (there is always a catch) inference
without instance classification is strictly
weaker than inference with it.

U

S

C

I

S

I

Deduction with CLOS and LITE
Instances

  With creation policy set to :clos-instance
or :lite-instance inference is performed
using backward chaining.

  The backchainer recognizes rules of the form
(implies A B) and
(implies <description> B)

but ignores rules of the form
(implies A <descriptions>)

U

S

C

I

S

I

Backward chaining and type
restrictions

  The design decision not to chain backwards
across value restrictions was a judgment call.
(defconcept A

 :implies (:all R B))

(tell (A Fred) (R Fred Joe))

(ask (B Joe)) --> ???

  The recognizer will prove that Joe satisfies B;
the backchainer won't.

