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Abstract. The work on integrating sources and services in the Seman-
tic Web assumes that the data is either already represented in RDF or
OWL or is available through a Semantic Web Service. In practice, there
is a tremendous amount of data on the Web that is not available through
the Semantic Web. In this paper we present an approach to automati-
cally discover and create new Semantic Web Services. The idea behind
this approach is to start with a set of known sources and the correspond-
ing semantic descriptions and then discover similar sources, extract the
source data, build semantic descriptions of the sources, and then turn
them into Semantic Web Services. We implemented an end-to-end solu-
tion to this problem in a system called Deimos and evaluated the system
across five different domains. The results demonstrate that the system
can automatically discover, learn semantic descriptions, and build Se-
mantic Web Services with only example sources and their descriptions
as input.

1 Introduction

Only a very small portion of data on the Web is available within the Semantic
Web. The challenge is how to make Web sources available within the Semantic
Web without the laborious process of manually labeling each fact or converting
each source into a Semantic Web Service. Converting an existing Web service
into a Semantic Web Service requires significant effort and must be repeated for
each new data source. We have developed an alternative approach that starts
with an existing set of known sources and their descriptions, and then goes on to
automatically discover new sources and turn them into Semantic Web Services
for use in the Semantic Web.

The system starts with a set of example sources and their semantic descrip-
tions. These sources could be Web services with well-defined inputs and outputs
or even Web forms that take a specific input and generate a result page as the
output. The system is then tasked with finding additional sources that are simi-
lar, but not necessarily identical, to the known source. For example, the system
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may already know about several weather sources and then be given the task of
finding new ones that provide additional coverage for the world. To do this it
must build a semantic description of these new weather sources to turn them
into Semantic Web Services. In general, the type of source that we focus on in
this paper are information-producing sources where there is a web form that
takes one or more input values and produces a result page that has the same
format across all output pages. We have found that this type of source is much
more common than Web services.

The overall problem can be broken down into the following subtasks. First,
given an example source, find other similar sources. Second, once we have found
such a source, extract data from it. For a web service, this is not an issue, but
for a Web site with a form-based interface, the source might simply return an
HTML page from which the data has to be extracted. Third, given the syntactic
structure of a source (i.e., the inputs and outputs), identify the semantics of the
inputs and outputs of that source. Fourth, given the inputs and outputs, find
the function that maps the inputs to the outputs. Finally, given the semantic
description, construct a wrapper that turns the source into a Semantic Web
Service that can be directly integrated into the Semantic Web.

In previous work we have developed independent solutions to each of these
subtasks. Here, we describe the integration of these separate components into a
single unified approach to discover, extract from, and semantically model new
online sources. In the previous work each of these components made assumptions
that were not consistent with the other components. We had to address these
issues to build an end-to-end system. This work provides the first general ap-
proach to automatically discovering and modeling new sources of data. Previous
work, such as the ShopBot system [16], did this in a domain-specific way where
a significant amount of knowledge was encoded into the problem (e.g., shopping
knowledge in the case of ShopBot).

In this paper we present Deimos, a system that provides an end-to-end ap-
proach to discovering and building Semantic Web Services. First, we review the
previous work on which the system is built (Section 2). Second, we describe the
architecture of Deimos (Section 3), and describe how we built on the previous
work to discover new sources (Section 3.1), invoke and extract data from the
discovered sources (Section 3.2), semantically type the inputs and outputs of
these sources (Section 3.3), semantically model the function performed by these
sources (Section 3.4), and then use this semantic model to turn the web source
into a Semantic Web Service (Section 4). Third, we present results of an end-to-
end evaluation in five different information domains, where the only input to the
system is an example of a source in that domain and a semantic description of
that source (Section 5). Finally, we compare with related work (Section 6) and
conclude with a discussion and directions for future research (Section 7).

2 Prior Work

In previous work, we have developed the core technologies used by the inte-
grated system. Plangprasopchok & Lerman [15] developed an automatic source
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discovery method that mines a corpus of tagged Web sources from the social
bookmarking site del.icio.us to identify sources similar to a given source. For
example, given a weather service that returns current weather conditions at a
specified location, the method can identify other weather services by exploiting
the tags used to describe such sources on del.icio.us. Tags are keywords from
an uncontrolled personal vocabulary that users employ to organize bookmarked
Web sources on del.icio.us. We use topic modeling techniques [4,10] to identify
sources whose tag distribution is similar to that of the given source.

Gazen & Minton [7] developed an approach to automatically structure Web
sources and extract data from them without any previous knowledge of the
source. The approach is based on the observation that Web sources that generate
pages dynamically in response to a query specify the organization of the page
through a page template, which is then filled with results of a database query.
The page template is therefore shared by all pages returned by the source. Given
two or more sample pages, we can derive the page template and use it to auto-
matically extract data from the pages.

Lerman et al. [13] developed a domain-independent approach to semantically
label online data. The method learns the structure of data associated with each
semantic type from examples of that type produced by sources with known
models. The learned structure is then used to recognize examples of semantic
types from previously unknown sources.

Carman and Knoblock [5] developed a method to learn a semantic descrip-
tion of a source that precisely describes the relationship between the inputs
and outputs of a source in terms of known sources. This is done as a logi-
cal rule in a relational query language. A data integration system can then
use these source descriptions to access and integrate the data provided by the
sources [14].

3 End-to-End Discovery, Extraction, and Modeling

The overall architecture of the Deimos system is shown in Figure 1. Deimos
starts with a known source and background knowledge about this source. It then
invokes each module to discover and model new related sources. Our techniques
are domain-independent, but we will illustrate them with examples from the
weather domain.

The background knowledge required for each domain consists of the semantic
types, sample values for each type, a domain input model, the known sources
(seeds), and the semantic description of each seed source. For the weather do-
main, the background knowledge consists of: (1) Semantic types: e.g., TempF,
Humidity, Zip; (2) Sample values for each type: e.g., “88 F” for TempF, and
“90292” for Zip; (3) Domain input model: a weather source may accept Zip

or a combination of City and State as input; (4) Known sources (seeds): e.g.,
http://wunderground.com; (5) Source descriptions: specifications of the function-
ality of the source in a formal language of the kind used by data integration
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Fig. 1. Deimos system architecture

systems. For example, the following Local-as-View [14] Datalog rule1 specifies
that wunderground returns current weather conditions and five day forecast for a
given zip code:

wunderground($Z,CS,T,F0,S0,Hu0,WS0,WD0,P0,V0,

FL1,FH1,S1,FL2,FH2,S2,FL3,FH3,S3,FL4,FH4,S4,FL5,FH5,S5) :-

weather(0,Z,CS,D,T,F0,_,_,S0,Hu0,P0,WS0,WD0,V0)

weather(1,Z,CS,D,T,_,FH1,FL1,S1,_,_,_,_,_),

weather(2,Z,CS,D,T,_,FH2,FL2,S2,_,_,_,_,_),

weather(3,Z,CS,D,T,_,FH3,FL3,S3,_,_,_,_,_),

weather(4,Z,CS,D,T,_,FH4,FL4,S4,_,_,_,_,_),

weather(5,Z,CS,D,T,_,FH5,FL5,S5,_,_,_,_,_).

which has an input attribute (denoted by “$”) Z (of type Zip) and outputs
CS (CityState), T (Time), FHi and FLi high and low temperatures in Farenheit
degrees (TempInF) on the ith forecast day (0= today, 1= tomorrow, . . . ), D (Date),
S (Sky conditions), Hu (Humidity), WS (Wind speed in MPH), WD (WindDirection),
P (Pressure in inches), and V (Visibility in miles). The semantics of the source are
specified by the conjunctive formula in the body of the rule that uses predicates
from a domain ontology (weather() in this example).
1 We use the usual rule syntax for LAV rules common in the data integration literature.

However, logically this rule should be interpreted as:

wunderground(. . . ) → weather(. . . ) ∧ weather(. . . ) ∧ . . .

This means that every tuple from wunderground satisfies the formula over the do-
main predicates (weather), but not viceversa. That is, the source is not complete.
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Deimos first uses the discovery module to identify sources that are likely to
provide functionality similar to the seed. Once a promising set of target sources
has been identified, Deimos uses the invocation and extraction module to de-
termine what inputs are needed on Web forms and how to extract the returned
values. Deimos then invokes the semantic typing module to automatically infer
the semantic types of the output data. Once Deimos constructs a type signa-
ture for a new source, it then invokes the source modeling module to learn its
source description. We will describe each of these modules in turn, along with
the challenges in building an end-to-end solution.

3.1 Source Discovery

This module identifies sources likely to provide functionality similar to the seed.
Deimos first collects popular tags annotating the seed from the social bookmark-
ing site del.icio.us. As of October 2008, http://wunderground.com has been tagged
by over 3200 people. Among popular tags are useful descriptors of the service:
“weather,” “forecast,” and “meteo.” Next, Deimos retrieves all other sources
that were annotated with those tags on del.icio.us. By analogy to document topic
modeling, we view each source as a document, and treat the tags created by
users who bookmarked it as words.

The system uses Latent Dirichlet Allocation (LDA) [4] to learn a compressed
description, or ‘latent topics’, of tagged sources [17]. The learned topics form the
basis for comparing similarity between sources. If a source’s topic distribution is
similar to the seed’s, it is likely to have similar functionality. We rank retrieved
sources according to their similarity to the seed and pass the 100 top-ranked
sources to the next module. In the weather domain, among sources similar to
http://wunderground.com are weather sources such as http://weather.yahoo.com and
http://weather.unisys.com

3.2 Source Invocation and Extraction

To retrieve data from the discovered Web sources, Deimos has to figure out
how to invoke the source. These sources typically use standard HTML forms for
input and return a result page. During the invocation step, Deimos analyzes the
sources’s document model and extracts forms and form elements. For each of the
forms, Deimos identifies the input fields, which can be text (input) or menu (se-
lect) fields. Deimos relies on background knowledge to constrain the search for
valid inputs. The background knowledge contains information about the typical
input types expected by sources in the domain and sample values for each input
type: e.g., weather sources expect zipcodes or city and state combinations, while
mutual funds sources typically expect a fund symbol as input.

Deimos uses a brute force approach, trying all permutations of input types in
the input form’s fields. We do allow for optional input fields, leaving some input
fields blank. Since our domains generally have only a small number of possible
input types, the combinatorics of the brute force approach are manageable. How-
ever, some types of sources, such as hotel booking sites, had so many possible
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form inputs that searching all combinations of possible inputs was intractable.
We believe the solution to this problem is to exploit more of the context infor-
mation on the form, such as the form label and variable name to narrow the
possible inputs to each field. This will be a direction for future work so that we
will be able to model information domains that have more numerous input fields
in the forms.

Deimos repeatedly invokes the source with the different permutations of do-
main input values, looking for a set of mappings that yields results pages from
which it can successfully extract data.

Next, Deimos extracts data from pages returned by the source in response
to a query. For this, Deimos uses the Autowrap algorithm, described in [7],
which exploits the regularity of dynamically generated pages. It assumes that the
organization of dynamically generated page is specified through a page template
that is shared by all pages returned by the source. Given two or more sample
pages, we can derive the page template and use it to extract data from the pages.

A template is a sequence of alternating stripes and slots. Stripes are the com-
mon substrings and slots are placeholders for data. Autowrap uses the Longest
Common Subsequence algorithm to induce a template from sample pages. The
common substrings are the template stripes and the gaps between stripes are the
slots. Given snippets from two pages, “HI:65<br>LO:50” and “HI:73<br>LO:61”, it
induces the template “HI:*<br>LO:*” where “*” marks a slot. The induced tem-
plate can be used to extract data from new pages that share the same template.
This involves locating the stripes of the template on the new page. Substrings
that lie between the stripes are extracted as field values. Applying the template
above to the snippet “HI:50<br>LO:33” results in two values: “50” and “33”.

We modified the basic approach described above to deal with the challenges
encountered while integrating the technology within Deimos. One extraction
problem we encountered was that some of the strings that were useful for disam-
biguating data values, such as units on numbers, ended up being considered part
of the page template by Autowrap. Consider, for example, a temperature value
of ‘10 C’ and a wind speed value of ‘10 mph’, which look very similar once you
remove the units. The extraction module finds strings that change across pages,
and in structured sources such as these, the units will not be extracted because
they rarely change. Since units are typically a single token that comes imme-
diately following the value, we built a post-processor that generated additional
candidates for semantic typing that included tokens that were most likely to cap-
ture unit information or other context. This is done by checking the document
object model (DOM) of the page and appending tokens immediately following a
value if it occurs at the same level in the DOM tree, which means that it likely
occurs immediately after the value on the page. For ‘10 mph’, the system would
generate both ‘10’ and ‘10 mph’ and the next step would attempt to determine
the semantic type of each of them.

Another challenge was that for seemingly minor variations across pages, there
were significant difference in the page structure, which prevented the system
from finding the page template. An example of this was in a weather source
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where some of the cities had a weather advisory on the page. This resulted in
a different underlying DOM structures and Autowrap failed to find the shared
portion of the structure. To address this problem requires searching a much
larger space to find the page template, so for the current set of results Deimos
fails on some sources that should be learnable.

3.3 Semantic Typing of Sources

This module semantically types data extracted from Web sources using the ap-
proach described in [13]. This approach represents the structure of a data field
as a sequence of tokens and syntactic types, called a pattern [12]. The syn-
tactic types, e.g., alphabetic, all-capitalized, numeric, one-digit, have regular
expression-like recognizers. The patterns associated with a semantic type can
be efficiently learned from example values of the type, and then used to recog-
nize instances of a semantic type by evaluating how well the patterns describe
the new data. We developed a set of heuristics to evaluate the quality of the
match. These heuristics include how many of the learned patterns match data,
how specific they are, and how many tokens in the examples are matched [13].

The output of this module is a semantically typed signature of a source with
its input and output parameters assigned to semantic types in the domain. For
example, a subset of the type signature learned for source weather.unisys.com is:

unisys($Zip,TempF,TempC,Sky,Humidity, ...)

The most significant challenge encountered in this module is that the typing
component did not always have enough information to distinguish between two
alternative types and chose the incorrect one. We plan to improve the semantic
typing by using additional features of the values, such as numeric ranges, which
will allow the system to make finer-grained semantic-typing distinctions.

3.4 Source Modeling

The typed input/output signature of a new source offers only a partial descrip-
tion of the source’s behavior. What we need is a semantic characterization of
its functionality—the relationship between its input and output parameters. We
use the approach described in Carman & Knoblock [5] to learn a Local-as-View
(LAV) description of the source (a Datalog rule) [14]. We illustrate the main
ideas of the inference algorithm using our running example.

Consider the following conjunctiveLAVsource description forweather.unisys.com:

unisys($Z,CS,T,F0,C0,S0,Hu0,WS0,WD0,P0,V0,

FL1,FH1,S1,FL2,FH2,S2,FL3,FH3,S3,FL4,FH4,S4,FL5,FH5,S5):-

weather(0,Z,CS,D,T,F0,_,_,S0,Hu0,P0,WS0,WD0,V0)

weather(1,Z,CS,D,T,_,FH1,FL1,S1,_,_,_,_,_),

weather(2,Z,CS,D,T,_,FH2,FL2,S2,_,_,_,_,_),

weather(3,Z,CS,D,T,_,FH3,FL3,S3,_,_,_,_,_),

weather(4,Z,CS,D,T,_,FH4,FL4,S4,_,_,_,_,_),

weather(5,Z,CS,D,T,_,FH5,FL5,S5,_,_,_,_,_),

centigrade2farenheit(C0,F0).
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A domain model/ontology (consisting of predicates weather and centigrade2farenheit

in the example) assigns precise semantics to sources (such as unisys) in an appli-
cation domain.

The Source Modeling module of Deimos learns these definitions by combining
known sources to emulate the input/output values of a new unknown source. For
the weather domain, the system already knows the description of wunderground
(cf. Section 3) and the following temperature conversion service:

convertC2F($C,F) :- centigrade2farenheit(C,F)

Using these known sources, the system learns the following join, which describes
some of the input/output values of the previously unknown unisys source:

unisys($Z,_,_,_,_,_,_,_,F9,_,C,_,F13,F14,Hu,_,F17,_,_,_,_,

S22,_,S24,_,_,_,_,_,_,_,_,_,_,S35,S36,_,_,_,_,_,_,_,_,_) :-

wunderground(Z,_,_,F9,_,Hu,_,_,_,_,F14,F17,S24,_,_,S22,_,_,

S35,_,_,S36,F13,_,_),

convertC2F(C,F9)

Replacing the known sources, wunderground and convertC2F, by their definitions
yields a version of the above LAV source description for unisys (cf. Section 4 for
a Semantic Web version of this source description).

Learning this definition involves searching the space of possible hypotheses
(Datalog conjunctive rules) that could explain the observed inputs and outputs.
Deimos uses an approach based on Inductive Logic Programming to enumerate
the search space in an efficient, best-first manner and finds the most specific
rule that best explains the observed data. During this search the system uses
the learned semantic types (for the unknown source) and the already known
types of the background sources to prune candidate hypotheses. The system
considers only conjunctive queries that join on variables of compatible types.

Deimos evaluates each candidate hypothesis (conjunctive query) over a set
of sample input tuples, generating a set of predicted output tuples. It then com-
pares the generated output tuples with those actually produced by the source
being modeled to see if the predicted and actual outputs are similar. As part
of its background knowledge, Deimos associates a similarity function with each
semantic type. For numbers, the similarity is an absolute or a relative (percent)
difference. For text fields, it uses string similarity metrics (e.g., Levenshtein
distance). Deimos uses the Jaccard similarity to rank different hypotheses ac-
cording to the amount of overlap between the predicted output tuples and the
observed ones. For some types we found a large variation in the values returned
for the same inputs by different sources. In the weather domain, for example,
the temperature and humidity values reported for the same location had a high
variance. We had to allow for larger differences in the similarity function used
by the source modeling module in order to discover any matches on these fields.

We encountered several challenges when integrating the source modeling com-
ponent within Deimos. First, there are often synonyms for values that are critical
to invoking sources and comparing resulting values. For example, in the flight
domain some sources take the airline name as input and others the corresponding
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3-letter airline code. We addressed the problem of synonyms and functionally-
equivalent values by providing synonym mapping tables as additional sources
that can be used in the source modeling step.

The second challenge is that sometimes closely-related attributes would be
typed incorrectly due to precision errors on the values. For example, in the
weather domain the forecast for the high temperature on the 3rd day would
get confused with the high temperature for the 5th day. The problem arose
because the 3rd-day and 5th-day high temperature values were very close for the
set of sample input cities. This problem can be addressed by using additional
input examples that can disambiguate between the attributes. However, a larger
number of examples sometimes entails a greater variability of the resulting pages,
which makes the extraction task harder (e.g., recall the page structure change
due to weather advisory events discussed in Section 3.2).

4 Automatically Building Semantic Web Services

After the source modeling phase, Deimos constructs a semantic web service
(SWS) encapsulating the discovered web source. The SWS accepts RDF input
and produces RDF output according to the domain ontology. Internally, the SWS
calls the discovered web form using the input values from the input RDF to the
semantic web service. It then extracts the data from the resulting HTML using
the learned page template (cf. Section 3.2). The output data obtained by applying
the page template is filtered according to the learned source description (cf.
Section 3.4). In this way the system is certain of the semantics of the extracted
values. Finally, the extracted values are converted to RDF according to the
specification of the source description.

We describe the construction of the semantic web service using our running
unisys weather source example. For brevity and convenience earlier in the paper,
we have used a domain model with n-ary predicates (such as weather()). However,
since we are interested in producing RDF-processing semantic web services, in
our source descriptions we actually use a domain ontology composed of unary
and binary predicates, which can be straightforwardly translated to RDF. For
example, the definition for wunderground is:

wunderground($Z,CS,T,F0,C0,S0,Hu0,WS0,WD0,P0,V0,

FL1,FH1,S1,FL2,FH2,S2,FL3,FH3,S3,FL4,FH4,S4,FL5,FH5,S5) :-

Weather(@w0),hasForecastDay(@w0,0),hasZIP(@w0,Z),hasCityState(@w0,CS),

hasTimeWZone(@w0,T),hasCurrentTemperatureFarenheit(@w0,F0),

hasCurrentTemperatureCentigrade(@w0,C0),hasSkyConditions(@w0,S0),

hasHumidity(@w0,Hu0),hasPressure(@w0,P0),hasWindSpeed(@w0,@ws1),

WindSpeed(@ws1),hasWindSpeedInMPH(@ws1,WS0),hasWindDir(@ws1,WD0),

hasVisibilityInMi(@w0,V0),

Weather(@w1),hasForecastDay(@w1,1),hasZIP(@w1,Z),hasCityState(@w1,CS),

hasLowTemperatureFarenheit(@w1,FL1),hasHighTemperatureFarenheit(@w1,FH1),

hasSkyConditions(@w1,S1), ...
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Thus, the RDF-like source description learned for unisys (cf. Section 3.4) is:

unisys($Z,_,_,_,_,_,_,_,F9,_,C,_,F13,F14,Hu,_,F17,_,_,_,_,

S22,_,S24,_,_,_,_,_,_,_,_,_,_,S35,S36,_,_,_,_,_,_,_,_,_) :-

Weather(@w0),hasForecastDay(@w0,0),hasZIP(@w0,Z),

hasCurrentTemperatureFarenheit(@w0,F9),centigrade2farenheit(C,F9),

hasCurrentTemperatureCentigrade(@w0,C),hasHumidity(@w0,Hu0),

Weather(@w1),hasForecastDay(@w1,1),hasZIP(@w1,Z),hasCityState(@w1,CS),

hasTimeWZone(@w1,T),hasLowTemperatureFarenheit(@w1,F14),

hasHighTemperatureFarenheit(@w1,F17),hasSkyConditions(@w1,S24),

Weather(@w2),hasForecastDay(@w2,2),hasZIP(@w2,Z),hasSkyConditions(@w2,S22),

Weather(@w3),hasForecastDay(@w3,3),hasZIP(@w3,Z),hasSkyConditions(@w3,S35),

Weather(@w4),hasForecastDay(@w4,4),hasZIP(@w4,Z),hasSkyConditions(@w4,S36),

Weather(@w5),hasForecastDay(@w5,5),hasZIP(@w5,Z),

hasLowTemperatureFarenheit(@w5,F13).

°

°

Fig. 2. Results from invoking the Semantic Web Ser-
vice generated for the Unisys source

This rule means that given
an RDF object Z (of type zip)
as input, the SWS gener-
ated by Deimos produces
as output an RDF graph
consiting of 6 new objects
(@w0 . . . @w5) with literals
for some of their properties
as extracted from the web
form. For example, the learned
SWS for unisys produces the
current temperature in centi-
grade and farenheit degrees,
as well as the low temperature
of the fifth forecast day among other data. Note that all of the weather forecast
objects refer to the same zip code. This learned source description can be seen as
a lifting rule à la SA-WSDL [11]. Figure 2 illustrates the input/output behaviour
of the unisys SWS. The input RDF instance is the 90292 zip (shown with diagonal
shading) and the output RDF graph of weather objects (solid shading).

5 Results on Discovering and Modeling New Services

We performed an end-to-end evaluation of Deimos on the geospatial, weather,
flight, currency converter, and mutual fund domains. The seeds for these domains
are, respectively: geocoder.us, which returns geographic coordinates of a specified
address; wunderground.com, which returns weather conditions for a specified loca-
tion; flytecomm.com, which returns the status of a specified flight; xe.com, which
converts amounts from one currency to another based on conversion rates; and
finance.yahoo.com, which provides information about mutual funds.

Deimos starts by crawling del.icio.us to gather sources possibly related to each
seed according to the following strategy. For each seed we (i) retrieve the 20 most
popular tags that users applied to this resource; (ii) for each of the tags, retrieve
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Fig. 3. URL filtering by module for all domains

other sources that have been annotated with that tag; and (iii) collect all tags
for each source. We removed low (< 10) and high (> 10, 000) frequency tags,
and applied LDA, with the number of topics fixed at 80 to learn the hidden
topics in each domain. We then ranked sources according to how similar their
topic distributions are to the seed.

The 100 top-ranked URLs from the discovery module are passed to the in-
vocation & extraction module, which tries to (1) recognize the form input pa-
rameters and calling method on each URL, and (2) extract the resulting output
data. For the successful extractions, the semantic typing module, produces a
typed input/ouput signature that allows Deimos to treat the web sources as
web services. Finally, for each typed service, the source modeling module learns
the full semantic description. In these experiments, Deimos invoked each target
source with 10–30 sample inputs.

Figure 3 shows the number of target sources returned by each Deimos
module.2 The Invocation & Extraction module provides very little filtering be-
cause it is often able to build a template, even in cases where there is no useful
data to extract. This happens in some cases when it turns out that the site re-
ally is not a good domain source. It can also occur if sample pages from the site
have some differences in the DOM structure that cannot be handled with our cur-
rent heuristics (for example, a weather source which dynamically inserts a severe
weather alert into results for some queries). In these cases, the extracted data of-
ten contains chunks of HTML that the Source Typing module cannot recognize.

The Semantic Typing and Semantic Modeling modules provide most of the
filtering. The Semantic Typing filters a source if it cannot recognize any semantic
types other than the input types (which often appear in the output). The Source

2 Note that we started with only 99 sources for the currency domain because one source
was dropped from the experiments at the request of a site administrator.
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Table 1. Confusion matrices (A=Actual, P=Predicted, T=True, F=False) for each do-
main associated with (a) the top-ranked 100 URLs produced by the discovery module,
and (b) for the descriptions learned by the semantic modeling module

Geospatial Weather Flight Currency Mutual funds

PT PF

AT 8 8
AF 8 76

PT PF

AT 46 15
AF 15 24

PT PF

AT 4 10
AF 10 76

PT PF

AT 56 15
AF 15 14

PT PF

AT 21 16
AF 16 47

(a) Source Discovery

Geospatial Weather Flight Currency Mutual funds

PT PF

AT 2 0
AF 0 6

PT PF

AT 15 4
AF 8 14

PT PF

AT 2 0
AF 5 6

PT PF

AT 1 10
AF 0 0

PT PF

AT 17 4
AF 8 26

(b) Source Modeling

Modeling filters a source it fails to build a model that describes any of the
source outputs. The primary reasons for failing to find a source model are one
of following: (a) the source was not actually a domain source, (b) the semantic
typing module learned an incorrect type signature, (c) the source extraction
module extracted extraneous text following the extracted data value, or (d)
there was a mismatch in the attribute values.

We use two check-points, at the first and last module’s output, to evaluate the
system by manually checking the retained URLs. We judge the top-ranked 100
URLs produced by the discovery module to be relevant if they provide an input
form that takes semantically-similar inputs as the seed and returns domain-
relevant outputs. The geospatial had n = 16 relevant sources, weather n = 61,
flight n = 14, currency n = 71 and mutual funds n = 37.

Table 1(a) shows the confusion matrices associated with the top-ranked 100
sources in each domain. The numbers in the column PT show how many of the
top-ranked n sources were relevant (AT ) and not relevant (AF ) to the domain
in question. The R-precision3 for each domain is 50%, 75%, 29%, 79%, and 57%,
respectively (with the same recall values). Although there is a similar number
of geospatial and flight sources, there were twice as many relevant geospatial
sources (measured by R-precision) among the top-ranked results compared to
the flight sources. We suspect that the reason for this is less consistency in the
vocabulary of users tagging the flight sources.

At the second check-point, we count the services for which Deimos learned a
semantic description. Table 1(b) presents confusion matrices for this test. In
the geospatial domain Deimos learned source descriptions for 2 out of the
8 semantically-typed sources, namely geocoder.ca and the seed. We manually
checked the remaining 6 sources and found out that although some were related
to geospatial topics, they were not geocoders. Similarly, in the weather domain
3 R-precision is the precision of the n top-ranked sources, where n is the number of

relevant sources in our set of 100 sources.
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Table 2. Precision, Recall and F1-measure for actual sources in each domain for which
Deimos learned descriptions

domain Precision Recall F1-measure

weather 0.64 0.29 0.39
geospatial 1.00 0.86 0.92

flights 0.69 0.35 0.46
currency 1.00 1.00 1.00

mutualfund 0.72 0.30 0.42

Deimos correctly identified 15 relevant (true positives) and 14 not relevant (true
negatives) sources; it failed to recognize 4 weather sources and proposed de-
scriptions for 8 sources that were not actual weather sources. The false positives
(where the system found a description for a non-weather source) consisted of
very short descriptions with only a few attributes modeled. These were the re-
sult of invoking a search form, which returned the input, and one of the numeric
values on the page randomly matched a seed attribute with a weak pattern for
its semantic type. In the currency domain, Deimos learned the description of
one source accurately. It failed to learn description for most of the other sources
because the resultant currency value after conversion could not be extracted
from them because of their use of Javascript to perform the conversions with-
out generating a new result page. In the mutualfund domain, Deimos correctly
learned source descriptions for 17 sources. There were 8 sources that were in-
correctly identified to be from this domain (false positives) because their forms
returned a result page where the reported time taken to process the query (e.g.,
0.15 s) was incorrectly typed as the change in net value of the fund over a day.

We are ultimately interested in learning logical source descriptions, not just
identifying sources input/ouputs types. Therefore, we evaluated the quality of
the learned semantic source descriptions. We do this by comparing the learned
description to the model a human expert would write for the source. We report
precision (how many of the learned attributes were correct), and recall (how
many of the actual attributes were learned). The average precision, recall, and
F1-measure for the attributes in the source descriptions learned by Deimos for
actual services in each domain are shown in Table 2. As an example of our
evaluation methodology consider the description learned for geocoder.ca:

geocoder.ca(A,_,SA,_,Z,S,_,La,Lo) :- geocoder.us(A,S,C,SA,Z,La,Lo).

with attributes A (of semantic type Address), S (Street), C (City), SA (State),
Z (ZIP), La (Latitude), and Lo (Longitude). Manually verifying the attributes of
geocoder.ca yields a precision of 100% (6 correct attributes out of 6 learned) and
recall of 86% (6 correct out of 7 present in the actual source). Similarly, the
conjunctive source description learned for unisys.com, which is shown in Section
3.4, has a precision of 64% (7/11) and a recall of 29% (7/24).

We used strict criteria to judge whether a learned attribute was correct. In
one case, for example, the semantic typing component mistakenly identified the
field containing flight identifiers such as “United 1174” as Airline, which led to
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a description containing the Airline attribute. We labeled this attribute as not
correct, even though the first component was the airline name. In the weather
domain, Deimos incorrectly labeled the 3rd-day forecast as a 5th-day forecast,
because the values of these attributes were sufficiently close. Learning using more
sample inputs would reduce the chance of a fortuitous value match.

Overall, we consider these results quite promising. Deimos was able to dis-
cover Web sources, convert them into programmatically accessible services and
learn semantic descriptions of these services in a completely automated fashion.
We would like to improve the precision and recall of the learned source models
and we believe this can be done largely by improving the semantic typing module
and learning over more data.

6 Related Work

Early work on learning semantic descriptions of Internet sources was the category
translation problem of Perkowitz et al. [16]. That problem can be seen as a
simplification of the source induction problem, where the known sources have
no binding constraints or definitions and provide data that does not change over
time. Furthermore, it is assumed that the new source takes a single value as input
and returns a single tuple as output. There has also been a significant amount of
work on extracting and labeling data found on structured web pages (e.g., the
work on Lixto [2]), but this work assumes that a user provides examples of the
data to extract and a label for the extracted data, while the approach in this
paper requires no labeling.

More recently, there has been work on classifying web services into different
domains [8] and on clustering similar services [6]. These techniques can indicate
that a new service is likely a weather service based on similarity to other weather
services. This knowledge is useful for service discovery, but too abstract for
automating service integration. We learn more expressive descriptions of web
services—view definitions that describe how the attributes of a service relate to
one another. Hess & Kushmerick [9] developed an approach that helps users to
semantically annotate Web services for data integration. It uses an ensemble of
classifiers to predict how various elements of the WSDL should be annotated.
The goal of this work is similar, but we handle the more general problem of
supporting web sources and our approach works in a completely unsupervised
fashion.

Within the bioinformatics space, where web services are widely used, there is
a pressing need to build semantic descriptions of existing bioinformatics services.
Belhajjame et al. [3] exploit the fact that many of these Web services have been
composed into workflows and the connections in the parameters of the workflows
can be used to infer constraints on the semantic types of the inputs and outputs of
each of these Web services. This is a clever way to infer semantics for Web service
parameters, but this method does not provide a complete semantic description
of a Web service. Afzal et al. [1] developed an NLP-based approach to learning
descriptions of bioinformatics Web services that attempts to extract both the
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type and the function performed by a service. This approach can provide broad
coverage since it can be applied to a wide variety of services, however, it can only
provide a high level classification of services (e.g., algorithm, application, data,
etc.) and a limited description of the function. In contrast, the goal of Deimos is
to build a semantic description that is sufficiently detailed to support automatic
retrieval and composition.

7 Conclusion

We presented a completely automatic approach to discover new online sources,
invoke and extract the data from those sources, learn the semantic types of their
inputs and outputs, and learn a semantic description of the function performed
by the source. These results allow us to turn an online source into a Semantic
Web Service. We also presented empirical results showing that the system can
learn semantic models for previously unknown sources. Our approach is general
and only requires a small amount of background knowledge for each domain.
This work makes it possible to automatically take existing online sources and
make them available for use within the Semantic Web.

A limitation of the current work is that it can only learn a new source if it
already has models of sources that contain the same information. In future work,
we plan to learn models of sources that cover information for which the system
has no previous knowledge. In particular, we will focus on learning models of
sources for which the current system can already learn partial models. For exam-
ple, the system might only learn a small subset of the attributes of a particular
source. We plan to develop an approach that can learn new semantic types (e.g.,
barometric pressure), new attributes (e.g., 10th-day forecasted high tempera-
ture), new relations that convert between new semantic types and known types
(e.g., converting Fahrenheit to Celsius; converting state names to two-letter ab-
breviations), and learning more accurate descriptions of the domain and ranges
of sources (e.g., distinguishing between a weather source that provides informa-
tion for the US versus one that provides information for the world). The ability
to learn models of sources that go beyond the current knowledge within a system
will greatly expand the range of sources that the system can discover and model
automatically.
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