
Commitment-Based Software Development 1

William Mark Sherman Tyler
James McGuire Jon Schlossberg

Information and Computing Sciences
Lockheed Palo Alto Research Labs O/96-01 B/254F

3251 Hanover Street
Palo Alto, CA 94034-1191

Abstract

During the development of a system, software modules
can be viewed in terms of their commitments: the con-
straints imposed by their own structure and behavior,
and by their relationships with other modules (in terms
of resource consumption, data requirements, etc.). The
Comet system uses explicit representation and reasoning
with commitments to aid the software design and develop-
ment process { in particular, to lead software developers to
make decisions that result in reuse. Developers can exam-
ine the commitments that must be met in order to include
an existing module, and can explore how commitments
change when modules are modi�ed. Comet has been ap-
plied to the domain of sensor-based tracker software.

I. Introduction

A major problem for software developers is judging how
a change in a module a�ects and is a�ected by the rest
of the design. Modules need to change for a variety of
reasons: an existing system is modi�ed, a change in an
ongoing design is proposed, a bug is found, etc.; develop-
ers spend much of their time responding to changes. The
Comet system provides computational support for devel-
opers in understanding { and being in
uenced by { the
rami�cations of proposed design modi�cations. Develop-
ers are given feedback about which design decisions will re-
sult in modules that can be \coded" (in particular, coded
with the aid of synthesis and reuse technologies) with min-
imal disruption to the rest of the design. This is perhaps
the major factor in real life design decision-making, but it
has so far received little attention in software automation
technology.
Software development is a process of negotiation: deci-

sions are made and changed frequently as speci�cations
change and new implementation ideas are brought for-
ward. Each decision implies a set of constraints that may
or may not be compatible with past or future decisions.
Constraints are embodied in the modules { procedures and
data structures { that make up the system. From the ear-
liest stages of design, modules can be described in terms
of the constraints they will place on the other modules in
the system via their input, output, control structure, and
shared resource requirements.
A software design comprises a large number of interact-

1To appear in IEEE Transactions on Software Engineering, Octo-
ber, 1992.

ing constraints that must be met by the set of modules
that make up the design. A subset of these constraints {
of immediate interest to developers designing (or redesign-
ing) a particular module for a particular system { are those
that must be satis�ed in order for that module to be in-
cluded in a particular design.
For example, suppose a search module is required. Bi-

nary search has a commitment to sorted input. The de-
cision to use binary search in a design clearly depends on
this commitment. If the data to be searched is already in
sorted form, binary search is a natural choice. If the data
is not sorted and it is inconvenient to introduce a sort rou-
tine, using binary search becomes harder, and developers
may choose a di�erent kind of search.
The commitment types for any particular domain are

de�ned by the ontology: commitments represent the pres-
elected constraint types that are known to be \interesting"
in determining the implications of component descriptions
on each other. For example, in a mechanical domain, phys-
ical linkages, spatial relationships, and functional roles de-
�ne commitments. In an electrical domain, commitments
are concerned with connectivity, physical con�guration,
thermal, and radiation characteristics. In software, in-
put/output, data access requirements, and control rela-
tionships represent commitments. In any domain, every
component has commitments, some of which are intrin-
sic, \brought on by itself" by the component's own struc-
ture and behavior description; while others are extrinsic,
\thrust on" the component by the other component de-
scriptions in the design. Commitments are the constraints
that bear on whether the component �ts into the design,
and are derivable from, and meetable by, some component
description in the design.
A primary concern for developers is to meet the com-

mitments of a module in a way that will not establish new
commitments that will be hard to meet in the current de-
sign. Developers making design decisions about a module
are thus engaged in \commitment management": deter-
mining the existing constraints that impact the module
and the new constraints the module would add, and the
amount of work required to satisfy them in the design.
A form of commitment management occurs now at

the architecture level. An architecture encodes decisions
about how the system is to be divided into modules and
how these modules should interact. Many of these are
represented explicitly (and visually) in various types of ar-
chitecture diagrams, e.g., data and control 
ow diagrams.

1



Architecture commitments can be examined and to some
extent reasoned about in terms of these explicit represen-
tations. Decisions that a�ect modules described at the
architecture level, i.e., decisions that change module inter-
action, are immediately apparent in terms of the diagram.
In standard software practice, commitments below the

level of the system architecture are usually not represented
in a way that allows developers to reason about them.
With the current code-plus-comments description of mod-
ules, commitments are implicit in the design: i.e., they
reside only in the heads of the developers (and later, to a
much lesser extent, in design documents). It is impossi-
ble to maintain an accessible record of the commitments
as they continuously evolve. The result is that developers
cannot assess the impact of a new decision.
Comet extends the commitment management style of

software development that begins (and now ends) at the
architecture level throughout the software lifecycle. Devel-
opers receive automated support in visualizing and keep-
ing track of commitments during design and development.
This implies that software modules must be represented in
a way that allows rapid assessment of their commitments
within the overall design.
Sections II, III, and IV describe Comet's representation

and reasoning technology. Section V presents a \look and
feel" overview of what it is like to use Comet. Section VI
gives a detailed example, providing a scenario of Comet
use and the speci�c reasoning that goes on behind the
scenes to produce what the users see on the screen. The
paper concludes with descriptions of related work, current
status, and a discussion of some technical issues raised by
this work.

II. Overview of Representation and Reasoning

The design knowledge managed by Comet is in the
form of \module descriptions": structure and behavior
speci�cations of modules interrelated by commitment con-
straints. The underlying representation is LOOM, a lan-
guage and environment for knowledge representation and
reasoning [10]. Declarative knowledge in LOOM consists
of de�nitions, rules, facts, and default rules. The LOOM
classi�er implements forward-chaining, semantic uni�ca-
tion, and object-oriented truth maintenance technologies
in order to compile the declarative knowledge into a net-
work designed to support e�cient deductive query pro-
cessing.
Comet is readied for a new application domain by build-

ing a set of core domain-speci�c module descriptions.
These are built \by hand", i.e., directly in LOOM by
Comet developers. Once the core modules are built in,
further module descriptions are introduced by develop-
ers combining and specializing the domain-speci�c terms
used in the de�nitions (Comet's facilities for enabling this
user interaction with the knowledge base are discussed
in Section V). Comet's ability to understand developer-
introduced module descriptions depends on being able
to automatically \place" new descriptions in its knowl-
edge base, i.e., to understand their relationship to known

terms. Because modules are described in precisely de�ned
LOOM terms, LOOM automatically maintains a taxon-
omy of module descriptions based on the de�ned interre-
lationship of their constituent terms. That is, since new
modules must be described as well-de�ned compositions
of abstract classes, LOOM can automatically determine
their subsumption relationships2.
Comet's module representation is designed to enable

support for developers in modifying existing designs.
When a module description is modi�ed, Comet �nds the
set of more speci�c module descriptions in the design
knowledge base that are consistent with the newly modi-
�ed description, and computes the new commitments that
must be met for each of these alternatives in order for them
to be included in the design. Since each commitment can
only be met by further module description modi�cations,
this process is recursive: a modi�cation causes the system
to compute a set of potentially relevant design alternatives
and their commitments; it can in turn compute the alter-
natives that can meet these commitments, along with the
commitments that they introduce, and so on. The compu-
tationally intensive reasoning processes within Comet are
thus determining the set of modules in the design library
that are consistent with a new description, and computing
the new commitments they would introduce.
By using the concept of commitments to bound the set

of constraints that must be computed at any given de-
sign step, and by using description logic representations
and reasoning, these reasoning processes can be applied to
large scale software knowledge bases at the performance
levels required to support human interaction. Commit-
ments represent the preselected constraint types that are
known to be \interesting" in determining the implications
of module descriptions on each other. Restricting con-
straint reasoning to commitment management with re-
spect to a single focus module changes the computational
support task from \full behavior veri�cation" to \provid-
ing a useful service". Description logic representations en-
sure that the module interrelationships that must be ex-
amined for commitment management are described solely
as compositions of primitive terms. This allows the con-
struction of reasoning mechanisms than can rely on this
rigor. The detailed complexity inherent in large scale soft-
ware makes this a key requirement: the representers of the
software must be able to depend on the reasoning system
to perform the same sort of computations on any descrip-
tion that uses an agreed-upon set of terms.

III. Representing Module Descriptions

Throughout the development process, software develop-
ers deal with the system by manipulating module descrip-
tions. The initial boxes-and-arrows design for the sys-
tem is a set of very high level module descriptions. The
fully implemented system is a set of very detailed mod-

2That is, LOOM can determine these relationships in principle. There
are well known tractability issues that limit the operational feasibility of
subsumption reasoning [12]; LOOM therefore determines some subsump-
tion relationships, but not others [10].

2



ule descriptions (annotated code). Software development
consists of the elaboration, addition, and modi�cation of
module descriptions.
Current programming languages provide module de-

scriptions in only a very limited form. The software can be
compartmentalized into packages and modules, and the in-
put and output of the module can be described in terms of
generic types. The language for describing types is limited
to structural de�nition (order and substructure speci�ca-
tion) in terms of a set of primitives (integer, etc.). The
behavior of the module is usually described as a procedure,
which is not well suited to design activities (e.g., compar-
ing the behavior of alternative modules, summarizing the
behavior of complex modules, assessing the relationship of
one module to another).
Object-oriented systems include type taxonomies in

which modules can inherit user-speci�ed characteristics
according to user-speci�ed inheritance links. Although
this helps the developer in understanding the organiza-
tion and function of the modules in the taxonomy, these
systems cannot enforce constraints on the use of modules
based on their description. The system does not under-
stand the relationship among modules; it only knows their
position in a taxonomy that was de�ned outside of its
purview.
The module description capability in Comet goes be-

yond that currently o�ered in both the richness of the
descriptive language and the system's ability to make in-
ferences and enforce constraints based solely on the de-
scriptions it is given.

A. Structural Descriptions

As an introduction to Comet's taxonomic reasoning, we
present the usual representation of modules in terms of
structural descriptions and then show the use of classi�-
cation to maintain taxonomies of modules represented in
this way.
Module descriptions are encoded as LOOM de�nitions.

De�nitions bind module names to concepts (an abstract
class of individuals) or to a relation (an abstract relation-
ship among individuals). For example, procedures are
de�ned as specializations of the primitive abstract class
Procedure Module, whose relations describe substruc-
ture, high-level input/output ports, and interconnectivity
{ see Figure 13. Ports have semantic datatype restrictions
imposed on their values. Since these datatype restrictions
are themselves abstract classes managed within the taxon-
omy, Comet can reason about the legality of connections
and complain about connections between ports with in-
compatible datatypes (e.g., trying to coerce a set of cardi-
nality greater than 5 into a set of cardinality less than 3).
As an illustrative example, Figure 2 shows specializa-

tions of the Procedure Module de�nition to describe

3LOOM expressions are shown in bold; abstract class names are capi-
talized, relation names are lowercase, and LOOM keywords are lowercase
preceded by a colon. LOOM constructs are explained as they are intro-
duced; a numbered comment will appear within the LOOM text and a
corresponding explanation will appear in the caption of the enclosing
�gure.

(defconcept ProcedureModule
:is :primitive ;1;
:constraints

(:and (:all submodule ProcedureModule) ;2;
(:the parent ProcedureModule) ;3;
(:all input-port-of InputPort)
(:all output-port-of OutputPort)
(:all submodule-interconnectity Connection)
(:the behavior-of Behavior-Sequence)))

Fig. 1. Basic LOOM module description de�nition. (1) A primitive is a
LOOM construct that speci�es an abstract class that is not de�ned com-
positionally in the knowledge base. Primitives can be specialized with
compositional de�nitions. (2) Every submodule must be a Procedure
Module. (3) Only one parent can exist, and it is a Procedure Module.

core procedures used for a \grading" domain, i.e., as-
signing letter grades on a curve. The specializations are
formed by restricting the module types of subcomponents
and/or the datatypes of inputs and outputs. Each domain-
speci�c term mentioned in the de�nition (e.g., Array
Student Scores) is itself an abstract class with a precise
compositional de�nition in terms of other abstract classes,
eventually bottoming out in the set of primitives for that
domain.
In this example, a grade threshold is identi�ed for use

in partitioning grades into groups. Scores in the \good"
group are then assigned either an A or B based upon which
half they belong to; scores in the \bad" group are assigned
C, D, or F based on which third they belong to. Di�erent
alternatives for identifying the threshold are modeled as
specializations of Identify Grade Threshold.
One such alternative is Median Grade Threshold,

whose behavior (discussed in Section III.B) is to identify
the median score stored in the input array. The other
alternative is less precise (and less fair-minded): Spe-
cial Circumstances Grade Threshold posits extra in-
puts in addition to Array Student Scores (which is
mandated via inheritance from the de�nition of Iden-
tify Grade Threshold). This allows something other
than the grades themselves to in
uence the cuto� grade
choice. The essence of this is captured by the cardinality
constraint (at-least 2) on the number of values to �ll its
input-port-of relation.
As a simple example of user-de�ned specialization, Fig-

ure 3 shows a case in which an unscrupulous teacher wishes
to guarantee the grades of favorite students. The teacher
specializes the more general grading function Identify
Grade Threshold to take an argument Student that
identi�es the lucky student. LOOM will classify the
teacher's new My Grade Threshold module as a spe-
cialization of Indentify Grade Threshold, as it is in-
structed to in the de�nition of the concept. Further-
more, LOOMwill recognize during this process that, based
on their LOOM de�nitions, Student is not compatible
with the input type Array Student Scores of Iden-
tify Grade Threshold. Thus, it will conclude that there
must be at least two required input datatypes for this mod-
ule and it will automatically discover that the new module
description is a specialization of Special Circumstances

3



(defconcept GradeOnCurve :is
(:and ProcedureModule ;1;

(:some submodule IdentifyGradeThreshold) ;2;
(:some (:compose input-port-of data-type) ;3;

ArrayStudentScores)
(:some submodule PartitionGradesByThreshold)
(:some submodule AssignGoodGradesAorB)
(:some submodule AssignBadGradesCorDorF))))

(defconcept IdentifyGradeThreshold :is
(:and ProcedureModule :primitive

(:some (:compose input-port-of data-type)
ArrayStudentScores)

(:the (:compose output-port-of data-type) Score)))
(defconcept MedianGradeThreshold :is
(:and IdentifyGradeThreshold

(:exactly 1 input-port-of) ;4;
(:some behavior-of FindMedianGradeBehavior))))

(defconcept SpecialCircumstancesGradeThreshold
:is (:and IdentifyGradeThreshold

(:at-least 2 input-port-of)))

Fig. 2. Domain speci�c core module descriptions (1) Inherit all the re-
quirements of a Procedure Module. (2) There exists a submodule of
type Identify Grade Threshold. (3) To impose a type restriction on
a linear composition of relations, one can employ LOOM's :compose op-
erator. Thus this restriction says that there exists a data-type of an
input-port-of the module which is of type Array Student Scores. (4)
Cardinality restriction to one value.

(defconcept MyGradeThreshold :is
(:and IdentifyGradeThreshold

(:some (:compose input-port-of datatype) Student)
(:some behavior-of FindGradeBehavior))))

Fig. 3. A user-de�ned specialization

Grade Threshold4 .
This automatic classi�cation-based inference is impor-

tant because there may be software design rami�cations
of using a Special Circumstances kind of thresholding
scheme, and Comet can make the teacher/developer aware
of it.

B. Behavior Descriptions

The structural implications of existing module descrip-
tions on current design decisions are usually relatively
clear to system developers. It is the behavioral implica-
tions that most require computational support to be made
evident. Comet must therefore be able to represent and
reason about the behavioral implications of module de-
scriptions.
In Comet, the behavioral description of a module is

speci�ed via its behavior-of relation. Behavioral descrip-
tions are compositions of behavior primitives, which are
elaborated in each application domain (see Section VI.C)
from a prede�ned set of generic behavior primitives.
Generic behavior primitives have so far been de�ned to
represent:

� boolean Test Condition;
� Actions with side-e�ects;
� Sequences of behavior, with a relation de�ned for
enumerating the steps;

4The ability to infer cardinality restrictions from attribute-type in-
compatibilities will be supported in LOOM 2.0.

� If Then Else Behavior control 
ow whose if rela-
tion is restricted to be a specialization of Test Con-
dition and whose then and else relations are spe-
cializations of a behavior Sequence;

� message passing between modules;
� iteration/Mapping over collections of elements much
like LISP's MAPCAR with a relation for describing
the mapped lambda-expression; and

� Filtering constructs to select elements from collec-
tions based upon theTest Condition role restriction
of the �ltering-criteria relation.

Relations in the primitive behavior descriptions (e.g.,
step, lambda-expression, then, else, if) are �lled by
other behavior types, and behavior descriptions can be
quali�ed by their input parameter types. Figure 4 shows
the behavior de�nitions for the modules introduced in Fig-
ures 2 and 3. For example, to implement Find Median
Grade Behavior, a requirement is imposed that some
step in the behavior sequence must be a call to the prim-
itive function Access Middle Of Array. Furthermore,
the input parameter must be a sorted array.
The description Find Grade Behavior implements

the behavior of the moduleMy Grade Threshold shown
in Figure 3: it mandates that some step in the behavior
sequence be a Student Search. Via inheritance from
Binary Search, the Student Search behavior is imple-
mented as an array search using an If Then Else Behav-
ior construct. The if relation uses the Equal Value be-
havior primitive to test whether the target has been found.
To handle the case where this does not occur, the else re-
lation's implementation is de�ned to contain a step that
is a nested If Then Else Behavior. Within this nested
structure, the behavior primitive Less Than Value de-
termines which half of the array to do a recursive binary
search on.

C. Augmenting Behavior Descriptions with Test Runs

Behavior descriptions are used to discriminate among
Procedure Modules. The intent is not to build exe-
cutable speci�cations, but rather to develop a rich enough
set of descriptors to allow retrieval of modules based on
descriptions of behavioral requirements.
Subsumption checking over behavior descriptions is not

always possible because of the limited expressiveness of
the language over which subsumption checking is feasi-
ble. Consequently the classi�er may be powerless to draw
distinctions between several modules within the same tax-
onomic neighborhood, even though the necessary condi-
tions have been speci�ed.
To deal with this modeling problem, Comet allows mod-

ule descriptions to be augmented with example test runs.
Testruns are represented in LOOM via the test-run re-
lation (see Figure 5). The values for this relation are in-
stances of the concept Run, which has relations de�ned
for capturing each test-input and test-output of an ex-
ample run.
Since testruns are grounded instances of actual behav-

4



(defconcept FindMedianGradeBehavior :is
(:and Behavior-Sequence

(:some step
(:and AccessMiddleOfArray

(:the input-parameter
(:and ArrayStudentScores

SortedArray))))))
(defconcept FindGradeBehavior :is
(:and Behavior-Sequence

(:some step StudentSearch)))
(defconcept StudentSearch :is
(:and BinarySearch

(:some input-parameter ArrayStudentScores)
(:some input-parameter Student)
(:some output-parameterScore)))

(defconcept BinarySearch :is
(:and ArraySearch

IfThenElseBehavior
(:some if EqualValue) ;1;
(:some (:compose else step) IfThenElseBehavior) ;2;
(:some (:compose else step if) LessThanValue)) ;3;

:constraints
(:and (:some (:compose else step then step)

BinarySearch) ;4;
(:some (:compose else step else step)

BinarySearch) ;5;
(:some intrinsic-commitment RequireSortCommit)))

Fig. 4. Behavior description.
(1,2,3,4,5):
if (EqualValue) then f..g
else f if (LessThanValue) then fBinarySearchg else fBinarySearchgg

(defrelation test-run
:is :primitive
:domain (:or ProcedureModule Behavior)
:range Run)

(defconcept Run :is
(:and :primitive

(:all test-input Thing)
(:all test-output Thing)))

Fig. 5. The test-run relation and the Run concept.

ior, they have the nice computational property of being
amenable to backward-chaining pattern recognition. De-
ductive patterns over testruns can be devised to specify
necessary and excluding conditions for behaviors that are
di�cult to capture using only the subset of �rst-order
logic exploitable by LOOM's classi�er. To locate likely
candidates for module reuse, Comet uses these deductive
patterns as �lters to discriminate between closely related
modules after the classi�er has focused attention to a rel-
evant set of concepts.
As an example, let's return to the grading domain. A

new teacher wishes to de�ne a grade threshold selection
algorithm: grades are placed in a �xed-size priority queue,
and the lowest grade left in the queue will be the good/bad
grade threshold. The teacher calls this algorithmReduc-
ing Sort (see Figure 6) and speci�es it as a descending
sort algorithm that does screening. Descending Sort
is a specialization of the Sort primitive behavior. The
Screen behavior is also a di�cult requirement to capture
in the subset of LOOM that is amenable to classi�cation.
The critical aspect of screening is therefore captured in
Comet as a deductive pattern over testruns, looking for

(defconcept ReducingSort :is
(:and DescendingSort Screen))

(defconcept Screen :is
(:and Behavior

(:some input-parameter Collection)
(:some output-parameter Collection)
(:satisfies (?behav)

(:for-some (?run ?input ?output)
(:and (test-run ?behav ?run)

(test-input ?run ?input)
(test-output ?run ?output)
(strict-subset ?output ?input)))))

Fig. 6. The concepts Reducing Sort and Screen.

cases where an output data collection is a strict subset
of an input data collection. To �nd potentially reusable
behaviors, LOOM performs pattern recognition on all in-
stances of behavior which are a type ofDescending Sort.
Consequently less candidates (i.e., the more relevant ones)
will be recommended for reuse than would have been sug-
gested by a mechanism relying only on LOOM's classi�er.
While not being adequate to capture behavior completely,
testruns are still an accurate description of behavior and
provide a vehicle to more closely associate LOOM behav-
ior descriptions with actual code.
As will be discussed in the next section, Comet provides

a means for modules to impose behavioral requirements
on their neighbors. These constraints are expressed via
LOOM concepts. Deductive patterns over testruns can be
exploited to express more precise behavioral constraints,
thereby enriching the class of constraint checking infer-
ences that Comet will provide for its users.

IV. Representing Commitments

Again, commitments are the constraints that must be
satis�ed for a particular module to be included in a partic-
ular design. Some of these are intrinsic (e.g., the commit-
ment of binary search to sorted input); while others are
extrinsic (e.g., the commitment to use the message pass-
ing protocol used by the other modules). In any case, the
only constraints that qualify as commitments are those
that bear on whether the module �ts into the design, and
are derivable from, and meetable by, some module descrip-
tion in the design.
The Comet approach does not claim to determine the

complete set of commitments for a given module auto-
matically { indeed that is probably impossible. Instead
Comet assumes the responsibility of reliably (and rapidly)
managing a well de�ned subset of the commitments, and
of providing visualizations to aid the developers in using
them in their development process.
This \well de�ned subset" of commitments consists of

those that Comet can automatically infer from module
descriptions, and those that are explicitly represented as
Commitment annotations on module descriptions. The
most straightforward kind of automatically inferable com-
mitments involve implied input/output relationships. For
example, the Send Message class is the primitive behav-

5



ior responsible for representing message passing between
modules. Any module whose behavior description includes
an element of the Send Message class has automatically
inferable commitments to other modules in the design to
ensure that messages are properly received. Similarly, the
input datatype restrictions on all procedural modules im-
ply commitments that mandate the existence of upstream
modules that are capable of producing output datatypes
compatible with the module's input requirements.
Comet's use of declarative behavior descriptions allows

automatically inferable commitments arising from type re-
strictions to be more subtle than module input/output
port matching. For example, Find Median Grade Be-
havior in Figure 4 uses the Access Middle Of Array
behavior primitive and further restricts its input parame-
ter to be both a Sorted Array and an Array Student
Scores. This allows a commitment to be inferred which
is assigned to all modules whose behavior can be classi-
�ed as a specialization of Find Median Grade Behav-
ior; either the module's behavior includes an additional
prior sorting sub-behavior step, or the module posseses
an input-port-of whose datatype is of the correct sorted
array type.
To expand the support o�ered by Comet, commitments

can also be represented explicitly as annotations on core
module descriptions. Commitments are represented as the
class Commitment with the relation requirement for
specifying criteria for how the commitment can be met
within a design. For example, the Binary Search be-
havior in Figure 4 has a requirement that the Require
Sort Commit (shown in Figure 7) de�nition be satis�ed.
Require Sort Commit is just an illustrative explicit rep-
resentation of the automatically inferred commitment al-
ready supported by Comet and discussed in the preceding
paragraph. The requirement for meeting the commitment
is that the behavior's parent module must be classi�able
as a Module Containing Sort Behavior. This is de-
�ned by the module either having a sorted input or con-
taining a sorting sub-behavior within the composed be-
havior description of the module. The relation behavior-
network-member* de�nes the transitive search through
the module's behavior description.
So far, we have been concerned with the commitments

introduced by a new module { commitments that must
be met by other modules in the design. Comet must also
recognize which of the other modules' unmet commitments
are met by the module being introduced into the design.
Furthermore, it would be useful to tell developers when a
particular kind of commitment ought to be met by a new
module, and to give the new module the responsibility of
meeting that commitment.
Comet relies on LOOM's deductive capability to deter-

mine which outstanding commitments in a design are ac-
tually met by each newly introduced module. Each un-
met commitment is compared against the structure and
behavior description of the new module. If by backward
chaining or subsumption checking LOOM can decide that
some aspect of the description satis�es the criteria speci-

(defconcept RequireSortCommit :is
(:and Commitment

(:the requirement
ModuleContainingSortBehavior)))

(defconcept ModuleContainingSortBehavior :is
(:and Module

(:satisfies (?mod)
(:or (:for-some (?datatype ?port) ;1;

(:and (input-port-of ?mod ?port)
(datatype ?port ?datatype)
(SortedArray ?datatype)))

(:for-some (?behav) ;2;
(:and (behavior-network-member*

(behavior-of ?mod) ?behav)
(SortBehavior ?behav)))))))

Fig. 7. Explicit commitment annotations. (1) Either the module has an
input-port-of whose datatype is a Sorted Array or (2) some behav-
ior element within the module's behavior decomposition is of type Sort
Behavior. The relation behavior-network-member* recursively de-
scends through the behavior description of a module �nding all member
sub-behaviors.

�ed in the commitment, the commitment is removed from
the \unmet" list. To allow for LOOM's incomplete rea-
soning capability, Comet allows developers to override this
procedure and explicitly assert that a module meets a par-
ticular commitment { but it maintains a record of where
the assertion came from.
To achieve the goal of informing developers when a

module ought to meet a commitment, we have added a
responsible-for relation on the Commitment class for
specifying what module classes should bemeeting the com-
mitment. This \responsibility" is inherited by any user-
de�ned specializations of the module. If a new module
is \responsible-for" but is unable to meet an outstanding
commitment in a particular design, Comet informs the de-
velopers of that fact, and of other module descriptions (if
any) that are capable of meeting the commitment.
After the intrinsic commitments of a newly incorpo-

rated module have been identi�ed, responsibility for meet-
ing each intrinsic commitment is assigned to those mod-
ules satisfying the commitment's responsible-for rela-
tion criteria. These become extrinsic commitments for
those modules: extra responsibilities thrust upon them
by the intrinsic commitments of the new module. If no
existing module meets the \responsible-for" criteria, then
new modules need to be incorporated into the design. If a
module meets the responsible-for criteria, but does not
meet the requirements of a commitment, the developers
are warned that it must be replaced.

V. Look and Feel

This representation and reasoning capability is used to
provide a direct manipulation-style visual feedback of user
interaction with the Comet system. Figure 8 shows a
schematic Comet screen5 representing a snapshot of a de-
velopment process in progress. The screen consists of three
windows: Module Description, for editing diagram repre-
sentations of modules; Forms-Based Editing, for editing

5This schematic is a MacIntosh drawing, but the other \screen pic-
tures" are printed directly from the Comet screen.

6



text representations of modules; and Design Memory, for
displaying existing module descriptions form the Comet
knowledge base that could �t into the current design, along
with the commitments that must be satis�ed in order for
them to do so. These windows will be discussed in terms
of a typical user interaction sequence, following the num-
bered arrows in Figure 8.
Developers begin by browsing system diagrams { much

as they might look through design documentation from
previous systems before embarking on their task. If the job
is a modi�cation of an existing system already known to
Comet, the developers might begin by examining a fairly
speci�c module. If the job is to build a \whole new sys-
tem" in the domain, the starting point might be an exist-
ing architecture. From Comet's point of view, the starting
point does not matter: module descriptions at all levels
are expressed externally in terms of diagrams and text,
and internally in terms of the LOOM-based structure and
behavior representation language.
The developers can examine the structure and behav-

ior of modules to see if they meet the new requirements,
or, more usually, to see what has to be changed in order
for them to meet the new requirements. The Module De-
scription window in Figure 8 shows a graphic rendering
of the module description under consideration. Currently,
only data 
ow diagramming is supported: various levels
of detail can be viewed via recursive Module Description
windows.
In addition, developers can view English-like descrip-

tions of the module's structure and behavior. The text
is generated (in a very limited way) by the system. Pa-
rameterized English-like phrase forms are associated with
constructs in the module description language. A partic-
ular module description is rendered by instantiating the
parameters of the appropriate phrase forms using the cor-
responding elements of the description's constructs.
Comet must allow developers to express new module

descriptions to meet new needs. However, given current
technology, the system must severely limit the users' 
ex-
ibility in this task. Comet allows the user to introduce
new module descriptions only as specializations of exist-
ing module descriptions. In practice this is not much of
a restriction, since some of the existing module descrip-
tions are at a very high level of abstraction { virtually any
module can be seen as a kind of one of them. The more
telling restriction is that Comet allows the user to special-
ize module descriptions only with a small set of prede�ned
modi�cation alternatives. These are presented to the user
in terms of a forms-based interface: essentially the user
must pick from the modi�cation options presented on the
menus (see section VI.C). In step (1) of Figure 8, the
developers are modifying the text version of the module
description in the Forms-Based Editing window in order to
make it meet new requirements. The modi�ed text is au-
tomatically translated back into LOOM, resulting in a new
description, shown highlighted in the Module Description
window.
In step (2) of Figure 8, the developers request to see

any existing, more detailed, module descriptions in the
Comet knowledge base that are consistent with the new
description they have just created. The goal is to �nd ex-
isting assets that might apply to the new job. The idea is
that when the developers propose a module to ful�ll some
aspect of their design, they should be able to see if the sys-
tem knows of any existing module descriptions that could
possibly �ll that role. The Design Memory window [11]
presents module descriptions that are potential substitu-
tion candidates. The leftmost column lists vertically the
alternative module descriptions that are compatible with
the current design. A crucial part of the Comet philoso-
phy is that \compatible with" means that their descrip-
tions are subsumed by the developers' description, and
their commitments can potentially be met in the current
design. This is rather di�erent than the usual notion of
compatibility: the candidate modules are not yet compat-
ible with the design, but they can be made so if their
commitments are not met. This notion is very important
to the tractability of the system's reasoning processes (see
Section IX.A).
The links emanating from each module description rep-

resent its commitments. Each commitment can be met by
incorporating the module description it points to (another
module known to the system, and thus another asset) into
the current design. A dashed link indicates that the com-
mitment has already been met in the current design. The
Design Memory window therefore gives developers imme-
diate visual feedback on the rami�cations of using known
assets: each commitment must be met, which means that
the designated other parts of the design must be altered
to include the candidate module descriptions. In the �g-
ure, after exploring the commitments, the developers have
decided that the highlighted module description in the De-
sign Memory window meets their new requirements, and
that its commitments are not too hard to meet. In step (3)
of Figure 8, they substitute it for the highlighted mod-
ule in the Module Description window, thus altering the
design. Each module description modi�ed in the Comet
environment adds to the system's store of reusable assets
{ reusable because they are described in terms of their
commitments to other known assets.
In Comet, choosing substitution modules is deliberately

designed as an interactive process. We believe that devel-
opers must play an active role in reuse. First, as a practi-
cal matter, the system cannot be expected to understand
all commitments among modules. Second, we believe that
exploring the reuse memory should be a feedback process:
if the developers specify a module description that leads
to an empty Design Memory window, or that gives rise to
candidates that have onerous commitments, the develop-
ers may wish to reconsider their proposal. That is, a valid
reason for developers' inability to �nd appropriate mod-
ules is that they are looking for the wrong thing; their
thinking or their requirements need to change. One of
the most powerful reasons to change a design is to make
existing solutions applicable.

7



Fig. 8. Schematic view of a Comet screen. Arrows represent data 
ow, boxes represent data structures, and ovals represent procedures. Double boxes
or ovals indicate that the module description is associated with code. Heavy dashed arrows show numbered steps in the user interaction sequence
described here, and do not actually appear on the screen.

VI. Example

We now show this \look and feel" in the context of an
actual scenario of Comet use, and explain how the repre-
sentation and reasoning discussed in Section 2 implements
the system's behavior. We �rst introduce the application
domain, and then sketch some highlights from an actual
Comet scenario. Finally, we give a \behind the scenes"
look at the system, showing some detailed module descrip-
tions from the application domain, and describing speci�c
reasoning activities.

A. Domain

We have tested Comet representation and reasoning by
constructing an application in the domain of \trackers".
We have examined actual tracker systems, from design
documents to code, and created (by hand) Comet mod-
ule descriptions of signi�cant portions of the system to
form the core knowledge base in the tracker domain. In
parallel (i.e., without reference to the speci�cs of existing
systems), we developed some informal requirements for
a hypothetical new tracker system for construction using
Comet. Our purpose was to determine whether Comet's
module description language is adequate for representing
the intricacies of real software systems, and whether the
reasoning mechanisms are su�cient (including su�ciently
e�cient) to support interactive software development.
Tracker systems take sensor data about vehicles moving

through space and resolve the data into individual vehicle
tracks. Air tra�c control systems are a familiar exam-
ple. Tracking comprises a variety of functions, including
accessing sensor data in the form of \contacts" (proba-
ble vehicle positions), screening the data according to the
regions that could contain the predicted continuations of
known tracks, initiating new tracks, updating tracks, mak-
ing new predictions, etc.

For any new application domain, Comet's built-in be-
havior primitives (discussed in Section III.B) must be
extended with domain-speci�c specializations. Figure 9
shows the taxonomy for some of the behavior primitives
created for the tracker domain . For example, the generic
Volume Containment primitive has been specialized to ac-
commodate various kinds of volumes of space that are rel-
evant to tracker software (\scene gates", \track gates",
and \clusters"). This extended set of primitives is then
used to build (compositionally) behavior descriptions for
the actual software module descriptions that form the core
for this domain.

B. Scenario

The core module descriptions for the tracker having
been built, one scenario of Comet use begins with software
developers being given a requirement to build a multi-
hypothesis tracker, i.e., a tracker that can temporarily as-
sociate an ambiguous contact with more than one track;
later contacts are expected to resolve the ambiguity. The
developers have access (via Comet) to descriptions of ex-
isting tracker systems. The goal is to use Comet to see
if one of the existing systems meets this requirement,
or whether one can be easily re-engineered to meet the
new requirement. Developers can browse through Comet's
knowledge base of tracker designs, examining module de-
scriptions in terms of architecture diagrams and English
text as described above. In this case the developers select
an existing single hypothesis tracker design6 to re-engineer
to handle multiple hypotheses.

6This example is based on an actual Lockheed tracker.

8



Fig. 9. Part of the behavior taxonomy. Ovals represent concepts (i.e., the constructs created by the defconcept operator in LOOM); arrows represent
subsumption relationships; the semicircular line connecting arrows below a concept indicates that the linked subsumers form a disjoint covering.

Step 1: Modify Assign Contact to Track to handle

multiple hypotheses

The developers focus �rst on the Coarse Contact Screen-
ing module, one of four major high-level modules in the
existing design. This module examines incoming contact
data from the sensors and assigns the contact to an ap-
propriate existing track. If there is no appropriate existing
track, Coarse Contact Screening will initiate a new track,
or hold the contact in a temporary data structure (called
a cluster) until more information is known. The devel-
opers �nd that the �rst place that needs to be modi�ed
within Coarse Contact Screening is the module that as-
signs contacts to existing tracks, called Assign Contact To
Best Track. To examine the behavior of this module, the
developers call up the generated text description of the
behavior of this module, shown in Figure 10.
The developers see that the aspect of module behavior

represented by the phrase
For the one contact/track gate with the highest
score
clearly needs to be modi�ed (after all, they are interested
in multiple hypotheses, not just the one with the high-
est score). They therefore request possible replacement
options, and the system presents three, one of which se-
lects all of the contact/track gates rather than choosing
only the one with the highest score. This option is cho-
sen, and the developers delete the two lines that refer to
track scoring, since the scoring is super
uous given that
all contact/track gate assignments are now appropriate.
The developers save this new behavior, causing Comet

to replace Assign Contact To Track with a temporary
placeholder module called (by the developers) Assign Con-
tact To All Tracks. Comet maps the new behavior into
a LOOM concept, created from the lower-level concepts
that correspond directly with English phrases (see next
section). This concept is classi�ed in the taxonomy.

Next, LOOM is queried for modules whose behavior spe-
cializes this concept. For each of these modules, Comet
determines all of their commitments relative to the exist-
ing design, and presents them in the Design Memory win-
dow. In our example scenario, only one such specializer is
located, Multi Assign Contact To Track.

Step 2: Add Scene Gates

The developers now begin to browse the Design Memory
window (see Figure 11) in order to explore the rami�ca-
tions of substituting Multi Assign Contact To Track into
the design. They �nd that two data structure commit-
ments (Scene Gate and Contact) and two procedure com-
mitments (Scene Gate Containment Check and One To N
Assoc Update Scene History) are currently outstanding.
Focusing on the Scene Gate commitment, the Design

Memory window shows that it can be met by introduc-
ing an Agglomerate Gates procedure. Agglomerate Gates
takes Track Gates as inputs and \agglomerates" them into
Scene Gates. Track Gate is tracker terminology for the vol-
ume of space that could possibly contain the continuation
of a track; Scene Gates are composed of Track Gates that
overlap, and are normally introduced to gain e�ciency in
analysis.
The developer chooses to introduce the Agglomerate

Gates module into the design. This can be accomplished
directly from the Design Memory window by selecting the
Agglomerate Gates icon. Comet allows only legal connec-
tions to existing ports; if some of the required ports do
not yet exist (modules might be introduced into the de-
sign before the data structures they need), Comet allows
dangling connections to exist temporarily.

9



Fig. 10. Forms-based editing of behavior descriptions

Fig. 11. Partially modi�ed design with Design Memory window

Step 3: Replace Test for Track Gate Containment with

Scene Gate Containment

The developers then proceed to examine the Scene Gate
Containment Check procedure commitment (at the top of
the Design Memory window in Figure 11). This commit-
ment arises from the fact that the current design contains
a Test For Track Correlation Gate Containment, which
functions in terms of Track Gates. However, we already
know from the previous commitment that the proposed
Multi Assign Contact To Track works in terms of Scene
Gates, not Track Gates. Thus the Test For Track Correla-
tion Gate Containment module needs to be replaced with
one that handles Scene Gates.
The developers can see how much work it will be to

incorporate Scene Gate Containment Check by examin-
ing its four commitments. The commitment to Assign

Contact To Cluster has already been met (indicated by
the dashed line), since an acceptable Assign Contact To
Cluster module already exists in the current design. Sat-
is�ed that the remaining three unmet commitments will
not pose too much of a challenge, the developers substi-
tute the new Test For Scene Gate Containment module for
the existing Test For Track Correlation Gate Containment
module in the design.
Figure 12 shows all of the commitments in the Design

Memory window having been met. Note the correspond-
ing changes in Coarse Contact Screening in the Module
Description window.

C. Behind the Scenes

This section highlights some of the representations and
reasoning underlying the steps in the scenario described

10



Fig. 12. Revised design with all commitments met

above.

Supporting Forms-Based Editing

Step 1 of the scenario showed a new LOOM behavior
description being created by modi�cation of a text de-
scription of an existing behavior. Comet implements this
capability by o�ering behavior alternatives, each described
by a text phrase in a menu. These phrases correspond
directly with domain-speci�c behaviors in the core taxon-
omy. When the developers wish to modify a phrase in a
text behavior description, as they did with
For the one contact/track gate with the highest
score
in the scenario, Comet creates a menu of behavior alterna-
tives by �nding the most speci�c other domain behavior
primitives that are subsumed by the same generic behavior
primitive. Figure 13 shows how the phrases in the menu
in Figure 9 are associated with behavior primitives in the
taxonomy.

Finding Relevant Substitution Candidates

When the developers choose one of the alternative prim-
itive behaviors,
For all contact/track gates
in the scenario, Comet uses it to compose a new behav-
ior description (i.e., it substitutes it into the composed
behavior description of the existing module). In the sce-
nario, the modi�ed behavior description forms a LOOM
concept named Placeholder Behavior1, shown in Fig-
ure 14. Comet's goal is to see if this behavior description
{ the one that the developers want to introduce into the
design { subsumes the behavior description of any known
module. That is, Comet looks to see whether any of the
modules that it knows about are compatible with, but
more speci�c than, the developers' speci�cation. Such
modules would be good candidates for reuse in the de-
velopers' current design.

In Figure 14, one candidate behavior description, As-
sign Contact to All Track Behavior is found which is
subsumed by the newly formed behavior concept Place-
holder Behavior1. This is the behavior description of
the module Multi Assign Contact to Track, which
appears as the single oval icon in the left-hand column of
the Design Memory window (Figure 11) in Step 2 of the
scenario.

Computing Commitments

After Multi Assign Contact to Track has been se-
lected as a substitution candidate, Comet computes its
commitments via inheritance (see Figure 15) and presents
them in the Design Memory window. Multi Assign
Contact to Track has intrinsic commitments to input
of types Contact and Scene Gate, giving rise to the
bottom two commitments displayed in the Design Mem-
ory window in Figure 11. In addition, the module Multi
Assign Contact to Track inherits the explicitly repre-
sented commitment Scene Gate Containment Check,
shown in Figure 16. The module responsible-for ful-
�lling this commitment is a module of type Coarse Test
For Contaiment, and the moduleTest For Track Cor-
relation Gate Containment in Figure 11 meets the
responsible-for criteria. The requirement which this
module must meet is speci�ed in the Scene Gate Con-
tainment Check description (not shown); this further
constrains the Contact and Scene Gate outputs of the
responsible module such that the Contact must be con-
tained in the volume of space represented by the Scene
Gate. This constraint is speci�ed behaviorally, using
static test runs (as described in section III.C) to verify
that all Contact/Scene Gate output pairs from the re-
sponsible module have the primitively de�ned contains
relationship between them. This commitment gives rise
to the commitment link to the Scene Gate Contain-
ment Check module at the top of the Design Memory

11



Fig. 13. The association of behavior alternatives with English phrases

Fig. 14. Finding substitution candidates

window in �gure 11. The fact that this commitment link
is solid indicates that the existing module within the de-
sign meeting the responsible-for criteria does not meet
the requirement criteria, and consequently alternative
modules need to be suggested by Comet.

Suggesting Modules to Meet Commitments

For each commitment it discovers, Comet tries to sug-
gest existing modules that can meet it. It looks �rst for
modules that exist in the current design; if it �nds any, the
commitment is considered to be met, and is shown with
a dashed line, as occurred in Step 3 of the scenario. Oth-
erwise, Comet will search for existing modules that could
be incorporated into the design, and shows the commit-
ments that must be met in order to do so. For an explicit
commitment, the characteristics of the modules that could

meet it are spelled out in the requirement relation, and
Comet need only �nd the subsumees of the criteria de-
�ned in it. For other commitments, some special reason-
ing over module descriptions is required. For example, to
meet a commitment mandating an input of a particular
datatype, Comet looks upstream in the design for mod-
ules of that datatype or modules that produce output of
that datatype. If no such modules exist, Comet will try
to �nd a module that can be introduced into the design in
the right context that is capable of of creating the desired
datatype.
In the scenario we saw the Agglomerate Gates mod-

ule presented as a way of meeting the Scene Gate
datatype commitment. No module in the existing design
produced the Scene Gate datatype. Thus the taxonomy
was searched for all modules capable of creating a Scene

12



Fig. 15. Intrinsic commitments computed via inheritance. (A) Connections must be created to siblings producing Contact and Scene Gate data
structures. (B) Modules exist ful�lling the commitments Scene Gate Containment Check and One to N Assoc Update Scene History.

(defconcept SceneGateContainmentCommit :is
(:and ContainmentCommit

(:the responsible-for CoarseTestForContainment)
(:the requirement SceneGateContainmentCheck)))

Fig. 16. An explicit commitment. The module \responsible-for" meet-
ing the commitment is of type Coarse Test For Containment. The
requirement it must meet is described by the description Scene Gate
Containment Check, which is (not shown) expressed as a deductive
pattern over the stored behavioral testruns of a module.

Gate. For aProcedure Module to be considered a \cre-
ator", it must possess a behavior capable of producing the
desired datatype as output from other input datatypes ex-
cluding the desired one. So a behavior that took a Scene
Gate as input and produced it as output is not considered
a creator. As it turned out, the behavior description of the
Agglomerate Gates module possessed the relevant cre-
ator sub-behavior.

VII. Alternative Approaches and Related Work

All knowledge-based approaches for facilitating software
development share a common underlying theme of sup-
porting developers by reasoning in terms of explicitly rep-
resented knowledge about software. However, the vari-
ous approaches di�er greatly in their emphasis on partic-
ular technologies and stages of the development process.
Comet's emphasis is as follows:

� detailed, computational treatment of module behav-
ior as well as structure { Comet contains formal de-
scriptions of the behavior of each module, and has
the capability of capturing and reasoning about com-
plex behaviors from both their constituent primitive
behaviors and stored prototypical test runs;

� primary attention to the interaction of design deci-
sions in an evolving design { Comet provides context-
speci�c guidance on what existing modules may be

relevant to include in a design, and what design mod-
i�cations will be required in order to include them;
and

� support for the design phase of system construction,
when the system requirements and behavioral speci�-
cations are being explored and negotiated in order to
determine the internal structure of the software sys-
tem { Comet's users are system engineers responsible
for architecting the system, rather than programmers
coding to given requirements. The implications of
these choices can be seen by comparison with other
knowledge-based software development systems.

The Knowledge-Based Software Assistant is an attempt
to develop a knowledge-based paradigm supporting all
phases of the software development lifecycle from require-
ments through code implementation. Notable achieve-
ments in this program have included the Knowledge-Based
Requirements Assistant (KBRA) of Czuchry and Harris [1]
and the Knowledge-Based Speci�cation Assistant of John-
son [5], as well as the combination of these two components
into the ARIES system [6].
Like Comet, these systems are aimed at supporting

reuse. KBRA, for example, supports the development
of system requirements by managing informal information
in an intelligent notebook, noting inconsistencies between
di�erent parts of this notebook, generating di�erent pre-
sentations of information, and critiquing and sometimes
completing partial descriptions. To enable requirements
reuse, the system relies on users browsing through the do-
main taxonomy or requesting information using system
names. It does not have a facility for retrieving and rea-
soning about relevant information based on abstract de-
scriptions, as Comet does. Also, while it uses constraints
and classi�cation within its knowledge representation lan-
guage (Socle), the classi�cation is based on special purpose

13



decision tables and the constraints are primarily numeric,
derived from formulas relating requirement entities. Thus,
KBRA does not exploit general classi�cation or rely on
symbolic constraint reasoning to determine suitable reuse
candidates or system consistency in the way Comet does.
Instead, it focuses more on the issues of multiple presen-
tations of information and maintaining their consistency
through a central repository of requirement statements,
something not yet pursued in Comet.
The IDeA system of Lubars and Harandi [9] and its

successor, Rose-1 [7], were developed to support the incre-
mental and coordinated evolution of requirements and de-
sign. In these systems, the user is a requirements analyst
and the system serves the role of the software developer.
The initial user requirements lead IDeA to select an ap-
propriate design schema from its library and, through con-
tinued interaction, this schema is re�ned into a complete
design. The system also notes when there are mismatches
to be resolved and further re�nements to be made and
stores these on a goal agenda. The users are not exploring
designs as in Comet { designs are always developed in a
top-down fashion, and a requirement cannot be retracted
once it has been speci�ed. In Comet, a design choice can
always be changed and the user can begin the design pro-
cess from a very abstract module or an entire implemented
system. Later extensions to Rose-1 (see [8]) support this
kind of 
exibility through truth maintenance and hyper-
text mechanisms still lack the range of reasoning support
for determining the rami�cations of system modi�cations
that Comet provides.
Another recent knowledge-based system, LaSSIE [2],

promotes software reuse by providing multiple viewpoints
of modules, including architectural, domain, and code per-
spectives. Like Comet, LaSSIE relies on a description logic
system, KANDOR for representing knowledge about soft-
ware. Domain actions are represented in terms of their su-
perclasses, actors, agents, operands, and the state changes
they produce. LaSSIE exploits classi�cation to provide
candidate responses to user queries: module descriptions
in queries are classi�ed within the domain taxonomy, and
all subsumees are retrieved for possible further examina-
tion. LaSSIE is primarily oriented around a higher level
description of domain actions and is used as an informa-
tion resource which users can query for reuse candidates,
examples, or further module details. The system has more
detail on the actual code, as well as automated extraction
mechanisms [16] for obtaining code knowledge from mod-
ules.
LaSSIE di�ers from Comet in its representation of mod-

ules and in the support it provides to users. In LaSSIE,
actions are represented by simple slots de�ning the roles
of the action, whereas Comet includes a detailed formal
description of behavior. Comet uses its compositional
behavior representation to support retrieval of potential
reuse candidates in response to edited behavior descrip-
tions. Reasoning in terms of behavior descriptions also
enables some of its more subtle feedback about module
commitments and inconsistencies in the design. LaSSIE

o�ers the user no explicit assistance when retrieving mod-
ules concerning which are most suitable in the current
design nor how the module might need to be altered to
�t into that design { the same module will always be re-
trieved for a given query, no matter where in the current
design it might be used. There are also di�erences in the
reasoning of the systems due to the KANDOR language,
e.g., constraints between roles within a given module can-
not be stated. Furthermore, in comparison to Comet, the
system is designed primarily to aid the developer rather
than the designer; as such, it has more detail on the actual
code, as well as automated extraction mechanisms [16] for
obtaining code knowledge from modules.
The Programmer's Apprentice [14] is an intelligent com-

puter assistant that can aid the programmer in construct-
ing a software system. This work has relied primarily on
the Plan Calculus [13] and the CAKE knowledge repre-
sentation and reasoning system. The Plan Calculus pro-
vides an abstract, plan-based view of a body of software
code, while CAKE supplies a layered reasoning system for
making inferences at the levels of propositional logic, al-
gebraic reasoning, frames, and the Plan Calculus itself.
This approach has resulted in the development of a spe-
cialized editor, KBEmacs [17], which allows programmers
to develop their programs using both plans and program
text. KBEmacs automatically does translation and updat-
ing between these two forms of representation. There has
also been work on a Requirements Apprentice that sup-
ports the generation of formal speci�cations from infor-
mal requirement descriptions based on a library of clich�es
capturing common concepts employed in a given domain.
The clich�es are themselves represented in the Plan Cal-
culus. In comparison with Comet, the Programmer's Ap-
prentice work di�ers in its strong orientation towards pro-
gramming. It seeks to abstract away the canonical form of
programs and enable pseudo-natural language interactions
which can refer to parts of a program directly. However,
this does not overcome the problem of describing and rea-
soning about a system in domain-oriented terms. Rather,
it focuses more on easing the implementation burden on
the programmer (synthesis support) without the kind of
high-level design support o�ered by Comet. One could
imagine, however, extending the notion of clich�es into the
design realm to bridge this gap between requirements and
implementation.

VIII. Status

Comet runs on a Sun Sparcstation. It is based on
LOOM and on interface software previously developed for
the LEAP automatic programming system [4]. A tax-
onomy of generic behavior primitives has been built, as
discussed in Section III.B. These were specialized into
some ninety-six primitive behaviors for the tracker do-
main, which, along with sixty-�ve datatype descriptions
(tracks, contact, etc.), form the core knowledge base for
this domain. These primitives were then composed to
model actual Lockheed tracker code.
This initial system is currently serving as an experi-

14



mental prototype, used to guide further development of
the representation and reasoning components, as well as
to experiment with user interface techniques for presenting
detailed guidance to the users.

IX. Discussion

The development and use of the Comet system has
caused us to address issues that we believe are of concern
to all knowledge-based approaches to supporting software
development. This section brie
y outlines our \design phi-
losophy" with respect to some issues of e�ciency, knowl-
edge acquisition, and associating formal software descrip-
tions with actual code.

A. E�cient Reasoning

The key reasoning support o�ered by Comet, �nding rel-
evant module descriptions, is a form of description classi�-
cation: the system must determine which module descrip-
tion terms are subsumed by themodule description term of
interest. After much study in this area (e.g., see [12]), we
know that any reasonably expressive description represen-
tation language will not allow complete, tractable classi�-
cation reasoning. So we are in the usual bind: the module
description language must be expressive enough to encode
the �ne shades of meaning that can di�erentiate potential
substitute modules from inappropriate candidates, but the
system must be able to rapidly discover at least most of
the right candidates most of the time.
LOOM follows the tradition [15,18] of allowing the ex-

pression of terms whose subsumption relationships can-
not be automatically determined by the system. This
leaves open the question of how much reasoning is to be
done in addition to the subsumption reasoning provided
by LOOM, and how it is to be structured with respect to
the reasoning provided by LOOM.
Comet uses the idea of commitments to break the over-

all subsumption reasoning problem into tractable chunks,
and to provide a clean interface to LOOM. The LOOM
classi�er automatically determines the subsumption rela-
tionships of each new description to the extent that it
can, given (e�ciency-based) limitations on its ability to
deal with some stated constraints and given that primi-
tive terms play a prominent role in module descriptions.
Comet uses LOOM classi�cation to determine a set of

modules that could possibly be substituted for the new
module description on the basis of their structure and be-
havior. Comet then takes this set, determines their com-
mitments, and displays them for the user. This can be
seen as a form of \residue" reasoning [3]: each module is
appropriate (i.e., can be substituted into the design) if its
commitments are met.
Commitments are by de�nition determined with respect

to a single module. They are expressed in terms of rela-
tionships with other module descriptions, which in turn
may have commitments that must be met. However,
Comet does not explore all of these rami�cations at once;
the user is responsible for choosing to examine each of
the module descriptions in turn. The reasoning task is

thus broken into chunks, exploiting the modularity of the
design. Reasoning is also paced to user interaction, and
takes advantage of the users' reasoning capability: some
commitments may not be worth exploring for reasons that
the user understands but the system does not.

B. Going Beyond the Built-In

Except for the built-in core, Comet's knowledge base of
module descriptions grows automatically as a side-e�ect
of using the system for software development. Develop-
ers use Comet for support in analyzing the e�ect of de-
sign decisions, not as part of a knowledge acquisition sce-
nario. However, as developers modify module descriptions
to meet changing requirements, the system automatically
acquires knowledge by relating each new module descrip-
tion to the module descriptions it already knows about.
The developers do not need to be concerned with this pro-
cess: they just use the system to do their job.
New module descriptions must be specializations of

known ones. As was pointed out earlier, since the de-
scriptions are hierarchically organized at di�erent levels
of detail, this is not a serious restriction: it is easy to spe-
cialize a very general type. On the other hand, the more
speci�c the description that is specialized, the more the
system will know about it, and the more helpful it will be
to the developers in determining commitments. We be-
lieve that this will encourage specialization at the most
speci�c level possible.

C. Getting Down to Code

Comet does not guarantee that the module descriptions
it manipulates can be realized as working code. For those
module descriptions that are associated with code, Comet
does not guarantee that the code correctly implements the
module as described. Besides being unavoidable, we do
not see this as a serious problem.
The primary goal of Comet is to encourage the use of

existing assets in software development. Given the oft-
quoted proportions of e�ort in system development, the
most valuable unused assets are undoubtedly previously
proven designs, not code. Nonetheless, the ultimate goal
of software development is working code. The eventual
goal for Comet is to automatically generate code from the
module descriptions, and indeed, we are currently work-
ing to use Comet module descriptions as input to an auto-
matic programming system [4]. But even in the immediate
term we believe that the association of code with descrip-
tions will become quite accurate via the cumulative e�ects
of reuse: module descriptions with incorrect implementa-
tions will soon be detected and weeded out. Bugs occur in
hardware modules too, but the continual use of the same
modules in many designs results in increasingly bug-free
modules.

X. Acknowledgements

The authors acknowledge the very signi�cant contribu-
tions of Alan Teague in implementing the user interface
software, Brian Livezey in designing the module descrip-

15



tion language, and Sukesh Patel, Lori Ogata, and Rich
Baxter in analyzing actual tracker software. We also thank
Robert MacGregor for descriptions of LOOM reasoning
and the referees for their detailed suggestions.

XI. References

[1] A. J. Czuchry, Jr. and D. R. Harris, \KBRA: A New
Paradigm for Requirements Engineering", IEEE Expert,
Vol. 3, No. 4, pp. 21-35, 1988.
[2] P. Devanbu, R. J. Brachman, P. G. Selfridge, and B.

W. Ballard, \LaSSIE: A Knowledge-Based Software Infor-
mation System", Communications of the ACM, Vol. 34,
No. 5, pp. 35-49, 1991.
[3] J. Finger and Genesereth, M., RESIDUE: A De-

ductive Approach to Design Synthesis, Stanford Heuris-
tic Programming Project Memo HPP-85-1, Stanford, CA,
1985.
[4] H. Graves, \Interactive Design in LEAP", Proceed-

ings of AAAI Workshop on Automated Software Design,
Anaheim, CA, pp. 173-182, 1991.
[5] W. L. Johnson, \Overview of the Knowledge-Based

Speci�cation Assistant", Proceedings of the 2nd Annual
Knowledge-Based Software Assistant Conference, Rome,
NY, 1987.
[6] W. L. Johnson and D. R. Harris, \Requirements

Analysis Using Aries: Themes and Examples", Proceed-
ings of the 5th Annual Knowledge-Based Software Assis-
tant Conference, Rome, NY, pp. 121-131, 1990.
[7] M. D. Lubars, \A General Design Representation",

Technical Report STP-066-89, MCC, Austin, TX, 1989.
[8] M. D. Lubars, \A General Design Representation

- Representing Design Dependencies in the Issue-Based
Information Style", Technical Report STP-426-89, MCC,
Austin, TX, 1989.
[9] M. D. Lubars and M. T. Harandi, \The Knowledge-

Based Re�nement Paradigm and IDeA: Concepts, Limi-
tations and Future Directions", Proceedings of the 1988
AAAI Workshop on Automating Software Design, 1988.
[10] R. MacGregor, \The Evolving Technology of

Classi�cation-based Knowledge Representation Systems",
in Principles of Semantic Networks: Explorations in the
Representation of Knowledge, John Sowa (ed.), Morgan
Kaufmann, San Mateo, CA, 1990.
[11] W. Mark, \Software Design Memory", Proceedings

of AAAI Workshop on Automated Software Design, Ana-
heim, CA, pp. 115-120, 1991.
[12] P. Patel-Schneider, \Undecidability of Subsumption

in NIKL", Arti�cial Intelligence, 38(3), 1989.
[13] R. C. Rich, \A Formal Representation for Plans in

the Programmer's Apprentice", Proceedings of the Sev-
enth International Joint Conference on AI, pp. 1044-1052,
1981.
[14] R. C. Rich and R. C. Waters, \The Programmer's

Apprentice: A Research Overview", IEEE Computer, Vol.
21, No. 11, pp. 10-25, 1988.
[15] J. Schmolze andW. Mark, \The NIKL Experience",

Computational Intelligence, 7 (2), pp. 134 - 159, 1991.
[16] P. G. Selfridge, \Integrating Code Knowledge with

a Software Information System", Proceedings of the 5th
Annual Knowledge-Based Software Assistant Conference,
Rome, NY, pp. 183-195, 1990.
[17] R. C. Waters, \The Programmer's Apprentice: A

Session with KBEmacs", IEEE Transactions on Software
Engineering, Vol. SE-11, No. 11, pp. 1296-1320, 1985.
[18] Woods, W. and Schmolze, The KL-ONE Family,

Harvard University Aiken Computation Laboratory TR-
20-90, Cambridge, MA, 1990.

16


