
U

S

C

I

S

I

Frequently Asked Questions

  Why Don’t Instances Get Recognized?
  Use of “:all”
  Use of “:for-all”
  Compiling Loom Code
  Combining Number Restrictions
  Why Doesn’t (:exactly 1 R) Clip?
  Why Aren’t Concepts Disjoint?
  My Concept Name Changed!
  Multiple Value Roles & Defaults
  Inverse Relations
  Loom vs. CLOS

U

S

C

I

S

I

FAQ:
Why Aren’t Instances Recognized?
  Why don’t instances get recognized as

belonging to a concept when I assert them?
• Time needs to be advanced:

 Use (tellm) or (new-time-point)
• Lite instances are being used instead of

classified instances:
 Use (creation-policy :classified-instance)

  How do I tell if I have classified or lite instances?
• Use the function (creation-policy).
• Subtle: Look at the printed representation:

Note case
of letter “i”

U

S

C

I

S

I

FAQ:
 Use of “:all”

  Value restrictions using :all
• (defrelation R)
• (defconcept C)
• (defconcept C-all
 :is (:and C (:all R C))

  Assertions
• (tell (C c1) (C c2) (R c2 c1))

  Query
• (retrieve ?x (C-all ?x))

U

S

C

I

S

I

FAQ:
 Use of “:all”

  Value restrictions using :all
• (defrelation R)
• (defconcept C)
• (defconcept C-all
 :is (:and C (:all R C))

  Assertions
• (tell (C c1) (C c2) (R c2 c1))

  Query
• (retrieve ?x (C-all ?x)) ==> NIL

  Why NIL? Because R is not closed, therefore
other unknown R fillers could exist which are
not Cs.

U

S

C

I

S

I

FAQ:
 Use of “:all”
  Value restrictions using :all
• (defrelation R
 :characteristics :closed-world)
• (defconcept C)
• (defconcept C-all
 :is (:and C (:all R C))

  Assertions
• (tell (C c1) (C c2) (R c2 c1))

  Query
• (retrieve ?x (C-all ?x))==>(c1 c2)

  Why both of them? How can all of c1’s R
fillers be Cs if c1 doesn’t have any Rs? Since
there are no such fillers, it is trivially fulfilled.

U

S

C

I

S

I

FAQ:
 Use of “:all”
  Value restrictions using :all
• (defrelation R
 :characteristics :closed-world)
• (defconcept C)
• (defconcept C-all
 :is (:and C (:all R C)
 (:at-least 1 R))

  Assertions
• (tell (C c1) (C c2) (R c2 c1))

  Query
• (retrieve ?x (C-all ?x))==>(c2)

  The :at-least 1 restriction expresses what we
really mean!

U

S

C

I

S

I

FAQ:
Proper use of “:for-all”
  Loom’s universal quantification is does not

have a type restriction built in. The
consequence is that special syntax is needed
inside :for-all constructs
• (defconcept C)
(defrelation R)
• (retrieve ?x
 (:for-all (?z)
 (:and (R ?x ?z) (C ?z))))

  This will produce an error message
• To successfully evaluate a universally
quantified clause, the clause must contain
at least one negated term. In this case,
the clause
 (|R|R ?X ?Z)
 does not.

U

S

C

I

S

I

FAQ:
Proper use of “:for-all”
  Logically speaking, the query
• (retrieve ?x
 (:for-all (?z)
 (:and (R ?x ?z) (C ?z))))

is extremely unlikely to be satisfied if ?z
ranges over all individuals in the knowledge
base. The query must be formulated to
restrict the value of ?z
• (retrieve ?x
 (:for-all (?z)
 (:implies (R ?x ?z) (C ?z))))

or equivalently
• (retrieve ?x
 (:for-all (?z)
 (:or (:not (R ?x ?z)) (C ?z))))

U

S

C

I

S

I

FAQ:
Compiling Loom Code

  Loom performs code generation and
optimization during macro-expansion of the
forms “tell”, “forget”, “ask” and “retrieve”

  The proper expansion of the code requires
that all definitions referenced in the form be
available
• Definition files must therefore be loaded

before assertion or query files are
compiled
• If definitions are in the same file, then they

must be enclosed by an “eval-when” form
specifying compile time evaluation. The
last form in the eval-when should be a call
to “finalize-definitions”

U

S

C

I

S

I

FAQ:
Compiling Loom Code

  Certain redefinitions (such as changing a
relation from single to multipleneral rule, all
code which uses definitions should be
recompiled when those definitions change.

U

S

C

I

S

I

FAQ:
Combining Number Restrictions

  Loom has a (limited) ability to reason about
number restrictions and their combinations

  Example
• (defrelation R)
(defconcept C)
(defconcept -C :is (:not C))
(defconcept A
 :is (:and C (:at-least 2 R C)
 (:at-least 2 R -C)))
• (tell (A a1))
• (ask (:about a1 (:at-least 2 R))) ==> T
(ask (:about a1 (:at-least 4 R))) ==> T
(ask (:about a1 (:at-least 5 R))) ==> NIL

  Loom knows C and -C are disjoint, so there
must be at least 4 fillers of R on any A.

U

S

C

I

S

I

FAQ:
Combining Number Restrictions
  Inference is not complete in all cases
  Example
• (defrelation R)
(defconcept C)
(defconcept -C :is (:not C))
(defconcept A
 :is (:and C (:at-least 2 R C)
 (:at-most 3 R)))
• (tell (A a1))
• (ask (:about a1 (:at-most 3 R))) ==> T
(ask (:about a1 (:at-most 3 R C))) ==> T
(ask (:about a1 (:at-most 1 R -C))) ==> NIL
(ask (:about a1 (:at-most 3 R -C))) ==> T

  Loom cannot infer the upper limit on -C fillers
based on the upper limit on R and the lower limit
on fillers of type C

WRONG!

U

S

C

I

S

I

FAQ:
Why Doesn’t (:exactly 1 R) Clip?
  Number restriction in concept definition
• (defrelation R)
• (defconcept C
 :is-primitive (:exactly 1 R))

  Assertions
• (tell (C c1) (R c1 3))
• (tell (R c1 4))

  Query
• (retrieve ?x (R c1 ?x))==>(3 4)

  The assertion of C and of the two role fillers
have equal weight. There is no logical
preference for one over the other.

U

S

C

I

S

I

FAQ:
Why Doesn’t (:exactly 1 R) Clip?

  To get clipping the relation itself must be
asserted to be single-valued:
• (defrelation R
 :characteristics :single-valued)

  Or Loom must be able to infer that R must be
single-valued:
• (defrelation R :domain C)
• (defconcept C
 :is-primitive (:exactly 1 R))
• Since the domain of R is C all instances that

have R fillers must also be of type C. Since C
only has 1 R, R must be single-valued.

U

S

C

I

S

I

FAQ:
Why Aren’t Concepts Disjoint?
  Example
• (defrelation R :attributes :closed-world)
(defconcept A)
(defconcept B)
(defconcept C :is (:and A (:all R A)))
• (tell (A a1) (B b1) (R a1 b1))
• (ask (C a1) ==> NIL (Good!)
(ask (:not (C a1)) ==> NIL (Huh?)

  Why can’t Loom conclude that a1 is not a C?

  Because concepts are not disjoint by default.

Just because b1 is a B, it doesn’t preclude it
from being an A as well.

U

S

C

I

S

I

FAQ:
Why Aren’t Concepts Disjoint?
  Example
• (defrelation R :attributes :closed-world)
(defconcept A)
(defconcept B)
(defconcept C :is (:and A (:all R A)))

  Alternate Fixes
• (defconcept A :implies (:not B))
• (defconcept A
 :characteristics :closed-world)
• Make A and B members of a partition.

  Solution
• (tell (A a1) (B b1) (R a1 b1))
• (ask (C a1) ==> NIL
(ask (:not (C a1)) ==> T

U

S

C

I

S

I

FAQ:
My Concept Name Changed!

  Consider these definitions
• (defrelation R)
(defconcept A)
(defconcept B :is (:and A (:some R A)))
(defconcept C :is (:and A (:some R A)))

  Note identical definitions of B and C.
• (tell (C c1))
(get-types ‘c1) ==> (|C|B |C|A |C|THING)

  What happened to the concept C?

U

S

C

I

S

I

FAQ:
My Concept Name Changed!

  Consider these definitions
• (defrelation R)
(defconcept A)
(defconcept B :is (:and A (:some R A)))
(defconcept C :is (:and A (:some R A)))

  Note identical definitions of B and C.
• (tell (C c1))
(get-types ‘c1) ==> (|C|B |C|A |C|THING)

  What happened to the concept C? It merged!
• (ask (C c1)) ==> T
(find-concept ‘c) ==> |C|C

  Loom can find and use it under either name,
but only one name is used for display.

U

S

C

I

S

I

FAQ:
Multiple Value Roles & Defaults

  Definitions
• (defrelation R)
• (defconcept C
 :defaults (:filled-by R 5))

  Assertions
• (tell (C c1) (C c2) (R c2 4))

  Queries
• (retrieve ?x (R c1 ?x))
• (retrieve ?x (R c2 ?x))

U

S

C

I

S

I

FAQ:
Multiple Value Roles & Defaults

  Definitions
• (defrelation R)
• (defconcept C
 :defaults (:filled-by R 5))

  Assertions
• (tell (C c1) (C c2) (R c2 4))

  Queries
• (retrieve ?x (R c1 ?x)) ==> (5)
• (retrieve ?x (R c2 ?x)) ==> (5 4)

U

S

C

I

S

I

FAQ:
Multiple Value Roles & Defaults

  Problem: You can’t easily get rid of default
fillers on multiple-value roles

  Solution: Consider only using them on
single-value roles

U

S

C

I

S

I

FAQ:
Multiple Value Roles & Defaults

  Problem: You can’t easily get rid of default
fillers on multiple-value roles

  Solution: Consider only using them on
single-value roles

  Non-solution: Use forget to get rid of default
value. Doesn’t work because forget just
withdraws support for assertions. Loom can
prove the value a different way (default
inference)

  Solution 2: Assert the negation. Note that this
is very clumsy and not our first choice
recommendation
• (tell (:not (R c2 5)))

U

S

C

I

S

I

FAQ:
My New Inverse Doesn’t Work!

  If I define a new inverse relation, the old
assertions don’t work properly:
(defrelation R)
(tell (R Fred Sue) (R Bill Sue))
(defrelation R-1 :is (:inverse R))
(retrieve ?x (R-1 Sue ?x)) => NIL

  Why weren’t Bill and Fred returned?

U

S

C

I

S

I

FAQ:
My New Inverse Doesn’t Work!

  If I define a new inverse relation, the old
assertions don’t work properly:
(defrelation R)
(tell (R Fred Sue) (R Bill Sue))
(defrelation R-1 :is (:inverse R))
(retrieve ?x (R-1 Sue ?x)) => NIL

  Why weren’t Bill and Fred returned?
• Loom implements inverse relations by

explicitly asserting the inverse relation
• Since R-1 did not exist when “R Fred Sue”

was asserted, the inverse assertion was
not made

U

S

C

I

S

I

FAQ:
Can’t Strings Have Inverses?

  Why doesn’t the following work?
(defrelation Name)
(defrelation Name-of
 :is (:inverse Name))

(tell (R Sue “Sue Jones”)) => Error

U

S

C

I

S

I

FAQ:
Can’t Strings Have Inverses?

  Why doesn’t the following work?
(defrelation Name)
(defrelation Name-of
 :is (:inverse Name))

(tell (R Sue “Sue Jones”)) => Error
  The inverse assertion can’t be made!
• Built-in types (such as numbers, strings

and symbols) cannot have assertions
made about them.
• The objects are too primitive to support

assertions
• Inverses are implmented as assertions

U

S

C

I

S

I

FAQ:
Loom vs. CLOS

  Loom has multiple slots with the same name
  Loom “type” hierarchies are determined

structurally
  Loom relation names have significance in

determining the type of objects
  Loom instances can have slots added on the

fly without redefinition
  Loom has a query language

