
Using a Description Classi�er to Enhance Deductive Inference�

Robert M. MacGregor
USC/Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

macgregor@isi.edu

Abstract

The representation languages found in many expert
system shells are hybrids composed of a frame language
and a rule language. Unfortunately, the frame and rule
components in these systems are not well integrated, and
as a result they miss important classes of inferences. In
place of frames, LOOM combines a description language
with a rule language, and uses an inference engine called
a classi�er to achieve a successful integration of frame-
like knowledge and rule-like knowledge. LOOM's abil-
ity to reason with descriptions enables us to implement
a broader range of capabilities than those found in the
current generation of expert system shells. For example,
LOOM is able to detect inconsistencies in a rule base,
to match against partially-speci�ed (not fully-grounded)
instances, and it implements a generalization of the tra-
ditional (e.g., CLOS-like) conception of object-oriented
method dispatching.

AI Topic: Knowledge Representation, Reasoning
Status: KR system in use by more than 15 projects

in the U.S. and Germany.
E�ort: 7 person years

1 Introduction

Many of todays expert system toolkits are hybrids that
enhance their expressive power by including both a
\frame component" and a \rule component" within a
single architecture. The marriages between frames and
rules achieved with these systems have signi�cant draw-
backs. In particular, their ability to reason with both
kinds of knowledge is generally non-uniform. In place of
frames, LOOM combines a description language with a
rule language, and uses an inference engine called a clas-
si�er to help \bridge the gap" between the description
component and the rule component, thereby achieving a

�This research was sponsored by the Defense Advanced Re-
search Projects Agency under contract MDA903-87-C-0641.

successful integration of frame-like knowledge and rule-
like knowledge.

The frame component present in many of todays ex-
pert system tools provides a means for introducing terms
present in the model of an application domain, and for
attaching constraint knowledge to individual terms. A
simple form of deductive inference, called \inheritance",
is commonly implemented as a part of a frame sys-
tem. LOOM's description language provides a princi-
pled means for describing much of the knowledge that
is commonly associated with the frame component of a
knowledge representation tool. The description classi-
�er (also called a term classi�er) gives LOOM the ability
to reason with descriptions. Key features of a classi�er
are its ability to determine subsumption relationships
between descriptions (when one description is implied
by another) and to combine (unify) sets of descriptions
to form new descriptions. These additional kinds of in-
ference extend considerably beyond simple inheritance.
This additional deductive power enables LOOM to pro-
vide capabilities not found in current generation KR
tools.

LOOM had its genesis in the KL-ONE-family[BS85]
of taxonomic representation languages. LOOM is de-
signed to support the construction of intelligent soft-
ware applications. It promotes a \model-based" ap-
proach to programming wherein the core of an appli-
cation program is a (dynamically changing) knowledge
base of de�nitions, rules, and facts that collectively de-
�ne the state of a domain model. The LOOM language
incorporates multiple programming paradigms: logic
programming, data-driven programming (productions),
and object-oriented programming (methods). Each of
the paradigms is fully-integrated with LOOM's knowl-
edge base component.

Our discussion of LOOM focuses on how it solves
the problem of reasoning with both rule-like knowledge
and frame-like knowledge. In the discussion below, we
�rst take a look at how current generation systems rep-
resent knowledge using rules and frames. We charac-



terize the notion of a \constraint rule", and indicate
why these systems do a poor job of reasoning with con-
straint rules. Next, we introduce the LOOM description
language, and show how descriptions can be used to ex-
tend the expressive power of a rule language. After that,
we describe the role that a classi�er plays in reasoning
with descriptions. As a footnote, we contrast the rules-
plus-descriptions technology used in LOOM with the
inference technology developed for logic programming
languages.

Finally, we describe some speci�c bene�ts that ac-
company the availability of classi�er technology. We
discuss enhanced forms of terminology maintenance,
reasoning with incomplete descriptions, and the use of
speci�city computations to enhance the data-driven and
object-oriented programming paradigms.

2 Rules

A typical deductive rule has the form
IF <antecedent> THEN <consequent>

with the interpretation \Whenever the antecedent of a
rule is satis�ed, the consequent is also true." For exam-
ple, the rule

IF Person(X) and (age(X) >= 60)

THEN Senior-Citizen(X)

states \If X is a person, and the age of X is at least 60,
then X is a senior citizen."

Current generation systems place signi�cant restric-
tions on the expressive power of the consequent side
of a rule. In general, the syntax of a rule consequent
is designed to mirror the syntax used to assert facts
in a knowledge base. Most of these systems can only
assert facts expressible as grounded atomic formulae
(tuples), e.g., \Person(Fred)" (Fred is a person), or
\age(Fred,50)" (Fred's age is 50). They cannot ex-
press facts such as \Fred is at least 60 years old", or
\Bicycle B3 has exactly two wheels." Accordingly, their
rule languages do not permit one to state such rules as

\If X is a senior citizen,
then the age of X is at least 60", or

\If X is a bicycle, then X has exactly two wheels."

Knowledge representation systems place syntactic
restrictions on their fact and rule languages for the fol-
lowing reason: In order for a system to reason with
knowledge expressed as facts or rules, it must be able
to combine the relevant knowledge structures to deduce
new facts. For example, the fact \Fred is a man" and
the rule \all men are persons" combine to yield \Fred
is a person". The formal term for the operation that

combines the structural components of facts and rules
is uni�cation. The restrictions that typical current gen-
eration systems place on the syntax of facts and conse-
quents of rules stem directly from the fact that they im-
plement relatively simple uni�cation algorithms that are
only capable of unifying terms having the form of atomic
predications. As we shall see in a moment, LOOM im-
plements a more sophisticated form of uni�cation, and
consequently, it places fewer restrictions on the syntax
of facts and rules.

We use the term constraint rule to describe a rule
whose right hand side does not have the form of an
atomic predication (an atomic predication is a pred-
icate applied to a list of variables or constants, e.g.,
\Person(?x)" or \color(?x,Red)"). For example, the
rules \a senior-citizen's age is at least 60" and \a bicycle
must have exactly two wheels" are constraint rules. For
the remainder of this discussion, we will conceptually
partition our rules into two classes { a rule whose con-
sequent is represented as an atomic predication will be
called a \simple rule", while a more complex rule will
be called a \constraint rule".

Some frame languages can express limited kinds of
constraint rules. For example, in KEE, the statement
\the age of a senior citizen is at least 60" is represented
by attaching a type restriction (\greater than or equal to
60") to the slot \age" on the frame \Senior-Citizen",
while the statement \a bicycle has exactly two wheels" is
represented by attaching a number restriction (\exactly
two slot �llers") to the slot has-wheel on the frame
Bicycle.1 Thus, the representational power of a hybrid
language combining frames and rules may exceed that of
a simple-rule-only language (or a frame-only language).

Unfortunately, current generation frame-plus-rule
(F+R) systems give uneven treatment to knowledge
placed in the system. In particular, their ability to rea-
son with constraint rules is quite limited. Systems such
as KEE, ART, and Knowledge Craft are capable of ap-
plying constraint rules to test for consistency, but they
lack the ability to \chain" using constraint rules. Sup-
pose a knowledge base contains the simple rule

IF age(X) >= 21 THEN Eligible-to-Vote(X)

and also contains the constraint rule
IF Senior-Citizen(X) THEN age(X) >= 60.

If we assert Senior-Citizen(Fred) then
Eligible-to-Vote(Fred) is necessarily true. However,
these systems cannot �nd this inference. This missing
piece of knowledge is the rule of inference \age at least
60 implies age at least 21."

1KEE employs the terms \value class" and \cardinality" to
refer to the notions of type restriction and number restriction,
respectively.



LOOM description English equivalent
Person \person"
(>= age 60) \thing with age at least 60"
(:exactly 2 has-wheel) \thing with exactly two wheels"
(:all has-wheel Flat) \thing all of whose wheels are 
at"
(:the color Blue) \thing with color of type blue"

Figure 1

As another example, if we state the constraint rule
IF Younger-than-Jack-Benny(X)

THEN age(X) < 39

and then tell the system both Senior-Citizen(Fred)

and Younger-than-Jack-Benny(Fred), then both of
the following (contradictory) facts can be proved:
\age(Fred) < 39" and \age(Fred) >= 60". These facts
are not directly representable in most F+R systems (be-
cause these facts do not have the form of atomic predi-
cations), and hence most F+R systems will fail to detect
this contradiction.

The missed inferences just described can be inferred
by a system that has the ability to perform uni�cation
over constraint expressions. Such a system would detect
that the constraints \age(X) >= 60" and \age(X) >=
21" are uni�able (yielding the result \age(X) >= 60"),
and it would detect that \age(X) < 39" and \age(X) >=
60" are not uni�able. LOOM calls these expressions de-
scriptions, and uses the classi�er to perform uni�cation
over descriptions.

3 Descriptions

This section introduces the notion of a \description",
and describes the kinds of inferences that are made by
a description classi�er.

A description language is designed to facilitate the
construction of expressions that describe classes of in-
dividuals. For example, the English description \blue,
2-wheeled cycle" characterizes a subset of the class of
all cycles. Figure 2 above contains examples of simple
descriptions, phrased using LOOM syntax on the left,
and in English on the right:

Compound descriptions are formed using the con-
nectives :and (intersection), :or (union), and :not

(relative complement). For example, in LOOM, the de-
scription

(:and Person (>= age 60))

might describe the class of senior citizens, while
(:and Cycle

(:exactly 2 has-wheel)

(:the color Blue))

describes the class of blue bicycles.

A de�nition binds a symbol to a description, i.e.,
it gives a name to a description. The knowledge base
object representing this de�nition is called a concept.
De�nitions are stated in LOOM using the operator \de-
fconcept", e.g.,

(defconcept Bicycle

(:and Cycle (:exactly 2 has-wheel)

(:all has-wheel Wheel)))

de�nes a concept named Bicycle with relation
has-wheel constrained to refer to exactly two Wheels.
LOOM substitutes the notion of a concept in place of
the frame constructs found in F+R systems.

Table 2 lists some of the constructs available in
LOOM for expressing simple descriptions.2

Given any two descriptions D1 and D2, a classi�er
can be called upon to answer the following questions:

1. Does D1 denote a subclass of D2?

2. Are D1 and D2 equivalent?

3. Are D1 and D2 disjoint?

Because the problem of answering each of these ques-
tions is undecidable in the general case, a classi�er can
be counted on to generate sound but not necessarily
complete responses to these questions.3

For description languages, uni�cation corresponds
to intersection|descriptions D1 and D2 are uni�able
if and only if their intersection is not equivalent to the
description denoting the empty set.4

2LOOM also supports descriptions representing non-unary
predicates; they are not discussed in this paper.

3Both LOOM and the more complex expert system shells such
as KEE, ART, etc. are incomplete. The signi�cant di�erence is
that LOOM �nds important classes of inference (as illustrated in
this paper) that these other systems miss.

4See the discussion in [Kni89, pages 105{108] on unifying fea-
ture structures.



LOOM Expression Interpretation
e [[e]]

(:and C1 C2) �x: [[C1]](x)^ [[C2]](x)
(:or C1 C2) �x: [[C1]](x)_ [[C2]](x)
(:all R C) �x: 8y: [[R]](x; y)! [[C]](y)
(:at-least k R) �x: 9 k distinct y ^i [[R]](x; y)
(:at-most k R) �x: 6 9 k + 1 distinct y ^i [[R]](x; y)
(:same-as R1 R2) �x: 8y: [[R1]](x; y)$ [[Rw]](x; y)
(>= R c) �x: 8y: [[R]](x; y)! (y � [[C]])
(:exactly k R) (:and (:at-least k R) (:at-most k R))
(:the R C) (:and (:exactly 1 R) (:all R C))

Figure 2

4 Rules in LOOM

LOOM permits arbitrary descriptions to be attached to
the right-hand sides of rules. Here are two earlier exam-
ples of rules repeated using LOOM syntax:

(implies (>= age 21) Eligible-to-Vote)

(implies Senior-Citizen (>= age 60))

Suppose we tell LOOM that Fred is a senior citi-
zen. Because the LOOM classi�er can determine that
\(>= age 60)" implies \(>= age 21)", it can \chain"
from the consequent of the second rule to the antecedent
of the �rst rule, and hence it will infer that Fred is eli-
gible to vote. Next, suppose we state the rule

(implies Younger-than-Jack-Benny

(< age 39))

and assert both Younger-than-Jack-Benny(Fred) and
Senior-Citizen(Fred). LOOM automatically uni�es
all descriptions asserted or inferred about an object. In
this case, LOOM will derive a contradiction when it
attempts to unify \(< age 39)" and \(>= age 60)".
LOOM notes the contradiction by marking the object
Fred as incoherent.

The LOOM classi�er organizes all descriptions intro-
duced into the system into a taxonomy, with more gen-
eral descriptions placed above more speci�c ones. Thus,
for example, the description \(>= age 60)" would be
placed below the description \(>= age 21)". A de-
scription \(:and (<= age 39) (>= age 39))" would
merge with the description \(= age 39)", since the two
descriptions are equivalent. A by-product of this com-
putation is that consequents and antecedents of rules
composed only of descriptions are uni�ed at compile
time. In this guise, the classi�er performs a function
analogous to that of a rule compiler in some other sys-
tems.

The idea of combining rules with descriptions in the

manner just described is a relatively recent innovation
within the �eld of classi�cation-based KR systems, but
it seems to be gaining quick acceptance within that
community. CLASSIC [BBMR89] and MESON [OK88]
are examples of other KR systems that have adopted
the same approach. However, rules in these other sys-
tems are limited in that they only contain monadic (one-
argument) predicates.

5 Description Uni�cation versus

Prolog-style Uni�cation

The uni�cation mechanisms of F+R systems are gener-
ally weaker than those found in languages like Prolog.
Prolog derives signi�cant inferential power from its abil-
ity to unify terms containing partially-instantiated list
structures. The style of programming that exploits this
kind of uni�cation tends to promote clever, frequently
obscure, encodings of knowledge. Perhaps for this rea-
son, a logic programming style of representing knowl-
edge appears to be antithetical to the object-centered
approach associated with frame systems. In any case,
most F+R systems provide only a simple form of uni�-
cation wherein arguments to predicates must be either
simple variables or constants.

LOOM's representation language encompasses a def-
inition language (that binds predicate symbols to de-
scriptions) and a function-free Horn logic. A logic that
combines these two languages is provably more expres-
sive than ordinary Horn logic with function symbols
(and in particular, it is more expressive than pure Pro-
log). This result tells us that we can exclude embed-
ded function symbols from the LOOM language with-
out sacri�cing representational power. Our decision to
exclude embedded function symbols restricts the kinds



of syntactic encodings that can be represented by the
language. We consider this restriction a feature, since
it encourages a more object-centered approach to repre-
senting knowledge than the encodings employed in logic
programming applications.

6 Bene�ts of the Description

Technology

The ability to classify descriptions and to unify sets of
descriptions enables new features not available using or-
dinary F+R technology. In this section, we list some of
these bene�ts.

6.1 Terminology Maintenance

As de�nitions and rules are entered into a LOOM knowl-
edge base, they are compiled by the classi�er into a tax-
onomically organized network. During this process, the
classi�er automatically uni�es the consequents of rules
that share a common antecedent. This compilation ac-
tivity augments the standard notion of frame inheri-
tance. For example, suppose we are given the following
rules and de�nitions

(implies Mil-Spec-Part

(:all subpart Mil-Spec-Part))

(implies 5-Volt-Part

(:all subpart 5-Volt-Part))

(defconcept 5-Volt-Mil-Spec-Part

(:and 5-Volt-Part Mil-Spec-Part))

When classifying 5-Volt-Mil-Spec-Part, the classi�er
will inherit the descriptions

\(:all subpart 5-Volt-Part)" and
\(:all subpart Mil-Spec-Part)"

from 5-Volt-Part and Mil-Spec-Part, respectively.
These two descriptions will be uni�ed, yielding the sin-
gle description

\(:all subpart

(:and 5-Volt-Part Mil-Spec-Part))."
Normalization of this uni�ed description produces the
equivalent description

\(:all subpart 5-Volt-Mil-Spec-Part)."
The classi�er will attach the normalized rule
(implies 5-Volt-Mil-Spec-Part

(:all subpart

5-Volt-Mil-Spec-Part))

to the concept 5-Volt-Mil-Spec-Part (and also
it will eliminate the two descriptions inherited to
5-Volt-Mil-Spec-Part since they are now redundant).

The taxonomy constructed by the classi�er can be
visually inspected by a model builder. Not infrequently,
such a user will note and �x anomalies (bugs) in the

model while browsing such a taxonomy. In this way,
signi�cant percentage of anomalies or inconsistencies in
a knowledge base can be discovered at compile time,
rather than at run time. Thus, the classi�er provides a
valuable service in support of the knowledge acquisition
process.

6.2 Reasoning with Incomplete Knowl-

edge

Traditional rule-based technology can only perform in-
ference on terms that are \fully-grounded." A classi�er
enables systems like LOOM to reason with incomplete
or inde�nite knowledge. For example, suppose we have
the following knowledge

(disjoint Male Female)

(implies Pregnant Female)

(these assertions state that male and female are dis-
joint concepts, and that pregnant things are necessarily
female things) and suppose we assert about Fred the
two descriptions \Male" and \(:or Fat Pregnant)",
meaning that Fred is a male, and Fred is either fat
or pregnant. In the process of unifying these two de-
scriptions, LOOM will eliminate the disjunct Pregnant
(because it implies Female, which does not unify
with Male), arriving at the single description for Fred
\(:and Male Fat)". This kind of reasoning is being ex-
ploited by a natural language parsing application that is
being implemented using LOOM [Kas89]. In that appli-
cation, a signi�cant percentage of the semantic knowl-
edge that attaches to terms in a sentence takes the form
of disjunctive descriptions. Especially in the early stages
of parsing, signi�cant bene�ts (manifested by a reduc-
tion in the search space) arise whenever the process of
uni�cation resolves an ambiguity.

The notion of using a classi�er to detect inconsisten-
cies during problem solving generalizes to other tasks
besides parsing natural language. We conjecture that
other important classes of problem solving will bene�t
from the introduction of classi�er technology.

6.3 Enhancing the Data-Driven
and Object-Oriented Programming
Paradigms

It is common in many applications to encounter produc-
tion rules containing signi�cant numbers of conditions
within a single antecedent. These complex rules are dif-
�cult to understand, and hard to debug. A term de�-
nition facility enables frequently occurring sets of con-
ditions to be bundled together and given a name. By
substituting these names in place of references to their



sets of conditions, the sizes of rules (measured in num-
bers of conditions) can often be substantially reduced.
This tends to make the rules easier to comprehend and
debug, and can have bene�cial e�ects on system perfor-
mance. [Yen89] elaborates on the bene�ts that result
when de�nitions are combined with production rules.
[Mac88] describes how the expressive power of produc-
tions can be increased when references to de�ned terms
are permitted.

LOOM provides a method dispatching facility that
takes advantage of its ability to unify descriptions. The
method dispatching facilities found in object-oriented
programming languages provide two important func-
tions: First, given a generic function and a set of ar-
guments, the dispatcher eliminates all methods whose
types (paired with their formal parameters) are incom-
patible with the types of the actual parameters. Sec-
ond, the dispatcher prefers methods tied to more speci�c
types/classes over methods attached to more general
types. LOOM generalizes traditional method dispatch-
ing by permitting an arbitrary pattern to be associated
with each method [MY88]. When a generic function is
called in LOOM, the LOOM method dispatcher elimi-
nates all methods whose patterns are not satis�ed when
their free variables are bound to the actual parameters.
In LOOM, a method is preferred over another when the
pattern attached to the former method specializes the
pattern attached to the latter method. [Yen90] describes
how classi�er technology can be extended to compute
subsumption relations between patterns. Thus, LOOM's
generalization of the method dispatching paradigm is
predicated on the availability of a classi�er.

7 Discussion

Much of the technology described in this paper is not
unique to LOOM[Mac90]. Classi�cation-based reason-
ing represents one of the most active research areas in
the �eld of KR systems, as exempli�ed by such sys-
tems as BACK [Nv88], CLASSIC, MESON, and SB-ONE
[Kob90]. LOOM stands at the high end of the cur-
rent group of classi�cation-based systems with respect
to the expressivity of its description and rule languages,
and with respect to its support for a broad range of
non-classi�er-related KR utilities (including a �rst-order
query language, default reasoning, production rules,
multiple knowledge bases, multiple worlds, and object-
oriented methods).

The notions of description, de�nition, subsumption,
and classi�cation as presented in this paper have become
standard within the \terminological logic" community
[PS+90]. Not yet standard is our thesis that description

uni�cation (performed by a classi�er) should play the
same role in reasoning with a description-plus-rule lan-
guage that ordinary (syntactic) uni�cation plays in rea-
soning with a relation-based logic. This thesis is a key
component in LOOM's approach to integrating classi�er
technology into a broader deductive reasoning architec-
ture.

8 Summary

In this article, we have brie
y described some of the
emerging techniques and uses of classi�er-based reason-
ing systems, speci�cally as they apply to the LOOM

knowledge representation system.

We made the assertion that current generation ex-
pert system tools fail to achieve a satisfactory integra-
tion of frame knowledge and rule knowledge. We then
described a class of languages, exempli�ed by LOOM,
that combine descriptions and rules to form a hybrid
logic that does achieve a satisfactory level of integra-
tion. The use of classi�er technology enables a form of
uni�cation over descriptions that �lls a gap present in
the F+R technology. In addition, classi�cation-based
inference technology is more powerful than the infer-
ence technology found in languages such as (pure) Pro-
log. A classi�er's ability to automatically organize def-
initions and to detect many kinds of inconsistency can
signi�cantly bene�t the task of knowledge acquisition.
The unique capabilities of the classi�er can be applied
to enhance existing programming paradigms|we have
pointed to speci�c enhancements to the production rule
and object oriented programming paradigms.

References

[BBMR89] A. Borgida, R.J. Brachman, D.L. McGuin-
ness, and L.A. Resnick. CLASSIC: A struc-
tural data model for objects. In Proc. ACM-
SIGMOD-89, Portland, Oregon, 1989.

[BS85] R.J. Brachman and J.G. Schmolze. An
overview of the KL-ONE knowledge repre-
sentation system. Cognitive Science, pages
171{216, August 1985.

[Kas89] Robert Kasper. Uni�cation and classi�ca-
tion: An experiment in information-based
parsing. In Proceedings of the International
Workshop on Parsing Technologies, Pitts-
burg, PA, August 1989.



[Kni89] Kevin Knight. Uni�cation: A multidisci-
plinary survey. ACM Computing Surveys,
21(1), March 1989.

[Kob90] Alfred Kobsa. Utilizing knowledge: The
components of the SB-ONE knowledge rep-
resentation workbench. In John Sowa, ed-
itor, Principles of Semantic Networks: Ex-
plorations in the Representation of Knowl-
edge. Morgan-Kaufman, 1990.

[Mac88] Robert MacGregor. A deductive pattern
matcher. In Proceedings of AAAI-88, The
National Conference on Arti�cial Intelli-
gence, St. Paul, MINN, August 1988. AAAI.

[Mac90] Robert MacGregor. The evolving technol-
ogy of classi�cation-based knowledge rep-
resentation systems. In John Sowa, edi-
tor, Principles of Semantic Networks: Ex-
plorations in the Representation of Knowl-
edge. Morgan-Kaufman, 1990.

[MY88] Robert MacGregor and John Yen. LOOM:
Integrating multiple AI programming
paradigms. Unpublished, 1988.

[Nv88] Bernhard Nebel and Kai von Luck. Hybrid
reasoning in BACK. Methodologies for In-
telligent Systems, 3:260{269, 1988.

[OK88] Bernard Owsnicki-Klewe. Con�guration
as a consistency maintenance task. In
W. Hoeppner, editor, GWAI-88, pages 77{
87. Springer, Berlin Germany, 1988.

[PS+90] Patel-Schneider et al. Term subsumption
languages in knowledge representation. AI
Magazine, pages 16{23, Summer 1990.

[Yen89] John Yen. Using terminological models to
enhance the rule-based paradigm. In Pro-
ceedings Second International Symposium
on Arti�cial Intelligence, Monterrey, Mex-
ico, October 1989.

[Yen90] John Yen. A principled approach to reason-
ing about the speci�city of rules. In AAAI-
90, Proceedings of the National Conference
on Arti�cial Intelligence, Boston, MA, July
1990. AAAI.


