
Loom
Design Notes

April 29, 1996

Reification Support for Loom

Problem Example

There is a need to support Rumbaugh-style link attributes for the TCIMS project. In
order to make this work as seamlessly as possible, there will need to be some extensions
to the Loom language. The example that we plan to use is based on the producer-
consumer dependency and its specific example of patient-moves-to .

Location LocationPatient-Moves-To

Item-Managed
Coordinated-By

Conceptual Overview

In order to talk about a particular relation, it is necessary in Loom to provide a reification
of that relation. Unfortunately, the existing reification mechanism does not do the job
properly. It is retained because of the need to support existing Loom-based applications,
most notably Penman.

A proper reification would support attaching case roles to the reified relation and allow
the mapping of one of those case roles to the domain of the relation and another one to
the range of the relation. The case roles that are linked to the domain and range of the
relation must be single-valued, since a particular instance of a relation can only link one
object to one other object. Other case roles will not need to be single-valued.

Patient-
Moves-

To

Location Location
Patient-Moves-To-Relation

SinkSource

Item-Managed

Coordinated-By

Domain Range

L o o m D e s i g n N o t e s

2

Definition Support

We will augment the defconcept syntax to support proper creation of a case frame that
reifies a given relation. This will involve the addition of the keyword :reifies, which will
be used to introduce the name of the reified relation (which can be the same as the
conceptName) and define the link between case roles of the and the domain and range of
the relation. After these required arguments, one can optionally specify additional
arguments to be used in the definition of the reified relation. They can be any syntax
acceptable to defrelation such as :domain , :characteristics, etc. (Loom will
automatically setup the relation hierarchy to mirror on the concept hierarchy, so it will
not be necessary to explicitly specify the mirrored relations via an :is clause.)

(defconcept conceptName …
 :reifies (relationName
 [:case-roles (domainRoleName rangeRoleName)]
 [defrelationKeyword Value] …))

The domainRoleName and rangeRoleName are the names of relations which will be roles
of conceptName. They can be specified explicitly via the :case-roles keyword inside the
relation definition. Otherwise default values of source-case or target-case will
be used. A concrete example would be the following:

(defconcept producer-consumer-dependency
 :is-primitive dependency
 :constraints (:and (:all dependency-source activity)
 (:all dependency-sink activity)
 (:all item-managed object))
 :reifies (producer-consumer-relation
 :case-roles (dependency-source
 dependency-sink)))

(defoncept patient-moves-to
 :is-primitive (:and producer-consumer-dependency
 (:all dependency-source location)
 (:all dependency-sink location))
 :constraints (:some item-managed casualty)
 :reifies (patient-moves-to-relation
 :case-roles (dependency-source
 dependency-sink)))

The definition for patient-moves-to is used to create a concept named “patient-moves-
to” as well as a relation named “patient-moves-to-relation.” The role name arguments are
used to indicate that the relation patient-moves-to-relation is used to link the
dependency-source of the concept to the dependency-sink of the concept. The domain
and range of patient-moves-to-relation will be set to location based on the restrictions
in the definition of patient-moves-to .

In addition, the constraint that there is at least one item-managed of type patient is
specified. Loom will also arrange for patient-moves-to-relation to be a sub-relation of
producer-consumer-relation.

L o o m D e s i g n N o t e s

3

Assertion Support

We propose to extend the assertion language through the introduction of a 3-ary function
link which maps a relation and two instances to an instance of the reification of that
relation. Assertions can then be made about this instance in the same way as any other
Loom instance. These assertions describe the particular link. For example:

(tell (location l1) (location l2) (patient p3)
 (patient-moves-to-relation l1 l2))

(tell (item-managed
 (link patient-moves-to-relation l1 l2)
 p3))

These forms assert that patient p3 is the item managed by the patient-moves-to-relation
link between the locations l1 and l2.

Availability

Patches to add this functionality to Loom 2.1 are currently available on an experimental
basis. The basic functionality exists, but there are still a few loose ends — mainly
ensuring that revisions to the definitions are tracked properly and that retractions of
relation fillers cause a retraction of the

