
U

S

C

I

S

I

Background

Description Logic Systems

Thomas Russ

U

S

C

I

S

I

Historic Background

Semantic Links

Provide a method of organizing knowledge in a

computer system that relied on links between
objects to convey meaning.

Structural Classification

Observation that by attaching formal meanings

to particular links, one could make useful
inferences about the relationship between
different objects.

U

S

C

I

S

I

Loom is a Description Logic�
with a Classifier

  Description Logic

–  Declarative Formalism

–  Specialized for Writing Descriptions

–  Has Well-defined Semantics

–  Supports Automated Inference

  Classifier

–  Computes Subsumption 

Subsumption = Superset 

–  Automatically Manages Type Hierarchy

U

S

C

I

S

I

Definitions

A definition is a description of a concept or a
relationship. It is used to assign a meaning to a
term.

In description logics, definitions use a specialized
logical language.

Description logics are able to do limited reasoning
about concepts expressed in their logic. One
important inference is classification
(computation of subsumption).

U

S

C

I

S

I

Necessary versus Sufficient

Necessary properties of an object are those
properties that are common to all objects of that
type.

Being a man is a necessary condition
for being a father.

Sufficient properties are those properties that
allow one to identify an object as belonging to a
type. They do not have to be common to all
members of the type.

Speeding is a sufficient reason for
being stopped by the police.

Definitions are often necessary and sufficient

U

S

C

I

S

I

Subsumption

Meaning of Subsumption

A more general concept is said to subsume a

more specific concept. Members of a
subsumed concept are necessarily members
of a subsuming concept

Formalization of Meaning

Logic

Satisfying a subsumed concept implies that
the subsuming concept is satisfied.

Sets

The instances of subsumed concept are

necessarily a subset of the subsuming
conceptʼs instances.

U

S

C

I

S

I

How Does Classification Work?

animal

mammal

dog

sick animal

rabies

disease has

“A dog is
a mammal”

“A sick animal
has a disease”

“rabies is
a disease”

U

S

C

I

S

I

Defining a “rabid dog”

animal

mammal

dog

sick animal

rabies

disease has

rabid dog

has

U

S

C

I

S

I

Loom Concludes “sick animal”

animal

mammal

dog

sick animal

rabies

disease has

has

rabid dog

U

S

C

I

S

I

Defining “rabid animal”

animal

mammal

dog

sick animal

rabies

disease has

has

rabid dog rabid animal

has

U

S

C

I

S

I

Loom Places Concept in Hierarchy

animal

mammal

dog

sick animal

rabies

disease has

has

rabid dog

rabid animal has

U

S

C

I

S

I

Primitive versus Structured
(Defined)

Description logics reason with definitions. They
prefer to have complete descriptions.

This is often impractical or impossible, especially
with natural kinds.

A “primitive” definition is an incomplete definition
with the missing element known as the
primitiveness. This limits the amount of
classification that the system can do
automatically.

Example:

Primitive: A Person

Defined: Parent = Person with at
least 1 child

U

S

C

I

S

I

Intentional versus Extensional
Semantics

Extensional Semantics are a model-theoretic idea.
They define the meaning of a description by
enumerating the set of objects that satisfy the
description.

Intensional Semantics defines the meaning of a
description of based on the intent or use of the
description.

Example:

Morning-Star Evening-Star

Extensional: Same object, namely Venus

Intensional: Different objects, one meaning

venus seen in the morning and one in the
evening.

U

S

C

I

S

I

Definition versus Assertion

A definition is used to describe intrinsic
properties of an object. The parts of a
description have meaning as a part of a
composite description of an object

An assertion is used to describe an incidental
property of an object. Asserted facts have
meaning on their own.

Example

A black telephone

Could be either a description or an
assertion, depending on the meaning and
import of “blackness” on the concept
telephone.

U

S

C

I

S

I

Open versus Closed World
Semantics

Open world recognizes that all information is not
available to the system.

Closed world assumes that all (relevant)
information about the domain is known to the
system.

• “Negation as Failure”

• Common database semantics

Loom offers a choice.

U

S

C

I

S

I

Basic Introduction to Loom

Thomas A. Russ 

USC

Information Sciences Institute

U

S

C

I

S

I

What Is Loom?

  Loom is a Knowledge Representation Language

  Loom is a Description Logic

  Loom is in the KL-ONE Family of Languages

  Loom is a Programming Framework

U

S

C

I

S

I

Concepts, Relations and Instances

  Concepts are types. Logically they are unary
predicates.

Dog, Mailman, Theory

  Relations are tuples. Logically they are n-ary
predicates. (Most relations can also be used as
logical functions)

owned-by, employer-of, proof-for

  Instances are individuals in a domain. They
may belong to one or more concepts and
participate in relations.

Fido, Fred, Evolution

U

S

C

I

S

I

Subsumption

  The main organizing principle behind a
description logic is the computation of
subsumption.

  Concept C1 subsumes another concept C2 when
all members of C2 must be members of C1.

Mammal subsumes Dog

  C1 is more general and is a super-concept 
C2 is more specific and is a sub-concept

  Concepts are not related by subsumption are
called siblings.

U

S

C

I

S

I

Subsumption Calculation

  Loom computes structural subsumption. That
means that the subsumption test is based on
the structure, or definition, of concepts and
relations.

  Description logics are derivatives of predicate
calculus enhanced by additional combination
operators. Subsumption is defined in terms of
these additional operators.

  Subsumption calculations are done
automatically and allow Loom to maintain and
organize the knowledge base as it evolves.

U

S

C

I

S

I

Loom Has Two Main Parts to a
Knowledge Base

  The concepts and relations form the
terminology. It is the domain-specific language.
This is often called the TBox.

  Assertions are domain facts. They are made
about individuals called instances. This is
often called the ABox.

Assertions use the terminology of the TBox.

  Instances can belong to concepts and
participate in relations.

U

S

C

I

S

I

Loom Supports Two Languages

  The definition language is used to define
terminology. The definitions of concepts and
relations are written using this language.

The definition language is variable-free.

  The query language is used to write questions

that are matched against the knowledge base.
Queries can be yes/no questions or can request
the retrieval of matching instances.

The query language uses variables identified
with a leading question mark (?).

  Assertions are made using the query language
(but all variables must be bound)

U

S

C

I

S

I

A Non-Critical Blood Pressure is “a
Systolic B.P. between 85 and 160.”

Non-Critical
Systolic BP

Systolic
Blood Pressure

•pressure

>= 85

•pressure

<= 160

U

S

C

I

S

I

Non-Critical
Systolic BP

Normal
Systolic BP

Systolic
Blood Pressure

•pressure

>= 90

•pressure

>= 85

•pressure

<= 140
•pressure

<= 160

Normal Systolic B.P. is “a Systolic
B.P. between 90 and 140.”

U

S

C

I

S

I

Non-Critical
Systolic BP

Normal
Systolic BP

Systolic
Blood Pressure

Joe’s BP

?

•pressure

>= 90

•pressure

>= 85

•pressure

<= 140
•pressure

<= 160

If Joe’s BP is Normal is it also�
Non-Critical?

U

S

C

I

S

I

Non-Critical
Systolic BP

Normal
Systolic BP

Systolic
Blood Pressure

•pressure

>= 90

•pressure

>= 85

•pressure

<= 140
•pressure

<= 160

Concept Classification Infers Normal
BP is Subsumed by Non-Critical BP

U

S

C

I

S

I

Non-Critical
Systolic BP

Normal
Systolic BP

Systolic
Blood Pressure

Joe’s BP

!

•pressure

>= 90

•pressure

>= 85

•pressure

<= 140
•pressure

<= 160

With Classified Concepts the Answer
is Easy to Compute

U

S

C

I

S

I

TBox:�
Syntax for Definitions

Concept Definitions

(defconcept <name> 
 :is <definition>)

(defconcept <name> 
 :is-primitive <definition>)

Relation Definitions

(defrelation <name> 
 :is <definition> 
 :domain <domain> 
 :range <range> 
 :arity <integer>)

U

S

C

I

S

I

Defconcept�
:and, :or, :not

Concepts Defined in Terms of Others

(:and <concept> <concept> ...)

(defconcept Slave-Boy 
 :is (:and Slave Boy))

(defconcept Major 
 :is (:or Engineering 
 Liberal-Arts 
 Sciences))

(defconcept Male :is (:not Female)) 

Note that “slave” subsumes “slave-boy” but that
“major” subsumes “sciences”

U

S

C

I

S

I

Defconcept�
:at-least, :at-most, :exactly

Number Restrictions on Relations

(:at-least <number> <relation>) 

(defconcept 4-Door 
 :is (:and Car  
 (:exactly 4 has-door)))

(defconcept Parent 
 :is (:and Person 
 (:at-least 1 has-child)))

(defconcept Parent2 
 :is (:and Person 
 (:at-least 2 has-child)))

“Parent” subsumes “Parent2”

U

S

C

I

S

I

Defconcept�
:all, :some

Range Restrictions on Relations

(:all <relation> <concept>)

(defconcept Parent-of-Girls 
 :is (:and Person 
 (:at-least 1 has-child) 
 (:all has-child Female)))

(defconcept Parent-with-Son 
 :is (:and Person 
 (:some has-child Male)))

“:some” implies “:at-least 1”

“:all” does not imply “:at-least 1”

Booby Trap!

U

S

C

I

S

I

Defconcept�
:the

Combination of “:exactly 1” and “:all”

(:the <relation> <concept>) 

(defconcept Exclusive-Ford-Dealer 
 :is (:and Business 
 (:the sells Ford)))

(defconcept Exclusive-Ford-Dealer 
 :is (:and Business 
 (:exactly 1 sells) 
 (:all sells Ford)))

U

S

C

I

S

I

Defconcept�
:filled-by, :not-filled-by

Restricts relations to have specific instance fillers

(or non-fillers)

(:filled-by <relation> <instance> ...) 

(defconcept USC-Employee 
 :is (:and Person 
 (:filled-by employer USC)))

“USC” is an instance, which will be created by
Loom if necessary. 

(defconcept Upperclassman 
 :is (:and Person 
 (:not-filled-by 
 college-year 1 2)))

U

S

C

I

S

I

Defconcept�
:same-as, :subset

Restrictions on the values of relations|

(:same-as <relation> <relation>) 

(defconcept In-Town-Worker 
 :is (:and Person 
 (:same-as work-location 
 residence)))

An “in-town-worker” has a work location that is
the same value as the residence. 

(defconcept Contented-Worker 
 :is (:and Person 
 (:subset work-assignments 
 interests)))

U

S

C

I

S

I

Defconcept�
:relates, comparisons

Arbitrary relations between role fillers

(:relates <relation> <relation> ...) 

(defconcept Socially-Linked-to-Boss 
 :is (:and Person 
 (:relates Brother 
 Best-Friend 
 Boss))) 

Special cases for numeric comparisons

(defconcept Oversubscribed-Course 
 :is (:and Course 
 (> course-participants 
 course-size)))

U

S

C

I

S

I

Defconcept�
:satisfies

More expressive escape. “:satisfies” introduces
variables and allows more expressive
statements

(:satisfies <variable> <query>) 

(defconcept Lender 
 :is (:satisfies (?x) 
 (:exists (?z) 
 (owes-money-to ?z ?x))))

Drawback: Loom canʼt do as much reasoning
about subsumption.

Tip: Rewrite to Use Specialized Forms

U

S

C

I

S

I

Defconcept Qualified Restrictions�
:at-least, :at-most, :exactly

Qualified Number Restrictions on Relations

(:at-least <number> <relation> <concept>)  

(defconcept corporation 
 :is (:and Business-Entity  
 (:exactly 1 employee  
 President)))

(defconcept Parent-of-son 
 :is (:and Person 
 (:at-least 1 child Male)))

(defconcept Parent-of-son2 
:is (:and Person (:some child Male)))

“Parent of son” is the same as “Parent of son 2”

U

S

C

I

S

I

Defconcept Qualified Restrictions �
:all

Qualified Range Restrictions on Relations

(:all <relation> <concept> <concept>)

(defconcept Unenlightened-Company 
 :is (:and Company 
 (:all employee Male 

 Supervisor)))

A company, all of whose employees who are
supervisors are Male.

“Supervisor” qualifies “employee” and limits the
set to which the “Male” restriction applies.

Nothing is said about non-Supervisor employees

U

S

C

I

S

I

Defconcept Qualified Restrictions �
:all

Contrast

(defconcept Unenlightened-Company 
 :is (:and Company 
 (:all employee Male 

 Supervisor)))

(defconcept Unenlightened-Company2 
 :is (:and Company 
 (:all employee 
 (:and Male Supervisor)))

[1] can have female employees who are not
supervisors. [2] has no female employees

[1] can have employees who are not supervisors. 
All of [2]ʼs employees must be supervisors.

[1]

[2]

U

S

C

I

S

I

Defconcept Keywords

:partitions

The name of a partition, the members of

which divide the concept into disjoint sub-
concepts.

:exhaustive-partitions

A partition that is collectively exhaustive.

:in-partition

Member of a partition.

U

S

C

I

S

I

Defconcept Characteristics

  Values of the keyword :characteristics

:open-world, :closed-world

Declares the concept to use open or closed

world semantics. Closed world semantics
implies failure-as-negation. In other
words, closed world means all concept
members are known.

:monotonic, :perfect

Assertions wonʼt be retracted. For :perfect,

no subsequent assertions either.

U

S

C

I

S

I

Defrelation�
:and

Combination of relations. Fillers must satisify all
relations in the conjunction.

(:and <relation> <relation> ...)

(defrelation co-worker-friend 
 :is (:and friend co-worker))

Note: Relations cannot use “or”.

U

S

C

I

S

I

Defrelation�
:domain, :range

Restrictions on the domain or range of a relation

(:domain <concept>)

(defrelation son 
 :is (:and child 
 (:range male)))

(defrelation mother-of 
 :is (:and child  
 (:domain female)))

U

S

C

I

S

I

Defrelation�
:inverse

Defines the inverse relation

(:inverse <relation>)

(defrelation parent) ; primitive

(defrelation child  
 :is (:inverse parent))

A relation cannot be defined as its own inverse
using this syntax, since that would be a circular
definition. (See :symmetric later)

U

S

C

I

S

I

Defrelation�
:compose

Composition is used to chain relations

(:compose <relation> <relation> ...)

(defrelation grandfather 
 :is (:compose parent father))

(defrelation great-grandfather 
 :is (:compose parent 
 parent 
 father))

U

S

C

I

S

I

Defrelation�
:satisfies

Escape to allow more complicated descriptions of
relations by introducing variables

(:satisfies <variables> <query>)

(defrelation owns-same-stock 
 :is (:satisfies (?x ?y) 
 (:exists (?z) 
 (:and (Stock ?z) 
 (owns ?x ?z) 
 (owns ?y ?z)))))

U

S

C

I

S

I

Defrelation�
:domain and :range constraints

The domain and range of a relation can be
specified as constraints instead of definitions.

(defrelation owns-stock 
 :domain Person 
 :is (:and owns (:range stock))

Using constraints can be a way of avoiding
circular definitions.

Part of Definition

Non-definitional
constraint

U

S

C

I

S

I

N-Ary Relations

Loom relations do not need to be binary, but must
have a fixed arity

(defrelation love-triangle :arity 3)

(defrelation square :arity 4)

A “love-triangle” is a relationship among three
persons. A “square” is a relation between four
geometric points.

U

S

C

I

S

I

Relation Characteristics

:single-valued, :multiple-valued

Determines how many fillers allowed.

:symmetric

The relation is its own inverse.

:commutative

The order of the first N-1 arguments doesnʼt

matter.

:open-world, :closed-world

:monotonic, :perfect

Assertions wonʼt be retracted. For :perfect,
no subsequent assertions either.

U

S

C

I

S

I

Using :function and :predicate

The :function and :predicate arguments to
defconcept and defrelation allow the
specification of arbitrary decision parameters

(defconcept odd-Number 
 :is-primitive Number 
 :predicate oddp)

(defrelation plus 
 :arity 3 
 :function ((x y) (+ x y)))

Definition used
for subsumption

Predicate determines
membership

Function
arguments

Function
body

U

S

C

I

S

I

Using :function and :predicate

Either function names or lambda expressions
(without the “lambda”) can be used.

The function or predicate must be a complete test
for the concept or relation. The definition is
used only for subsumption computation.

Lisp functions used as :predicates have the same
arity as the concept (1) or relation.

Lisp functions used as :functions have take one
fewer arguments than the arity of the concept
or function.

 For example, concept :functions take no
arguments.

U

S

C

I

S

I

Assertions

Assertions can be for concept membership:

(tell (Dog Fido) (Man Jim) 
 (Politician Bush))

Assertions can be relation (role) fillers:

(tell (owner Fido Jim) 
 (supports Jim Bush))

U

S

C

I

S

I

Assertions with :about

Many assertions about a single individual gets
repetitious:

(tell (Man Jim) (Professor Jim) 
 (Republican Jim) (age Jim 45) 
 (department Jim Biology))

:about syntax shortens this by

(tell (:about Jim 
 Man Professor Republican 
 (age 45) 
 (department Biology))

The subject of the :about clause is not present in
any of the assertion forms.

U

S

C

I

S

I

Additional Assertions with :about

Certain assertions can only be made using :about
syntax. These are descriptive assertions rather
than ground facts:

(tell (:about Jim 
 (:at-least 2 brother) 
 (:at-most 1 job)))

U

S

C

I

S

I

Queries

Queries can be Yes/No questions:

(ask (Professor Jim))

(ask (:and (Professor Jim) 
 (brother Jim Fred) 
 (:not (brother Jim Bob))))

Queries can retrieve matching instances:

(retrieve ?prof (Professor ?prof))

 ==> (professor-1 prof-2 ...)

(retrieve (?prof) (Professor ?prof)) 
 ==> ((professor-1) (prof-2) ...)

U

S

C

I

S

I

Queries (cont.)

Multiple variables can also be used:

(retrieve (?x ?y) 
 (:and (married ?x ?y) (Happy ?y)))

(retrieve (?x ?y ?z) 
 (:and (friend ?x ?z) 
 (friend ?y ?z))))

U

S

C

I

S

I

Query Language

:and, :or

:not

The negation can be proven.

:fail

The positive cannot be proven.

:exists, :for-all

Introduces an existential or universal
variable.

:same-as

:collect, :set-of

Introduce sub-query that returns a set.

U

S

C

I

S

I

Query Language Examples

Retrieve friends of friends:

(retrieve (?x ?y) 
 (:exists (?z) 
 (:and (friend ?x ?z) 
 (friend ?z ?y))))

Retrieve people with a mutual friend

(retrieve (?x ?y) 
 (:exists (?z) 
 (:and (friend ?x ?z) 
 (friend ?y ?z))))

U

S

C

I

S

I

Query Language Examples (cont.)

Retrieve people all of whose brothers are older

(retrieve (?x) 
 (:for-all (?z) 
 (:implies (brother ?x ?z) 
 (> (age ?z) (age ?x))))) 

Retrieve people with more than 4 siblings:

(retrieve ?x  
 (:about ?x (:at-least 5 sibling)))

U

S

C

I

S

I

Query Language Examples (cont.)

Retrieve the number of people with happy
spouses:

(retrieve ?n 
 (count (:collect (?sp) 
 (:exists (?y) 
 (:and (person ?y) 
 (spouse ?y ?sp) 
 (happy ?sp)))) 
 ?n))

U

S

C

I

S

I

Getting Started

Start the Loom system.

  Create a new context (theory) and establish a
Lisp package:

(loom:use-loom “PROJECT”)

–  Creates a package named “PROJECT”

–  Creates a theory context named

“PROJECT-THEORY”

U

S

C

I

S

I

Examining the Knowledge Base

Printing concepts, instances, relations

(pc <conceptName>), (pi …), (pr …)

(pc parent) ==> 
 (defconcept Parent 
 :is (:and Person 
 (:at-least 1 child)))

Finding concepts, instances, relations

(fc <conceptName>), (fi …), (fr …)

(fc parent) ==> |C|Parent

(fr child) ==> |R|child

(fi Jim) ==> |I|JIM

U

S

C

I

S

I

Starting Over

Commands that clear the state of the knowledge
base and allow a new start:

  Clearing the current workspace:

(clear-context) 

  Clearing all workspaces. Restoring Loom to its
initial state:

(initialize-network) 

  Clearing instances in all contexts

(initialize-instances)

U

S

C

I

S

I

Loom: Basic Concepts

Thomas A. Russ

USC

Information Sciences Institute

U

S

C

I

S

I

Outline of Tutorial

LOOM Terminology

Definition Language

Classifier Examples

Assertion Language

Query Language

Additional Inferences

U

S

C

I

S

I

LOOM Terminology

Two Compartments

TBox for Definitions

ABox for Assertions (Facts)

U

S

C

I

S

I

TBox

Term Forming Language

Concepts

Relations

Subsumption Is Reasoning Method

Defines “Vocabulary” of Domain

U

S

C

I

S

I

Defconcept

(defconcept name

 [:is | :is-primitive]description)

Definition Options:

Primitive/Non-primitive

:is :is-primitive

Combination of Other Concepts

(:and A B) (:or C D)

Role Number Restrictions

 (:at-least 2 arms)

Role Type Restrictions

 (:some child male)

U

S

C

I

S

I

Defconcept Examples

(defconcept Soldier) 

(defconcept Medic

 :is (:and Soldier Medical-Personnel)) 

(defconcept Casualty

 :is (:and Person (:at-least 1 injuries)))

U

S

C

I

S

I

Defconcept

(defconcept name

 [:is | :is-primitive]descr options)

Additional Options:

Characteristics 
 :closed-
world :monotonic

Roles of the concept 

 (:roles R1 R2 R3) 
roles are relations that are
closely associated with a
particular concept 

U

S

C

I

S

I

Defconcept with roles

(defconcept Helicopter

 :roles (range payload))

U

S

C

I

S

I

Defrelation

(defrelation name

 [:is | :is-primitive]description)

Definition Options:

Primitive/Non-primitive

 :is :is-primitive

Relation to Other Concepts

 (:compose R S)

Domain and Range Restrictions

 (:domain person)

Characteristics

 :symmetric :closed-world

U

S

C

I

S

I

Necessary vs. Sufficient

Necessary and Sufficient

(defconcept A

:is (:and B C))

Necessary

(implies A (:and B C))

Sufficient

(implies (:and B C) A)

U

S

C

I

S

I

Observations About Definitions

The Loom language is “variable-free”

Requires special constructs and implicit bindings

(:at-least 2 Child Male)

Sometimes this isnʼt sufficiently expressive

U

S

C

I

S

I

Adding Expressivity (:satisfies)

Loom definitions can be made more expressive
with the “:satisfies” construct

:satisfies is used to introduce variables.

Example—Transitive closure 
(defrelation R*
 :is (:satisfies (?x ?y)
 (:or (R ?x ?y)
 (:exists ?z
 (:and (R ?x ?z)
 (R* ?z ?y))))))

Expressivity is higher, but Loom cannot do as
much inference with :satisfies clauses

U

S

C

I

S

I

Subsumption

(defconcept road)

(defconcept highway

 :is (:and road

 (>= speed-limit 45)))

(defconcept super-highway

 :is (:and road

 (>= speed-limit 55)))

 (defrelation speed-limit)

Speed-limit

Road

Highway

Super-Highway

Speed-limit

>= 45

>= 55

U

S

C

I

S

I

No Subsumption

(defconcept road)

(defrelation speed-limit)

(defconcept highway

 :is (:and road

 (:satisfies (?x)

 (>= (speed-limit ?x) 45))))

(defconcept super-highway

 :is (:and road

 (:satisfies (?x)

 (>= (speed-limit ?x) 55))))

Highway

Road

Super-Highway
Satisfies . . .
 Satisfies . . .

U

S

C

I

S

I

Relation Hierarchies

In Loom, relations can also be defined in
hierarchies

(defrelation child)
(defrelation son
 :is (:and child (:range Male)))

Assertions and queries donʼt have to match
syntactically, only semantically

If one asserts Joe is Tom’s son, then
asking for Tom’s children will
return Joe

Similarly, asserting that Joe is a
male and Tom’s child will let Joe be
retrieved by asking for Tom’s son

U

S

C

I

S

I

ABox

Uses TBox Vocabulary

Assertions About “Individuals”

Is-a

Role Values

Restrictions

U

S

C

I

S

I

Assertions

Basic Forms:

tell—Adds assertions to the knowledge
base

forget—Removes assertions from the
knowledge base

U

S

C

I

S

I

Assertions

Basic Syntax

Assert is-a concept

(tell (A Joe) (B Joe))

Instance Identifier
Concept Name

U

S

C

I

S

I

Assertions

Basic Syntax

Assert is-a concept

(tell (A Joe) (B Joe))

Assert role values

(tell (R Joe 3) (R Joe 4) (S Joe 2))

Instance Identifier

Role Name Role Value

U

S

C

I

S

I

Assertions

Basic Syntax

Assert is-a concept

(tell (A Joe) (B Joe))

Assert role values

(tell (R Joe 3) (R Joe 4) (S Joe 2))

:about Syntax

Used for multiple assertions about a
single individual:

(tell (:about Joe A B (R 3) (R 4) (S 2)))

Instance Identifier Role Name
Role Value

Concept Name

U

S

C

I

S

I

Assertions

Basic Syntax

Assert is-a concept

(tell (A Joe) (B Joe))

Assert role values

(tell (R Joe 3) (R Joe 4) (S Joe 2))

:about Syntax

Used for multiple assertions about a
single individual:

(tell (:about Joe A B (R 3) (R 4) (S 2)))

Allows assertion of restrictions

(tell (:about Jim (:at-least 3 R) (R 2)))

U

S

C

I

S

I

Queries

Ask About Grounded Facts 

Retrieve Individuals Matching Query Schema

U

S

C

I

S

I

Query Language

(ask statement)

Is fido a dog?:

 (ask (dog fido))

U

S

C

I

S

I

Query Language

(ask statement)

Is fido a dog?:

 (ask (dog fido))

(retrieve var-list query)

Return all dogs in the KB:

 (retrieve ?d (dog ?d))

U

S

C

I

S

I

Query Language

(ask statement)

Is fido a dog?:

 (ask (dog fido))

(retrieve var-list query)

Return all dogs in the KB:

 (retrieve ?d (dog ?d))

Return list of dogs and their
owners:

 (retrieve (?d ?o)
 (:and (dog ?d)
 (owner ?d ?o)))

 Note: Ownerless dogs are not returned.

U

S

C

I

S

I

Different Decompositions

Two Axes:

Cover

Partition

Enable different reasoning strategies.

U

S

C

I

S

I

Cover

(defconcept a)

(defconcept b)

(defconcept c)

(defconcept or-abc :is (:or a b c))

U

S

C

I

S

I

Cover

(defrelation r)

(defrelation s) 

(defconcept x)

(defconcept a

 :is-primitive (:and x (:at-most 1 r)))

(defconcept b

 :is-primitive (:and x (:at-most 0 s)))

(defconcept c :is-primitive x)

(defconcept or-abc :is (:or a b c))

(tell (or-abc Joe))

 ;Joe is one-of A, B, or C

(tell (R Joe 1) (R Joe 2) (S Joe 1))

(ask (C Joe)) ==> T

 ;because we can rule out A and B

; A common primitive parent
; (ie, “x”) is required for
; this inference to be made

U

S

C

I

S

I

Partition

(defconcept p :partitions p)

(defconcept x :is-primitive p

 :in-partition p)

(defconcept y :is-primitive p

 :in-partition p)

(defconcept z :is-primitive p

 :in-partition p)

(tell (x i2)) ==> |C|X

(tell (z i2)) ==> INCOHERENT

(forget (x i2)) ==> |C|Z

U

S

C

I

S

I

Mapping from Logic to an Object
Framework

Loomʼs language provides a logical description of
instances in terms of properties and restrictions

CLOS classes provide a physical description in
terms of slots

Loom concept descriptions can be mapped into
CLOS class definitions

U

S

C

I

S

I

Mapping from Logic to an Object
Framework

Superclasses can come from

The superconcepts (subsumption) of
the concept definition

Explicit specification via :mixin-
classes

Slots can be determined multiple ways

All :roles become slots

All restricted relations (:at-least,
etc.) in the concept definition
become slots

(Optional) All :domain restricted
relations become slots.

U

S

C

I

S

I

Mapping from Logic to an Object
Framework—Example

(defconcept C
 :is (:and A B X
 (:at-least 2 R)
 (:at-most 1 S))
 :roles (P Q)
 :mixin-classes (browser-item))

(defclass C (A B X browser-item)
 ((R :accessor R :initarg :R
 :initform nil)
 (S :accessor S ...)
 (P :accessor P ...)
 (Q :accessor Q ...)))

U

S

C

I

S

I

Summary

TBox Determines Domain Vocabulary

Definitions

Subsumption

Disjointness

ABox Describes Specific Domain

Instances

Facts

Queries Retrieve Information from the ABox

Yes/No Questions

Find Matching Instances

U

S

C

I

S

I

Modeling in a Medical Domain

Basic Concepts

Using Recognition

More Sophisticated Relations

Methods, Actions and Production Rules

U

S

C

I

S

I

Basic Concepts—Personnel

Primitive Concepts

(defconcept person)
(defconcept official-responder
 :is-primitive person)

Closed World Concepts

(defconcept medical-person
 :is-primitive person
 :characteristics :closed-world)

Defined Concepts

(defconcept medic
 :is (:and official-responder
 medical-person))

U

S

C

I

S

I

Basic Concepts—Personnel �
(alternate)

Primitive Concepts and Relations

(defconcept person)
(defrelation training)

Defined Concepts

(defconcept medical-person
 :is (:and person
 (:some training medical)))

(defconcept emergency-responder
 :is (:and person
 (:some training emergency)))

(defconcept medic
 :is (:and emergency-responder
 medical-person)))

U

S

C

I

S

I

Basic Concepts—Injury

Full set

(defconcept injury
 :is (:one-of ‘airway ‘breathing
 ‘circulation ‘neurologic-disability
 ‘exposure ‘head ‘neck ‘chest ‘other))

Subsets (subsumption calculated automatically)

(defconcept primary-injury
 :is (:one-of ‘airway ‘breathing
 ‘circulation ‘neurologic-disability
 ‘exposure))

(defconcept secondary-injury
 :is (:one-of ‘head ‘neck ‘chest ‘other))

U

S

C

I

S

I

Basic Concepts—Injury (alternate)

Subsets

(defconcept primary-injury
 :is (:one-of ‘airway ‘breathing
 ‘circulation ‘neurologic-disability
 ‘exposure))

(defconcept secondary-injury
 :is (:one-of ‘head ‘neck ‘chest ‘other))

Union specified by “or”

(defconcept injury
 :is (:or primary-injury
 secondary-injury))

U

S

C

I

S

I

Basic Relations—Injuries

Primitive

(defrelation injuries
 :characteristics :closed-world)

Defined (range restricted)

(defrelation primary-injuries
 :is (:and injuries
 (:range primary-injury)))

(defrelation secondary-injuries
 :is (:and injuries
 (:range secondary-injury)))

Closed world by inheritance

U

S

C

I

S

I

Basic Concepts—Casualties

Defined by number restrictions

(defconcept casualty
 :is (:and person
 (:at-least 1 injuries)))

(defconcept critical-casualty
 :is (:and person
 (:at-least 1
 primary-injuries)))

Negated concepts can also be formed

(defconcept non-critical-casualty
 :is (:and casualty
 (:at-most 0
 primary-injuries))) Needs closed world!

Implies ≥ 1 injuries

U

S

C

I

S

I

Basic Concepts—Negations

Negated concepts can also be expressed

(defconcept helper
 :is (:and person
 (:at-most 0 injuries)
 (:not medical-person)))

Recall that “medical-person” was declared to be
closed world

This is crucial to reasoning with “:not”

Without the closed world assumption, any

individual not explicitly asserted to not be a
medical-person could conceivably be one.

This uncertainty would inhibit recognition.

U

S

C

I

S

I

Using Recognition

Loom can recognize when assertions about
individuals causes them to fulfill definitions

This allows information to be added as it becomes
available

The logical consequences of the existing
information is always maintained

Example:

(tell (:about p2 Person
 (injuries ‘airway)
 (injuries ‘other)))

p2 is no longer a “Helper”

p2 is now a “Casualty” and a
“Critical Casualty”

U

S

C

I

S

I

Sophisticated Relations

Some relations can involve sophisticated
calculations

Loom provides a method for defining a relation
that is the result of a calculation rather than
an assertion

:predicate indicates a test for the
relation

:function indicates a generator for
the relation

Such relations are assumed to be
single-valued.

U

S

C

I

S

I

Sophisticated Relations—Geography

We need to associate a location with individuals

(defrelation location
 :characteristics :single-valued)

We want to calculate distance between locations

(defrelation distance-from-locations
 :arity 3
 :function grid-distance)

The auxiliary function does the calculation

(defun grid-distance (loc1 loc2)
 (sqrt (* (- (loc-x loc2)
 (loc-x loc1)))
 ...)))

U

S

C

I

S

I

Sophisticated Relations—Geography

We also want to find the distance between
individuals

(defrelation distance :arity 3
 :is (:satisfies (?x ?y ?d)

 (distance-from-location
 (location ?x)
 (location ?y)
 ?d)))

Direction can be handled analogously

Loom uses computed relations in backward

chaining mode only—Information is not
propagated forward.

U

S

C

I

S

I

Sophisticated Relations—�
Inference Direction

Concepts and relations can be defined in terms of
computed relations:

(defrelation in-range
 :is (:satisfies (?x ?y)

 (< (distance ?x ?y)
 (range ?x))))

This relation can be queried, but it will not
propagate information forward.

(ask (in-range helo-1 Hospital))
(retrieve ?c
 (:and (casualty ?c)
 (in-range helo-1 ?c)))

U

S

C

I

S

I

Sophisticated Relations—Alternate
Inheritance

Problem: How can we automatically update the
locations of individuals being transported by a
vehicle?

• Each time the vehicle moves, update all

passenger locations

• Determine the passenger location based on

the vehicle location

U

S

C

I

S

I

Base relation “contained-in” is single-valued

(defrelation contained-in
 :characteristics :single-valued)

Transitive Closures

(defrelation contained-in* :is
 (:satisfies (?x ?y)
 (:exists (?z)
 (:and (contained-in ?x ?z)
 (contained-in* ?z ?y))))))

Note the recursive definition

Sophisticated Relations—Transitive
Closures

U

S

C

I

S

I

Transitive Relation Idiom

Standard Definition of a Transitive Relation  
R* Based on the Relation R:

(defrelation R* :is
 (:satisfies (?x ?y)
 (:exists (?z)
 (:and (R ?x ?z)
 (R* ?z ?y))))))

U

S

C

I

S

I

Base relation “position” is single-valued

(defrelation position
 :characteristics :single-valued)

Transitive Closures

(defrelation position* :is
 (:satisfies (?x ?y)
 (:exists (?z)
 (:and (contained-in* ?x ?z)
 (position ?z ?y))))))

The transitive link is followed in this relation to
find a ?z with a position. Note that this will find
ALL such ?zʼs!

Sophisticated Relations—Following
a Transitive Link

U

S

C

I

S

I

Base relation requires inverse

(defrelation contained-in)
(defrelation contains
 :is (:inverse contained-in))

“position” inherits via “contained-in”

(defrelation position
 :inheritance-link contained-in)

This allows the creation of meaningful “part-of”
hierarchies, with inheritance of appropriate
properties.

Sophisticated Relations—Alternate
Inheritance Path

U

S

C

I

S

I

Methods, Actions and Production
Rules

Methods specify procedures that are specialized
by Loom queries

Loom methods have a richer vocabulary than
CLOS methods

Actions specify properties of methods such as
selection rules

Production rules trigger on changes in the state of
the knowledge base

Production rules allow a reactive or event-driven
style of programming

U

S

C

I

S

I

Example Method

(defmethod assess-casualty (?medic ?casualty)
 :situation
 (:and (Medic ?medic)(casualty ?casualty))
 :response
 ((format t "~%Medic ~8A examines ~8A"
 ?medic ?casualty)
 (tell (examined ?casualty 'yes)))
)

U

S

C

I

S

I

Example Method

(defmethod assess-casualty (?medic ?casualty)
 :situation
 (:and (Medic ?medic)(casualty ?casualty))
 :response
 ((format t "~%Medic ~8A examines ~8A"
 ?medic ?casualty)
 (tell (examined ?casualty 'yes)))
)

Query determines applicability

U

S

C

I

S

I

Example Method

(defmethod assess-casualty (?medic ?casualty)
 :situation
 (:and (Medic ?medic)(casualty ?casualty))
 :response
 ((format t "~%Medic ~8A examines ~8A"
 ?medic ?casualty)
 (tell (examined ?casualty 'yes)))
)

Query determines applicability

Lisp code in the response

U

S

C

I

S

I

Example Method

(defmethod assess-casualty (?medic ?casualty)
 :situation
 (:and (Medic ?medic)(casualty ?casualty))
 :response
 ((format t "~%Medic ~8A examines ~8A"
 ?medic ?casualty)
 (tell (examined ?casualty 'yes)))
)

Query determines applicability

Lisp code in the response

Loom assertions in the response

U

S

C

I

S

I

Methods Can Be Performed
Immediately or Scheduled

To call a method immediately use the “perform”
function

To schedule a method for execution use the
“schedule” function

Scheduled methods can be given a priority (the

built-in priorities are :high and :low)

Methods are performed the next time there is a

knowledge base update (ie, “tellm”)

Methods are executed in accordance with the

priority

Within a priority methods are executed in the

ordered they were scheduled

U

S

C

I

S

I

The :situation Determines Method
Applicability

(defmethod treat-patient (?medic ?patient)
 :situation (:and (medic ?medic)
 (critical-casualty ?patient)
 (examined ?patient 'no))
 :response
 ((schedule (goto ?medic ?patient)
 :priority :high)
 (schedule (assess-casualty ?medic ?patient)
 :priority :high)))

(defmethod treat-patient (?medic ?patient)
 :situation (:and (medic ?medic)
 (non-critical-casualty ?patient)
 (examined ?patient 'no))
 :response
 ((schedule (goto ?medic ?patient)
 :priority :low)
 (schedule (assess-casualty ?medic ?patient)
 :priority :low)))

U

S

C

I

S

I

More on Choosing a Method

Often several methods are applicable to a
particular situation. “defaction” forms can
specify how to resolve ambiguities

• Choose all applicable methods

• Choose the most specific method

• Choose the last method defined

• Choose a method at random

• Issue a warning

• Cause an error

These resolution methods can be combined and
are used in order

U

S

C

I

S

I

Example of Combined Resolution

If both secondary and primary injuries exist, :most-
specific does not give a single result

Multiple selection criteria resolves the problem

(defaction treat-injury (?medic ?patient)
 :filters (:most-specific :select-all))

The criteria are prioritized

Avoids the need to define methods for all

combinations of concepts

Injury

Secondary
Injury

Primary
Injury

Method treat-injury
has a definition for
all three concepts

U

S

C

I

S

I

Methods Can Also Have�
Query-Based Iteration

Finding all casualties reported on Medicʼs
clipboard

(defmethod locate-casualties (?medic)
 :situation (medic ?medic)
 :with (casualties
 (clipboard ?medic) ?c)
 :response (...))

The response is executed once for each ?c
that the query in the :with clause finds.

In the response ?medic is bound to the
method argument and ?c to a particular
casualty reported on the medicʼs clipboard.

U

S

C

I

S

I

Production Rules Trigger on
Changes in the Knowledge Base

The changes can be additions to the KB

(:detects) 

This applies to relation additions and concept
additions

The changes can be deletions from the KB (

(:undetects) 

This applies to relation deletions and concept
deletions

The change can be in a relation value

(:changes)

U

S

C

I

S

I

Noticing a New Injury

(defproduction notice-injury
 :when ((:and (:detects (injury ?self ?i))
 (phone ?i ?phone)))
 :do ((perform (report-injury ?phone ?i)))

The :detects clause triggers the production

The additional query (phone ?i ?phone) is a

guard clause and also provides an additional
variable binding

The variables from the :when clause are bound
for the execution of the production body. In this
example, the injury is reported using a phone by
calling the method “report-injury”. 
A different method could be used if a radio were
available.

U

S

C

I

S

I

Extended Example

Hospital Knowledge Base

Definitions and Queries

U

S

C

I

S

I

Extended Query Example:�
Hospital Knowledge Base

(defconcept facility)

(defconcept hospital :is

 (:and facility

 (:at-least 1 ward-capacity)))

(defrelation ward-capacity 
 :domain hospital)

(tell (:about h-1

 (ward-capacity 120)

 (ward-capacity 120)

 (ward-capacity 100)))

(tell (:about h-2

 (ward-capacity 110)

 (ward-capacity 90)))

U

S

C

I

S

I

Is H-1 a Hospital?

(tell (:about h-1

 (ward-capacity 120)

 (ward-capacity 120)

 (ward-capacity 100)))

U

S

C

I

S

I

Is H-1 a Hospital?

(defrelation ward-capacity

 :domain hospital

 :range ...)

 Yes, for classified instances,

 because of the :domain entry in

(tell (:about h-1

 (ward-capacity 120)

 (ward-capacity 120)

 (ward-capacity 100)))

U

S

C

I

S

I

How Many Wards for H-1?

(tell (:about h-1

 (ward-capacity 120)

 (ward-capacity 120)

 (ward-capacity 100)))

U

S

C

I

S

I

How Many Wards for H-1?

(pi h-1) ==>

 (:ABOUT H-1...

 (WARD-CAPACITY 120)

 (WARD-CAPACITY 100))

 ONLY 2!

(tell (:about h-1

 (ward-capacity 120)

 (ward-capacity 120)

 (ward-capacity 100)))

U

S

C

I

S

I

What Does This Query Ask?

(retrieve (?x ?y)

 (> (ward-capacity ?x)

 (ward-capacity ?y)))

U

S

C

I

S

I

What Does This Query Ask?

Implicit :for-some wrapped around
query, therefore returns:

 ((|I|H-1 |I|H-1) (|I|H-1 |I|H-2)
 (|I|H-2 |I|H-1) (|I|H-2 |I|H-2))

(retrieve (?x ?y)

 (> (ward-capacity ?x)

 (ward-capacity ?y)))

U

S

C

I

S

I

What Is Wrong with This?

(defrelation ward-capacity) ; no :domain 

(retrieve (?x ?y)

 (> (ward-capacity ?x)

 (ward-capacity ?y))

U

S

C

I

S

I

What Is Wrong with This?

(retrieve (?x ?y)

 (> (ward-capacity ?x)

 (ward-capacity ?y)))

Performance Warning: Query scans the entire
knowledge base to generate bindings for the
variables ?X and ?Y.

Query time solution:

(retrieve (?x ?y)

 (:and (hospital ?x)

 (hospital ?y)

 (> (ward-capacity ?x)

 (ward-capacity ?y)))

U

S

C

I

S

I

Find Hospitals Ordered by�
Their Largest Wards

(defrelation ward-capacity

 :domain hospital)

(retrieve (?x ?y)

 (:and (> (max (ward-capacity ?x))

 (max (ward-capacity ?y)))))

==> ((|I|H-1 |I|H-2))

U

S

C

I

S

I

What About �
All Wards Larger?

(retrieve (?x ?y)

 (:and (> (min (ward-capacity ?x))

 (max (ward-capacity ?y)))))

 ==> NIL

U

S

C

I

S

I

Hospital with a Ward�
Larger Than 100 beds?

(retrieve (?x)

 (:for-some (?len)

 (:and (ward-capacity ?x ?len)

 (>= ?len 100))))

Note the explicit :for-some designation!

U

S

C

I

S

I

Hospital with All Wards�
Larger Than 100?

(retrieve (?x)

 (:for-all (?len)

 (:implies

 (ward-capacity ?x ?len)

 (>= ?len 100))))

U

S

C

I

S

I

Special Syntax in :for-all

(retrieve (?x)

 (:for-all (?len)

 (:implies

 (ward-capacity ?x ?len)

 (>= ?len 100)))))

Implication used in :for-all to restrict the
domain of the quantified variable (?len) 

Alternate possibility:

(…(:for-all (?len)

 (:or

 (not (ward-capacity ?x ?len))

 (>= ?len 100)))))

U

S

C

I

S

I

Implication Equivalence

(:implies A B)

(:or (:not A) B)

U

S

C

I

S

I

Hospital with All Wards�
Larger Than 100?

(retrieve (?x)

 (:for-all (?len)

 (:implies

 (ward-capacity ?x ?len)

 (>= ?len 100))))

Problem: Couldnʼt find a closed set of

 fillers for the role ward-capacity.

U

S

C

I

S

I

Three Possible Solutions

At the individual level:

(tell (:about h-1
 (:exactly 2 ward-capacity)))  

At the relation level:

(defrelation ward-capacity ...
 :characteristics :closed-world)

At the context level:

(setf (open-closed-mode
 (current-context))
 :closed)

U

S

C

I

S

I

Hospital with All Wards�
Larger Than 100?

(retrieve (?x)

 (:and (hospital ?x)

 (:for-all (?len)

 (:implies

 (ward-capacity ?x ?len)

 (>= ?len 100)))))

==> (|I|H-1)

U

S

C

I

S

I

Nested Queries Are OK

(retrieve (?x ?y)

 (:and (hospital ?x) (hospital ?y)

 (:for-all (?a)

 (:implies

 (ward-capacity ?x ?a)

 (:for-some (?b)

 (:and (ward-capacity ?y ?b)

 (> ?a ?b)))))))

==> ((|I|H-1 |I|H-2))

U

S

C

I

S

I

How To Get Multiple Wards�
 of the Same Size for H-1?

(tell (:about h-1

 (ward-capacity 120)

 (ward-capacity 120)

 (ward-capacity 100)))

 Need to make wards individuals,

so they can be differentiated.

U

S

C

I

S

I

New Domain Model

(defconcept facility)

(defconcept hospital :is

 (:and facility

 (:at-least 1 hospital-ward)))

(defconcept ward :is

 (:and facility

 (:exactly 1 ward-capacity)))

(defrelation hospital-ward

 :domain hospital :range ward

 :characteristics :closed-world)

(defrelation ward-capacity

 :domain ward

 :characteristics :closed-world)

U

S

C

I

S

I

Auxiliary Relation

(defrelation hospital-ward-capacity

 :is (:compose hospital-ward

 ward-capacity))

U

S

C

I

S

I

Domain Facts

(tell (:about h-1

 (hospital-ward w1)

 (hospital-ward w2)

 (hospital-ward w3)))

(tell (ward-capacity w1 120)

 (ward-capacity w2 120)

 (ward-capacity w3 100))

(tell (:about h-2

 (hospital-ward w4)

 (hospital-ward w5)))

(tell (ward-capacity w4 110)

 (ward-capacity w5 90))

U

S

C

I

S

I

Retrieve Multiple�
 Wards for H-1

(retrieve (?w ?l)

 (:and (hospital-ward h-1 ?w)

 (ward-capacity ?w ?l)))

==> ((|I|W1 120) (|I|W2 120) (|I|W3 100))

U

S

C

I

S

I

Retrieve Multiple�
 Wards for H-1

(retrieve (?w ?l)

 (:and (hospital-ward h-1 ?w)

 (ward-capacity ?w ?l)))

==> ((|I|W1 120) (|I|W2 120) (|I|W3 100))

What about a short-hand notation?

(retrieve ?l

 (hospital-ward-capacity h-1 ?l))

==> (120 100)

U

S

C

I

S

I

Lessons from the Example

Modeling Advice:

Determine Detail Level

Use Specialized Operators

Be Explicit in Queries

U

S

C

I

S

I

Procedural Programming

Outline of talk:

•  Deductive Kb with Multiple Paradigms

•  Production rules

•  Methods

•  Lisp-to-Loom Interface

•  Interpretations of Updates

U

S

C

I

S

I

Multiple Paradigm Programming

Idea: Suite of programming paradigms that each
exploit a dynamically changing deductive
knowledge base.

Loom paradigms:

Data driven
(production rules, monitors)

Methods
(pattern-directed dispatch)

Procedural
(Lisp)

U

S

C

I

S

I

Upgrading Traditional Paradigms

(defproduction P1

:when (:detects (Foo ?x))

:do ((print "New Foo")))

(defmethod M1 (?self)

:situation (Foo ?self)

:response ((print "It’s a Foo all right")))

Innovations:

• “Foo” can expand to an arbitrarily
complex description;

• “Edge-triggered” productions;

•  Pattern-based method dispatching.

U

S

C

I

S

I

Production Rule Semantics

(defproduction <name>

 :when <condition> :perform <action>)

Semantics: Whenever a set of variable bindings in

<condition> becomes true (provable), call 
<action> with that set of bindings.

Example:

(defproduction P2

 :when (and (Switch ?s)

 (:detects (status ?s 'on)))

 :perform (turn-on (appliance-of ?s)))

The :when condition of a production must include
at least one of the transition
operators :detects, :undetects, or :changes.

U

S

C

I

S

I

Semantics of :detects

(:detects (A ?x))

 is defined as

(and (A ?x)

 (:previously (:fail (A ?x))))

(:previously (B ?x))

is defined as

(:at-agent-time (- *now* 1)

 (B ?x)))

U

S

C

I

S

I

Semantics of Detects (cont.)

 (:detects (:and (A ?x) (B ?x)))

will trigger if A and B become true simultaneously
or if A becomes true and B is already true
or if B becomes true and A is already true

 (:and (:detects (A ?x)) 
 (:detects (B ?x)))

will trigger only if A and B become true
simultaneously

U

S

C

I

S

I

Production Rule Semantics (cont).

All production rule instantiations at the end of an

update cycle are fired in parallel.

•  No conflict resolution (this is a feature!)

•  Effects of one production cannot inhibit firing of

another (parallel) production.

Rationale:

•  We want productions to be “well-behaved” (no race
conditions);

•  Preference semantics is the province of the method
paradigm.

Division of responsibility:

•  Production determines when to perform task;

•  Method determines how to perform task.

U

S

C

I

S

I

Task Scheduling

Productions can post tasks on a queue rather than
executing them immediately.

(defproduction P5

:when (and (:changes (home-team-score ?game))

 (basketball-game ?game))

:schedule (celebrate)

:priority :low)

(defproduction P6

:when (and (:changes (home-team-score ?game))

 (football-game ?game))

:schedule (celebrate)

:priority :high)

U

S

C

I

S

I

Monitors

Monitors are productions that fire only when
specifically designated instances undergo
property transitions.

(defmonitor Watch-for-Redraw

 :when (or (:changes (color ?object))

 (:changes (size ?object)))

 :do ((redraw (slot-value ?object 'window)))

(tellm (color Thing5 'Red))

nothing happens

(attach-monitor 'Thing' Watch-for-Redraw)

(tellm (color Thing5 'Green))

calls redraw

Monitors generalize the active value paradigm

U

S

C

I

S

I

Methods

defaction: Defines Loom equivalent of ``generic
function''.

defmethod: Defines procedurally-invoked situation-
response rule.

(defmethod <name> (<parameters>)

 :situation <situation>

 :response <response>)

U

S

C

I

S

I

Method Filters

Most frequent modes of method use. Given a call
to invoke an action M:

(1) execute all methods named M whose

situations are satisfied, or
(2) execute the most specific among those

methods named M whose situations are
satisfied.

A ``filter sequence'' determines the criteria for
choosing which methods to fire (among those
that are eligible).

U

S

C

I

S

I

Method Filters Example

(defaction M2 (?x ?y) :filters (:perform-all))

(defmethod M2 (?x ?y)

 :situation (= ?x ?y)

 :response ((print "EQ")))

(defmethod M2 (?x ?y)

 :situation (<= ?x ?y)

 :response ((print "LE")))

(perform (M2 3 4))

 --> "LE"

(perform (M2 4 4))

 --> "LE"

 "EQ" both methods fire

(defaction M2 (?x ?y) :filters (:most-specific))

(perform (M2 4 4))

 --> "EQ" only the most specific method fires

U

S

C

I

S

I

Tuning for Performance

  Outline of talk:
• Classifier Performance
•  Recognizer Performance
•  Performance Tips
• CLOS Instances and the Backchainer

U

S

C

I

S

I

Performance
Where does the time go?

  In some systems, slow performance is due to
poorly-tuned code.

  In Loom, slow performance can result from
the enormous amount of inferencing that
occurs under the hood.

U

S

C

I

S

I

Classifier Performance

  Classifier Phases
(1) normalization (compute closure of ~100

inference rules)
(2) classification (compute subsumption

links — very fast)
(3) completion (normalize constraints)
(4) sealing (compile access functions)

U

S

C

I

S

I

Classifier Performance

  Classifier Phases
(1) normalization (3) completion
(2) classification (4) sealing

  Bulk of time is spent in phases (1) and (3),
normalizing features:

(i) start with local features (:at-most, :at-least, :all, ...);
(ii) inherit features from parent concepts;
(iii) compute larger set of features (deductive closure);
(iv) keep only the most specific features;
(v) classify the remaining features.

U

S

C

I

S

I

Speeding Up Normalization

  Each constraint in Loom represents a rule of
inference (not just a type check).

  The overhead of normalization depends on
the number of features per concept (it’s
estimated to be quadratic in the number of
features).

  So, a simple way to speed up an application is
to specify fewer constraints :-).

U

S

C

I

S

I

Speeding Up Normalization
(cont.)

  Loom permits you to lobotomize the classifier
• “(power-level :medium)” causes Loom to

ignore a few of the most expensive
normalization rules.
• “(power-level :low)” causes Loom to make

a single pass over the normalization rules
(rather than computing their closure).

U

S

C

I

S

I

Load-Time vs. Run-Time
Classification

  Most applications perform the bulk of
classification at load time; for them, speed of
classification may not be critical.

– Normally, run-time production of new system-
generated descriptions will quiesce (no more “.”s
and “+”s);

U

S

C

I

S

I

Recognizer Performance

  An explicit call by an application (e.g., (tellm))
triggers reclassification of updated instances .

  Recognition strategy:
• For each instance on the queue

(1) normalize asserted and inherited features;
(2) classify the instance;
(3) install dependency bombs (TMS monitors);
(4) test for incoherence;
(5) propagate forward constraints.

  Steps 1-5 are applied to each instance at least
two times (once each in strict and default mode).

U

S

C

I

S

I

Classifying Instances
During the recognition process, each feature in a concept

definition represents a miniature query.

Examples:

 (:at-least k R)

 Retrieve fillers of the role R;

 Succeed if the number of fillers is at least k.

 (:at-most k R)

 If role R is closed, retrieve fillers of the role R;

 Succeed if the number of fillers is at most k.

 (:all R A)

 If role R is closed, retrieve fillers of the role R;

 Succeed if each of the fillers satisfies the concept A.

The bulk of recognition time consists of computing feature
satisfaction and truth maintaining the results.

U

S

C

I

S

I

Testing for Closed Roles

  Probing features such as (:all R A) or (:at-
most k R) usually entails proving that the role
R is closed.

  This test is fast if
• R has the :closed-world property, or
• R is :single-valued and a role filler exists.

  Tip : Always specify the :single-valued
and :closed-world properties on relations
whenever they are valid for your application
domain.

U

S

C

I

S

I

Subtlety in the semantics of role
closure:

(defconcept A

 :implies (:at-least 1 R))

(defrelation R

 :characteristics (:closed-world))

(tell (Thing Joe)

 (A Fred))

• The role “(R of Joe)” is closed, but the role
"(R of Fred)” is not closed.

U

S

C

I

S

I

Domain and Range Constraints

  Tip : Always specify domain and range
constraints for a relation (unless they are
inherited from a parent relation).

(defrelation R :domain A :range B)

(tellm (R Fred Joe))
➛  Loom infers that Fred satisfies A and that

Joe satisfies B.

(defconcept A :implies (:exactly 1 R))

(defrelation R :domain A)
➛  Loom infers that R is :single-valued.

U

S

C

I

S

I

Performance Warnings

  A ``no generator found'' performance warning
indicates that a query will exhibit abysmal
performance.
• Slower (sometimes) :
 (retrieve (?x ?y) (R ?x ?y))
• Faster (sometimes) :
 (retrieve (?x ?y)

 (and (A ?x) (R ?x ?y)))

• If no domain is specified for R, the slower
query will scan the entire kb to generate
bindings for ?x.

U

S

C

I

S

I

Performance Tips:
  Tip : Always rephrase definitions or queries

to eliminate performance warnings.

  Tip : Never wrap an eval around an ask or
retrieve unless you are single, childless, and
have no desire to graduate, e.g.,
• (eval `(retrieve (?y) (and (R ,foo ?y) (A ?y)))

  Tip: To programmatically compose a query
on the fly, use “query” or bind variables:
• (query ‘(?y) `(and (R ,foo ?y) (A ?y)))
• (let ((?x foo))

 (retrieve (?y) (and (R ?x ?y) (A ?y)))) Better!

U

S

C

I

S

I

:perfect relations

  Marking a concept or relation :perfect tells
Loom that facts about it cannot change.
• Tip : Use of the :perfect properties reduces

match overhead.
• Tip : Computed relations are prime

candidates for the :perfect attribute .

(defrelation <>

 :domain Number :range Number

 :characteristics (:symmetric :perfect)

 :predicate /=)

U

S

C

I

S

I

How to Get No Recognition

  The overhead of instance classification
(recognition) is eliminated if you specify as a
creation policy :clos-instance or :lite-
instance.

  Deduction over CLOS instances and LITE
instances is backward chained, with no
caching.

  However (there is always a catch) inference
without instance classification is strictly
weaker than inference with it.

U

S

C

I

S

I

Deduction with CLOS and LITE
Instances

  With creation policy set to :clos-instance
or :lite-instance inference is performed
using backward chaining.

  The backchainer recognizes rules of the form
(implies A B) and
(implies <description> B)

but ignores rules of the form
(implies A <descriptions>)

U

S

C

I

S

I

Backward chaining and type
restrictions

  The design decision not to chain backwards
across value restrictions was a judgment call.
(defconcept A

 :implies (:all R B))

(tell (A Fred) (R Fred Joe))

(ask (B Joe)) --> ???

  The recognizer will prove that Joe satisfies B;
the backchainer won't.

U

S

C

I

S

I

Using Time in Loom

Thomas A. Russ 

USC

Information Sciences Institute

U

S

C

I

S

I

Outline

  Time Representation
  Basic Assertions
  Basic Queries
  Persistence
  Time and the Classifier
  Advanced Examples

U

S

C

I

S

I

Agent and World Time

  World Time Records Domain Facts

  Agent Time Records Knowledge Base
Changes

U

S

C

I

S

I

Time Representation

  Definite Times
• Integers
• Time Strings “10/28/94 11:33”

  Anchored to Calendar
• Common Lisp universal time

  Points Are Basic Units
  Intervals Are Derived
  “Property” Interpretation of Intervals

U

S

C

I

S

I

Properties and Events

  Properties
•  True over all subintervals
•  “The house is red”

  Events
•  True only over the entire interval
•  “John ran completely around the track.”

U

S

C

I

S

I

Basic Assertions

  Transitions Only
•  (:begins-at time-point assertion)
•  (:ends-at time-point assertion)

  Strong Temporal Assertion
• Before :begins-at, assertion is false.
• After :begins-at, assertion is true.

U

S

C

I

S

I

Basic Assertions
(P x)
(:not (P x))

Time1

(tell (:begins-at Time1 (P x)))

(P x)
(:not (P x))

Time1

(tell (:ends-at Time2 (P x)))

Time2

(:not (P x))

U

S

C

I

S

I

Basic Queries—Transitions

  Transitions:
•  (ask (:ends-at t1 (P x)))

U

S

C

I

S

I

Basic Queries—States

  Transitions:
•  (ask (:ends-at t1 (P x)))

  States:
•  (ask (:holds-at t1 (P x)))

U

S

C

I

S

I

Basic Queries—States
Problem

  Transitions:
•  (ask (:ends-at t1 (P x)))

  States:
•  (ask (:holds-at t1 (P x)))
•  But this can be ill-defined

t1

(P x)

U

S

C

I

S

I

Basic Queries—States
Solution

t1

(P x)

:holds-before ==> t

:holds-after ==> nil

U

S

C

I

S

I

Non-Transitional Assertions

  Persistence Only
•  (:holds-after time-point assertion)
•  (:holds-before time-point assertion)

  Weak Temporal Assertion
• Before :holds-after, assertion can be true

or false.
• After :holds-before, assertion can be true

or false.
  :holds-at is the combination of :holds-before

and :holds-after
• The assertion is true both before and after

a :holds-at

U

S

C

I

S

I

Persistence Assertions
(P x)
??

Time1

(tell (:holds-after Time1 (P x)))

(P x)

Time1

(tell (:holds-before Time3 (P x)))

Time2

(P x)
??

Time1
 Time2

(tell (:holds-after Time2 (P x)))

Time3

U

S

C

I

S

I

Temporal Operator Truth Table

t3

(P x)

t1
 t2

  :begins-at

  :holds-after

  :holds-at

  :holds-before

  :ends-at

 t t nil

 nil t nil

 nil t t

 nil nil t

 t nil nil

U

S

C

I

S

I

Changes to Classifier

  Classifier Is Time Sensitive
•  Temporal information in the ABox affects

classification

  Definitions Are Time Invariant
•  TBox definitions hold over the entire time

line

U

S

C

I

S

I

Bachelor Example
(defconcept Married 
 :characteristics :temporal) 

(defconcept Bachelor :is

 (:and Male (:not Married)))

(tell (Male p1)

 (:begins-at t1(Married p1)))

(Male p1)

(Married p1)
(:not (Married p1))

t1

(Bachelor p1)

t1

U

S

C

I

S

I

Widow Example
(defconcept Dead 
 :characteristics :temporal) 

(defrelation husband 
 :is (:and spouse (:range Male)) 
 :characteristics :temporal)

(defconcept widow

 :is (:and Female

 (:some husband Dead)))

U

S

C

I

S

I

Widow Assertions
(tellm (Female Mary) (Male John))

(tellm (:begins-at “1/1/90”

 (spouse Mary John))

 (:begins-at “1/1/94”

 (Dead John)))

(Female Mary)

(spouse Mary John)

1/1/90
 (Dead John)

1/1/94

(Male John)

U

S

C

I

S

I

Widow Derivation

(Female Mary)

(spouse Mary John)

1/1/90
 (Dead John)

1/1/94

(Male John)

(Widow Mary)

1/1/94

(tellm (Female Mary) (Male John))

(tellm (:begins-at “1/1/90”

 (spouse Mary John))

 (:begins-at “1/1/94”

 (Dead John)))

U

S

C

I

S

I

Widow Queries

(retrieve ?x (:holds-at “10/28/94”

 (widow ?x)))

 => (|i|Mary) 

(retrieve ?x (:begins-at ?x

 (Widow Mary)))

 => (2966400000)

 ; = “1/1/94 00:00:00”

(spouse Mary John)

1/1/90
 (Dead John)

1/1/94

(Widow Mary)

1/1/94

U

S

C

I

S

I

Former Hockey Player

(defconcept former-hockey-player :is

 (:and person

(:satisfies (?p)

 (:for-some (?t)

 (:and (past ?t)

 (:ends-at ?t

 (hockey-player ?p

)))))))

U

S

C

I

S

I

Former Hockey Player

  Temporal concept “past” constrains matches
for ?t to occur before the time this definition is
satisfied.

  A former hockey player is “someone who
ceased to be a hockey player sometime in the
past.”

U

S

C

I

S

I

Former Hockey Player
Temporal Clause

  Temporal relation to the concept “hockey-
player” established.

(defconcept former-hockey-player :is

 (:and person

(:satisfies (?p)

 (:for-some (?t)

 (:and (past ?t)

 (:ends-at ?t

 (hockey-player ?p

)))))))

U

S

C

I

S

I

Former Hockey Player
Assertion and Queries
(tellm (Person Fred))

(tellm (:ends-at “1/1/90”

 (hockey-player Fred)))

(ask (:holds-at “1/1/88”

 (hockey-player Fred))) => T

(ask (:holds-at “1/1/88”

 (former-hockey-player Fred))) => NIL

(ask (:holds-at “1/1/94”

 (hockey-player Fred))) => NIL

(ask (:holds-at “1/1/94”

 (former-hockey-player Fred))) => T

U

S

C

I

S

I

Summary

  World and Agent Time Supported
  Definite, Calendar-Anchored Time
  ABox Supports Temporal Assertions
  Inference Is Time Sensitive

U

S

C

I

S

I

Miscellaneous Issues
  Frame Functions
  Saving and Restoring
  CLOS Classes
  Mix and Match Inferencing

U

S

C

I

S

I

Frame Functions:
Concepts

add-type <instance> <concept>

"assert that <instance> ISA <concept> "

get-types <instance>

"retrieve all concepts satisfied by <instance>"

U

S

C

I

S

I

Frame Functions:
Setting Role Fillers
add-value <instance> <role> <filler>

"add <filler> to the set of fillers of role <role>
on instance <instance>"

set-value <instance> <role> <filler>

"set <filler> to be the only filler of role <role>

on instance <instance>"
only recommended for single-valued roles

set-values <instance> <role>  
<list-of-fillers>

"make each filler in <list-of-fillers> be a filler of

role <role> on instance <instance>"
Always requires a list, even for single valued

roles.

U

S

C

I

S

I

Frame functions
get-value <instance> <role>

"retrieve the single filler of role <role> on
instance <instance>"

Error if there is more than one value.
get-values <instance> <role>

"return the set of fillers of role <role> on
instance <instance>"

Always returns a list of fillers.

U

S

C

I

S

I

Saving and Restoring

  Knowledge Bases and contexts can be saved
to files
(save-kb [<kbName>]  
 :pathname <filename>)

(save-context contextName 
 :pathname <filename>)

  The save files can be compiled and loaded
into Loom images to restore the state of the
knowledge base.

U

S

C

I

S

I

CLOS Classes

Execute the following:
(creation-policy :clos-instance)

(defconcept Ship

 :roles ((name :type String)

 length))

(create nil 'Ship)

Side-effects:
(defrelation name)

(defrelation length)

(eval '(defclass Ship (THING)

 ((name :initform nil)

 (length :initform nil))))

(make-instance ‘Ship)

U

S

C

I

S

I

Mix and Match Inferencing

  INSTANCE-IN-CONTEXT
at creation time, adds an instance to the

concept-instance index
  INSTANCE-WITH-CONCEPTS

permits more than one type to be asserted
on an instance

  INSTANCE-WITH-INVERSES
automatically adds and removes inverse

links in response to slot updates
  INSTANCE-WITH-DYNAMIC-SLOTS

non-preallocated slots use alist storage on
an instance

U

S

C

I

S

I

Mix and Match Inferencing
(cont.)

  INSTANCE-WITH-NEGATION
supports negated type and negated role filler

assertions
  INSTANCE-WITH-HISTORIES

record (in a differential history) the prior
states of an instance

  INSTANCE-IN-MATCH-NETWORK
instance participates in matches that trigger

production rules
  INSTANCE-WITH-TIME

supports temporal assertions

U

S

C

I

S

I

Frequently Asked Questions

  Why Don’t Instances Get Recognized?
  Use of “:all”
  Use of “:for-all”
  Compiling Loom Code
  Combining Number Restrictions
  Why Doesn’t (:exactly 1 R) Clip?
  Why Aren’t Concepts Disjoint?
  My Concept Name Changed!
  Multiple Value Roles & Defaults
  Inverse Relations
  Loom vs. CLOS

U

S

C

I

S

I

FAQ:
Why Aren’t Instances Recognized?
  Why don’t instances get recognized as

belonging to a concept when I assert them?
• Time needs to be advanced:

 Use (tellm) or (new-time-point)
• Lite instances are being used instead of

classified instances:
 Use (creation-policy :classified-instance)

  How do I tell if I have classified or lite instances?
• Use the function (creation-policy).
• Subtle: Look at the printed representation:

Note case
of letter “i”

U

S

C

I

S

I

FAQ:
 Use of “:all”

  Value restrictions using :all
• (defrelation R)
• (defconcept C)
• (defconcept C-all
 :is (:and C (:all R C))

  Assertions
• (tell (C c1) (C c2) (R c2 c1))

  Query
• (retrieve ?x (C-all ?x))

U

S

C

I

S

I

FAQ:
 Use of “:all”

  Value restrictions using :all
• (defrelation R)
• (defconcept C)
• (defconcept C-all
 :is (:and C (:all R C))

  Assertions
• (tell (C c1) (C c2) (R c2 c1))

  Query
• (retrieve ?x (C-all ?x)) ==> NIL

  Why NIL? Because R is not closed, therefore
other unknown R fillers could exist which are
not Cs.

U

S

C

I

S

I

FAQ:
 Use of “:all”
  Value restrictions using :all
• (defrelation R
 :characteristics :closed-world)
• (defconcept C)
• (defconcept C-all
 :is (:and C (:all R C))

  Assertions
• (tell (C c1) (C c2) (R c2 c1))

  Query
• (retrieve ?x (C-all ?x))==>(c1 c2)

  Why both of them? How can all of c1’s R
fillers be Cs if c1 doesn’t have any Rs? Since
there are no such fillers, it is trivially fulfilled.

U

S

C

I

S

I

FAQ:
 Use of “:all”
  Value restrictions using :all
• (defrelation R
 :characteristics :closed-world)
• (defconcept C)
• (defconcept C-all
 :is (:and C (:all R C)
 (:at-least 1 R))

  Assertions
• (tell (C c1) (C c2) (R c2 c1))

  Query
• (retrieve ?x (C-all ?x))==>(c2)

  The :at-least 1 restriction expresses what we
really mean!

U

S

C

I

S

I

FAQ:
Proper use of “:for-all”
  Loom’s universal quantification is does not

have a type restriction built in. The
consequence is that special syntax is needed
inside :for-all constructs
• (defconcept C)
(defrelation R)
• (retrieve ?x
 (:for-all (?z)
 (:and (R ?x ?z) (C ?z))))

  This will produce an error message
• To successfully evaluate a universally
quantified clause, the clause must contain
at least one negated term. In this case,
the clause
 (|R|R ?X ?Z)
 does not.

U

S

C

I

S

I

FAQ:
Proper use of “:for-all”
  Logically speaking, the query
• (retrieve ?x
 (:for-all (?z)
 (:and (R ?x ?z) (C ?z))))

is extremely unlikely to be satisfied if ?z
ranges over all individuals in the knowledge
base. The query must be formulated to
restrict the value of ?z
• (retrieve ?x
 (:for-all (?z)
 (:implies (R ?x ?z) (C ?z))))

or equivalently
• (retrieve ?x
 (:for-all (?z)
 (:or (:not (R ?x ?z)) (C ?z))))

U

S

C

I

S

I

FAQ:
Compiling Loom Code

  Loom performs code generation and
optimization during macro-expansion of the
forms “tell”, “forget”, “ask” and “retrieve”

  The proper expansion of the code requires
that all definitions referenced in the form be
available
• Definition files must therefore be loaded

before assertion or query files are
compiled
• If definitions are in the same file, then they

must be enclosed by an “eval-when” form
specifying compile time evaluation. The
last form in the eval-when should be a call
to “finalize-definitions”

U

S

C

I

S

I

FAQ:
Compiling Loom Code

  Certain redefinitions (such as changing a
relation from single to multipleneral rule, all
code which uses definitions should be
recompiled when those definitions change.

U

S

C

I

S

I

FAQ:
Combining Number Restrictions

  Loom has a (limited) ability to reason about
number restrictions and their combinations

  Example
• (defrelation R)
(defconcept C)
(defconcept -C :is (:not C))
(defconcept A
 :is (:and C (:at-least 2 R C)
 (:at-least 2 R -C)))
• (tell (A a1))
• (ask (:about a1 (:at-least 2 R))) ==> T
(ask (:about a1 (:at-least 4 R))) ==> T
(ask (:about a1 (:at-least 5 R))) ==> NIL

  Loom knows C and -C are disjoint, so there
must be at least 4 fillers of R on any A.

U

S

C

I

S

I

FAQ:
Combining Number Restrictions
  Inference is not complete in all cases
  Example
• (defrelation R)
(defconcept C)
(defconcept -C :is (:not C))
(defconcept A
 :is (:and C (:at-least 2 R C)
 (:at-most 3 R)))
• (tell (A a1))
• (ask (:about a1 (:at-most 3 R))) ==> T
(ask (:about a1 (:at-most 3 R C))) ==> T
(ask (:about a1 (:at-most 1 R -C))) ==> NIL
(ask (:about a1 (:at-most 3 R -C))) ==> T

  Loom cannot infer the upper limit on -C fillers
based on the upper limit on R and the lower limit
on fillers of type C

WRONG!

U

S

C

I

S

I

FAQ:
Why Doesn’t (:exactly 1 R) Clip?
  Number restriction in concept definition
• (defrelation R)
• (defconcept C
 :is-primitive (:exactly 1 R))

  Assertions
• (tell (C c1) (R c1 3))
• (tell (R c1 4))

  Query
• (retrieve ?x (R c1 ?x))==>(3 4)

  The assertion of C and of the two role fillers
have equal weight. There is no logical
preference for one over the other.

U

S

C

I

S

I

FAQ:
Why Doesn’t (:exactly 1 R) Clip?

  To get clipping the relation itself must be
asserted to be single-valued:
• (defrelation R
 :characteristics :single-valued)

  Or Loom must be able to infer that R must be
single-valued:
• (defrelation R :domain C)
• (defconcept C
 :is-primitive (:exactly 1 R))
• Since the domain of R is C all instances that

have R fillers must also be of type C. Since C
only has 1 R, R must be single-valued.

U

S

C

I

S

I

FAQ:
Why Aren’t Concepts Disjoint?
  Example
• (defrelation R :attributes :closed-world)
(defconcept A)
(defconcept B)
(defconcept C :is (:and A (:all R A)))
• (tell (A a1) (B b1) (R a1 b1))
• (ask (C a1) ==> NIL (Good!)
(ask (:not (C a1)) ==> NIL (Huh?)

  Why can’t Loom conclude that a1 is not a C?

  Because concepts are not disjoint by default.

Just because b1 is a B, it doesn’t preclude it
from being an A as well.

U

S

C

I

S

I

FAQ:
Why Aren’t Concepts Disjoint?
  Example
• (defrelation R :attributes :closed-world)
(defconcept A)
(defconcept B)
(defconcept C :is (:and A (:all R A)))

  Alternate Fixes
• (defconcept A :implies (:not B))
• (defconcept A
 :characteristics :closed-world)
• Make A and B members of a partition.

  Solution
• (tell (A a1) (B b1) (R a1 b1))
• (ask (C a1) ==> NIL
(ask (:not (C a1)) ==> T

U

S

C

I

S

I

FAQ:
My Concept Name Changed!

  Consider these definitions
• (defrelation R)
(defconcept A)
(defconcept B :is (:and A (:some R A)))
(defconcept C :is (:and A (:some R A)))

  Note identical definitions of B and C.
• (tell (C c1))
(get-types ‘c1) ==> (|C|B |C|A |C|THING)

  What happened to the concept C?

U

S

C

I

S

I

FAQ:
My Concept Name Changed!

  Consider these definitions
• (defrelation R)
(defconcept A)
(defconcept B :is (:and A (:some R A)))
(defconcept C :is (:and A (:some R A)))

  Note identical definitions of B and C.
• (tell (C c1))
(get-types ‘c1) ==> (|C|B |C|A |C|THING)

  What happened to the concept C? It merged!
• (ask (C c1)) ==> T
(find-concept ‘c) ==> |C|C

  Loom can find and use it under either name,
but only one name is used for display.

U

S

C

I

S

I

FAQ:
Multiple Value Roles & Defaults

  Definitions
• (defrelation R)
• (defconcept C
 :defaults (:filled-by R 5))

  Assertions
• (tell (C c1) (C c2) (R c2 4))

  Queries
• (retrieve ?x (R c1 ?x))
• (retrieve ?x (R c2 ?x))

U

S

C

I

S

I

FAQ:
Multiple Value Roles & Defaults

  Definitions
• (defrelation R)
• (defconcept C
 :defaults (:filled-by R 5))

  Assertions
• (tell (C c1) (C c2) (R c2 4))

  Queries
• (retrieve ?x (R c1 ?x)) ==> (5)
• (retrieve ?x (R c2 ?x)) ==> (5 4)

U

S

C

I

S

I

FAQ:
Multiple Value Roles & Defaults

  Problem: You can’t easily get rid of default
fillers on multiple-value roles

  Solution: Consider only using them on
single-value roles

U

S

C

I

S

I

FAQ:
Multiple Value Roles & Defaults

  Problem: You can’t easily get rid of default
fillers on multiple-value roles

  Solution: Consider only using them on
single-value roles

  Non-solution: Use forget to get rid of default
value. Doesn’t work because forget just
withdraws support for assertions. Loom can
prove the value a different way (default
inference)

  Solution 2: Assert the negation. Note that this
is very clumsy and not our first choice
recommendation
• (tell (:not (R c2 5)))

U

S

C

I

S

I

FAQ:
My New Inverse Doesn’t Work!

  If I define a new inverse relation, the old
assertions don’t work properly:
(defrelation R)
(tell (R Fred Sue) (R Bill Sue))
(defrelation R-1 :is (:inverse R))
(retrieve ?x (R-1 Sue ?x)) => NIL

  Why weren’t Bill and Fred returned?

U

S

C

I

S

I

FAQ:
My New Inverse Doesn’t Work!

  If I define a new inverse relation, the old
assertions don’t work properly:
(defrelation R)
(tell (R Fred Sue) (R Bill Sue))
(defrelation R-1 :is (:inverse R))
(retrieve ?x (R-1 Sue ?x)) => NIL

  Why weren’t Bill and Fred returned?
• Loom implements inverse relations by

explicitly asserting the inverse relation
• Since R-1 did not exist when “R Fred Sue”

was asserted, the inverse assertion was
not made

U

S

C

I

S

I

FAQ:
Can’t Strings Have Inverses?

  Why doesn’t the following work?
(defrelation Name)
(defrelation Name-of
 :is (:inverse Name))

(tell (R Sue “Sue Jones”)) => Error

U

S

C

I

S

I

FAQ:
Can’t Strings Have Inverses?

  Why doesn’t the following work?
(defrelation Name)
(defrelation Name-of
 :is (:inverse Name))

(tell (R Sue “Sue Jones”)) => Error
  The inverse assertion can’t be made!
• Built-in types (such as numbers, strings

and symbols) cannot have assertions
made about them.
• The objects are too primitive to support

assertions
• Inverses are implmented as assertions

U

S

C

I

S

I

FAQ:
Loom vs. CLOS

  Loom has multiple slots with the same name
  Loom “type” hierarchies are determined

structurally
  Loom relation names have significance in

determining the type of objects
  Loom instances can have slots added on the

fly without redefinition
  Loom has a query language

	Background: Description Logic Systems
	Basic Introduction to Loom
	Basic Concepts
	Domain Modeling (Medical Domain)
	Extended Example (Hospital KB)
	Procedural Programming
	Tuning for Performance
	Using Time in Loom
	Miscellaneous Issues
	Frequently Asked Questions

