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Abstract
A classifier is a central reasoning component of modern knowledge representation
systems.  Classifiers provide such fundamental intelligent services as concept
categorization, instance recognition, and query processing.  Unfortunately, as the
size of the knowledge base grows, classifiers become less useful because the
classifier must process a significant fraction of the knowledge base to perform any
given inference.  This paper investigates the extent to which parallel processing may
be applied to the classification problem.  We describe a MIMD implementation of a
parallel classifier which uses a message-passing paradigm to effect interprocessor
communications.  Simulations and analysis of a local-area network implementation
of the parallel classifier indicate that very large speedups may be obtained, and that
speedups are limited only by the depth of the knowledge base.  Preliminary results
indicate that graph partitioning algorithms that cluster interdependent portions of the
knowledge base may help to improve the efficiency of the parallel classifier.
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Introduction
A description classifier [Schmolze & Lipkis, 1983] is a central component of many modern
knowledge representation (KR) languages.  Classifiers provide many useful services
within a unified framework, including categorization of new concepts, recognition of
instances, and answering of queries about the state of a knowledge base. An undesirable
property of current classifiers is that the speed of any given inference is inversely
proportional to the size of the knowledge base that the classifier maintains. This is because
any instance, concept or query that the classifier processes must be compared with a
significant fraction of the knowledge base in order to compute an inference.  As knowledge
bases increase in size to hundreds of thousands and even millions of concepts, the speed,
and hence the utility, of current classifiers becomes unacceptably poor.

A natural way to overcome the performance limitations of current classifiers is to employ
parallel processing technology.  We agree with numerous researchers (e.g., [Kitano, 1993,
Shastri, 1986, Waltz 1990]) who argue that parallel processing is essential if AI
applications are to exhibit human-like performance in real-world domains.  Recent
developments in hardware technology have made the prospect of parallel AI, and in
particular, a parallel classifier, particularly viable.  There is a trend towards using off-the-
shelf RISC microprocessors in highly scaleable configurations.  For example, Cray’s T3D
computer achieves parallelism by employing up to 2048 DEC Alpha processors.   This new
generation of computers tend to be far more cost-effective than their vector-processing and
SIMD counterparts, which use expensive custom microprocessors.

In this paper, we propose a MIMD implementation of a parallel classifier.  We take as a
starting point a state-of-the-art serial classifier capable of classifying descriptions expressed
in first-order predicate calculus [Macgregor, 1994]. We envision the entire process of
parallel classification occurring in three phases.  The first phase is a rapid “loading” phase
in which a set of conceptual definitions are read in and distributed among processors in a
parallel machine.  Processors receiving definitions create classes that represent the meaning
of the definitions, and classify the classes to build a tentative generalization hierarchy.
After the loading phase is a background classification phase, in which the generalization
hierarchy is refined over a protracted period of time while the user or application is busy
performing unrelated tasks.  In this phase, classes migrate between processors and find
their most specific position in the genralization hierarchy.  The final phase is rapid query
processing phase, where queries issued by the user or application simultaneously match
many parts of the distributed knowledge base.

In this paper, we describe a MIMD implementation of the first phase, namely, the rapid
loading of concepts.  This phase involves parsing a file of definitions into basic data
structures, performing inheritance and other transformations on the data structures to
convert the conceptual representations into a canonical form, and classifying the
canonicalized data structures to construct a tentative generalization hierarchy.   Other
researchers have discussed or implemented parallel inheritance systems within the context
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of SIMD computation (e.g. [Fahlman, 1979, Evett, 1994, Aronis, 1993]).  However, the
data structures and computations required by our classifier are highly nonuniform, and
hence are not amenable to the SIMD approach.  To our knowledge, no other parallel system
has been implemented that performs all of the component computations (i.e., inheritance,
canonicalization, and classification) of the loading phase.

The organization of the paper is as follows.  First, we provide an overview of a serial
version of the predicate-calculus classifier.  Next, we discuss the design and
implementation of the parallel classifier.  After that, we present a series of performance
results based on an implementation of the parallel classifier running on a local-area network
of workstations, and, with the use of a simulator, predict how the classifier will perform on
multiprocessor configurations with many processors.  Finally, we discuss the possibility of
improving the efficiency of the parallel classifier with the use of partitioning algorithms that
cluster related classes within processors.

The Serial Predicate Calculus Classifier
The basic function of a classifier is to place descriptions of concepts or individuals into a
generalization hierarchy.  In this section, we provide a brief overview of the serial
predicate-calculus classifier that was used as a basis for developing the parallel classifier.
For a more detailed description of the classifier, and examples of the classifier’s use, see
[Macgregor, 1994].

The classifier makes use of three important data structures:

•     Descriptions   - A description represents a one-place predicates defining a set of
individuals, or an n-place predicate defining a set of tuples.  A description consists of a
name that uniquely identifies the description, a list of variables, a predicate-calculus
definition, and a flag indicating whether or not the description is partial, that is whether
the description’s definition specifies necessary and sufficient conditions or only
necessary conditions.

•     Classes   - Classes are the basic unit of classification: the generalization hierarchy consists
of a directed, acyclic graph of classes.  Associated with each class are a list of
descriptions that define the class (a class may have more than one description if those
descriptions are equivalent), a canonical set,  consisting of a normalized representation
of the “meaning” of the class, an elaborated set consisting of an embellished version of
the canonical set, and a flag indicating whether or not the class is primitive, that is,
whether or not the descriptions associated with the class are partial.

•     Sets   - Sets are graphs of arbitrary complexity that represent an interpretation of a
description’s definition.  Nodes in a set’s graph may represent either sets or
individuals.  Nodes representing individuals may represent either variables or
constants.  Edges between the nodes represent relations and are labeled with either user
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defined sets (e.g., child), or built-in relations (e.g., greater-than).  As mentioned
above, each class points to two distinct sets, a canonical set and an elaborated set.

The classification process proceeds in six distinct steps:

•     Reading    - A concept definition is read in from a file, and a description is created for the
definition. In addition, a class and a blank canonical and elaborated set are created and
associated with the description.

•     Construction-    A rudimentary canonical set is created by parsing the class’s description
into a conceptual graph.

•     Expansion    - References to user-defined sets are expanded by inheriting the structure
associated with the referenced set into the current canonical set.

•     Canonicalization    - The canonical set is converted into a canonical format by performing
a series of normalization operations on the set.  For example “orphan” nodes (i.e. those
with no incident edges) are deleted, and nodes representing sets with only one member
are converted into individual nodes.

•     Elaboration    - The canonical set is copied to the elaborated set, and new structure (i.e.
edges and nodes) is added to the elaborated set via the application a series elaboration
rules.  An example of an elaboration rule is “If a node denotes a set, then the node must
have a cardinality that is an integer greater than or equal to 0”.

•     Classification    - The class is placed in the generalization hierarchy by performing a depth
first traversal of the generalization hierarchy, and performing a subsumption test at each
class in the hierarchy.  The subsumption test determines if the class being classified is
more specific than or equivalent to the class in the hierarchy.  A class A subsumes a
class B if the classifier can prove that A’s canonical set is isomorphic to a subgraph of
B’s elaborated set1.  The classifying class is placed under the most specific class that
subsumes it.  If it is equivalent to another class (i.e., A subsumes B and B subsumes
A), it merges with that class, and its description is added to the list of descriptions of
the class it merges with.

The Parallel Classifier

    Architecture
The parallel classifier employs a hierarchical division of labor: a single “supervisor”
process oversees the work of many “worker” processes.  To avoid bottlenecks, the
workload on the supervisor must be minimized.  In our implementation, the supervisor is

                                                
1 The subsumption test is incomplete; however, in practice it tends to produce high-quality results.
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responsible for reading definitions from a file, creating initial descriptions, classes and
(empty) sets, sending the initial data structures to the workers, and collecting results from
the workers.  Workers are responsible for performing the core classifier tasks, including
construction, expansion, canonicalization, elaboration, and classification.

Execution of the parallel classifier can be broken down into 3 roughly distinct phases:

•     Preparation    - The supervisor reads a file of concept definitions, and creates initial data
structures for the definitions.  The supervisor also creates a dependency graph to keep
track of expansion-related interdependencies between descriptions.  The supervisor
partitions the descriptions, along with dependency information, into a number of
queues equal to the number of workers, and then sends each worker one of the queues.
Currently, this partitioning process randomly distributes descriptions to queues, but
special partitioning algorithms may be applied to cluster interrelated descriptions within
queues (see below).

•      Work    - Each worker receives a set of descriptions from the supervisor.  Associated with
each description is a list of other workers that depend on the results of computations
which involve the description.  For example, if another workerW1 needs the canonical
set cs produced by the current description for the expansion of one of W1’s canonical
sets,  the current worker should send cs to W1 once cs has been computed.  Each
worker proceeds to construct, expand, canonicalize, elaborate, and classify the data
structures assigned to it.  If at any point a piece of data (e.g. a canonical or elaborated
set) that a computation needs is missing, the computation is aborted and put on a task
queue.  The computation will be resumed when the requisite data arrives on the worker.

•     Result Collection    - The supervisor broadcasts requests to all workers for the results of
their classification computations.  When the workers have finished their work, they
send back a queue of classification results, which the supervisor uses to update a global
generalization hierarchy.

   Implementation
The parallel classifier is implemented in Common Lisp.  It is directly adapted from the
serial classifier, and most of the core routines (e.g. canonicalization, elaboration, etc.) from
the original classifier remain intact on the parallel classifier.  Message-passing is
implemented via the PVM (Parallel Virtual Machine) message-passing library [Geist et al.,
1994].  The classifier communicates with PVM, which is C-based, via a foreign function
interface.  Since PVM is capable of only transmitting byte vectors, routines were added to
“vectorize” and “devectorize” complex data structures such as sets and descriptions.  For
example, vectorization of a graph involves assigning a series of numbers to nodes in the
graph, and encoding edges in the graph as a set of triples, where each triple consists of an
integer associated with the edge’s label, and the integers associated with each node on
either end of the edge.
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    Distribution Issues: Dependencies and Efficiency
If a description d1 references a description d2, the canonical set associated with d1 may not
be expanded until the canonical set associated with d2 has finished its expansion.  This is
because d1’s canonical set may need to inherit structure from d2’s canonical set in the
expansion phase.  The fact that constraints exist on the order of description processing
means that the parallel classifier can only produce a speedup of n, where n is the number of
nodes in a knowledge base, if no description in the knowledge base references any other
description.  In fact, the parallel classifier can only execute in time O(d), where d is length
of the longest path in the graph of description dependencies.  This fact is verified by our
simulation results (see below).

Another consequence of ordering constraints is that the amount of time a worker spends in
an idle state is dependent on the particular assignments of descriptions to workers.  To see
this, consider 2 linked lists, each of length d.  If one list is assigned to each worker in a 2-
worker parallel classifier, the classifier finishes its computation in O(d) time.  However, if
the first half of each list is assigned to one worker and the second half of each list is
assigned to the other worker, the parallel classifier takes at least O(3/2d) time to execute.
This is because the latter worker must wait until the first half of one of the lists is processed
by the former worker before it may begin working.

The fact that an arbitrary assignment of descriptions to workers can adversely affect the
classifier’s efficiency suggests that an effective load-balancing stratgegy should take into
consideration the structure of the dependency network as well as the number of
descriptions that are assigned to each worker.  We conjecture that workers should be
assigned highly interconnected subgraphs of the description dependency network for the
parallel classifier to perform at an optimal efficiency.  We explore the validity of this
conjecture later when we examine the effect of applying graph partitioning algorithms to the
description dependency network.

Knowledge Bases
To test performance of the parallel classifier, we used three knowledge bases:

•     Artificial   - An artificial knowledge base, consisting of concepts of uniform size was
generated by an automatic knowledge-base generator.  For the experiments described in
this paper, the artificial knowledge base was a forest of 4 binary trees, each 11 classes
deep.  This knowledge base, with the addition of several relations, totals 2,068 classes.

•     Penman Upper Model    - The Penman Upper Model is a high-level knowledge base used
to support natural language applications like English generation [Penman, 1989] and
machine translation [Pangloss, 1994].  This knowledge base contains 786 classes.

•     Sensus   - Sensus [Knight & Luk, 1994] is a large, 70,000-term knowledge base
synthesized from resources like the Penman Upper Model, the widely used Wordnet
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semantic network [Miller, 1990], and Longman’s English dictionary.  For the
experiments in this paper, we used a 7,270 class subset of the Sensus knowledge base
instead of the entire knowledge base for the sake of manageability.

Statistics on the knowledge bases are presented in Table 1.  “Max Depth” refers to the
length of the longest path in the description-dependency network used by the supervisor.

Knowledge Base # of Classes Max Depth
Forest (Artificial) 2068 11
Penman Upper-Model 786 22
Sensus 7270 28

Table 1. Knowledge Base Statistics

Predicting Performance on Message-Passing Multiprocessors
In this section, we describe two ways of predicting performance on a MIMD machine, first
using simulation, and second, extrapolating from results obtained on a network of
workstations.  In this and subsequent sections, we use standard definitions of speedup and
efficiency.  Speedup is the ratio of the serial and parallel execution times:

Speedup
SerialElapsed

ParallelElapsed
=        (1)

Efficiency is the ratio of a given speedup to a linear speedup.  A linear speedup occurs
when Speedup = n, where n is the number of processors:

Efficiency
Speedup

n
=     (2)

    Simulation
Performance of the parallel classifier can be studied by simulating the algorithm’s execution
on a serial machine.  We constructed a simple simulator designed to mimic the behavior of
a MIMD implementation of the parallel classifier.  In order to keep the simulator as simple
as possible, several assumptions were made, including:

• Canonicalization and elaboration of a description takes one timestep.

• “Forwarding” a relation from one worker to another takes one timestep.

• There is no overhead associated with the initial phase in which descriptions are
distributed to workers.



7

In all other respects, the simulator closely resembles the parallel classifier.  The simulator
uses the same dependency graph as the parallel classifier to determine how classes are to be
transferred between workers, and workers process descriptions in the same order as the
parallel classifier.  Execution of the simulator halts when all workers are idle for at least one
timestep.

The simulator allows us to predict such performance factors as speedup and processor
utilization.  It also provides a useful tool for analyzing dependency-related bottlenecks in
the parallel classifier.  For example, if one processor is idle for a significant fraction of
timesteps, the simulator can provide an “execution trace” that can be used to inform the
construction of better description-distribution algorithms (i.e., see the section on graph
partitioning below).

    Predicting MIMD Performance by Adjusting Ethernet Performance
Since the parallel classifier is implemented in Common Lisp, it is not executable on any of
today’s multiprocessing computers, which currently do not provide strong support for
Lisp.  However, it is possible to predict speedups on a multiprocessor by adjusting
speedups measured on a network of workstations to compensate for computational and
communication differences between multiprocessors and local-area networks.  The formula
for speedup on a multiprocessor MIMD machine is:

Speedup
SerialElapsed

ParallelElapsedMIMD
MIMD

MIMD

=        (3)

To calculuate the MIMD speedup, we must obtain estimates for ParallelElapsedMIMD and
SerialElapsedMIMD.  To do this, we determine the amount of time the ethernet version of the
parallel classifier spends computing tasks, waiting in an idle state, and communicating, and
adjust those quantities by constants reflecting the ratio of CPU and Communication speeds
between an ethernet and a multiprocessor.  Hence,

SerialElapsed SerialElapsed RatioMIMD ether CPU= •    (4)

and

ParallelElapsed CPU Idle Ratio Comm RatioMIMD ether ether CPU ether Comm= + + •( )    (5)

Here, we assume that idle time is due to one worker waiting for the results of a
computation on another worker.  Hence, if computation time is reduced, idle time will also
be consequently reduced.  Although further steps are need to determine Idleether and
Commether, a full derivation of these quantities is beyond the scope of this paper.

Results
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In this section, we present performance results for the parallel classifier.  First, we evaluate
the simulator by comparing idle times predicted by the simulator and idle times produced in
an actual run.  Next we present a set of speedups on various knowledge bases running the
parallel classifier on a set of five workstations linked via an ethernet.  Finally, we present
the results of simulations which predict the performance of the parallel classifier on
multiprocessors consisting of thousands of nodes.

    Comparison of Simulated and Actual Results
For our first experiment, we sought to determine the validity of the parallel classifier
simulator.  There are several ways in which the simulator may be compared to the actual
implementation.  One way is to compare the speedups predicted by the simulator with
actual speedups.  If there is a reasonable correspondence, we can be reasonably certain that
the simulator adequately mimics the real parallel classifier.  However, we can perform a
finer-grained comparison by comparing the simulator’s prediction of the amount of idle
time spent on each worker with the actual idle times, Idleether, that an execution of the
parallel classifier produces.  To effect this comparison, we collect the number of timesteps
for each worker on the simulator that are in an “Idle” state.  As previously discussed, idle
time occurs when a worker is waiting for the results of another worker and has no other
work it can perform.  If the number of simulated idle timesteps reflects the magnitude of the
idle time spent on an actual execution of the classifier, we have evidence that our simulator
is working properly.

To test this, we scrambled the descriptions in the artificial forest KB over 4 workers.  That
is, each worker received fragments from all four trees instead of an intact, self-contained
tree.  This had the effect of greatly skewing the magnitude of idle times observed on the
parallel classifier when run on an ethernet.  Execution on the ethernet, excluding the time
for the supervisor preparation and result collection phases, produced idle times of 3.79,
.39, .28, and .46 seconds, for each respective worker.  When the same configuration was
executed on the simulator, the number of idle timesteps for the corresponding workers was
382, 50, 39, and 57.  While we do not wish to make strong claims about the fit of the
simulated data to the actual data, the fact that the ordering of the idle times is consistent,
with worker1 > worker4 > worker2 > worker3, is suggestive that the simulator provides
an accurate reflection of the actual execution of the parallel classifier.

    Ethernet and Predicted MIMD Results
To further evaluate the simulator, we can compare the speedups predicted by the simulator
and speedups obtained by the actual classifier.  We measured speedups in four separate
experiments.  Our first experiment used an “unscrambled” version of the artificial forest
KB, in which a separate tree was placed on each worker.  This experiment is interesting
because the networks on each worker are completely self-contained: no interprocessor
communication is required.  The second experiment used a “scrambled” version of the
artificial forest KB, where descriptions were distributed in the skewed manner discussed in
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the previous section.  The third experiment randomly distributed descriptions of the
Penman Upper Model KB, and the final experiment randomly distributed descriptions of
the Sensus KB.  As in the previous section, we exclude times for the preparation and result
collection phases to facilitate comparison of the ethernet implementation with the simulator.

Table 3 compares real speedups obtained by running the parallel classifier on a network of
5 HP730 workstations, predicted MIMD speedups, obtained using equations 3-5, and
speedups obtained by executing the simulator.  The predicted MIMD speedups used
adjustment constants of RatioCPU = .5 and RatioComm

 =.004.  These values were based on
performance figures for HP730s and the CRAY T3D, a popular modern multiprocessor
[Cray, 1995, Hewlett-Packard, 1995].  The Integer SPECint92 benchmark for HP’s PA
RISC chip is 200, and for the T3D’s Alpha chip is 136.  The bandwidth for an ethernet is
10Mb/s, and the bandwidth for the T3D ranges from 2400Mb/s to 614Gb/s depending on
the number of processors in use (there are up to 2048 on the T3D).  We used the most
conservative figures possible for the computation ofRatioCPU and RatioComm.

Knowledge Base
Ethernet
(Real)

Speedup

Predicted
MIMD

Speedup

Simulated
Speedup

Unscrambled Forest 4.06 4.08 3.99
Scrambled Forest 2.62 2.99 2.30
Penman-Upper 1.51 2.70 2.23
Penman-Upper+Wordnet 3.06 3.26 2.31

Table 3.  Parallel Classifier Speedups on various Kbs with 4 workers.

Comparing the speedups obtained on the ethernet with the speedups predicted by the
simulator, speedups appear to be in the same ballpark.  However, 3 of the ethernet
speedups are higher than the simulated speedup, and one is lower.  This is likely due to a
time distortion that occurs when a great deal of interprocessor communication occurs on an
ethernet.  Since an ethernet consists of a single shared bus, a great deal of contention can
occur when many processors are simultaneously trying to communicate to each other.  This
is not the case on a multiprocessor, and our simulator does not model this effect.  Indeed,
when we apply equations 3-5 y to obtain the predicted performance on a MIMD machine,
we see that the predicted MIMD speedups are uniformly higher than the simulated
speedups.  Hence, the simulator appears to provide a lower bound on the speedups that
would occur on an actual MIMD machine.

One apparent anomaly should be noted: the values 4.06 and 4.08 for the respective ethernet
and MIMD speedups on the unscrambled forest KB appear to exceed the theoretical upper-
bound of the speedup of 4.0.  This is probably due to the small variances that can occur
between runs.  In this case, either SerialElapsedMIMD may have been slightly higher than
normal, or ParallelElapsedMIMD may have been slightly lower than normal.  Another
interesting possibility is that distributing concepts over processors produces superlinear
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gains in performance: since each worker only has a small number of concepts to work with
relative to the serial version, there is less of a load on the operating system in terms of
allocating resources, garbage collection etc..  Consistent with the hypothesis that
superlinear speedups can occur, the ethernet execution of the Sensus KB produced
significantly larger speedup than the ethernet execution of the Penman Upper Model KB.
This may be because the Sensus KB is significantly larger, and thus the effect of
superlinear speedups may be amplified.

    Simulated Results for Large Knowledge Bases
Since we do not have the resources to execute the parallel classifier on more than a couple
dozen workstations, we must rely on the results of the simulator to observe how the
classifier behaves as we scale up the number of processors.

Tables 4 and 5 show various statistics produced by simulating the parallel classifier for the
Penman-Upper and Penman-Upper + Wordnet KBs, respectively.  The total number of idle
steps are shown in the second column, and the total number of steps in which a class was
copied between processors (“Unpacks”) are shown in the third column.  The fourth column
shows the total number of “Cross-arcs”, that is, the number of dependency arcs whose
incident nodes reside on different workers.

# of Workers Idle Unpacks CrossArcs   Speedup Efficiency
2 28 312 584 1.39 .70
4 68 556 766 2.23 .56
8 267 722 846 3.54 .44

16 657 828 890 5.54 .35
32 1031 871 910 9.36 .29
64 1966 896 916 13.79 .22

128 5342 912 921 14.29 .11
256 10065 925 926 17.09 .07

1024 43344 926 926 17.86 .02

Table 4.  Simulation results of Penman-Upper KB

# of Workers Idle Unpacks CrossArcs    Speedup Efficiency
2 289 3865 5302 1.27 .64
4 382 4952 6371 2.31 .58
8 514 5784 6919 4.29 .54

16 1010 6360 7169 7.95 .50
32 1566 6780 7310 14.90 .47
64 5769 7057 7373 23.15 .36

128 4804 7254 7417 48.15 .38
256 12003 7351 7432 69.90 .27
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1024 46742 7428 7440 121.17 .12
2048 108173 7437 7442 121.17 .06
4096 214665 7441 7442 129.82 .03
8192 444038 7444 7444 129.82 .02

Table 5. Simulation of Penman-Upper + Wordnet KB

The Penman-Upper KB yields a maximum speedup of 17.86, and the Penman-Upper +
Wordnet KB yields a maximum speedup of 129.82.  As noted by several other researchers
(e.g., [Fahlman, 1979, Evett, 1994, Aronis, 1994]), speedups obtained by parallel
inheritance systems are limited by the depth of the knowledge base.  Since all descriptions
that a description d references must have a canonical set before d may be parsed into a
canonical set (otherwise the expansion phase will produce incorrect results), the parallel
classifier can run no faster than the longest dependency path in the knowledge base.
Maximum speedups may be obtained by dividing the number of nodes in the knowledge
base (corresponding to the elapsed serial time) by the length of the longest path in the
knowledge base (corresponding the minimum elapsed parallel time).  In the case of the
Penman-Upper KB, Speedup = (786/22) = 35.72.  But recall that the simulator counts each
interprocessor copy as taking one timestep.  Hence, the parallel time is effectively doubled
by the simulator, and the speedup = 35.72 / 2 = 17.86.

The fact that the depth of the knowledge base tends to be the principal limiting factor on the
possible speedups means that very large speedups are possible with large knowledge
bases.  Real-world knowledge bases tend to be fairly shallow relative to their overall size,
as can be seen by comparing the Penman Upper Model and Sensus statistics in Table 1:
even though the overall size of the knowledge base increased by 6484 nodes, the overall
depth only increases by 6.  Assuming the depth of the entire Sensus KB (approximately
70,000 nodes) remains roughly the same as the subset of the Sensus KB that we use, we
can expect a speedup of at least (70,000 / 35) / 2 = 1000.  Of course, this assumes that we
have more than 70,000 processors at our disposal, which is not the case with current
hardware.  To get good speedups when there are fewer processors than nodes in the graph,
the processors must be well utilized; i.e., processor efficiency must be high.

Classification Results
As we mentioned in the introduction, this paper is concerned only with the loading phase of
classification.  We assume that after the loading phase, there will be a protracted phase in
which concepts can migrate between processors in a “background” mode to get
increasingly better classification results.  However, since we do include the classification
phase in our current implementation, it is interesting to see how well the classifier does
even without the background classification phase.  One way to measure the parallel
classifier’s performance in this regard is to compare the generalization hierarchy produced
the serial classifier with that produced by the parallel classifier.  To do this, we collected a
list of every possible pair of descriptions that entered into a subclass-superclass relationship
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after the classifier had finished classifying all descriptions in the Penman Upper Model KB.
We collected one such list for the serial classifier and another for the parallel classifier.
Comparing the two lists, 3% of the pairs in the serial list were not in the parallel list.
Hence, it appears that the current implementation of the parallel classifier produces very
good classification results even without the background classification phase.

It should be emphasized that the “missed” classification inferences are not wrong in any
sense, they are merely not as good as they might otherwise be.  For example, the parallel
classifier might classify the concepts “grandchild” and “child” as siblings under the concept
“person”.  This is not incorrect; however, a better answer would be to classify “child”
under “person”, and “grandchild” under “child”.

Effect of Graph Partitioning on Performance
In the runs presented up to this point, descriptions were distributed randomly among
processors.  We conjecture that the overall efficiency of the parallel classifier can be
improved by distributing descriptions so that mutually dependent nodes tend to be clustered
within the same processor.  If the knowledge base is naturally structured such that clusters
of highly interdependent descriptions may be isolated, it may be possible to apply a graph-
partitioning algorithm to identify those clusters.  In this section, we evaluate the effect of
various graph-partioning algorithm on the performance of the parallel classifier.

For our investigation, we examined the effect of three algorithms on the efficiency of the
parallel classifier.  The first algorithm was proposed by Kernighan & Lin (1970).  The
basic 2-partition version of the Kernighan & Lin algorithm is an iterative algorithm that
initially randomly distributes nodes (i.e., description names) to 2 partitions, and then
swaps nodes between the partitions until the number of cross-arcs is minimized. The 2-
partition algorithm can be generalized to k-partitions by a technique that we refer to as
“chipping”.  The chipping algorithm begins by dividing the k partitions into 2 “virtual”
partitions consisting of the leftmost partition and all of the remaining partitions.  The
Kernighan & Lin is applied to the virtual partition, and then a new virtual partition is
created, consisting of the partition to the right of the leftmost partition, and the remaining
partitions to the right of that partition.  Chipping terminates after k-1 iterations, where each
iteration consists of the application of the Kernighan & Lin algorithm to a virtual partition.

The second algorithm we evaluated was a simple algorithm which we refer to as “Graph
Numbering”.  Nodes in the graph were numbered according to a preorder depth-first
traversal, and the nodes were assigned to partitions based on their number, with nodes
number 1,...,(n/k) placed in the first partition, (n/k)+1,...,2(n/k) in the second partition,
etc..

For our final test, we developed a more sophisticated algorithm which we refer to as the
“Branch Growing” algorithm.  The basic idea of the algorithm is to “seed” each partition
with nodes close to roots in the graph, and then iteratively “grow” each seed in each
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partition by adding connected nodes to each partition.  If no connected nodes are available,
a partition restarts the process with a new “seed”, again, preferably one close to a root.

Table 6 summarizes the simulated results of applying the various partitioning algorithms to
a classifier configured with 8 workers, using the Penman Upper  Model KB.  The first
three rows show the effect of limiting the Chipping algorithm to 0 iterations (i.e., random
partitions), 1 iteration, and the maximum amount of iterations required by the algorithm.
Efficiency of the algorithm improved from .44 to .51, a 15% improvement in performance.
The Graph Numbering algorithm yielded an efficiency of .49, or an 11% efficiency
improvement. The Branch Growing algorithm outperformed both the Chipping and Graph-
Numbering algorithm: efficiency was boosted to .60, for an overall performance
improvement of 36%.

Algorithm Idle Unpacks CrossArcs  Speedup Efficiency
Random 267 722 846 3.54 .44
Chipping, 1 iter. 392 590 741 3.56 .44
Chipping, max iter. 365 392 535 4.07 .51
Graph Numbering 710 103 172 3.93 .49
Branch Growing 354 171 196 4.79 .60

Table 6.  Effect of Various Partitioning Algorithms on Penman Upper
Model KB (with 8 workers)

These preliminary results are strongly suggestive that significant performance benefits can
be obtained when partitioning algorithms are applied to a knowledge base.  However,
further investigation is needed to determine exactly which types of knowledge bases are
amenable to partitioning, and which partitioning algorithms are best-suited for general
knowledge bases.

Conclusion
We have demonstrated the parallel approach to classification can yield significant
performance benefits.  On the largest knowledge base tested, our simulator predicted an
increase in speed of 130 times over the serial version, and analysis of the Penman
knowledge base indicates that speedups up to 2,000 may be possible with enough
processors.  We presented preliminary results indicating that graph partitioning algorithms
can be employed to significantly increase the efficiency of the parallel classifier.

This paper demonstrates that MIMD parallelism can be effectively applied to problems in
knowledge representation.  Since MIMD parallelism offers far more programming
flexibility than SIMD parallelism, and because MIMD hardware is becoming increasingly
accessible, we expect to see more AI applications taking advantage of parallel processing
technology in the near future.  Hopefully this will enable AI applications to tackle real-
world task domains.
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