
Reasoning with Time Dependent DataThomas Anton Russ

c
 Copyright Massachusetts Institute of Technology 1993All rights reserved.

Reasoning with Time Dependent DatabyThomas Anton RussOriginally submitted to theDepartment of Electrical Engineering and Computer Scienceon August 31, 1991, in partial ful�llment fo therequirements for the degree ofDoctor of PhilosophyAbstractKnowledge-based systems that perform monitoring and management must contendwith information that changes over time. Information that is changing, is delayedand arrives out of order complicates the task of programming such systems. Tosimplify the construction of monitoring and management systems, a Temporal ControlStructure (tcs) has been developed which manages data dependencies over time. Thetcs simpli�es the job of a system builder by decomposing reasoning into static anddynamic components. To the extent that the decomposition is successful, each partof the reasoning problem can be addressed separately and the overall task is easier toaccomplish.The Temporal Control Structure performs the bookkeeping tasks needed to as-sure that information is propagated and that the reasoning in the system is complete.Completeness means that all data entered into the system have been processed, and nomore changes in the outputs of the system occur. To deal with the temporal complex-ities of the monitoring domain, tcs exploits two properties common in monitoring:exact knowledge of when events occur and a �xed plan for handling eventualities.These properties allow automatic scheduling of reasoning processes in response todata changes and also allow data dependencies (needed for change propagation) tobe compiled into the program.This report describes the design of the Temporal Control Structure and reportsthe results of several reasoning systems implemented using the formalism. The mostambitious system can track the progress of patients su�ering from diabetic ketoaci-dosis over the course of several days. In a formal evaluation by an expert panel, thecomputer-generated advice was judged similar in quality to actual hospital treatment.Thesis Supervisor: Peter SzolovitsTitle: Professor of Computer Science
i

ii

AcknowledgementsI would like to thank Dr. Michael Klein from Boston University{University Hospitalfor providing the example case used in the hindsight section.Without the aid of my medical collaborators, Dr. Michael Hagen and Dr. KlemensMeyer from Tufts New England Medical Center, it would not have been possible toconstruct the expert system. In spite of their assistance, any errors in the medicineare my own. Klemens' calm demeanor at the battle of the Xerox machines minutesbefore the formal evaluation certainly steadied my nerves and demonstrated the valueof having a collaborator to provide moral support.Ramesh Patil helped me clarify a lot of thoughts by listening to what I had to sayand then summarizing it in one quick phrase.I would also like to extend thanks to William Long who has been an invaluablesounding board for ideas relating to the design of tcs. Bill had the gift of just sittingthere and looking at me until I was able to �gure out how to �x what at times seemedinsurmountable problems.My advisor Peter Szolovits has been a �ne mentor and supporter during my grad-uate studies. He certainly lived up to the meaning of his German title, Doktorvater,for I have been able to develop a close friendship in the course of my years here atMITMy wife Ellen has been understanding and supportive, particularly in the lastagonizing stages of writing the thesis.I would also like to thank Annette Ellis for her assistance in editing the thesis inthe process of producing the technical report.Finally I would like to acknowledge the research support from National Institutesof Health grant 5-R01 HL 33041 from the National Heart, Lung and Blood Instituteand grant 5-R01 LM 04493 from the National Library of Medicine.

iii

iv

Contents
1 Introduction 11.1 Motivation: Clinical Management : 21.2 Constraints: System Design Considerations : : : : : : : : : : : : : : : 41.3 Solution: Temporal Control Structure : : : : : : : : : : : : : : : : : : 61.4 Overview of the Thesis : 102 Reasoning Model 112.1 Time and Data Model : 122.1.1 Model of Time : 142.1.2 Model of Data : 152.1.3 Past, Future and Now : 172.2 Model of Inference : 172.2.1 Process Instances and Updating : : : : : : : : : : : : : : : : : 192.2.2 Process Scheduling : 212.2.3 Process Control Issues : 232.3 Reasoning Units : 242.3.1 Percent Example : 252.4 Using the TCS : 272.5 Formal De�nition of Module Function : : : : : : : : : : : : : : : : : : 292.5.1 Terminology : 302.5.2 Formal De�nition : 303 Example: Pharmacokinetic Model 334 Types of Reasoning Module 414.1 Rules : 414.1.1 Static Rules : 414.1.2 Temporal Rules : 434.2 Transducers : 434.2.1 Simple Transducers : 444.2.2 Context-Sensitive Transducers : : : : : : : : : : : : : : : : : : 444.3 Abstractors : 454.3.1 Time-Limited Persistence : 46v

vi CONTENTS4.3.2 Two-Point Abstractor : 474.3.3 Memory : 474.4 Generator : 504.4.1 Point-Triggered Generator : 505 Higher-Level Reasoning Abstractions 535.1 Temporal Pattern-Matching : 535.1.1 The Current Implementation : : : : : : : : : : : : : : : : : : : 545.1.2 One Potential Extension : 555.2 Reasoning by Hindsight : 565.2.1 Clinical Example : 565.2.2 Program Results : 575.2.3 Discussion : 595.2.4 Hindsight Summary : 626 Ketoacidosis Advisor 656.1 Development of the Ketoacidosis Advisor : : : : : : : : : : : : : : : : 666.2 The Assessment Process : 676.3 The Therapy Decision : 696.3.1 Insulin : 696.3.2 Fluids : 706.3.3 Electrolytes : 716.4 The Bookkeeping Functions : 726.5 Agendas, Urgent and Non-Urgent Changes : : : : : : : : : : : : : : : 726.5.1 Assessing the Urine Flow : 736.6 Special Module Schemata : 756.7 Summary : 777 Evaluation of the Advisor 797.1 Evaluation Design : 797.2 Methodology : 807.2.1 Panel of Experts : 807.2.2 Format of the Questionaire : 817.2.3 Choice of Decision Points : 817.2.4 Method of Evaluation : 827.3 Unanswered Questions : 847.3.1 Detailed Evaluation of Advice : : : : : : : : : : : : : : : : : : 847.3.2 What Would be Optimal : 857.3.3 Advantage of Faster Intervention : : : : : : : : : : : : : : : : 857.4 Results of the Evaluation : 867.4.1 Statistical Tests : 877.4.2 Breakdown by Cases : 907.5 Discussion : 101

CONTENTS vii7.5.1 Acceptable Performance : 1017.5.2 Lack of Clear Consensus : 1028 Related Work 1058.1 Temporal Reasoning : 1058.1.1 Temporal Representation and Relations : : : : : : : : : : : : : 1068.1.2 Logic-Based Approaches : 1068.2 Truth Maintenance : 1088.3 Medical Systems : 1118.3.1 Non-AI Management Systems : : : : : : : : : : : : : : : : : : 1118.3.2 Ventilation Manager : 1118.3.3 Time Oriented Patient Analyzer : : : : : : : : : : : : : : : : : 1158.4 Other Relevant Work : 1168.4.1 Blackboard Systems : 1168.4.2 Real-Time Systems : 1179 Conclusion 1199.1 Practical Application : 1199.1.1 Projects Implemented : 1209.2 Description of Temporal Reasoning : : : : : : : : : : : : : : : : : : : 1219.2.1 Types of Temporal Reasoning : : : : : : : : : : : : : : : : : : 1219.2.2 Explaining \Why I Changed My Mind" : : : : : : : : : : : : : 1229.3 Future Work : 1239.3.1 E�ciency Improvements : 1239.3.2 Extension of Capabilities : 1249.3.3 Distributed Model : 1259.3.4 Open Problems : 1269.4 Summary : 12610 References 129A Cases Used for Evaluation 137A.1 Case Keto 11 : 137A.2 Case Keto 13 : 141A.3 Case Keto 15 : 142A.4 Case Keto 16 : 145B Evalution Results by Case 147

viii CONTENTS

List of Figures1.1 Decision making Over Time in Intensive Care. : : : : : : : : : : : : : 31.2 Segmenting a Temporal Process : 71.3 The View from a Single Process Instance : : : : : : : : : : : : : : : : 81.4 Interfaces Between Process Instances in the tcs. : : : : : : : : : : : : 92.1 Basic tcs Constructs : 122.2 Time and Databases : 132.3 Inputs without Exact Endpoints : 142.4 Inputs without Single Values : 152.5 Schematic of a Process. : 182.6 Schematic of a Process with History. : : : : : : : : : : : : : : : : : : 182.7 Schematic of a Process with Oracle. : : : : : : : : : : : : : : : : : : : 192.8 A Chain of Reasoning Processes. : 202.9 Two Compartment Pharmacokinetic Model : : : : : : : : : : : : : : : 212.10 Scheduling Modules with Interval Variable Inputs : : : : : : : : : : : 222.11 Inputs and Outputs of the Module Function : : : : : : : : : : : : : : 252.12 Histories and Oracles: Percent Program : : : : : : : : : : : : : : : : : 262.13 Histories and Oracles: Percent Process Key : : : : : : : : : : : : : : : 272.14 Histories and Oracles: Percent Process Trace : : : : : : : : : : : : : : 283.1 Structure of a Two-Compartment Model : : : : : : : : : : : : : : : : 343.2 Schema for Pharmacokinetic Model Simulation : : : : : : : : : : : : : 343.3 Code for Pharmacokinetic Model Simulation : : : : : : : : : : : : : : 353.4 Control Added to Pharmacokinetic Program : : : : : : : : : : : : : : 373.5 Pharmacokinetic Program Output : 373.6 Simple Control Strategy : 383.7 Control State at Time 600 : 384.1 Basic Types of Reasoning Modules : : : : : : : : : : : : : : : : : : : 424.2 Schematic of a Rule Module : 424.3 Schemata of Transducer Modules : 444.4 Schemata of Abstractor Modules : 454.5 Schemata of Two Point Abstractor : : : : : : : : : : : : : : : : : : : 474.6 Schemata of Memory Modules : 48ix

x LIST OF FIGURES4.7 Schemata of Generator Modules : 505.1 Examples of the Pattern-Matching Language : : : : : : : : : : : : : : 545.2 Initial Patient Advice : 585.3 Revised Patient Advice : 585.4 Temporal Aspect of Hindsight : 605.5 Evaluation Feedback Loops : 616.1 Insulin Treatment Strategy : 706.2 Fluid Rate Calculation : 716.3 Various Urine Flow Measures : 756.4 Eight-Hour Average Urine Flow Code : : : : : : : : : : : : : : : : : : 767.1 Sample of Evaluation Questionaire : : : : : : : : : : : : : : : : : : : 837.2 Typical Treatment Evaluation Question : : : : : : : : : : : : : : : : : 847.3 Preference and Evaluation Scores of All Cases : : : : : : : : : : : : : 877.4 Net Preference Fraction by Case : 897.5 Two Category Evaluation by Case : 907.6 Case 11 Average Scores : 927.7 Case 13 Average Scores : 947.8 Case 15 Average Scores : 967.9 Case 16 Average Scores : 988.1 Architectural Di�erences Between tms and tcs. : : : : : : : : : : : : 1098.2 TCS Implementation of VM Parameter Evaluation : : : : : : : : : : 113

Chapter 1IntroductionExpert systems have typically involved a single consultation in which all of the in-formation is available for analysis in reaching a diagnosis or other conclusion. Thisis not always feasible in the real world. As systems evolve from one-shot consulta-tion toward management, there will be a need to track information over time. Thevery concept of management implicitly assumes there will be changes. In medicine,for example, data that a�ect the medical decisions change over time, necessitating arevision of the description of the patient.Programs that solve problems over time need to use data that are time dependent,i.e., information that changes with time. Typical examples would be a patient bloodpressure in medicine, or wind direction and strength in handling a chemical plantaccident. The ability to accept and react to changing data lies at the heart of themanagement task.There are several complications that increase the di�culty of �nding solutions.First, information may not be instantly available. Some laboratory analyses taketime to perform. When the information becomes available, it refers to conditionsat some time in the past. Because the delays are not uniform, information can alsoarrive out of sequence. In order for the data to be properly interpreted, updating ofconclusions must take place. In this process care must be exercised because actionstaken in the past cannot be undone. They must be accepted and compensated forin the future. Although it is legitimate to use all information when evaluating thecorrectness of decisions, any explanation of why certain actions were taken must useonly information that was available at the time the decision was made.I solve these problems using a model of temporal reasoning which divides con-tinuous dynamic processes into static segments, coupled with a dependency-directedupdating system that allows conclusions to be retracted as information changes. Thestatic segmentation is used to simplify the reasoning process and is similar to tech-niques used in other engineering disciplines. Two examples are the piece-wise lineardecomposition of more complex functions and the division of device characteristicsinto operating regions in electronics. 1

2 CHAPTER 1. INTRODUCTIONIn this work, I supplement the static elements with data links to model dynamicprocesses. Finally, I use data-directed updating to ensure that conclusions have accessto all relevant data, and to retract conclusions that are no longer supported by thedata.1.1 Motivation: Clinical ManagementThe initial impetus for this work was a need to improve the technology for designingintelligent monitoring systems. Management imposes the need to monitor data thatchange over time, the need to retract erroneous assumptions or re�ne initial assess-ments, and the need to act in spite of the incompleteness of the data. Many pastArti�cial Intelligence in Medicine (AIM) programs have concentrated on the diagnos-tic problem in the context of a single consultation. Even programs which evaluate thetemporal course of an illness [45] assume all of the information that is known aboutthe patient is available at the time of the consultation.An expert system for cardiac intensive care monitoring (the Arrhythmia Advi-sor) [68, 73] demonstrated a need for better tools for expert system construction. Inthat environment, continuous heartbeat monitoring information is available, alongwith occasional input from clinical laboratory tests and bedside examinations [54].The original expert system for therapy management was able to handle some time-varying data, but it did not have a general mechanism for dealing with time. Con-sequently, some of the time-varying data were not properly used, because special-purpose coding of the temporal aspects of the reasoning was needed.1 Aside frombeing inelegant, the need to use special care in the system implementation increasedthe likelihood that programming errors would be introduced, particularly the omissionof updating in response to data changes.In the case of laboratory test data, changes in patient state or clinical interventionsoften occur between the time samples are sent to be tested and the time the resultsare reported. The state of the patient disease can change, and interim therapy canbe instituted without waiting for all of the data. Figure 1.1 illustrates the interactionof these events in a clinical setting. Acting before all of the data is gathered isespecially common in emergency rooms and intensive care units, where the urgency oflife-threatening problems precludes a strategy of waiting for complete data collectionand a de�nitive diagnosis.Even if there were no problem caused by data that arrive out of temporal sequence,some capability to change past information entered into the system is also required of areal-world system, because it must be possible to make changes in the data in order tocorrect data that are later determined to have been in error. This problem appearsin cardiac intensive care, because one of the primary sources of data, automated1An example was the e�ect of changes in weight or cardiac output on models used to predictdrug concentration. An example showing how tcs successfully handles this problem is presented inchapter 3.

1.1. MOTIVATION: CLINICAL MANAGEMENT 3

Figure 1.1: Decision making Over Time in Intensive Care.

4 CHAPTER 1. INTRODUCTIONelectrocardiographic monitoring, is prone to a small but signi�cant number of errorsthat can be detected during post-editing by trained clinical personnel. If such post-editing indicates an error in the data, then the program should be able to take thatinto account. Since events occurring in the past can a�ect the current assessment andtreatment of a patient, one cannot simply ignore changes to \old" data.These problems led to the invention of a mechanism to support the programmingof monitoring systems. In addition to the development of a software architecturefor such expert systems, I report the results of applying the approach to a clinicalproblem: the management of patients in acute diabetic ketoacidosis. I demonstratethe e�ectiveness of the program by a formal evaluation of the computer-generatedadvice by a panel of physicians in a blind study. In the remainder of this chapter Idiscuss the design considerations and sketch the function of the system architecture.A more detailed discussion of the implementation of the programming shell follows.I then present the design and evaluation of a Ketoacidosis Advisor, followed by acomparison of this approach with previous work in the �eld. Finally, I present asummary of the work and directions for further research.1.2 Constraints: System Design ConsiderationsIn this section I describe the problems that must be solved by a tool for creatingsystems that use time-dependent data. I �rst present the requirements that make thesolution of the reasoning problem more di�cult; then I examine domain features thatcan be exploited to simplify the programming task. The design challenge is to usethe latter to make coping with the complicating factors work reasonably.A system with a management component interacts with its environment in pursuitof some goal such as \stabilizing a patient" or \protecting citizens from a chemicalcloud." To solve the task, the system has actions that can a�ect the environment,but action is complicated because the environment can change autonomously, andreports concerning the state of the environment may be delayed or arrive out ofsequence. These characteristics require an ability to modify conclusions which dependon the newly available data. A thesis of this work is that such updating should beincremental and opportunistic, rather than global. This hypothesis is based on thepresumed locality of e�ect. In a complicated system, it is rare that one piece ofinformation will radically change the interpretation of all of the other information inthe system. This premise justi�es using a dependency-based updating scheme.In sum, the complicating features that characterize management and monitoringtasks are:1. Data change over time. Since a single measurement or variable can have di�erentvalues at di�erent times, a model of time is required.2. Information does not arrive in order. A mechanism for generating the correctconclusions using data that arrives after a time delay and out of order must

1.2. CONSTRAINTS: SYSTEM DESIGN CONSIDERATIONS 5be present. To the greatest extent, this function should be transparent to theprogram.3. Reasoning in the past and in the future are di�erent. Conclusions and interpre-tations can change in the past, while actions cannot. This dichotomy must besupported.4. Complete updating is required. The system must insure that all decisions thatrely on a particular datum are updated when changes to that datum occur.5. The system is not in complete control. Management is complicated becausethe environment can change autonomously. In addition, the actions that canbe taken do not always have the desired e�ect (predictability is limited). Thisaspect of the domain needs to be considered in the system design.These features make the job of constructing an expert system more di�cult. To easethe task, a programming system can exploit three characteristics of the monitoringdomain:1. Good temporal resolution. Since the environment is under surveillance, thesystem knows when observations of the environment take place and when actionsare carried out. This eliminates the uncertainty in the time of data and actions.This is a powerful feature that can be exploited to limit the work that thesystem must perform.2. Protocol-driven management. In the medical domain, much of the treatmentof speci�c problems is driven by a protocol, a set plan of action. Although theplan itself is
exible enough to be adapted to individual patient circumstances,it is not necessary to generate a complete plan from scratch.3. Parameters and actions are known in advance. The range of input variablesthe system can observe and the type of actions that can be performed can bedetermined in advance. Since the structure of the problem-solving task is notin
ux, compilation of the reasoning and, crucially, of the dependency structureis possible.I developed a computational model that exploits these general domain character-istics to meet the requirements listed earlier. A system coupling dependency-directedupdating with temporal data can e�ectively deal with the problems encountered inthe patient management problem. The resulting techniques can be applied beyondthe intensive care domain that provided the initial motivation. The computationalmodel of temporal reasoning also provides a formalization of the data and reasoningprocesses that gives insight to di�erent fundamental types of reasoning with temporaldata. This insight can identify which processes are computationally more expensivethan others. In addition, this approach has the following advantages:

6 CHAPTER 1. INTRODUCTION1. There is no system-mandated reasoning paradigm. Decisions are speci�ed inLisp, which is a powerful general-purpose programming language. Applicationscan make use of disparate sources of information as well as heterogeneous deci-sion procedures.2. The algorithms for the actual decision making and the combination of evidenceare speci�ed by the programmer. The programmer can make an informed deci-sion about the algorithms used in the system.3. Programming is simpli�ed by an abstraction that separates static and dynamicanalysis. A static environment for reasoning is established with a series of suchstatic environments linked together to form a dynamic process.4. The dichotomy between the static and dynamic components simpli�es the tran-sition from existing non-temporal expert systems to temporal ones. Existingsystems can be encapsulated in the static abstraction and the dynamics can beimplemented with the control structure.The problems encountered in the arrhythmia monitoring project led to the designand construction of a programming framework: one that could schedule reasoningprocesses and update conclusions in the face of changes [53, 69]. Although the mo-tivation for this approach arose in a medical setting, the mechanism itself does notcontain domain-speci�c knowledge, so it can be applied in other domains with similarrequirements.1.3 Solution: Temporal Control StructureI have designed and implemented a Temporal Control Structure (tcs) which appliesthe method of dependency-directed updating to the problem of data that change overtime. This extends and generalizes previous work on truth- (or reason-) maintenancesystems. My extension removes restrictions on the reasoning method and invertsthe system architecture. The basic reasoning unit is a temporal process instance,which is treated as a \black box" by the system. The inputs and outputs of the\black box" are monitored by the system and drive the updating process. I present adetailed comparison of tcs and truth maintenance systems in section 8.2. The �rstfundamental design decision was to use dependency-directed updating.A second fundamental design decision was to separate the problem of reasoningover time into two components: a static component and a dynamic component. Acontinuous process is divided into a series of \segments," each of which is a staticcontext. Temporal change is handled by the dynamic component, which links succes-sive static components. A series of static states is used to model a dynamic process.The segmentation is illustrated in �gure 1.2.

1.3. SOLUTION: TEMPORAL CONTROL STRUCTURE 7

Figure 1.2: Segmenting a Temporal ProcessSegmentation corresponds to the description of the problem by domain expertsin terms of states and changes of state. The usefulness of the state abstractionexplains the success and popularity of the rule-based paradigm of expert systemsdesign. In a classic rule-based system, each rule has a set of antecedents which referto a static situation, one in which each antecedent has a single value. The rule clausesdo not consider the possibility of changes in the values of the antecedents that arebeing checked.2 By being clever, we can use this state abstraction to simplify decisionmaking. Tcs supports this static abstraction as a principal technique in expert systemdesign. The tcs framework handles the bookkeeping details needed to schedule thestatic reasoning units in an environment with changing data. This allows one to dividereasoning in time into nearly orthogonal components: one which examines current,unchanging values, and another which handles the changes in values.By segmenting the reasoning, a designer can divide the task of reasoning over allof time into smaller pieces that can be more readily handled. This division of thetimeline through segmentation creates distinct temporal regions. As �gure 1.3 shows,each process instance has the time divided into a current period, a (relative) past anda (relative) future. By appropriately choosing the starting and ending times of theprocess instance, the values of inputs to a decision can be held constant during thecurrent period, with all changes in value taking place either in the future or the past.It is important to make a distinction between the absolute past (or future) and therelative past (or future). The absolute times are measured against the real-world time.Maintaining this distinction is important because no system can take actions in thepast. The point of reference for absolute time is now, a tcs variable which representsthe time in the real world. Relative time is the timeline seen from the point of viewof an executing process instance. Parts of the reasoning process that occur earlieron the timeline than the current process are in the relative past, while parts of the2Exceptions to this are vm and topaz which I describe later (see sections 8.3.2 and 8.3.3).

8 CHAPTER 1. INTRODUCTION

Figure 1.3: The View from a Single Process Instancedecision that occur later are in the relative future. The point of reference for relativetime is the execution interval for the current process instance. For reasoning thatprocesses data as it arrives, the relative and absolute reference points may coincide.In reasoning about changed data or speculating about the future, the relative andabsolute reference points will typically be di�erent. In general, the meaning of theterms \past" and \future" will be clear from the context. When necessary, I use thequalifying terms \relative" and \absolute".In order to provide the updating services, the Temporal Control Structure mustknow the data dependencies of each decision. Since complete updating is required,access to data must be limited to that which has been declared to the system. Atthe same time, however, the system should impose the minimum restrictions on thecalculation performed by the reasoning elements. To accomplish this, each reasoningunit, called a module, declares the time-varying information upon which its conclusiondepends. A module is the static description of a process instance, and corresponds toa procedure de�nition in a programming language; the process instance correspondsto a procedure invocation. The interface declared to the tcs consists of the inputs,outputs and internal state variables. The inputs and outputs link di�erent moduleswhereas the state variables link successive process instances of the same module.Figure 1.4 shows the interfaces between process instances. The details of the algorithmor reasoning method used inside the module are of no interest to the tcs. It is onlyrequired that the algorithm be a deterministic function of the inputs and internalstate. The reasoning modules themselves serve as black boxes, whose interface to theworld is only through variables that have been declared to the tcs. The updating isaccomplished by having the tcsmonitor the value of all of the temporal variables andthen schedule the appropriate reasoning modules whenever the input values change.

1.3. SOLUTION: TEMPORAL CONTROL STRUCTURE 9

Figure 1.4: Interfaces Between Process Instances in the tcs.The tcs need only be able to establish equality of value for the variables.Tcs restricts the data availability of each process instance to the values of its inputvariables during the interval of execution. The only access to data from outside thisinterval is through the use of internal state variables (which are made known to tcs).This restriction allows a clean implementation of the updating mechanism withoutsacri�cing data access. It also means that the need to update a process instance canalways be determined on the basis of locally available information.The tcs is able to support the static abstraction and guarantee complete updatingby imposing only minimal restrictions on the data values and on the types of reasoningthat can be implemented in the modules. Variable values are limited in only two ways:� Times on variable values must be exact.� Equality of variable values must be computable.The �rst restriction allows automatic scheduling of process instances in response tochanging values without ambiguity or the need to have a branching model of time. Thesecond restriction is used to stop the propagation of values when they are no longerchanging. Since the only system-imposed requirement is that the equality of valuesbe computable, the data representation remains largely unconstrained. Reasoningmodules also have very few restrictions:� Functions must be deterministic. If invoked with the same inputs, the sameoutput must be produced.

10 CHAPTER 1. INTRODUCTION� There can be no hidden state. The only communication between process in-stances must be through system-declared variables, or state variables known tothe system.These restrictions give the tcs the freedom to execute the process instances in any or-der, and even to evaluate them more than once without a�ecting the outcome. Withinthe restrictions noted above, each reasoning module can use any type of reasoning.Arithmetic calculations, formal logical inference, statistical analyses and heuristic de-cision rules are examples of the range of reasoning types that can be accommodated.Since all decisions must be made in the black box modules, the system cannot be re-sponsible for combining the e�ects of several di�erent reasoning modules on any onevalue, so any given variable can be the output of at most one reasoning module. Anycombination of values from di�erent sources must be explicitly programmed by theapplication designer in a module. This
exibility allows the programmer to specifyany method he wishes: a dominance relation, Bayesian combination of probabilities,Dempster-Shafer evidence combination, an ad hoc method, etc. The decision-makingwill be organized around the individual output variables. All immediate in
uenceson a particular value must be concentrated together in one module. The informationdependence of any variable's value can therefore be readily determined simply byexamining the inputs of the reasoning module. Of course, a complex computationmay be decomposed into meaningful subparts by introducing additional variables andcorresponding reasoning processes.The fundamental thesis of this work is that the division of the reasoning into staticand dynamic components is a suitable abstraction for simplifying the constructionof time-dependent expert systems. Techniques developed for constructing currentnon-temporal expert systems can be incorporated into tcs-based systems throughthe static context. Additional programming necessary for recognizing the importantdynamic aspects of the application domain can be added separately, resulting in anatural decomposition of the development e�ort.1.4 Overview of the ThesisThe remainder of the thesis is divided into three major sections. In the �rst section(chapters 2{4) I describe the Temporal Control Structure design. In chapter 2 Idescribe the low-level function of the tcs. Chapter 3 contains an extended exampleshowing the implementation and control of a mathematical model, and in chapter 4I present higher-level abstractions built on underlying tcs structures. In the secondsection (chapters 5 and 6) I report on the design and evaluation of a major application:a therapy advisor for handling diabetic ketoacidosis. The construction of an e�ectiveexpert system demonstrates the practicality of using tcs in a real world domain.Finally, in chapters 7 and 8 I relate tcs to other work in the �eld and discuss thefuture development of the Temporal Control System.

Chapter 2Reasoning ModelThe core of tcs is a simple but low-level system that assures complete updating.A programmer working at this level has the greatest
exibility, but at the cost ofhaving to write the most detailed code. More abstract reasoning tasks can be builton top of this substrate. Such reasoning abstractions exploit the combination ofcommon temporal reasoning tasks to provide higher-level functions which hide someof the detailed calculations. The updating guarantees are preserved at the higher levelbecause they are derived from the underlying substrate. This approach has the furtheradvantage of allowing tcs to acquire more powerful tools as experience in using thesystem grows. Most of the higher-level tools were developed as generalizations of low-level inference procedures that solved commonly occuring problems. One example isa module which calculates the persistence (for reasoning purposes) of informationderived from a point sample.In this chapter I describe the basic components of the tcs. I show in the nextchapter how tcs can be used to implement a simple time-dependent mathematicalmodel. In chapters 4 and 5, I introduce the higher-level abstractions.The control structure embodies a model of temporal reasoning that facilitatesthe e�cient updating of the state of knowledge of the system. Tcs updating usesdata dependency to limit the work performed to that which is absolutely required.This requires that the control system be aware of the data dependencies among theindividual reasoning elements that implement the decision-making. For example,a weather module that uses temperature, wind speed and humidity in producing aforecast must declare the dependence of its reasoning on those variables. This enablestcs to monitor variables and update conclusions that depend on the variable values.I describe the exact requirements and their e�ects below in section 2.2All data in the system are associated with points or intervals on a time line. Thesedata are stored in point or interval variables. The variables collectively provide a cen-tral repository for all of the information used by a tcs application. The database isas complete a description of the world as possible. The description becomes progres-sively more complete as inaccuracies are corrected and more conclusions are made.11

12 CHAPTER 2. REASONING MODEL;; Syntax for de�ning tcs variables(defmodvar name type options: : :) ; type is one of :point or :interval;; Syntax for de�ning tcs reasoning modules(defmodule name (inputs: : :) (outputs: : :);; process state declarations:((type name options: : :) ; type is one of :history or :oracle...);; implementation of the reasoning. In the body of the code, the input, output,;; and process state variables are referred to as ordinary Lisp variables.program code) Figure 2.1: Basic tcs ConstructsBased on this interpretation, incorrect past conclusions should be changed at theirmoment in history. The \mistakes" are removed from the database whenever theyare discovered. (If it should be desirable to remember that things have changed, thenan audit trail of these changes can be maintained. Indeed, this allows a system toexplain why a change in values occurred. This is particularly useful in explainingsome action taken on the basis of information later determined to be false.)Reasoning is performed by user-speci�ed functions that act on information con-tained in the temporal variables. As part of the de�nition of such a function, theuser must also declare the data dependencies. The syntax for de�ning variables andreasoning modules is shown in �gure 2.1. The program fragments in this thesis givea general impression of tcs as a programming language. For a complete descriptionof the syntax and a discussion of the options the reader should consult the referencemanual [70].2.1 Time and Data ModelA distinction can be made between several types of time-related databases. Thisdistinction, following terminology developed by Snodgrass [82] is made on the basisof the types of questions that can be answered. A conventional database storing onlya set of facts without special support for time is called a snapshot database, becauseis holds only the currently believed value for each entry. For example, one can onlyask \Do we know anyone who has broken the Enigma code?" When time is added,there are two separate time axes that de�ne the information in a database. The�rst time axis is transaction time, which describes when information is entered intoa database. By keeping track of transaction time, one can answer questions aboutthe state of a database as of any particular time: \As of February 1945, do we knowanyone who has broken the Enigma code?" At any moment, however, there is only

2.1. TIME AND DATA MODEL 13

Figure 2.2: Time and Databasesone entry for each variable. Such a database is called a rollback database, becausewe can always roll back the contents of the database to their values at a previoustime. The second, orthogonal axis is the valid time axis, which represents the time(in the world) when a particular fact holds. Such a database is called historical.The database can contain more than one value for each entry, as long as the entriesoccur at di�erent times. With this time axis, a di�erent question is possible: \Dowe know anyone who has broken the Enigma code on January 1, 1942?" Since thevalue of the basic question|people who have broken the Enigma code|can changeover time, multiple entries are possible. With a historical database, one can ask forany particular value. Since the two time axes are independent (see �gure 2.2), onecan combine them and implement a temporal database, combining the features of therollback and the historical databases. This allows a combined question such as \As ofFebruary 1945, do we know anyone who has broken the Enigma code on January 1,1942?" Such a question addresses both the time when an entry had a particular value(valid time) and the time we found out the value of that entry (transaction time).The database used in tcs is fundamentally a historical database, but in the im-plementation I made provision for storing the additional information needed to makeit a temporal database. In order to conserve memory space, I have not exploited thiscapability in any of the experiments I have conducted so far.What distinguishes tcs from a conventional historical or temporal database is theclose link between the contents of the data base and the inference methods. This linkis analogous to the connection between the database in a rule-based system and therules, insofar as both systems relieve the application creator of the need to programexplicitly the connection between information being entered into the database andthe execution of inferences. By automatically scheduling inferences in response todata as they become available, tcs allows an implementor to ignore the e�ects of the

14 CHAPTER 2. REASONING MODEL

Figure 2.3: Inputs without Exact Endpointstransaction time axis on the program. Since all relevant decisions will be reconsideredif the data change, the order in which individual pieces of information arrive is irrel-evant. One bene�t of using the tcs is that it frees the implementor from the need tohandle the transaction time axis. Since this axis is an artifact of when information isreported to the system, rather than a feature of the domain itself, transaction timeshould not directly in
uence the decision-making.2.1.1 Model of TimeThe time model that I have implemented is a discrete time model. The time points arethe integers from negative to positive in�nity. The code itself does not require integervalues, but some computational complexity results rely on the fact that the temporalmodel is discrete rather than continuous. Aside from the computational issues, theunderlying model of time, whether discrete or continuous, is largely irrelevant to thediscussion in this thesis. It is important that all time points are precisely speci�ed.Time ranges (except as intervals with exactly �xed endpoints) are not permitted.In other words, all times and extents must be explicitly speci�ed. It is not possible,for example, to have \fuzzy" endpoints on intervals. The problem with allowinginexact time points is that it places the system's scheduling algorithm in an awkwardposition. Given the input situation in �gure 2.3, where an inexact endpoint overlapsanother input's endpoint, there are three qualitatively di�erent orderings:1. A's value changes before B's.2. Both variables change values at the same time.3. A's value changes after B's.In order to schedule this situation while maintaining the static abstraction that we�nd so useful, the system would need to create three future branches. It is easyto see that this would greatly increase the computational load on the system. Thereal situation could be even worse than the qualitative analysis suggests. Since the

2.1. TIME AND DATA MODEL 15

Figure 2.4: Inputs without Single Valuesduration of the intervals might also be of interest, the number of possible points atwhich A's new value might begin is the same as the length of the fuzzy interval (usinga discrete time model). The number of branching futures that are required could beequal to the duration of the uncertain interval. The tcs therefore does not supportfuzzy endpoints on intervals.This restriction is not as limiting as it seems, however. This is because of thefreedom in the choice of value that is assigned to any particular interval. Unlikelogic-based systems that allow only one of two choices for an interval's value, thetcs allows arbitrary values. Although in logic one could specify that either A ornot-A is true over an interval, one could not specify that A changes to not-A oversome interval. The notion of change is absent from logic-based systems, since theyassume universal truth values. The example in �gure 2.3 could be transformed intothe situation shown in �gure 2.4, where three �xed intervals are used instead of twofuzzy intervals. The three intervals correspond to two intervals with de�nite valuesand one with an uncertain or mixed value. It is then up to the user-speci�ed decisionprocedure to handle this situation. I do not feel that the programming languageshould dictate an inescapable solution which has potentially disastrous e�ects on thee�ciency of the problem solution. In section 8.1.2, I take issue with the approachof having a system-imposed and, of necessity, syntactic approach to the resolution ofcon
icts.2.1.2 Model of DataSince the data are time dependent, variables will need to represent not just datavalues, but also the time over which those values are valid. Each value has associatedwith it an expression denoting its temporal validity. For simplicity, this validity mustbe completely and unambiguously given.The model of data used in this system divides temporal data into two distinctclasses, that of points and intervals. Point variables contain values that are associatedwith a single instant of time. They have zero duration. Interval variables, on the otherhand, consist of a series of values with a non-zero duration. Point and interval values

16 CHAPTER 2. REASONING MODELcannot be mixed in the same variable. Point variables provide a natural representationfor a data sample or a discrete action: each can be described by a value which hasa single time associated with it. Each interval variable value has a datum and abeginning and ending time associated with it. They form a natural representation forstates or continuous actions, namely a period of time in which certain values hold.The value of an interval variable must hold throughout each subinterval. This is abasic premise underlying the scheduling algorithm and the static abstraction.1 It alsoallows tcs to combine adjacent intervals with the same value, reducing the amountof computation that must be done by process instances that use that interval as aninput.In theory it is not necessary to have both point and interval variables as basetypes, since they can be de�ned in terms of each other: points can be degenerateintervals, or intervals can be de�ned by pairs of points. In practice, however, the datamanipulations and the ways values are used in calculations depend on the type ofdata they represent. Since this division into two classes has a practical signi�cance,tcs supports the dichotomy with primitive elements.The question of whether intervals or interval variables are open or closed will notarise in use, because reasoning is done only within intervals chosen so that inter-val variables will have only one value throughout the interval. By using the sameinterval determination in the variables and in the processes that reason about thevariables, I �nesse the problem of open or closed intervals, as far as interval variablesare concerned.2 The value of an interval value on the boundary between two valuesis unde�ned and inaccessible to any reasoning module. A query to the data base willreturn either the earlier or the later value at the user's option.Unfortunately, when point variables are used, the question of whether intervalsshould be open or closed is unavoidable. It would be naive to imagine that one couldavoid this issue entirely. One place where the problem surfaces is when consideringwhether intervals should be open or closed with regard to the point variable valuesthat are accessible within a reasoning interval. In tcs all input intervals will be closed.This is the most general case, because reasoning programs can enforce an open-endedinterval policy on themselves, by not examining point values at the extremes of aninterval. Since all point variables have times associated with them, and a processinstance knows its beginning and ending time, this is a trivial operation.When point variables are the output of a module, the problem is trickier. Adecision must be made and communicated to the control structure so that the valuefor a point variable on the boundary between two process instances can be set by theappropriate process. For instance, assume a point data value was located at time tand two process instances which produce values for this variable meet at time t aswell. If both process instances will produce the same answer, then it does not matter1This corresponds to the notion of a property in Allen's interval calculus [4].2This is not a new idea. Allen [3, 4] and Ladkin [50, 49] restrict their temporal algebras toconsider only intervals in order to �nesse this problem.

2.2. MODEL OF INFERENCE 17which one is chosen to update the variable. In some cases, though, the answer willdi�er. A common example is in the context-dependent interpretation of a data value.If a data sample occurs at the same time the context changes, then the interpretationof that data value can change as well. The appropriate behavior at such a pointdepends heavily on the semantics of the variable and the reasoning process. With nonaturally favored best choice, the desired behavior must be speci�ed by the expertsystem designer.32.1.3 Past, Future and NowThe current time has an in
uence on the reasoning produced because of the di�erencebetween actions and interpretations. Actions can only be taken in the future. Pastactions cannot be changed. Modules whose results are a�ected by the current timeneed a method of determining that time. Tcs provides the current time as a pointvariable (now) as well as past and future as the interval variables past? and future?.The current time is a point value at the current time on the timeline whose valueis the current time. (The value and time parts are the same). Past and future areintervals with boolean values of true over the past or future, respectively. They areaccessible in the same manner as user-de�ned variables and cause reasoning to beupdated as the time changes.2.2 Model of InferenceThe foundation of this approach is imagining an agent reasoning about things thatchange with time. Over any suitably chosen interval in time, the agent will have theinputs of its sensors available for inspection. This provides a means for dealing withdata that are temporally current. This is represented by the diagram in �gure 2.5. Inaddition to the current inputs, an agent is able to remember information, both rawinput and inferred conclusions, from the relative past. The tcs provides a methodfor storing information that will always (subsequently) be available to the reasoningprocess. Such storage implements the process state of a reasoning process over time.Because the information concerns the relative past, such a process state variableis known as a history variable. This model is shown in �gure 2.6. The historymechanism allows information to
ow forward in time. In some cases, it is usefulto have information
ow backward in time as well. In this way, a process instancecan have access to information from the relative future. Such information is storedin an oracle variable. An oracle is the dual of a history variable. The complete3It is important for this to be speci�ed, since process instances can be executed in any order. Theunderlying assumption derived from the determinism condition is that the order in which processesare executed does not matter. If adjacent process instances can each set a di�erent value on theboundary, then a race condition occurs and the results can be unpredictable.

18 CHAPTER 2. REASONING MODEL

Figure 2.5: Schematic of a Process.

Figure 2.6: Schematic of a Process with History.

2.2. MODEL OF INFERENCE 19

Figure 2.7: Schematic of a Process with Oracle.model is shown in �gure 2.7. The process state of a reasoning process is completelycharacterized by the contents of its history and oracle variables.Inference takes place inside process instances, which take data from input valuesand transform them into output values. This transformation may also be in
uencedby the values of the process state variables. The access of a process to data in itsinput variables is restricted to the period of time over which it is instantiated. Amodule de�nes the interface and reasoning code used by processes. The mechanismby which modules are instantiated and scheduled is the topic of the next section.2.2.1 Process Instances and UpdatingA process instance is a module being executed in a speci�c time interval. The intervalis chosen so that all of the interval variables in the input list have a single value. Thisenforces a state abstraction to make the reasoning easier. The only input variablevalues made available to the reasoning code are the ones current during the interval inwhich the process is being executed. Information from intervals other than the currentone must be explicitly recorded in a process state variable by the module's code. Thesimplest method of using information from other intervals is to \remember" datafrom past time periods. Any information placed in one of these history variables willbe available to the next process in the chain. This is shown graphically in �gure 2.8.By programming the module to continue the propagation of remembered data, theinformation can be available at any arbitrary time in the future. Similarly, it isalso possible to propagate information backwards in time through the use of oraclevariables. This opens the area of reasoning by hindsight, which I discuss in the nextsection. Histories and oracles comprise the process state of a process or module.Because the contents of the process state variables are under the direct control ofa reasoning procedure, one can implement both selective memory and forgetting (thepurging of memory) by deciding what to store in the histories. Although it wouldbe possible to retain all of the information, it generally should not be done in the

20 CHAPTER 2. REASONING MODEL

Figure 2.8: A Chain of Reasoning Processes.interests of e�ciency of reasoning.4The contents of both the memory and the oracle variables that comprise the pro-cess' state are monitored by the control structure. This ensures that any informationthat changes the process state of a process causes any successor (or predecessor) pro-cess that (potentially) depends on that information to be reexecuted. This is neededto guarantee the correctness of the updating scheme. The ability to send informationin both directions along the timeline allows a programmer to construct loops in thedata-dependency and also non-terminating programs. As long as these loops have a�xed point, the processing will always terminate.The �nal information that is made available to a process instance is the beginningand ending times of the interval over which it is being executed. These data arecontained in the variables begin time and end time.For example, consider a pharmacokinetic model which is used to estimate drugconcentration in the blood. A typical model with two compartments is shown in�gure 2.9. The di�erence equations that specify the behavior of a model of this typeare given below:A1(t + 1) = A1(t) + D(t + 1) + k21A2(t)� k12A1(t)� kelA1(t) (2.1)A2(t + 1) = A2(t) + k12A1(t)� k21A2(t) (2.2)These equations can form the basis of the simulation used to calculate concentrationvalues. Those values are the absolute amount of drug in the �rst compartment dividedby its volume. Starting with no drug in the system, one can use the history of drugadministration (D) to calculate the serum concentration at any point in time. Thislevel is governed by the distribution between compartments (controlled by (k12 andk21) as well as the elimination of drug from the system (kel). The iterative formulasused depend on past information about the amount of the drug in the system. This4Selective updating of the memory contents when a need for this only becomes apparent in thefuture is more di�cult. It could be modeled using oracles as control variables to propagate therequest for information back in time.

2.2. MODEL OF INFERENCE 21

Figure 2.9: Two Compartment Pharmacokinetic ModelIn this model \D" is the amount of drug entering the system, \Vi" isthe volume of the i-th compartment, \Ai" is the absolute amount ofdrug in the compartment, and \ki" is a rate constant describing the
ow between compartments.can be read directly from the equations above because Ai(t+1) depends on the valuesof Aj(t). The previous value of the amount in the system is needed to calculate thecurrent amount.If we wish to interrupt the process performing this calculation and later continuethe calculation, it is necessary to record the values of Ai. A process that embodied thissimulation would only need to keep the previous value of Ai to enable it to continuethe calculation of the simulation. Only the most recent value need be remembered.But why split this calculation? There are two reasons: First, some of the rateconstants in a pharmacokinetic model are dependent upon outside factors such aspatient weight, cardiac output or kidney function. These in
uences can be conve-niently represented as interval variables. If these values are di�erent over the courseof the simulation, then it is most convenient to have the continuous simulation seg-mented into individual processes in which the parameters are constant. This relievesthe simulation program of the need to check for the current values at each step ofthe iteration. This type of scheduling is done automatically by the tcs. The secondreason to split a calculation is to limit its temporal extent. I address this concern insection 2.2.3.2.2.2 Process SchedulingThe tcs system schedules processes to be run using heuristic methods to determinethe intervals over which separate process instances should be created. It is possible

22 CHAPTER 2. REASONING MODEL

Figure 2.10: Scheduling Modules with Interval Variable Inputsfor the process instance itself to override this decision by changing the endpoints ofits execution interval. So that data remain consistent, process instances can onlydecrease the length of the interval in which they are running. Any time not coveredwill cause the tcs to schedule a new process instance for the gap.With Interval Variables InputsThe simplest case is a process instance that has interval variables as inputs. Theinterval of execution is found by intersecting the intervals of all the interval inputvariables as illustrated in �gure 2.10. Tcs thereby assures the module function thatthe input variables will only have a single value. The intersection of data intervalsis quite common in other systems as well, either implicitly in the de�nition of ruleapplication (see [24]) or as an explicit calculation in rules (for example [32]). Thisapproach can also be used for the case of mixed interval and point value inputs.Because the point variables do not have speci�c time extents associated with them,they do not in
uence the scheduling. This lets each process be executed in the longestinterval in which the static abstraction of interval variables having a single value isvalid. This method of process scheduling is very useful in practice. As a bonus, itallows one to add a temporal component easily to a static expert system simply bywrapping the static decision making units in modules with the appropriate inputsand outputs.Without Interval Variable InputsIf only point variables are inputs, there is no natural way of splitting the timeline.In this case a process instance is created which covers the entire timeline. If it isnecessary to produce interval output, the process instance can adjust the length ofits execution interval so that it covers the appropriate time span. The part of the

2.2. MODEL OF INFERENCE 23timeline not covered is detected by tcs, which schedules one or more new processinstances to handle that part of the original execution interval that has not yet beentaken care of. For subsequent updates, the scheduling intervals are determined byexamining the process intervals that were created by the user function.This is a heuristic which attempts to minimize the amount of recalculation thatis done. It is assumed that the user's process had some reason for shortening itsexecution interval and that the old process interval is a good �rst approximation towhat is correct if there is a change in the data. This strategy can lead to a fragmen-tation of processes, but this fragmentation is limited to one level of the system. Ifthe output values of the sequence of process instances can be combined, tcs auto-matically does this before the next level of reasoning processes are executed. Becauseinterval values are combined at the next level, this approach minimizes the periodof time over which new process instances need to be run. Without analyzing theuser-supplied functions (an impossible task), the tcs has no way of knowing a prioriwhether adjacent process instances will calculate the same result. I feel that the costof storing extra process instances when fragmentation occurs is worth the savings innot having to create multiple process instances if tcs combines intervals which turnout to have di�erent values. Informal testing with both strategies indicates that thisapproach results in fewer process instances being created and run.The decision to use this scheduling heuristic stems from a practical considerationencountered in the Arrhythmia Advisor project. Some of the data came regularlyfrom an automated arrhythmia monitor. Since it was expected that many similarvalues could arrive in sequence, tcs needed an ability to \batch process" many pointvalues in a row without incurring the overhead of process creation and scheduling.For that reason, multiple point values are available in each process instance. Thiswas also the most
exible choice, since any modules which wished to handle data insmaller parts could be programmed to restrict their execution intervals.2.2.3 Process Control IssuesIn addition to the scheduling that is done automatically by the control structure itself,there are some additional control issues that the tcs user must address. One that wasalluded to above was the need to adjust process duration, particularly when dealingwith point input data. If point data are being abstracted into intervals, a decisionmust be made as to the extent of those intervals. Since this is a common procedureand the programming details are tedious, tcs provides a higher-level module whichextends the value part of a point variable either until a new value occurs, or until auser-speci�ed maximum duration is reached. The use of such persistence modules isquite common in tcs-based systems. It also forms the core of reasoning in Dean'sTime Map Manager [17, 19].Returning to the pharmacokinetic example used above, it is clear that the sim-ulation program, once started, could in principle (and very easily in programming

24 CHAPTER 2. REASONING MODELpractice as well!) calculate the serum concentration out to in�nity. This would, un-fortunately, take a rather long time to execute, so some form of control would be morereasonable. This could either be a restriction on how long into the future (relative tothe variable now which holds the current time) to calculate, or it could be a separatecontrol variable (such as some interval variable) that is set either by a tcs moduleor by some external program using the tcs. The ability to stop the simulation whileretaining su�cient state information to restart it later allows one to project the valuesinto the future on an as-needed basis. For instance, the model could be set up sothat it always had available predictions for the next eight hours. As the time of dayadvanced, the model would be restarted to maintain the eight hour forecast.52.3 Reasoning UnitsAs noted earlier, the tcs treats the calculation in a module as a black box. Theuser provides the reasoning function; tcs handles the job of applying the function asinformation changes and maintaining the database with the external values and theprocess state of the function. The function itself is not allowed to have any variablevalue storage that persists beyond its execution. All such information must be placedeither in the external variables or in the process state of the reasoning function.The module's function can exist in a static environment and not pay any attentionto time. The environment is set up so that the current input values are passed tothe function. When invoked the function receives the following information (see also�gure 2.11):1. The bounds of the time interval chosen by the scheduler.2. The values of its input variables over that time interval. For interval variables,this is a single value. For point variables it is all of the points that occur duringthat interval (inclusive of endpoints).3. The value of the history variables from the earlier invocation of the function.4. The value of the oracle variables from the later invocation of the function.The user function returns the following values:1. The bounds of the time interval actually handled by the function.2. The values of its output variables over that time interval. For interval variables,this is a single value. For point variables it is all of the points that occur duringthat interval. Endpoints are included or not according to declarations made atfunction de�nition time.5Even in the Arrhythmia Advisor, with its lack of ability to take changing patient in
uencesinto account, some control over the execution window for the prediction was still necessary, or thatimplementation of the model could also run to in�nity.

2.3. REASONING UNITS 25

Figure 2.11: Inputs and Outputs of the Module Function3. The value of the history variables to be passed to the following invocation ofthe function.4. The value of the oracle variables to be passed to the preceding invocation of thefunction.Of these, only the output variables must be set by the function. By default theexecution interval and process state variables retain their values. The executioninterval is further restricted to be less than or equal to the initially scheduled interval;i.e., the execution interval can only shrink, not expand. Expansion is ruled outbecause process instances are only given access to the data covering their initialexecution interval. They are not allowed to set a value over an interval for which theyhave not received data.2.3.1 Percent ExampleAs a concrete example of the use of histories and oracles, consider a module thatcalculates what percentage a given value is relative to the maximum value ever seen.This example is not particularly e�cient, but it will serve as a simple introduction tothe updating and scheduling behavior of the tcs.The example module (�gure 2.12) sets its output variable percent to be thecurrent value of value as a fraction of the maximum value of value over all time.In order to do this, the largest previous value must be remembered in a process

26 CHAPTER 2. REASONING MODEL(defmodvar value :interval :initial-value 0) ; An input value (� 0).(defmodvar percent :interval :initial-value 0) ; Output: Percent of maximum value.(defmodule percent (value) (percent) ; name (input) (output)((:history past-max :initial-value -1000) ; for the past(:oracle future-max :initial-value -1000)) ; for the future(setq past-max (max value past-max)) ; update history variable(setq future-max (max value future-max)) ; update oracle variable(setq percent (/ value (max future-max past-max))) ; set output variable) Figure 2.12: Histories and Oracles: Percent Programhistory variable (called past-max) and the largest \future" value in a process oraclevariable (called future-max). This allows the information from other time periodsto in
uence the value in this period. It is the programmer's responsibility to see thatthese variables are properly handled.The history value will initialize past-max for the process scheduled to run inthe time interval after the current interval, and the oracle value will initialize thevariable future-max for the process scheduled to run in the time interval before thecurrent one. The initial value of �1000 is arbitrary. A sample run of this moduleis shown in �gure 2.14, with the input, output, history and oracle values identi�ed.Understanding this �gure is the key to understanding the data-directed updatingscheme using histories and oracles. As each process is run, the history and oraclevalues change, with the values being propagated along the timeline to temporallyadjacent process instances. These changes cause the outputs of most process instancesto change. In line 8, process instance P8 is run because the incoming oracle changedfrom \10" to \8." Since the function implemented by the module is a black box,the change in any incoming value leads to the recalculation of the function. Notethat P8 does not change its output or the values of future-max or past-max. Theever-vigilant tcs then notices that there are no changes, and the updating processends.In the example, only P1, P2, P4 and P7 are triggered by the arrival of the externaldata. The other four process instances are created in response to changes in thehistory and oracle values. The creation of process instances for modules which dependon the output of the module percent is not shown, but they would be queued bythe change in the output variable percent resulting from the execution of processinstances P1{P7.A total of eight process instances are created in order to calculate the value forthe four input variable values. Using information about the history and oracle valuepropagation behavior of this module, it would be possible to solve the problem usingfewer process instances (seven in this case6), by running process instances from left6The process instance with input eight need only run once, since it is at the end of a propagation

2.4. USING THE TCS 27

Figure 2.13: Histories and Oracles: Percent Process Keyto right and then back again. Although more e�cient in terms of number of processinstances run, this type of clever scheduling requires more knowledge of the behavioralcharacteristics of the system than is available to tcs. It also requires a global planfor the scheduling of the module.In tcs I opted for the simpler solution of making all the scheduling decisionslocally, at the cost of more updating than strictly necessary in certain cases.7 Ina realistic situation where the data is being added over time, there is always thepossibility that a new value larger than all others will be added, necessarily causingrecalculation over the entire timeline. This is inherent in the function programmedin the module. (A more realistic application would limit the time over which thepercentage calculation is being performed.) One of the strengths of tcs is that theresolution of e�ciency issues is left in the hands of the implementor, who can bestdetermine how to trade computational e�ort for more precise answers.2.4 Using the TCSThe history and oracle features allow the functions to maintain state informationover time. They provide a communication path for information from previous orsubsequent invocations of the function along the time path.In a conventional programming language, information can only be passed forwardin time. All state information used by a function must have been calculated beforethe function which uses this state information is invoked. There is no alternative tothis because the temporal dimension is not represented explicitly in the language. Itis implicit in the calling sequence of the function and corresponds to the real time inwhich the function is being executed.chain and has all the history data.7The current implementation of tcs uses a single scheduling strategy for all modules. Oneavenue for extending the paradigm involves allowing the user to provide advice to enable moree�cient scheduling.

28 CHAPTER 2. REASONING MODEL

Figure 2.14: Histories and Oracles: Percent Process TraceFor symbol key, see �gure 2.13. Underlined numbers are new outputvalues. Circled numbers are newly propagated history or oracle values.

2.5. FORMAL DEFINITION OF MODULE FUNCTION 29Although tcs has the same constraints at low level, the ability to reinvoke func-tions as needed allows one to hide this limitation from the user. Because the timelineand the resulting process state are represented explicitly, the order in which the func-tions are actually executed does not have to match the order of the timeline. If oraclesare used, the order cannot be chronologic. One consequence of this architecture isthat functions can potentially be invoked more than once in the same time interval.Since all functions must compute a deterministic result based only on their inputs,histories and oracles, multiple invocations of the function with the same data, mustproduce the same answer. This means that the answer is independent of the numberof function invocations in any time interval. This allows mutually dependent invoca-tions (i.e., ones using both histories and oracles) to be handled. One time intervalis arbitrarily chosen for execution. The process state information is passed to thefunction for the adjacent time interval. If its process state variables change, then thefunction is invoked again over the �rst interval. The cycle continues until the mu-tually dependent functions reach a steady state wherein no more changes are beingmade to their outputs. This stable state must exist for any such functions in orderfor the tcs-based system to terminate its reasoning. This mechanism applies equallywell to cycles that occur between modules linked by tcs variables and to those linkedby the history/oracle mechanism.The ability to write mutually dependent functions means that it is possible toconstruct non-terminating loops. It is assumed that in any well-ordered monitoringsystem this will not happen. The only safeguard, however, is to use care when settingup reasoning cycles.2.5 Formal De�nition of Module FunctionA tcs application is created by de�ning the modules that do the reasoning. In thegeneral case, the processing function in each module has three sources of input:1. Input Variables. Input variables are used for inter-module communication, aswell as for the interface between the tcs code and the outside world. Variablesmay take on arbitrary programmer-speci�ed values. Each input variable holdsthe portion of the value of the variable valid over the execution interval of aprocess instance (PI). For an interval variable, this is a single value for the entireexecution interval.2. Execution Interval. Each process runs in an interval as scheduled by tcs.The endpoints of this interval are available for examination (and restrictedmodi�cation) by process instances.3. Process State. The process state provides a link along the time axis betweentemporally adjacent process instances. These are PIs whose execution intervalsful�ll Allen's MEETS relation with the current PI. There are two subtypes:

30 CHAPTER 2. REASONING MODEL(a) History. Transmits information forward in time. It provides the processstate from the previous adjoining process instance along the timeline.(b) Oracle. Transmits information backward in time. It provides the processstate from the next adjoining process instance along the timeline.The output of each module function can also be divided into three classes:1. Output Variables. Output variables are used for inter-module communica-tion, as well as for the interface between the tcs code and the outside world.They may be assigned arbitrary values. Each output variable can be assigneda value only for the execution interval of a process instance (PI). For intervalvariables, this must be a single value for the entire execution interval.2. Execution Interval. The beginning and ending times of the execution intervalcan be modi�ed within the following restrictions:(a) The begin time must be strictly less than the end time.(b) The new execution interval must not extend beyond the original executioninterval. In Allen's calculus, this means the new execution interval mustEQUAL, START, END or be DURING the original execution interval.By default, the endpoints remain unchanged.3. Process State. The values of the process state variables are under the controlof the program. By default, the input values of the process state are propagatedunchanged. Using these variables is the only way for process instances to gainaccess to information outside their own execution intervals.2.5.1 TerminologyIn order to specify the functions formally, I introduce the following de�nitions:Variable: V Begin Time: TbeginPoint Variable: Vpt End Time: TendInterval Variable: Vint Execution Time: Texec � hTbegin; TendiProcess State: S Zero or more X's: X�History: Shist One or more X's: X+Oracle: Sorac Identity Function: IdNull Function: ;2.5.2 Formal De�nitionEach module contains a function described by the applications builder which imple-ments the reasoning in such a module. The general form of this function is thenModule: f : V+ � Texec � S� 7! V+ � Texec � S�

2.5. FORMAL DEFINITION OF MODULE FUNCTION 31For analysis, the module function f can be decomposed into three components,each of which handles a di�erent part of the output. This decomposition yieldsfunctions that calculate the output variable values (fv), the execution time (fx) andthe process state (fs):1. fv : V+ � Texec � S� 7! V+2. fx : V+ � Texec � S� 7! Texec3. fs : V+ � Texec � S� 7! S�I will use these formal de�nitions in a later chapter to describe certain restrictedtypes of modules with special properties. For example, some modules do not needto modify their initial interval of execution, and so have the identify function forfx. Since this is the default behavior of modules de�ned in tcs, no program codeis required to specify this behavior. For such modules, the programming task istherefore simpli�ed.

32 CHAPTER 2. REASONING MODEL

Chapter 3Example: Pharmacokinetic ModelThe top-level structure of a system implemented using the tcs consists of variableslinked through modules. The decision is modeled as a process over time, and dividedinto individual process instances in a manner that is convenient to the calculation.The inputs that can be used are data associated either with a single point in time(points) or with an extension over a period of time (intervals). The tcs designphilosophy assumes that intervals are relatively stable, so that it makes sense touse di�erent values of intervals as the basis for scheduling process instances. Thisconveniently eliminates the need for most processes to consider the e�ects of time atall.To illustrate the concepts, I describe the implementation of a pharmacokineticmodel for lidocaine. This is a mathematical model, developed by statistical methods,that predicts the blood concentration of the drug lidocaine. It is a two-compartmentmodel, with the structure shown in �gure 3.1. This is the same model introduced inthe previous chapter. Each compartment has a volume of distribution (V) and anamount of drug in the compartment (A). The blood concentration is the amount ofdrug in compartment 1 divided by the volume of compartment 1. Drugs enter the�rst compartment as a function of time (D(t)). Movement of the drugs in the modelis controlled by rate constants linking the compartments (k12, k21) and providing apathway for the elimination of the drug (kel). The behavior of the model is governedby the following discrete time di�erence equations:A1(t + 1) = A1(t) + D(t+ 1) + k21A2(t)� k12A1(t)� kelA1(t) (3.1)A2(t + 1) = A2(t) + k12A1(t)� k21A2(t) (3.2)Functionally, the model takes external information about the drug doses (D(t)) andprovides information about the drug concentration (A1(t)=V1(t)). Lidocaine can beadministered as a continuous infusion over some time period or as a single shot (bo-lus) at a particular time. The drug inputs are divided into an interval input for thecontinuous infusion and a point variable for the bolus. The output for this examplewill consist of samples of the drug concentration, and will be represented by a point33

34 CHAPTER 3. EXAMPLE: PHARMACOKINETIC MODEL

Figure 3.1: Structure of a Two-Compartment Model

Figure 3.2: Schema for Pharmacokinetic Model Simulationvariable. Other potential outputs could be samples produced in response to an ex-ternal trigger (also point variable output) or intervals in which the concentration isin important ranges.As noted before, in order to run a simulation of the model, internal state infor-mation (the contents of A1(t) and A2(t) must also be maintained. This calculationis shown schematically in �gure 3.2 and could be coded as shown in �gure 3.3. Thecode separates the external information about doses and concentrations (the inputsand outputs) from the internal state variables containing the amounts (the historyvariables). It is necessary to keep the amount of drug in each compartment availableso that the simulation will work with multiple process instances. If the infusion ratechanges, then a new process instance will need to be created to maintain the staticabstraction of interval values. Note that the code in �gure 3.3 does not need to con-sider the temporal limits of the value of the variable infusion, since its validity isimplicitly limited by the duration of the process instance (begin time to end time).

35
(defmodvar infusion :interval :initial-value 0)(defmodvar bolus :point)(defmodvar concentration :point)(defconstant k12 : : :)(defconstant k21 : : :)(defconstant kel : : :)(defconstant v1 : : :)(defun get-bolus-value (bolus time);; Returns bolus amount for time or zero if no bolus is given then.: : :)(defmodule pk-model (infusion bolus) (concentration)((:history a1 :initial-value 0)(:history a2 :initial-value 0))(loop for time from begin time to (- end time 1)initially (setq concentration nil)do (psetq a1 (+ a1 infusion (get-bolus-value bolus time)(* k21 a2) (- (* k12 a1)) (- (* kel a1)))a2 (+ a2 (* k12 a1) (- (* k21 a2))))(pushpoint (/ a1 v1) time concentration)))Figure 3.3: Code for Pharmacokinetic Model SimulationThe time units for this simulation are minutes. For convenience, thestep size of the simulation is one time unit, although this is not required.The function pushpoint is a tcs construct which creates a point valuedata structure from a value and a point and pushes it onto a list ofsuch points.

36 CHAPTER 3. EXAMPLE: PHARMACOKINETIC MODELIt is, however, necessary to provide special time-aware processing to extract the valueof a bolus.The output of the module, concentration, is a series of individual point variables,corresponding to the estimated blood concentration of the drug at di�erent times.With one value produced per minute, this process will create many data points. Thebuilder of a real system may want to perform an abstraction operation or use onlyevery n-th value to reduce the number of values produced. Since there is the potentialfor producing many similar values, the process-scheduling algorithm allows for bulkprocessing of point values, since greater e�ciency is possible if new process instancesdo not need to be created to handle each of a large number of individual points.There is only one problem with the module as currently programmed: namely,the simulation will try to cover the entire timeline from negative to positive in�nity.This would clearly take a long time to calculate, and would not be suitable for areal system. In the real world, there is only a certain amount of time over whichone requires the information provided by the simulation. The time of simulation canbe restricted by the addition of another external variable used for control purposes.The simulation would then only operate during the period(s) the control variableallowed. Since control can easily be achieved by using a tcs variable, adding thecontrol information does not require any changes to the underlying structure of thetcs. The value of the control variable can either be set externally to this process orit can be produced internally. Since the control information is available as a regularvariable, an expert system can set it as a result of the inferences that the programitself makes. A simple control scheme would involve only doing the calculation fora limited span around now, a capability that is easily implemented using persistenceand anticipation modules.1 The pharmacokinetic system, modi�ed to use a controlvariable, appears in �gure 3.4. The output from a system using standard lidocaineparameters from Thomson [84] is shown in �gure 3.5.The control variable used to limit the execution of the pharmacokinetic modelcan either be supplied as an input from outside the tcs, or it could be computed.One such computation, which makes use of the system time variables now and past?,is shown in �gure 3.6. The variable values for such a control structure are shownin the graph in �gure 3.7, for a starting time of 0 and a current time of 600. Thissample control strategy limits the calculation in the past to \interesting" times asde�ned by the variable start-time. In the future, projections will be made for 500time units. Landmark times combined with the current system time can be used tocontrol the operation of other modules. The ability to program the control into thesystem allows a great deal of
exibility to handle domain- and application-speci�cproblems. For example, one could imagine an \as needed" control system where thecontrol variables were set in response to an outside request from the user.1An only slightly more complicated control would use an o�set from now to control projection inthe future and the time since the beginning of the consultation in the past. This would require thetcs-based system to include the initial consultation time as one of its variables.

37
(defmodvar control :interval :initial-value nil)...(defmodule pk-model (infusion bolus control) (concentration)((:history a1 :initial-value 0)(:history a2 :initial-value 0))(if control(loop for time from begin time to (- end time 1)initially (setq concentration nil)do (psetq a1 (+ a1 infusion (get-bolus-value bolus time)(* k21 a2) (- (* k12 a1)) (- (* kel a1)))a2 (+ a2 (* k12 a1) (- (* k21 a2))))(pushpoint (/ a1 v1) time concentration))(setq a1 0 a2 0 concentration nil)))Figure 3.4: Control Added to Pharmacokinetic Program
 Time -->:-2 0 2 4 6 8 10 12 14

 CONTROL: NIL T

 BOLUS: 100 100

 INFUSION: 0 2

 CONCENTRATION: 2.7 2.6 2.5 2.4 2.3 2.3 2.2 2.1 2.1 2.0 4.7 4.5 4.3 4.1 3.9 3.8

Pharmacokinetic Model ExampleFigure 3.5: Pharmacokinetic Program Output

38 CHAPTER 3. EXAMPLE: PHARMACOKINETIC MODEL
(defmodvar start-time :point) ; Externally set to t at the starting time.(defmodvar ctrl-1 :interval :initial-value nil) ; Internal variable.(defmodvar ctrl-2 :interval :initial-value nil) ; Internal variable.;; The arguments to a defpersistence form are the name of the module to;; be created, a point variable input, an interval variable output, and options;; that specify the length of persistence in the absence of new data, as well as;; default values to cover the periods when no valid data is available.;; ctrl-1 is t from the starting time until in�nity.(defpersistence ctrl-start start-time ctrl-1 :persistence :infinity :default nil);; ctrl-2 is t for 500 time units from now into the future.(defpersistence ctrl-future now ctrl-2 :persistence 500 :default nil);; control is t from the starting time until now because the value of;; ctrl-1 in the past (which is t from start-time to in�nity).;; control is also t for 500 units after now because of ctrl-2;; in the future.(defmodule model-control (ctrl-1 ctrl-2 past?) (control)(setq control (if past? ctrl-1 ctrl-2)))Figure 3.6: Simple Control Strategy
 Time -->:-200 0 200 400 600 800 1000 1200 1400

 START-TIME: 0

 NOW: 600

 PAST?: T NIL

 CTRL-1: NIL T

 CTRL-2: NIL T NIL

 CONTROL: NIL T NIL

Simple Model Control StrategyFigure 3.7: Control State at Time 600

39The use of a control or data manipulation rule that uses one source of informationin the past and a related, but often di�erent, one in the future is a programmingparadigm that recurs frequently in a tcs system. A common application is the useof the actual therapy in the past and the recommended therapy in the future whentrying to project the e�ects of the advice. This arises in the use of a pharmacokineticmodel. The model state must re
ect the actual treatment in the past in order to forma valid basis for understanding the patient's current state. But the future expectationsshould be generated using the advice the program provides. In a situation where theoutput of the model is used in the process of designing the dosage regimen, as it wasin the Arrhythmia Advisor [73] or in the extensions to the Oncocin project [39], thisdichotomy around the current time (or next feasible decision point) is essential to thecorrect functioning of the system.We can continue the expansion of this example by making the model parametersdepend on the patient's state. For some drugs, estimates of the a priori e�ects ofdi�erent medical conditions on the parameter values have been published [84]. In thisstudy relevant parameters included the presence of congestive heart failure and liverdisease. The use of contextual information changes the rate \constants" of the modelinto variables whose values depend on the state of the patient. Certain aspects of thestate can change over time. For example, a digitalis (another cardiac drug) model [37]uses a measured parameter, creatinine clearance, to calculate the value of one modelparameter. Since the measured patient parameter can change over time, so can themodel parameters. Complicating matters is the problem that not all of the contextualinformation will be available initially. Liver disease may be detected only on the basisof a more complete diagnostic workup than would be possible before treatment beginsfor arrhythmias. The ability of the tcs to update past information as the underlyingbasis for those decisions changes is an important advantage in handling this situation.As more complete information becomes available, the parameters can be adjusted andthe a�ected blood concentration estimates can be revised.The back-and-forth nature of the decision-making becomes more pronounced ifmore sophisticated mathematical modeling techniques are applied. The model param-eters, which are derived from population standard estimates, can be re�ned or adaptedto an indivdual patient by comparing the estimates to measured samples. [36, 37, 39]It is important to update even the past drug concentration estimates because of thepotential e�ects on the current and future decision-making process. For example,one of the rules from the arrhythmia advisor required a switch from lidocaine to pro-cainamide if the patient appeared not to respond to therapeutic concentrations oflidocaine. The diagnosis of lidocaine resistance depends on the lack of response to anadequate amount of the drug. If revisions of the model parameters indicate that themodel produced concentration estimates that were signi�cantly higher than the ac-tual values, a previous decision that the patient had lidocaine-resistant arrhythmiaswould need to be revoked. The prospective impact of revoking this past decisionwould be to return lidocaine to the armamentarium of therapeutic interventions. If

40 CHAPTER 3. EXAMPLE: PHARMACOKINETIC MODELthis past decision is not reexamined and revised, then the old (and incorrect) observa-tion of lidocaine resistance will prevent the use of a potentially useful drug. Note alsothat, because the model will have been modi�ed, the future dosage recommendationsshould result in an e�ective drug concentration, because the dosage will be higher.

Chapter 4Types of Reasoning ModuleUsing the formalism described in chapter 2, we can distinguish among the charac-teristics of di�erent types of reasoning over time. This di�erentiation is determinedby the types of variables that are used in the reasoning modules. In this section,I will describe several more abstract reasoning modules. In addition to the textualdescription, I will provide a schematic diagram of the reasoning
ow over time, as wellas a description in terms of the form of function embodied in the module functions.A general overview of the interrelations of four classes of module can be seen in�gure 4.1. These four basic types are characterized by the relation between the typeof input and output variable. Two have the same type (both point or interval). Theother two perform transformations between the two types (point to interval or viceversa). As one might expect, the modules which perform the type transformationhave more complicated implementations. I detail each of these basic types, as wellas other derivative types, in the following sections. To aid the comparison with fullygeneral modules, I repeat the three functional parts of a standard module here:1. fv : V+ � Texec � S� 7! V+ Calculates output variable values.2. fx : V+ � Texec � S� 7! Texec Calculates process instance execution interval.3. fs : V+ � Texec � S� 7! S� Calculates process state (histories and oracles).4.1 RulesRules are the most straightforward of the reasoning types to be explored, becausethey exhibit no overt time dependence. When viewed as a statement in a logicalform, rules possess universal validity. The temporal aspect of a rule can be handledcompletely outside the rule itself. Figure 4.2 shows a typical rule schematic for astatic rule. In the formal analysis, I discuss both static and temporal rules.4.1.1 Static RulesThe functional de�nition of static rules is quite simple:41

42 CHAPTER 4. TYPES OF REASONING MODULE

Figure 4.1: Basic Types of Reasoning Modules

Figure 4.2: Schematic of a Rule Module

4.2. TRANSDUCERS 431. fv : V+int 7! V+int2. fx : Texec 7! Texec (fx � Id)3. fs � ;Since there is no change in the execution interval, and there are no functions thatrely on internal state variables, this rule can only have e�ects inside the interval inwhich it is scheduled. The computational consequence is that the maximum numberof process instances that can be spawned is limited to the length of the time intervalover which an input value changes. The time interval a�ects the scheduling becauseof the other input variables.4.1.2 Temporal RulesThe functional de�nition of temporal rules adds a function to manipulate the processstate:1. fv : V+int � S+ 7! V+int2. fx : Texec 7! Texec (fx � Id)3. fs : V+int � S+ 7! S+Temporal rules use state information from previous or future process instances. Thismeans that any change in an input variable can potentially a�ect all other intervals,as was the case in the percent calculation used in chapter 2. Realistic applicationswill most likely limit the extent of in
uence of any particular input interval. Sincethe applications programmer supplies fs, the computational complexity of a temporalrule is under the control of the developer. The di�erence from a static rule is thatthe function fs is de�ned and fv has added a reference to the process state (S).4.2 TransducersTransducers are atemporal reasoning units whose primary characteristic is that theyconvert the value part of their point variable input to a di�erent value at the sametime. There is thus no temporal processing involved, since the time part of the pointvalue is not even examined by the function that does the reasoning. The functionde�ning the value conversion is just applied to each point variable in turn. Schemataare shown in �gure 4.3.

44 CHAPTER 4. TYPES OF REASONING MODULE

Figure 4.3: Schemata of Transducer Modules4.2.1 Simple TransducersThe functional de�nition of a simple transducer is similar to that of a static rule. Theonly di�erence is the substitution of a point for an interval variable:1. fv : Vpt 7! Vpt2. fx : Texec 7! Texec (fx � Id)3. fs � ;This module maps point values by considering only the value of the individual pointvariable and leaving the time part unchanged. The di�erence in which part of a pointvariable is processed de�nes the di�erence between a context-sensitive transducer anda generator.4.2.2 Context-Sensitive TransducersContext-sensitive transducers add interval variables which provide context:1. fv : Vpt � V+int 7! Vpt2. fx : Texec 7! Texec (fx � Id)3. fs � ;This module is a transducer whose processing function determines the output valuebased on the value of a single point variable and the values of additional intervalvariable inputs. The presence of the context variables provides an easy method formodifying the point evaluation function over time without any direct reference to timein the calculation. The tables used in Fagan's vm for generating acceptable boundaryranges for parameter values are transducers of this type. Depending on the particularcontext in which the mapping from raw input data to a qualitative evaluation is done,the thresholds are di�erent. Although the context can change over time, the extent

4.3. ABSTRACTORS 45

Figure 4.4: Schemata of Abstractor Modulesof the context's validity and the particular time at which a point datum is evaluatedare not considered by the transducer function. It simply receives the value part of thepoint variable along with the values of the relevant contexts and produces the valuepart of the output point variable.The common feature of all transducers is that they operate only on the value partof point variables.4.3 AbstractorsAbstraction is the process of changing the form of the data from a collection of pointvariables to a set of intervals. This re
ects an expansion of the duration of validity ofpoint data samples. This is an inductive process and is not so straightforward as thedeductive processes used in executing rules. As the time extent of the data expands,it becomes a more abstract entity. By setting up the boundaries and attaching aninterpretation to the individual sample points, the abstraction process takes a loosecollection of data and produces a more ordered description.As an example of abstraction, consider the examination of a series of daily reportsof rainfall and the resulting conclusion that a drought was in progress. A droughtcovers a longer time interval and is a more abstract description than a single dry dayor even a sequence of two or three dry days. Furthermore, by attaching the label\drought" to the condition, the abstraction allows the application of more generalknowledge associated with droughts. This knowledge could also be applied on the

46 CHAPTER 4. TYPES OF REASONING MODULEbasis of an individual analysis of the run of dry days, but the application is muchmore tedious. Moving up the abstraction hierarchy in the reasoning also increasesthe size of time interval covered. More abstract descriptions tend to cover a largertime span than the more detailed descriptions.Tcs provides only the simplest form of persistence, namely the extension of datavalues for a �xed period of validity. Other researchers have investigated the deeperrelation between causation and the notion of persistence that this simple model cap-tures [18], as well as having proposed more rigorous models of the probalistic natureof the resulting interval value [34]. In the experiments I have conducted so far, thesimple approach used by tcs has been adequate.The expansion of the time covered can occur in both directions. I term the ex-tension into the future persistence and into the past anticipation. Schemata are illus-trated in �gure 4.4. This speci�cation of a simple persistence as shown in �gure 4.4arequires only the speci�cation of a maximum duration interval. In the case of antic-ipation, the resulting abstracted interval is projected into the past, rather than thefuture (see �gure 4.4b). These can also be made into a combination which assumesthat the abstract intervals extend both into the past and into the future, in e�ectsplitting the timeline between adjacent sample points (�gure 4.4c). The �rst threetypes of abstractor are distinguished only by the relationship between the time of thepoint variable's values and the endpoints of the resulting intervals, as illustrated inthe diagram.One can also limit the persistence of information from a sample point to a maxi-mum interval. This time-limited abstraction can be used to implement reasoning inwhich the data become too old to be useful or safe to use in calculations (�gure 4.4d).14.3.1 Time-Limited PersistenceIn the formal analysis I will only address the last type of single point abstractor:1. fv : Vpt � Texec � Shist 7! Vint2. fx : Vpt � Texec � Shist 7! Texec3. fs : Vpt � Texec � Shist 7! ShistPersistences provide a simpli�cation for the user because he need only specify oneparameter, the maximum duration of a point value, in order to de�ne a time-limitedabstractor. This parameter is su�cient then to generate code which implements allthree functions shown above! The detailed implementation is complicated becausethe duration of the output Vint is in
uenced by any points during the system-chosenexecution interval Texec as well as by previously seen input values (contained in Shist).1This type of limitation is not supported in all temporal reasoning systems. The tractibility ofthe Time Map Manager's contradiction resolution algorithm depends on the absence of time-limitingconstraints on the extent of persistences [19, Rule 3, p. 45].

4.3. ABSTRACTORS 47

Figure 4.5: Schemata of Two Point AbstractorThe internal execution time function fx must partition the initial execution inter-val into smaller pieces, each of which can be handled by fv and fs. This division ofa large execution interval into smaller pieces is an example of the divide-and-conquerapproach to simplifying the reasoning. The method of setting the duration of intervalvariables requires this type of programming style inside tcs modules. There is a dualto this function which operates in the opposite direction on the timeline.4.3.2 Two-Point AbstractorThe di�erence between a two-point abstractor and the persistence module above isthat information from two adjacent points is processed. Functionally, this is shownby the presence of both history and oracle variables in the process state:1. fv : Vpt � Texec � Shist � Sorac 7! Vint2. fx : Vpt � Texec � Shist � Sorac 7! Texec3. fs : Vpt � Texec � Shist � Sorac 7! Shist � SoracAlthough the internal details are complex, the user need provide only a single functionf 0v : x� x 7! y. This function takes two input values (one from each of two adjacentpoint variable values) and produces one output value (the value for the interval be-tween the points). The data evaluation is shown schematically in �gure 4.5. Theremainder of the internal code is common to all instances of this type of abstractorand can be generated automatically. The programmer bene�ts by needing to pro-vide only the domain-dependent part of the reasoning and allowing the system toimplement the generic temporal reasoning task.4.3.3 MemoryThe memory used in the system thus far is limited to that of the history inside a singleprocess. It is, however, easy to transform the value of an internal memory variable intoan output variable. This allows the system to \remember" past values when it makesany given decision. I have implemented four types of memory module, all dealing

48 CHAPTER 4. TYPES OF REASONING MODULE

Figure 4.6: Schemata of Memory Moduleswith point variable input. They represent the interaction of two design dimensions:the number of items to remember (either all events or just the most recent) and thelength of time to remember them (either forever or limited to a speci�ed time period).The �rst of these conditions can also be generalized to allow an arbitrary number ofitems to be remembered without requiring all items to be retained. The four memorytypes are:1. Remember only the most recent event.2. Remember the last n events.3. Remember all events for the past t time units.4. Remember all events for all time.This list of memory modules covers two common domain-independent criteria fordeciding how much information to keep for how long. It is not an exhaustive coverageof all memory modules. Making the length of time a datum is remembered dependon the value of point variable is an example of a domain-dependent strategy that I donot cover. Memory types 2 and 3 are shown in �gure 4.6. Their formal speci�cationis shown below.Just as persistence has an analog that moves data backward in time, there is ananalog to the memory module that also moves data backward in time. This is termeda \future" module. I will present an example of how this can be used in practice inchapter 6, in the section on measuring urine
ow.N Item MemoryMemory of n items, a variant of abstractor:

4.3. ABSTRACTORS 491. fv : Vpt � Shist 7! Vint [fv � cons(Vpt; subseq(S; 1; n� 1))]2. fx : Vpt � Texec 7! Texec3. fs : Vpt � Shist 7! Shist [fs � cons(Vpt; subseq(S; 1; n� 1)) � fv]This module has only one point input variable. The internal state contains the valuesof the previous n states of Vpt. Any change in the value of an input will thereforecause at most n+2 processes to be executed. One is for the process that gets changed.Another is possible if the change causes an interval value to be shortened.2 Finally,there are n executions as the information gets propagated to the next n processinstances. The amount of recalculation in this module is therefore determined solelyby the number of intervals remembered and is not a�ected by the size of the intervalchanged.Time-Limited MemoryThis module remembers all Vpt values for a �xed interval of time:1. fv : Vpt � Texec � Shist 7! Vint2. fx : Vpt � Texec 7! Texec3. fs : Vpt � Texec � Shist 7! Shist (fs � fv)The programmer need only specify the retention time. This di�ers from the persis-tence abstraction in two ways. First, both the value and the time of the point isretained in the interval output, and second, more than one value can be retained. Inthe persistence case, only the value of the point variable is used in determining thevalue of the output. The output of a memory module is therefore more general.In a memory module fs � fv, providing a additional simpli�cation. This equiv-alence is not surprising since the module simply makes its internal history variableavailable to other modules as an output.The abstractors show the bene�t of introducing specialized modules for handlingcommon reasoning tasks. Although the internal implementation of the modules re-quires the full generality of the tcsmechanism, much of the code can be automaticallygenerated, allowing the programmer to control the process by specifying only thoseparts of the module that depend on the domain itself.2This requires a new process instance because the endpoint changes; the value of the state variableat that time is indeterminate, since it has not yet been calculated, and is thus unavailable to tcs.

50 CHAPTER 4. TYPES OF REASONING MODULE

Figure 4.7: Schemata of Generator Modules4.4 GeneratorData generation is the process by which some general description of a process (con-tained in an interval variable) is transformed into speci�c items of information or callsfor atomic actions (contained in a point variable). This is the opposite of abstraction.For example, the general treatment directive \Take two aspirin every four hours"can be transformed into a series of individual actions \Take two aspirin" which arescheduled to be done as atomic actions at times four hours apart.Similarly, a model can be used to generate information which can be viewed aspoint samples of a continuous process. For example, if it is known that over theperiod of four hours, the concentration of a certain drug in the blood will rise linearlyfrom its present value of 1.0 to a �nal value of 2.0, intermediate predictions of 1.25at one hour, 1.5 at two hours, etc. can be made. Figure 4.7 contains schemata ofgenerators.4.4.1 Point-Triggered GeneratorA point-triggered generator ignores the value part of the input point variable anduses only the time part to determine when a value should be output:1. fv : Vpt � V�int 7! Vpt2. fx : Texec 7! Texec (fx � Id)3. fs � ;The point variable is used solely for timing; data values come from the interval vari-ables. This is in contrast to the context-sensitive transducers described above, whichprocessed only the value part of the point variable. This is another example of theuse of tcs variables for the control of reasoning.

4.4. GENERATOR 51Self-Timing GeneratorSelf-timing generators produce point output without an external trigger:1. fv : Texec � V�int 7! Vpt2. fx : Texec 7! Texec (fx � Id)3. fs � ;In place of the external trigger, information from the execution interval is used. Thefunctional de�nition shown above is a pure form of this type of module. The pharma-cokinetic model simulation was a hybrid form which used a combination of intervaland point input variables in its the basic calculation. The identi�cation of outputpoints was not determined by an external trigger, but came from the internal timing.In the model's case, every simulation step was used as a trigger, but it would only be atrivial change to make a simulation provide an output value for every �fth simulationstep.This completes the list of basic types of reasoning modules that tcs provides fora programmer. In the next chapter, I discuss higher-level reasoning concepts that canbe implemented on top of the tcs substrate.

52 CHAPTER 4. TYPES OF REASONING MODULE

Chapter 5Higher-Level ReasoningAbstractionsIn this chapter I describe a level of reasoning further from the underlying modulestructure of the tcs . I will present a simple model for temporal pattern-matching.The purpose of the presentation is to demonstrate that such a matching function canbe easily implemented in tcs. I make no claim that the pattern-matcher is complete.In fact, the system provided by tcs is currently very limited in scope. I discuss onemethod of expanding the functionality of the pattern-matcher.In the second section I describe reasoning by hindsight. The revision of past infer-ences as new information becomes available plays to the strength of the tcs design.As in the previous chapter, the tcs substrate is used to provide the administrativefunctionality needed for updating in the face of changing information. Reasoningby hindsight uses this foundation for the implementation of a solution to a di�cultmedical reasoning problem.5.1 Temporal Pattern-MatchingThe modules I have introduced thus far have concentrated on the processing of datain a particular execution interval. Through the use of history and oracle variables, onecan make decisions in any particular execution interval depend on the values of datafrom outside that interval. This capability allows the matching of temporal patternsto sequences of interval values. History variables in a module are used to rememberpast interval values, including information about the length of the intervals overwhich values were valid. Although the time span of interval variables is not providedto modules directly, it can be easily calculated by reference to the endpoints of theexecution intervals of the process instances1.1Actually, some care must be taken to ensure that the current input value is di�erent from theprevious one, but since that information is being accumulated in a history variable anyway, this iseasily accomplished. 53

54 CHAPTER 5. HIGHER-LEVEL REASONING ABSTRACTIONS((:value b :min 10) (:member (a e i o u) :min 20 :max 50))will match any part of the timeline where there is a b of at least 10units duration followed by a single instance of a, e, i, o, u of 20 to50 units duration.((:value a :min 10) (:not a :max 50) (:value a :min 10))will match a pattern of two a's of duration at least 10 separated by asingle interval value other than an a of duration not greater than 50.Figure 5.1: Examples of the Pattern-Matching LanguageWith such a history, one can search for patterns of values that have special signi�-cance. An example from the medical domain is a characteristic rise and fall in cardiacenzymes following a heart attack. If these enzyme levels were being monitored by atcs system, this pattern could be detected. Looking for characteristic seismic wavesin order to monitor nuclear testing treaties is another example.5.1.1 The Current ImplementationAt present tcs provides a limited pattern-matching language capable of matching�xed-length patterns. The �xed-length restriction is imposed in order to limit theamount of information that must be accumulated in history varibles of the pattern-matching module, thus improving the e�ciency of the calculation in the face of chang-ing data.The primitives of the matching language are the following:(:value value) Matches if the tested value is equal to value.(:not value) Matches if the tested value is not equal to value.(:member value-list) Matches if the tested value is in value-list.(:none-of value-list) Matches if the tested value is not in it value-list.(:any t) Always matches.(:predicate function) Uses function to test the value (only) of the inter-val to be matched.(:full-predicate function) Uses function to test the value and duration of theinterval to be matched.A pattern consists of a list of these primitives, specifying the order of the matching.In addition to the basic forms listed above, all keywords except :full-predicate canalso have :max and :min keywords followed by non-negative values. These values are

5.1. TEMPORAL PATTERN-MATCHING 55used to put lower and upper inclusive bounds on the length of time that an otherwisesuitable match must last. Even with a 0 lower bound, the pattern element must bepresent. A pattern of �xed time lengths can be enforced by making the :min and:max values the same. There is no disjunction. The example in �gure 5.1 shows theuse of this language.Although the basic temporal model used in tcs requires that all times be exactlyspeci�ed, the patterns used for matching against this database do not have to haveexact endpoints.
5.1.2 One Potential ExtensionThe current implementation of pattern-matching uses a very rudimentary languageand limits the matching to �xed-length patterns. A more
exible approach would beto build a regular language parser based on a �nite-state machine. Since the amountof data needed to perform a match could not necessarily be calculated in advance,a di�erent strategy would be needed. Assembling all of the values in each executioninterval would be computationally prohibitive.Instead of a complete evaluation of the pattern match in each process intervalbeing done, the task could be broken down into segments. The state information forthe �nite-state machine could be transmitted via the history and oracle mechanism.Using that state information, each process instance could perform an incrementalcheck for a match based on the current input value during that execution interval.A number of details remain to be worked out. A way to transmit the news ofa successful match to all of the intervals that contributed to that match is needed,as well as some administrative functions for data fusion between adjacent processinstances with the same value. Neither of these problems should be insurmountable,however.Dvorak and Kuipers [25] and Coiera [13, 14] are investigating the use of qualitativemodels to match behavior. The combination of their analysis techniques with amonitor built using the tcs could combine the
exibility of the model-based approachto matching with the convenience of being able to modify and retract the informationthat feeds into such a model.In a development outside the scope of tcs-amenable applications, Kahn [38] hasdeveloped a technique for analyzing a collection of variable daily records in order todetect changes. Taking advantage of the cyclical nature of the records, his systemidenti�es clinically meaningful changes in chronic medication doses. This system hasbeen successfully applied to analyze home care journals of diabetic outpatients.

56 CHAPTER 5. HIGHER-LEVEL REASONING ABSTRACTIONS5.2 Reasoning by Hindsight2In this section I describe the phenomenon of reasoning by hindsight, using an ex-ample drawn from cardiac patient care. As the clinical picture of a patient evolvesover time, more information becomes available. The availability of more data allowsa more accurate assessment of the patient. With more information one can reviseobservations, reinterpret previous data and con�rm or retract assumptions. Uncer-tainties, guesses or errors that were made early in the clinical course of patient carecan also be identi�ed and resolved.Hindsight also allows one to use response to therapy as diagnostic information.Since the response of a patient to a particular treatment is modulated by the under-lying disease process, an analysis of this response can shed light on that process. Theidenti�cation of errors, the discovery of violated assumptions, or simply the resolutionof ambiguous �ndings becomes possible. But the use of hindsight in expert systemsalso requires that appropriate attention be paid to the temporal relations of the dataand that care be exercised in revising decisions.5.2.1 Clinical ExampleThe clinical example uses an abstraction of an actual case from cardiology. It showsthe revision of diagnosis and the modi�cation of therapy in response to evolvinginformation about the patient's condition. The crucial feature of the example is thatan analysis of the response to therapy is necessary in order to come to the correctconclusion.Consider a woman presenting with a heart attack and ventricular premature beats(VPBs):The patient was a 56 year old female with acute chest pain, ice cold hands,clammy skin, bibasilar rales, left S3 gallop, no murmurs, blood pressureof 80/50 by cu�, pO2 of 64 (slightly low), pCO2 of 36 (a bit low, re
ectinghyperventilation), pH of 7.36, BUN of 19, serum creatinine 1.1 and K 4.9.The ECG showed multifocal VPBs, short runs of ventricular tachycardiaof 3{8 beats at a rate of 130{160, ST elevated in V1{5 (suggesting afairly large anterior wall infarct), and no Q waves. She was treated withdopamine and lidocaine. She was excreting some urine but was oliguric(< 500cc/day). After some hours a Swan-line was inserted, showing aPA pressure of 50/30 and a wedge of 29, con�rming the left ventricularfailure.There was limited response to the lidocaine or dopamine after a day. Theblood pressure only went up to 90/50 and her hands remained ice cold andthe S3 gallop and bibasilar rales persisted. The arrhythmias improved, but2The material in this section has been separately published [71].

5.2. REASONING BY HINDSIGHT 57multifocal VPBs and short runs of ventricular tachycardia still persisted.An arterial line was put in and the blood pressure was 200/120. [43, p. 34]The initial presentation has the classic signs of an acute myocardial infarction.Based on the information available at presentation, the initial therapy decision iscorrect. Since the data indicate a patient in cardiogenic shock (a low blood pressurestate), action should be taken to boost the performance of the heart in order to raiseblood pressure and provide more oxygen to vital tissues (including the heart!).Unfortunately, this case has a twist. One of the body's normal reactions to a fallin blood pressure is to reduce peripheral circulation in order to maintain adequateblood pressure in the central, vital part of the body. In this patient, the reductionin peripheral circulation was so extreme that the blood pressure reading obtained byusing a cu� on the arm was no longer representative of the true blood pressure inthe core of the body. This violates the basic (unstated) assumption of blood pressuremeasurement: the pressure in the upper arm is an accurate indicator of the bloodpressure in the aorta.Because the low blood-pressure measurement was expected in a heart attack vic-tim, there was no reason to doubt the accuracy of the measurement during the initialassessment. The important rami�cation is that data consistency checking cannot de-tect this mistake! It is only clear that something is amiss over the course of the nextday. The problem �rst becomes apparent when the expectations of therapeutic re-sponse were violated. The expected reaction to the dopamine would be a rise in bloodpressure, an increase in urine
ow and an improvement in the heart failure. Thesee�ects do not occur. At this point it is necessary to reassess the available informationand the decisions based upon that information.Since the therapy decision was correct, based on information available at the time,the focus must be on the data evaluation. A reconsideration of the data evaluationleads one to suspect that the equivalence between the measurement of the bloodpressure at the arm and the underlying datum of interest, central arterial pressure,is not present. By using an invasive, but more accurate method for measuring bloodpressure, it is possible to con�rm this suspicion.The new assessment removes the justi�cation for giving a positive inotropic agentand also calls the initial dopamine therapy into question. The revised opinion, whichbene�ts from hindsight, is that a drug to dilate the patient's arteries should havebeen used instead of one to make the heart beat more strongly.5.2.2 Program ResultsTo demonstrate how the tcs supports this type of reasoning, I programmed a simpli-�ed version of the cardiac management decision above. The program used to generatethe output shown here consisted of 26 variables (of which only seven are shown inthe �gures) and 14 reasoning modules. Selected portions of the program output afterthe initial consultation (�gure 5.2) and after the reconsideration of the information

58 CHAPTER 5. HIGHER-LEVEL REASONING ABSTRACTIONS
 Time -->: 0 5 10 15 20 25 30 35 40 45

BP measurement problems: None known

 BP by cuff :80/50

 BP by A-line :

 Vascular status: Constricted

 Arrhythmia state: Present

 Ideal strategy: +-Inotrope, Anti-arrhythmic

 Actual treatment: Dopamine, Lidocaine

Blood Pressure and Arrhythmia: Initial Status (Time = 0)Figure 5.2: Initial Patient Advice
 Time -->: 0 5 10 15 20 25 30 35 40 45

BP measurement problems: Cuff suspect

 BP by cuff :80/50 90/50

 BP by A-line : 200/120

 Vascular status: Constricted

 Arrhythmia state: Present I* Improving

 Ideal strategy: Anti-arrhythmic Vaso-dilator, Anti-arrhythmic

 Actual treatment: Dopamine, Lidocaine L* Nitroglycerine, Lidocaine

Blood Pressure and Arrhythmia: Reassessment (Time = 25)(The \I�" and \L�" stand for \Improving" and \Lidocaine." There was not enough room on thegraph for the full labels.) Figure 5.3: Revised Patient Advice(�gure 5.3) are shown. The initial evaluation executed 38 process instances for the14 modules. The two stages of the revision at times 24 and 25 combined executed 85process instances. For this example, the time scale uses units of hours.The program takes the clinical observations and test data as its input and ab-stracts this into a description of the state of the patient. The initial decision usesthe low blood-pressure measurement (80/50), the constricted vascular status (fromcold, clammy skin), and the presence of arrhythmias to suggest the use of a posi-tive inotrope and an anti-arrhythmic agent. This abstract strategy is re�ned intothe concrete recommendation of dopamine and lidocaine (�gure 5.2). I have alreadydiscussed the transformation of point data to intervals in the tcs .Great care is taken to separate the ideal strategy from the concrete actions. Thisis important for allowing the process of hindsight to operate. It is a demonstrationof the need to use di�erent forms of reasoning in the future and in the past.As more information becomes available (at times 24 and 25), the assessment isreconsidered. The arrhythmia remains a problem, but since it is improving, the pro-gram concludes that the choice of lidocaine is correct and should be continued. Thisis re
ected in the retention of the anti-arrhythmic part of the ideal therapy strategy.

5.2. REASONING BY HINDSIGHT 59Since the lack of blood-pressure response is not consistent with the expected e�ectsof dopamine, this part of the case analysis needs to be reexamined. The lack of re-sponse, combined with the vasoconstriction, makes the cu� method of blood-pressuremeasurement suspect; this is detected by a module monitoring the progress of ther-apy. This rule compares the actual response with the expected response and detectsdiscrepancies. The discrepancies in turn lead to an examination of the assumptionsunderlying the original treatment decision.Without a reliable blood pressure, the justi�cation for the positive inotrope ismissing, so it is removed from the ideal strategy.3 The ideal treatment is modi�ed sothat it no longer includes dopamine and so that it uses a di�erent method to measurethe blood pressure. The concrete treatment, however, can only be changed in thefuture, so dopamine remains on the treatment list for the �rst 24 hours (�gure 5.3).Once the arterial line is inserted and a reading obtained, a vasodilator is indicated toreduce the central blood pressure from its very high level of 200/120. This is re
ectedin the concrete suggestion that nitroglycerine be added.In the implementation of this decision, the module used to evaluate the data inorder to arrive at a treatment strategy considers the current values of the bloodpressure, the arrhythmia state and the vascular status of the patient, as well asany known problems with drugs or blood pressure. The module that determineswhether there are any drug or blood-pressure problems considers the treatment andcurrent (input) and past (history) values of the clinical parameters. It also uses thehistory and oracle facility to make the conclusions about the blood-pressure di�cultiesavailable to earlier and later time periods. The detection of the problem at time 24is therefore available for use in reconsidering the treatment strategy at time 0.In a complete system, there will need to be a large number of \default assump-tions" along with rules to monitor their validity. Although tcs does not relievethe programmer of the burden of identifying and implementing these assumptionmonitors, the tcs provides a mechanism for revising the a�ected decisions whenassumptions are later determined to be violated.5.2.3 DiscussionHindsight is inherently a temporal process. It involves using data available atone time to evaluate decisions made earlier. The temporal aspect of reasoning byhindsight is illustrated in �gure 5.4. The initial advice for Therapy1 is based onthe evaluation of the �rst blood pressure reading BP1. After some time has passed,another reading is considered (BP2). This second reading is used in two ways:1. To evaluate the e�cacy of the initial intervention Therapy1 as well as the process(Patient Evaluation) that led to the choice of that therapy. This review can3It would also be possible to implement a less radical strategy by suggesting the use of an arterialline before the therapy itself was changed. This is a change in the function used by the decisionmodule and does not a�ect the demonstration of the action of tcs.

60 CHAPTER 5. HIGHER-LEVEL REASONING ABSTRACTIONS

Figure 5.4: Temporal Aspect of Hindsightcon�rm the correctness of the initial decision, suggest a modi�cation of thetherapy, change it completely or be neutral (i.e., not express an opinion).2. To plan future therapeutic interventions (Therapy2). The future plans willimplement either the results of the review of therapy from 1 above or else involvesome other changes, perhaps the progression to a new state of the therapy.In the following sections I examine conceptual issues raised by the use of feed-back, as well as technical considerations needed for the proper implementation of thisreasoning.Evaluation FeedbackTwo di�erent types of failure can be detected by the use of new information forthe evaluation of a treatment. One is the failure in the choice of therapy. This couldbe due to an error in the reasoning which led to the choice of therapy, or it couldbe due to inherent uncertainty. An example of the latter would be the presence ofarrhythmias that are resistant to lidocaine. In the above example, if the lidocainehad proved incapable of improving the arrhythmia, the program would conclude thatthe arrhythmia is resistant to lidocaine. However, since the anti-arrhythmic strategywould still be correct, only the implementation of the strategy need be changed. Anappropriate alternate drug such as procainamide would be suggested.A second form of failure that could be detected by hindsight could be an errorin the data collection process or in the interpretation of the data in a particularpatient's context. In the example there is an error in the data evaluation due to aviolated assumption. For example, inappropriate data interpretation could occur ifa hypertensive patient presented with a blood pressure of 115/75. In most patientsthis would be considered in the normal range. For an individual with high blood

5.2. REASONING BY HINDSIGHT 61

Figure 5.5: Evaluation Feedback Loopspressure, however, this should be considered abnormal and a cause for the lower-than-usual blood pressure sought. If knowledge of a patient's high blood pressureonly became available after the start of treatment, the reinterpretation of the bloodpressure readings would be an example of hindsight. Both types of feedback in thereasoning are shown in �gure 5.5.Past{Future DistinctionWhen considering the way reasoning and actions interact in an advice-giving system,one must maintain a separation between reasoning about future events and reason-ing about past events. In the future, one can freely change both the advice and theactions that follow from the advice. In the past one can, through hindsight, changethe advice|deciding \what should have been done"|but actions must remain un-changed, re
ecting what was actually done.In a program, this can be accomplished by maintaining separate variables for theadvice (the ideal treatment and strategy) and the actual interventions (the concretetreatment and strategy). This is combined with a system-maintained variable indi-cating whether the reasoning is in the past or the future. If reasoning is in the past,no changes are allowed to the concrete choices. One could accomplish the same endby having the concrete actions be entered from outside the system. This would alsobe a con�rmation of what was actually done, since the clinical sta� is not forced tofollow the advice of the computer.In addition to being a logical nicety, the maintenance of this distinction is crucial

62 CHAPTER 5. HIGHER-LEVEL REASONING ABSTRACTIONSto the performance of reasoning by hindsight. The importance lies in the interactionbetween changing items in the past (through hindsight) and the dependency-directedupdating system. If this distinction is not carefully made, one can be led into acircular argument of the following form:1. We have a default assumption A.2. We make evaluation E , based on assumption A.3. E indicates that the proper therapy is T .4. Treatment T leads to response R, when E (using assumption A) is believed.5. When we later discover that R did not occur following T , we can conclude thatassumption A is invalid and should be retracted.6. Since E depends on A, E is retracted.7. Since E is retracted, we have no longer have a reason for doing T , so it isremoved.8. Without T , the absence of the response R is not grounds for disbelieving A.9. Therefore, we make default assumption A and the cycle begins again at Step 1.Trouble occurs at step 7, where an attempt is made to undo a past action. If thisstep is disallowed, then the circularity is broken and the reasoning chain remainsvalid, without the in�nite loop. T must be removed from the list of actions that wewanted to perform (in the ideal world), while remaining on the list of actions thatwere performed (in the real world).This potential circularity requires that the user keep those items of the historyinvariant which cannot be changed retroactively. Since real oracles do not exist, datais only available at the current time or from past times. Hindsight cannot undophysical actions. They must remain, not only for philosophical reasons, but alsobecause of their logical necessity in support of the hindsight argument.5.2.4 Hindsight SummaryThe tcsis designed to support management of evolving situations that do not requirenovel strategies. In medicine this is known as following standard protocols. Thesteps of protocol-based care involve the identi�cation of the appropriate protocol(diagnosis), the evaluation of the patient's state (assessment), and the decision aboutthe therapy to be tried (plan instantiation). Following plan instantiation, diagnosisand assessment continue to determine whether the plan is being successful or not(monitoring). Monitoring allows the plan to be adjusted for di�erences in individualresponses to a standard therapy. It uses feedback to adapt the plan to individualpatient characteristics. It is also needed to detect changes that can indicate a newdisease process, a fundamental change in an existing process, a
aw in the therapychosen, or the existence of errors in the initial therapy choice.

5.2. REASONING BY HINDSIGHT 63As I demonstrate in the hindsight example above, some of the errors in patientevaluation and plan choice only become apparent over the course of time. It istherefore important to monitor the changes in a patient's condition, consider thee�ects of previous treatment in evaluating current patient data, and be able to change
awed assumptions at the point that they in
uence decisions and have the e�ectspropagated forward in time.

64 CHAPTER 5. HIGHER-LEVEL REASONING ABSTRACTIONS

Chapter 6Ketoacidosis AdvisorExperience in the cardiology domain in
uenced the initial development of tcs. Tofurther test the utility and demonstrate the generality of tcs, I used it as the basisfor a new, medically interesting therapy advisor for diabetic ketoacidosis (dka). Asuccessful application in this domain must consider serial laboratory test data andadditional clinical information in order to arrive at advice for patient treatment andmanagement. The state of a patient with dka must be tracked over time and thetherapy adjusted as the problem resolves.Diabetic ketoacidosis is a condition which occurs when insu�cient insulin is presentfor the metabolic needs of the body. Since insulin enables the body to use sugar (glu-cose) for its energy needs, a lack of insulin forces the body to fall back on an alternatesource of energy. This alternate metabolic pathway results in the production of ke-toacids, hence the name of the condition. The presence of ketones and ketoacidsupsets the normal acid-base balance and makes patients very sick.Diagnosis is straightforward. History of diabetes and changes in either insulin-taking, diet or physical activity (such as illness or accident) strongly suggest thecondition. Evidence of ketones in the blood or urine along with glucose providea positive diagnosis. The medical challenge is not in the solution of a diagnosticproblem, but in the careful adjustment of treatment over the 24 to 72 hours it takesto restore patients to normal.Treatment is a combiniation of direct and supportive measures. The direct mea-sure is the administration of insulin to allow the body to use glucose as a fuel andthus obviate the production of ketones. This has the bene�cial side e�ect of alsoreducing the concentration of glucose in the blood. Supportive measures include
uid and electrolyte replacement. When serum glucose concentration is high, thekidneys begin eliminating the excess glucose from the blood. Unfortunately, glucoseis a large molecule and when excreted in the urine, it draws water with it (osmoticdiuresis), leaving patients volume-depleted (dehydrated). Patients in dka can havevolume de�cits of three or more liters. In addition to the water, potassium is also lostthrough the kidneys. Both items must be replaced as part of the supportive therapy.65

66 CHAPTER 6. KETOACIDOSIS ADVISOR6.1 Development of the Ketoacidosis AdvisorThe goal of the Ketoacidosis Advisor project was to produce a computer system thatis able to generate advice that is similar in quality to actual human performance.The Advisor project was a collaborative e�ort between myself and physicians at theTufts|New England Medical Center. I provided the computer-science expertise andthe physicians, Michael Hagen and Klemens Meyer, supplied the medical expertise.The Advisor was able to achieve these goals, as demonstrated by a formal evaluationreported in the next chapter.Realism was guaranteed by the use of actual patient data. We randomly selectedsixteen cases from a pool of approximately 400 cases with a primary or secondarydiagnosis of dka treated at the New England Medical Center between 1986 and1989. Joni Beshansky, a nurse in the Medical Center's Clinical Decision MakingUnit, performed the database search and located the cases. We used ten of thesixteen cases for expert system development and reserved six for use in testing. Thetest phase used four of the six reserved cases. Before extracting data, we removed allpatient indentifying information from the cases. The New England Medical CenterInstitutional Review Board granted approval for the use of anonymous informationfrom the clinical records. We assigned the cases sequential numbers for identi�cationwithin the Ketoacidosis Advisor project. We did all development and testing of thesystem using data collected retrospectively from the patient records. The KetoacidosisAdvisor was not used for patient care.We abstracted the data in the medical records into a machine-readable form andused them for development. I did all of the record coding. The quality of the record-keeping varied from case to case, as did the amount of information that was retainedin the permanent record. The information available generally included the emergencyroom record, complete laboratory test reports,
owsheets used in treatment, inputand output records, medication record sheets, physician orders and the progress notes.Serial blood-pressure measurements were also generally present. The
uid balancesheets had the greatest variability and were in some cases not completely �lled out.The largest problem for evaluation was the poor identi�cation of the times at which
uids were added or urine output was recorded. Medication times and laboratorytests typically had good time stamps.I encoded full chemical blood labs, blood gas and relevant parts of the urinalysis,but not laboratory studies that did not a�ect the insulin or
uid decisions. I encodedinformation from the narrative portion (House O�cer and Nursing progress notes, aswell as physical exam results) as it seemed relevant.A major di�culty in data acquisition was determining when the patient was ableto tolerate oral
uids. Although obvious to the clinical sta� treating a patient, thisfact is often not formally recorded. I have attempted to identify the point at whichoral intake is su�cient by examination of the nursing progress notes, the physicianorders for diet, and the appearance of other
uid input sources on the
uid balance

6.2. THE ASSESSMENT PROCESS 67
owsheets. Nevertheless, I consider this one of the weakest parts of the data acqui-sition. A second di�culty is the measurement of urine output. This is sometimesnot recorded on the
uid balance sheet (urinalysis results occasionally appear fromthe laboratory without corresponding urine output!). Furthermore, if the patient isambulatory, urine output is not entered into the record because the patient will justwalk to the toilet. (Although it complicates the task of development and evaluationof an expert system, this gap in the data collection has no impact on actual patientcare. Any patient that is su�ciently well to be up and out of bed is not severelydehydrated.)Since the goal of the project was to do an in-depth analysis of each particular case,a large set of cases was not required for development. The data abstraction involvedthe reconstruction of the measurements, observations and events that occurred duringthe hospital stay. Because the major emphasis of this work is on the temporal natureof the decision-making, I made every e�ort to determine the times for all items inthe record. A typical case would span 48 to 72 hours. The development cases hadan average of 75 speci�c times when information became available or treatment waschanged, and slightly more than 300 individual observations spread over those 75sessions. This formed the input to the Ketoacidosis Advisor.The physicians and I developed the knowledge base over a period of three yearsthrough a study of the literature, conferences with domain experts and the analysis ofthe case data. Once the initial framework of the Advisor was complete, we could usethe cases to exercise the decision-making and to identify de�ciencies in the reasoning.We performed a formal evaluation once the Ketoacidosis Advisor was performingsatisfactorily on the set of development cases.6.2 The Assessment ProcessMonitoring and management problems characteristically have a recurring pattern ofassessment and action. Information is obtained in order to arrive at an initial viewof the problem encountered. Therapy (or more generally any action) is based on anevaluation of the initial state. Time then elapses until more data become available(i.e., more observations are made) and modi�cations of the actions can be made.The amount of time that passes between the initiation of therapy and its evaluationmust be long enough so that the therapy has time to produce an e�ect. In the caseof fast-acting drugs like nitroprusside (which decreases blood pressure), this could bea matter of minutes. For other drugs, such as diuretics, more time must pass beforean e�ect is discernible. Finally, a drug's e�ects wear o� over time as it is eliminatedfrom the body. This underscores the importance of the temporal component in thereasoning.In dka , the assessment of the patient is based heavily on blood tests. Blood glu-cose concentration is the main determinant of insulin therapy. Physical examinationand other laboratory data contribute to the assessment of
uid status. Potassium

68 CHAPTER 6. KETOACIDOSIS ADVISORstatus is assessed based on laboratory test results.The laboratory tests are point samples that measure an underlying process. Thetherapies themselves are carried out over time. There is a fundamental di�erencein the temporal extent of these two quantities. To re
ect the persistence of stateseven though they are observed only at single moments in time, the description of thepatient's laboratory values is extended in time. This is appropriate because valuesreported by the clinical laboratory cannot change instantly. Since the values dorespond over a longer time period, both to external therapy and internal evolution,it is important to limit the extent of the persistence.This extension over time can be handled by using the persistence operators ofthe tcs. In the Ketoacidosis Advisor, this persistence is a �xed length of time. Itis chosen so that the information will be remembered long enough to span the timeuntil the next likely point when information will be gathered. It would perhaps bebetter to vary the time and have it depend not only on the value reported in thelaboratory data, but also on what was done in the meantime.For example, the serum potassium concentration in the blood will not stay con-stant if potassium supplements are given to the patient. When considering therapydecisions, it is important to consider the impact of treatment on the measured quan-tity when deciding how to use older laboratory data. Some of the therapy decisionscan be based on abstracted intervals of time; others must be based on the sampleitself.For some parts of the therapy, trend information is also important. First, onewishes to have the serum glucose levels fall rather than rise further. But the rate of fallshould be such that it produces no undue dislocations in the body. By using sequentialmeasurements, a rate of fall can be calculated and used as the control variable forinsulin therapy. This trend could be extrapolated to indicate when additional testresults are warranted. This is important because it is necessary to adjust the dose asthe glucose levels approach normal. Overshooting the goal causes hypoglycemia (lowblood sugar) and endangers the patient.The assessment also includes monitoring what has been done to the patient in thepast. This is important for three reasons:1. The actual clinical actions may not be what the Advisor has recommended. Inmaking further recommendations, it is important that the Advisor know whatthe starting point of the actual therapy is. This is vital to the correct evaluationof the e�ectiveness of the therapy.2. The treatment can a�ect the assessment because the response to therapy canitself yield diagnostic information. In particular, insulin resistence is identi�edby observing the e�ects of a particular insulin dose on a patient.3. Some of the assessment involves the cumulative impact of treatment over time.The restoration of a volume de�cit requires a certain amount of
uid excess to

6.3. THE THERAPY DECISION 69be infused. Judgement of progress toward this goal is determined by summingthe volume of
uids added and subtracting the measured and estimated losses.This process is aided by the use of clinically observable features such as urine
ow, blood pressure, heart rate and weight changes.
6.3 The Therapy DecisionAs I noted above, the three major components of dka treatment are control of theamount of insulin, restoration of a proper
uid balance, and replacement of missingelectrolytes.6.3.1 InsulinInsulin is used to arrest the further production of ketones and reduce the serum glucoseconcentration. The amount of insulin given is determined primarily by measurementof the glucose concentration. The zones for insulin therapy are high, moderate, nor-mal, low and very low. If glucose is low, then no insulin is given. At very low levelssupplemental glucose is also given, since eliminating all glucose will result in a coma .At normal glucose levels, insulin therapy is aimed at maintaining a steady state. Atmoderate and high levels, the goal is to reduce the insulin level. The rate at whichthis is done varies, because an overshoot can have swift negative consequences. Asthe glucose levels approach normal the rate of decline should level o� to provide a\smooth landing."Depending on the degree of sickness, insulin can be adminstered either through anintravenous (IV) infusion or via subcutaneous (SQ) injections. The therapy decisionregarding insulin involves choosing a route of administration as well as the amountof insulin to give. These decisions are in
uenced by the patient's normal schedule ofinsulin needs as well as by his clinical state. A slightly simpli�ed diagram of the rulefor initial insulin administration is shown in �gure 6.1a. The parameters in
uencingthe control of an IV insulin infusion are shown in �gure 6.1b. The infusion rate istitrated to keep the patient inside the glucose decline envelope. Time in
uences thisdecision through the calculation of a rate (change per unit time) and in the natureof a feedback control system (treatment evolving over time).Because insulin must be given until the ketoacids have been eliminated, it is stillnecessary to continue therapy after normal glucose levels have returned. To maintaina steady glucose level, the continued administration of insulin is combined with theadministration of additional glucose. Until the patient is well enough to eat, thisadditional glucose is provided by changing the composition of the
uids.

70 CHAPTER 6. KETOACIDOSIS ADVISOR

Figure 6.1: Insulin Treatment Strategy6.3.2 FluidsThere are two components of
uid therapy: the type of
uid and the rate at which itis infused. The patient's initial condition typically includes high serum glucose levelsand a volume de�cit. Normal saline (without additional glucose) at high
ow rates isused to remedy this condition.As the treatment progresses the two problems resolve. The degree of
uid de�citand the need to o�set continuing urinary losses determine the rate of administra-tion. Progress in controlling the hyperglycemia (high blood sugar) and the successin overcoming the initial de�cit a�ect the type of
uid used. These two controls areindependent. Normal glucose levels are often achieved before all of the ketoacids havebeen eliminated. Insulin therapy must therefore continue. Since the serum glucoselevels have dropped, it is necessary to supply additional glucose through either the IV
uids or oral (dietary) supplements to prevent dangerous hypoglycemia. Similarly,restoration of normal cardiovascular function as the volume de�cit is replaced shiftsthe emphasis from pure volume replenishment toward maintenance of a steady state.Once a patient is able to tolerate food and drink, the need for an infusion will decline.The initial rate decision is based on a desire to restore a normal volume in acontrolled manner. The goal is to restore half of the de�cit over the �rst eight hoursof treatment and the other half over the following sixteen hours. Typically this meansan infusion rate of 500 to 1000 ml/hour. After the initial volume de�cit is made up,

6.3. THE THERAPY DECISION 71

Figure 6.2: Fluid Rate Calculationthe replacement rate can be reduced to around 200 to 250 ml/hour. Once the patientstabilizes and the glucose and ketone levels are normal, a maintenance rate can beused. The factors which a�ect the
uid rate calculation are shown in �gure 6.2. Someof these, such as the ongoing urinary
uid loss, can only be measured retrospectively.This means that therapy based on expected urine
ow may need to be revised|asituation the tcs makes much easier to handle.In a normal patient, there is little possibility of giving too much
uid, since thekidneys are able to eliminate the excess. In the case of kidney or heart failure, thebody is not able to tolerate excess
uids. The Ketoacidosis Advisor's knowledge basedoes not contain rules for handling these special cases. This limits the clinical useful-ness of the current prototype, and also imposed restrictions on the set of usable casesfor the evaluation. I included no cases with renal or heart failure in the developmentor test set.6.3.3 ElectrolytesThe primary electrolytes that dka treatment must handle are potassium and phos-phate. Potassium management is complicated because the high urine
ows from theosmotic diuresis cause potassium loss. Furthermore, the management is complicatedby the lack of a clear assessment. The laboratory test results are skewed by a shiftin the location of potassium from the cells to the bloodstream that is caused by theacidosis. This means that patients in the early stages of dka treatment are low in

72 CHAPTER 6. KETOACIDOSIS ADVISORpotassium, but have laboratory test results that are in the normal range! Since thetotal mass of potassium in the cells is much higher than in the blood stream, smallshifts in the amount in the cells can lead to large changes in blood concentration.This is a problem because excessively high or low serum potassium levels can disturbheart rhythms and lead to death.Further complicating this is the fact that in advanced dehydration the body'smechanism for regulating potassium balance, the kidneys, may not be functioning. Itis therefore necessary to ensure kidney function before beginning aggressive potassiumtherapy. If kidney function is ensured, then it is relatively di�cult to overmedicatewith potassium supplements. The need for potassium therapy is related to the successof the insulin therapy at correcting the acidosis. As the acidosis resolves, potassiumshifts back into the cells, necessitating replacement with external sources. The e�ec-tiveness of one therapy therefore in
uences the e�ects of the other therapy.6.4 The Bookkeeping FunctionsCertain auxilliary functions proved useful for coordinating data arrival with the im-plementation of therapy. Other functions calculate derived information about thestate of the patient to aid in the decision-making procedure.6.5 Agendas, Urgent and Non-Urgent ChangesWhen continuous IV
uid therapy is in place, it is used as a means of administeringother forms of therapy continuously over a period of time. Potassium and insulin areoften given this way. Because the rate of insulin administration is closely regulatedto keep patients in the proper glucose decline envelope, it is generally administeredthrough a dedicated IV line.Since potassium and phosphate administration rates are less critical, they arepiggy-backed on the
uid replacement. Since supplement administration is not urgent,changes in treatment such as adding or deleting supplements wait until a new IVbottle is started. This happens when the present bottle is exhausted or a changeto another type of
uid is indicated. The bookkeeping challenge is to coordinatethe desire to change the supplement, made in response to a laboratory test result,with the independent event of an intravenous bottle being changed. The solutionI used in the Ketoacidosis Advisor was to implement a higher-level data structurecalled an agenda, and use tcs modules to manage the addition and removal of items.Non-urgent treatments are posted to an agenda whose items are taken care of as theopportunities present themselves. For example, potassium supplements are added tothe agenda when indicated by laboratory tests, and they take e�ect at the next
uidchange.A similar mechanism can be used for urgent changes. In this case, the agenda

6.5. AGENDAS, URGENT AND NON-URGENT CHANGES 73is used to retain actions triggered by a point variable value until they are eithersuperceded by new advice, or until the clinical sta� follows the advice. This providesa coordination between recommendations of the Ketoacidosis Advisor in response tonewly received data action and the ability of the clinical sta� to carry out the advice.Agendas are implemented by using the history mechanism. The tcs module thatmaintains the state of the agenda uses lists of items to be added or deleted. The addlist comes from advice-generating modules. The delete list comes from monitoringwhich actions have been carried out by the clinical sta�. This data
ow structure islike producer-consumer co-routines, but with the additional feature that the producerscan retract items from the agenda before they are consumed. In other words, if anaction which has not already been carried out becomes unnecessary, it is retractedfrom the agenda.6.5.1 Assessing the Urine FlowReplacing the
uid de�cit requires a positive balance between the
uids that a patientreceives and the
uids that he loses. This balance is calculated by subtracting thelosses from the inputs. The sources of
uids are intravenous infusions, oral
uid intake,and water produced by metabolism. Losses are via urine and stool output (which canbe easily measured) and so-called \insensible losses" that occur through breathingand sweating. There is a minimal urine
ow that is required to clear metabolic wasteproducts from the body. There is also a minimal amount that will be lost via theinsensible route. In order to have a positive balance, the intake must exceed thisamount.IV and oral intake can be accurately monitored, and the metabolic sources esti-mated. Similarly, the urine output can be measured, while insensible losses must beestimated. Recall that the hydration control strategy that I used in the DKA advisorcalled for the replacement of one half of the calculated
uid de�cit in the �rst eighthours and the replacement of the remaining half of the de�cit over the next sixteenhours. The adjustment of the IV infusion rate depends on a real time assessment ofthe
uid balance. This requires that the losses be subtracted from the intake. Unfor-tunately, urine output is bu�ered in the body via the bladder. This introduces someproblems into the continuous assessment of the
uid status.Over the course of the project, I tried numerous techniques to handle this di�culty.I describe them below:Calculating Flow RateThe simplest method is to calculate the
ow rate based on the amount of urineproduced and the time since that last voiding. This is computationally simple andis based on the assumption that urine production was constant during the intervalbetween voidings. The problem is that each trip to the bathroom does not necessarilycompletely empty the bladder. Particularly when there was not much time between

74 CHAPTER 6. KETOACIDOSIS ADVISORvoidings, it was possible to get short stretches with greatly di�erent
ow rates. Thiscan be seen on the \Urine Flow, straight" line of the graph in �gure 6.3.I initially addressed this particular problem by consolidating all urine output thatoccured within a period of 60 minutes into a single point and using that as the urineoutput point. The e�ect was never to calculate a rate over a period of time that wasless than 60 minutes. This averages out the small variations and reduces the sizeof the
ow rate. This can be seen on the \Urine Flow, lagged" line of the graph in�gure 6.3. The lag solution combines the results from 12:00 and 12:45 into a singlevalue at time 12:45.Previous Eight Hours|Shift AlignedUnfortunately, the solution outlined above was not su�ciently robust for my needs.The second solution that I attempted was to observe the previous eight-hour shift anduse that data. This method had the appeal that it closely followed the availability ofdata to the clinician, since
uid balance was generally tabulated only at the end ofan eight-hour nursing shift.Since shift balance data were already being calculated, it was easy to transformthe balance from the previous shift into an interval for use in decision making inthe following interval. The disadvantage of this method was that it did not providecurrent information. All of the balance calculations were being made eight hours afterthe fact. In other words, the e�ect of urine
ow was not taken into account until oneshift later. This can be seen on the line \Urine Flow, 8hr Avg" in �gure 6.3.Previous Eight Hours|DynamicTo maintain the advantage of a larger averaging period while still remaining responsiveto acute changes in the urine
ow rate, I �nally shifted to an eight-hour movingaverage. Aside from special provisions for the beginning of the hospitalization periodwhen a full eight hours of data are not available, this was quite easy to implement.All that was required was that the urine output be available (as part of an oraclevariable) for the eight hours before the output was measured. At any point in time,then, the values of all of the urine output in the time window were available foraveraging. This is illustrated by the \Urine Flow, 8hr Back Avg" line of the graphin �gure 6.3. Note that the lag solution has fewer distinct values, because the lagsolutions' intervals are bounded by the individual data values. The averaging methodalso adds an eight-hour event horizon which can fall between existing data points andintroduce more time periods. The magnitude of the averaged values shows moreconsistency, as one would expect with averaging. The averaging solution had moreintervals (as expected), but the magnitude of the change between adjacent values wasmuch smaller, producing smoother
uid rate recommendations. The size of the urine
ow estimates are also higher in the crucial early phase of the treatment, when most

6.6. SPECIAL MODULE SCHEMATA 75
 11/9/87 :7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

 URINE-OUT: 0 300 300 300 1800 600

 Urine Flow, straight: 327 m←90 ml/hr 400 ←655 ml/hr 240 ml/hr 167 ml←

 Urine Flow, lagged: 327 m←147 ml/hr 655 ml/hr 240 ml/hr 167 ml←

 Urine Flow, 8hr Avg: ?? ml←327 ml/hr 141 ←180 ml/hr ←←338 m←300 ml/hr 375 ml←

Urine Flow, 8hr Back Avg: 690 m←363 ml/hr 438 ml/hr 367 ←307 ml/hr 75←200 ml/hr 125 ml←

Urine Flow Example GraphFigure 6.3: Various Urine Flow Measuresof the osmotic diuresis occurs. This leads to higher initial
uid rates, which is thebehavior we desire.The code for this module is quite easy to program, as shown in �gure 6.4.6.6 Special Module SchemataThe implementation of the Ketoacidosis Advisor showed the need for a number ofother general-purpose modules. Although developed in response to speci�c reasoninggoals in the dka domain, they are su�ciently generic to be useful in a wider rangeof applications.I implemented special modules to handle the following tasks:1. Establishment of cyclic time patterns. The standard insulin dosage patternscall for injections at various times of the day, typically morning, evening andbedtime. One speci�c time would be too in
exible for a real world setting, so aperiod of time each day needs to be designated for each of these dosage times.The dosage rules used by tcs will recommend the baseline insulin dosage forpatients who are well enough to be handled by SQ injections. If the dose is notgiven within its \dosage window," then it is deferred until the next day, and aninterim maintenance strategy takes over.In the Ketoacidosis Advisor, I divided the timeline into a daily cycle with seg-ments which include morning, evening and bedtime. I generalized the moduleimplementing this division to produce a macro which takes a description of thecycle and a control variable that determines how far into the future to projectthe cycles. The time line is then automatically segmented, with the projec-tion into the future controlled by the separate tcs variable. This is the sametechnique I used to run the pharmacokinetic model in chapter 3.2. Periodic output summaries. At the end of each eight-hour shift, the nursesprepare a summary of the
uid input and output for each patient. This is agenerator-type function which requires a di�erent type of period timer. Again,

76 CHAPTER 6. KETOACIDOSIS ADVISOR
(defmodvar urine-out :point)(defmodvar 8hr-out-fut :interval)(defmodvar 8hr-out-back-av :interval);; Make urine output available for reasoning for the eight hours;; before the value was measured.(deffuture 8hr-out-fut urine-out 8hr-out-fut :full-future t:decay-time #.(* 8 60));; Calculates the rate component of each value by dividing the value by the amount;; of time the value was observable. This means that urine output within eight hours of;; the start of treatment contributes more to the rate. This is needed so that the;; integral of the rate from the start of treatment until any given input point equals;; the sum of the urine output recorded thus far.(defun adjust-for-time (pv time)(let ((diff (tcs:time-sub (tcs:time-part pv) time)))(cond ((<= diff 0) 0)((< diff #.(* 8 60)) (/ (tcs:value-part pv) diff))(t (/ (tcs:value-part pv) #.(* 8 60))))))(defmodule 8hr-out-back-av (8hr-out-fut starting-time)(8hr-out-back-av)() ; No internal process state. The oracle variable is; handled separately by the module 8hr-out-fut.; This separates the temporal component in one module; and allows a simpler implementation in this module.(cond ((unknown starting-time) (setq 8hr-out-back-av :unknown)) ; No session yet.((tcs:time< begin time starting-time) ; No calculation before session starts.(setq 8hr-out-back-av :unknownend time (tcs:time-min starting-time end time)))((tcs:time>= end time (+ #.(* 8 60) starting-time))(setq 8hr-out-back-av(/ (loop for pv in 8hr-out-fut sum (tcs:value-part pv))#.(* 8 60))));; The following code adjusts the values so that the amounts are scaled for;; the time to start. It should integrate to the same value as the sum of;; the urine output data.(t (setq 8hr-out-back-av(loop for pv in 8hr-out-futsum (adjust-for-time pv starting-time))))))Figure 6.4: Eight-Hour Average Urine Flow Code

6.7. SUMMARY 77I developed a general module which can generate period timing information totrigger the collection and aggregation of data.3. Reminders. Since some actions, such as changing the intravenous
uid bottles,do not happen at set times, but rather in response to need (i.e., when the bottleis empty), reminders of imminent chores can be helpful. Determination of theemptying time of bottles is an example of the more general phenomenon of theprojection of the time a process will take to complete. This generalization canbe used in any such circumstances. A related task is calculating when a patient's
uid de�cit will be eliminated. This triggers a change in the
uid managementstrategy.4. Coordination between advice and actual treatment. The ability to separate thegeneration of advice from the monitoring of its execution introduces a problemdecomposition that simpli�es the design of a reasoning program. A generalmechanism for accomplishing this is to use the agenda to keep track of pendingadvice. The agenda can hold actions that should be performed immediately (likegiving glucose supplements for hypoglycemia) or they can be linked to externaltriggering events (such as intravenous bottle emptying). A short discussion ofthis is published in [72].The routines I have developed to support the programming of the KetoacidosisAdvisor provide tools that can be reused in other projects. Some of the tools aresu�ciently general that I will include them in future releases of the tcs program.6.7 SummaryIn the implementation of the Ketoacidosis Advisor, the tcs methodology and toolsproved adequate to handle all of the domain-speci�c reasoning. The existence of theautomatic updating made the solution of many of the problems simpler, since signi�-cant measurements (e.g., urine
ow) were often available only after a substantial delay.This required a recalculation and reassessment of the situation. The variables thatwere a�ected were automatically determined by the tcs system, which also scheduledthe execution intervals for the process instances needed to do the recalculation. Thatalone provided a signi�cant savings in development time.

78 CHAPTER 6. KETOACIDOSIS ADVISOR

Chapter 7Formal Evaluation of theKetoacidosis AdvisorIn a formal evaluation, the decisions made by the Ketoacidosis Advisor were indis-tiguishable in quality from the clinical decisions made by the residents and internstreating the patients. There is evidence that the computer-generated advice was bet-ter, although the advantage was not su�ciently high to reach the .05 level in all ofthe statistical tests I applied to the data.The Advisor's performance was evaluated by experienced physicians specializing innephrology. The actual clinical treatment was given by the house sta� at the Tufts|New England Medical Center. The house sta� is made up of residents (physicians inthe �rst three years after medical school).7.1 Evaluation DesignAn evaluation of an expert advice-giving system could take one of several forms. Theform is in
uenced by the questions one wishes to have answered, which are in turndictated by the purpose of conducting the evaluation. An evaluation designed tomeasure the overall performance of a system is not necessarily suited to identifyingspeci�c problems. An evaluation that concentrates on the rules which result in speci�crecommendations can lead to di�culty in forming a global view of the performancefor comparison to actual clinical practice. Finally, one may wish to elucidate a \goldstandard" for comparison with both advice and actual treatment, as well as for aguide for implementation of the reasoning.The evaluation I report here is of the �rst type mentioned above. I present acomposite assessment of the performance of the Ketoacidosis Advisor as an integratedunit. The goal of the experiment is to demonstrate that human-level performance canbe achieved by an expert system in a domain in which the data are changing rapidly.Unlike a detailed evaluation of parts of the advice, such a global assessment is notdirectly useful in re�ning the medical content of the rules. (It is indirectly useful,79

80 CHAPTER 7. EVALUATION OF THE ADVISORsince attention can be focused on areas where the composite advice was judged to beobjectively poor.)I did not evaluate the timing of the advice because of the fear of introducing biasin favor of a dedicated system as well as because of the limited resources that wereavailable for evaluating the system's performance. I address this concern below in thediscussion of the choice of decision points.The formal evaluation was constrained by the amount of time that the expertpanel was able to dedicate to the evaluation process. The evaluation needed to becompleted in approximately one hour by each panel member.A combination of time and personnel constraints made the development of a goldstandard impractical. First, time would need to be found to reach a consensus. AsI discuss at greater length below, there is no natural consensus on the evaluation ofparticular decisions. This lack of consensus is an inherent property of the domainof dka treatment. Furthermore, to avoid biasing the evaluation process, separategroups would be needed to create the gold standard and to assess the performanceof the Advisor on the case. This would have required more physicians than wereavailable to serve on the expert panel.7.2 MethodologyAs I noted in the previous chapter, I selected the four cases for the evaluation phaseof the project at random. To avoid any in
uence on the design and implementationof the Ketoacidosis Advisor, I �rst froze the program design, then examined andabstracted the cases in the evaluation set and presented them to a panel of experts.7.2.1 Panel of ExpertsI presented the set of cases chosen for the evaluation to a panel of �ve attendingphysicians and �ve fellows in the Division of Nephrology. Although two medicalstudents also �lled out evaluation forms, the statistical tests and the analysis belowuse only evaluation forms provided by the attending physicians and the fellows. Thislimits the panel to physicians recognized as experienced in the �eld of nephrology.1None of the physicians on the expert panel was involved in the design or trainingof the Ketoacidosis Advisor. They had not previously seen the cases used for theevaluation.I chose a panel of nephrologists for two reasons. First, since DKA is a disturbanceof acid-base physiology, nephrology is one of the two relevant specialties. Endocri-nologists, experts in the other relevant specialty, served as a backup discussion group1Fellows are physicians who have completed their initial training (three years beyond the M.D.degree) and are beginning their specialty training, which typically lasts two years. Attending physi-cians are certi�ed specialists. In a teaching hospital, the attendings are responsible for training thefellows.

7.2. METHODOLOGY 81to perform a less formal analysis of the program's output. The other reason for eval-uation by nephrologists is that the domain expert who aided me in the design of theprogram was a nephrologist by training. This should be a more realistic evaluationof the e�ectiveness of the reasoning captured in the expert system, since the domainexpert and the expert panel should have roughly similar approaches to the problem.Using a panel from another specialty, although interesting as an evaluation from themedical perspective, would have been less useful from the point of view of assessingthe ability of this technique to capture a particular type of expertise. Thus, thespecialty of the source of the program's expertise is the same as the specialty of theevaluation panel.7.2.2 Format of the QuestionaireI designed a questionaire to present the temporal course of a patient who was admittedto the hospital for treatment of diabetic ketoacidosis. I coded each case by handinto a machine-readable form. The evaluation sheets were generated automaticallyfrom information in machine readable form. This included a textual overview whichprovides background for the evaluation panel, but which was not considered by theKetoacidosis Advisor.7.2.3 Choice of Decision PointsI used a mechanical procedure to choose the decision points to avoid bias introducedby the researchers. A decision point was deemed to occur whenever there was asigni�cant change in the actual treatment. A signi�cant change was:� any change in the composition of the intravenous
uid (including changes tosupplements).� a change in the
uid infusion rate greater than 10%� a change in the form of insulin treatment (infusion or subcutaneous injection)� a change in the rate of insulin infusion greater than 10%� the administration of insulin by subcutaneous injection� the administration of an intravenous glucose bolus.Each of the four evaluation cases was searched from the beginning of the record untileither twelve decision points were found, the case was three days old, or the patientwas discharged from the hospital.2 The cases used in the evaluation varied in length2One patient was sent home overnight and returned the next morning. This was treated as asingle admission.

82 CHAPTER 7. EVALUATION OF THE ADVISORfrom 22 to 72 hours. The number of decision points varied from 9 to 12 per case. Atotal of 42 points were available for evaluation by each panel member.I chose to limit the decision points to those times when a change in the actualtherapy took place because that gave reasonable assurance that the clinical sta� hadexamined the patient and any relevant data that had arrived up to that time. Inparticular, I did not feel that a fair evaluation of the content of the decision ruleswould have been possible if treatment changes that would have been initiated bythe Ketoacidosis Advisor itself were chosen as decision points. Since the reactiontime of the Advisor would never be slower than the clinical sta�, and would mostlikely be faster, this would involve comparing the Advisor's recommendation usingthe latest available information with the old decision made by the clinical sta�, basedon information that was no longer current. I feel that this would have biased theevaluation unfairly in favor of the performance of the expert system.However, this consideration made it impossible to assess the timeliness of theprogram's advice or to assess its potential to respond to changing conditions morerapidly than the human decision-makers.7.2.4 Method of EvaluationEach case was presented to the physicians in a summary form. Each decision pointwas on a separate page of the evaluation form. For each decision point, the case up tothe time of that decision was presented to the panel of experts. Each case had betweennine and twelve evaluation points. The cases were printed on forms which providedan initial narrative derived from the emergency room admission notes and the initialphysical examination. Other information relating to the results of laboratory tests,vital signs and information about the treatment given up to the time of the decisionwas provided. At each decision point, two treatment plans for the next action werepresented. One plan was generated by the Ketoacidosis Advisor and the other was thetreatment actually given to the patient. Treatment plans were listed in random orderand their source was not identi�ed. As a safeguard against the order of presentationa�ecting the evalation, I prepared two sets of forms, identical except for the order ofthe treatments. Roughly equal numbers of each set of forms were used. Figure 7.1shows the layout of an evaluation form. All of the information from the beginning ofthe case was reprinted in chronological order on each page of the form with the newlyavailable information highlighted.The panel assembled in a single room and worked through the evaluation formswithout consulting one another. Dr. Meyer and I were present to guard against theevaluators' looking ahead in the record to see either what was actually done in thecase (breaking the randomization), or seeing data that were only available in thefuture (acquiring information that would not be physically possible in a real setting).The panel used two methods to evaluate the therapy suggestions. First, each of thetwo treatments was rated on a �ve-category scale: dangerous, poor, acceptable, good

7.2. METHODOLOGY 83
Case description. This is a narrative summary of the presenting
illness, and the initial summary derived from the patient record. It sets
the context and provides the rater with a concrete picture of the patient.
Includes history information that is not captured elsewhere.

Sample Evaluation Case

History of Present Illness
Previous Medical History

Normal Insulin Dose

First Treatment Option

Second Treatment Option

E G A P D Better

No Preference

Much
Better

Previous Actual TreatmentBlood GasVital SignsTime Laboratory Tests Time Urine

Figure 7.1: Sample of Evaluation Questionaireor excellent. This provided an absolute measure of the quality of the advice. I refer tothis below as the �ve-category test. The second measure recorded the relative qualityof the two suggestions. The evaluator could express a preference for one treatmentover another even if both fell into the same qualitative category. The scale allowedthe rater to choose between no preference, one treatment was better or one treatmentwas much better. I call this the preference test.For subsequent data analysis I introduced a two-category scale, derived from the�ve categories of the evaluation instrument. Dangerous and poor were combined intoa new category called \Bad," and acceptable, good and excellent were combined intoa new category called \OK." I call this the two-category test in the tables below.My hypothesis before the evaluation was carried out was that the preference scalewould be more sensitive to subtle di�erences in the treatment, since two treatmentscould fall within one of the absolute categories, but still not be considered equallygood. The ability to express a relative preference allows a �ner comparison thanthe rankings from the �ve-category scale. A sample evaluation question is shown in�gure 7.2.After collecting the data I discovered that not enough information was provided attwo of the forty-two evaluation points. Laboratory test results which were available tothe clinic sta� when the decisions were made were not presented to the panel or madeavailable to the program. Since the decisions involved the administration of insulin

84 CHAPTER 7. EVALUATION OF THE ADVISOR
NS with 30mEq Kcl/l at 200 ml/hr
No IV insulin drip
5ml Kphos

NS at 300ml/hr
No IV insulin drip

Excellent Good Acceptable Poor Dangerous Better Much Better

[10] At 6/25 2:30a, one of the following options was taken. Please rate them:

No Preference

TreatmentC h o i c e

1

2

Figure 7.2: Typical Treatment Evaluation Questionand the laboratory tests were the �rst measures of serum glucose concentration, theomission of the test rendered those evaluation points invalid. I excluded the a�ectedpoints from the data analysis. This reduced the number of available decision pointsby 4.5%.7.3 Unanswered QuestionsBecause the amount of expert panel time was strictly limited, the choice of questionsto evaluate was circumscribed. This evaluation assesses both the absolute quality ofthe advice generated by the Ketoacidosis Advisor and its relative merit comparedwith actual hospital treatment. I discuss other questions that were not addressed bythe formal evaluation below.7.3.1 Detailed Evaluation of AdviceThe evaluation method indicates the performance of the Advisor program in the ag-gregate. Comments from the evaluators indicated that at times they were in generalagreement with some (real or advisor) treatment plan but had reservations aboutone particular part of the recommendation. The study design I used did not allow adetailed breakdown of the areas of agreement or disagreement with particular treat-ment options. An alternative would have been to separate the evaluation into distinctcomponents such as
uid therapy, insulin therapy and potassium therapy. While pro-viding additional information about the detailed performance, such a study designwould create problems in assessing the overall performance of the system. How wouldone combine an excellent
uid recommendation with a dangerous potassium plan? Ichose to have the evaluators integrate the di�erent treatment components. One canmeasure overall system performance without having to create an ad hoc rating schemeto combine the individual parts.As a prelude to further development of the expert system, though, such a de-

7.3. UNANSWERED QUESTIONS 85tailed evaluation would be useful. System devlopment requires that the sources ofcontroversy be identi�ed and de�ciencies in parts of the decision-making process behighlighted. This type of evaluation should be carried out before further developmentof the system is done.7.3.2 What Would be OptimalA fundamental weakness of this approach to the evaluation is that there is no indi-cation of what an optimal decision should be in any particular case. In e�ect, theevaluators were constrained in the treatments they could vote for. Again, I chose thisformat because I was interested in comparing the performance of the KetoacidosisAdvisor to human clinical practice.An alternate approach might have been to present the cases to a di�erent panelof experts, who would reach a consensus decision on the appropriate treatment. Thiswould provide three treatment options in place of the two that were o�ered to theevaluators in this study. I was unable to do this because of a shortage of experts tocreate all of the panels that would have been necessary.Another method of getting information about a better treatment plan would be tohave the evaluators also indicate what they would do in the situation being evaluated.This would then create the di�culty of merging con
icting treatment plans from eachof the evaluators in order to determine the optimal treatment. Below I discuss thelack of agreement in individual recommendations. Since evaluations of particulartreatment options could cover the full scale of the evaluation range, it would not bereasonable to assume that a consensus could be constructed from individual noteswritten by the evaluators. A conference would be needed to resolve the di�erences inthe approaches of the individual evaluators.7.3.3 Advantage of Faster InterventionIn order to avoid a temporal bias in favor of the Ketoacidosis Advisor, I selectedall of the decision points at times that the actual treatment changed. This limitedthe choice of decision points, excluding times when only the Advisor recommendeda change in treatment. Including the times when the Ketoacidosis Advisor wouldhave changed treatment but the real treatment was unchanged, would have roughlydoubled the number of decision points over the time frame used for the evaluation ofthe cases used in this evaluation.To a certain extent, the decision not to look at the times when the KetoacidosisAdvisor would have recommended change when the real treatment remained the samere
ects an assumption about the outcome of that examination. I assume that theadvice given at the selected evaluation points is an accurate sample of the qualityof the advice generated by the system. Furthermore, I assume (with much greatercon�dence) that the Ketoacidosis Advisor would react more quickly to data, since it

86 CHAPTER 7. EVALUATION OF THE ADVISORTable 7.1: Frequency Test Results for Rater Agreement.Real AdviceAttending Fellow Both Attending Fellow BothDangerous 11% 2% 6% 4% 4% 4%Poor 36% 37% 36% 29% 26% 27%Acceptable 28% 26% 27% 38% 32% 35%Good 21% 31% 26% 14% 34% 25%Excellent 4% 4% 4% 14% 4% 9%N 120 136 256 120 136 256Frequency of score by rater group, for both real and advice. Percentagesmay not sum to 100 because of rounding. The Pearson �2 was used totest the distributions for agreement. For the real treatment p = 0.037(�2 = 10.187, DF = 4) and for the advice p = 0.001 (�2 = 17.724, DF= 4). In both cases, the di�erences are signi�cant.will immediately process all data presented to it.As a result of this inability to evaluate timing, the evaluation carried out was acomparison of the advice from the system serving in a consultant role. The usefulnessof the expert system advice in a monitoring role remains somewhat speculative, al-though there is no reason to believe that the performance would be any worse. Giventhe greater demands on the expert panel, a full evaluation of the e�ects of timingshould wait until a system is designed that can be shown to be superior in the otherevaluation. The next implementation should be tested in this manner.7.4 Results of the EvaluationThe overall evaluation is that the Ketoacidosis Advisor performs no worse than theclinical sta� that treated the patients. There is evidence that the computer-generatedadvice was better, although the advantage was not su�ciently high to reach the .05level in the statistical tests that I applied to the data.The e�ects of the evaluators' levels of training can be clearly demonstrated. Thegrades given to the program by the attending physicians were signi�cantly di�erentthan the grades given by the fellows. (See table 7.1). The computer advice wasviewed more favorably by the attending physicians. Since all cases except number 16had the same number of fellows and attendings evaluating them, the di�erence is notlikely to be the result of a skewed data mix.

7.4. RESULTS OF THE EVALUATION 87

Real Neither Advice
0

50

100

150

Preference

F
re

q
u

e
n

c
y

D P A G E
0

20

40

60

80

100

Real
Advice

Score

F
re

q
u

e
n

c
y

Figure 7.3: Preference and Evaluation Scores of All CasesThe preference graph shows the number of times real or advice was pre-ferred. The score graph shows the number of times each score was givento the real or advisor treatment plans. Score key: D = Dangerous,P = Poor, A = Acceptable, G = Good and E = Excellent. Data is ag-gregated from all raters (N = 256).7.4.1 Statistical TestsI performed statistical tests on the data gathered from the evaluation forms. Becauseall of the data were paired and the evaluation categories were totally ordered, I chosethe sign test for the analysis. The sign test evaluates the sign of the di�erence ofpaired observations. If the populations from which the samples are drawn are thesame, then one would expect the di�erence in the signs of the evaluation to be zero.This hypothesis is tested using a binomial approximation. I carried out calculationsusing the SYSTAT 5.0 program on an Apple Macintosh. The results are presentedbelow:Table 7.2 summarizes the results of the sign test applied to the aggregate datafrom the evaluation. The three tables report the results of the analysis using the full�ve-category range of the test instrument, using the two-category collapsed scale, anda direct comparison of the preference results. Of these choices, the most appropriateis the preference results, because this question is posed in the same terms that thesign test evaluates: Is option A better or worse than option B? The results suggesta di�erence between the real and the advice. Signi�cance results are consistent withresults of the McNemar Symmetry �2 test.3This claim is, however, rendered suspect, because not all evaluators looked at every3The �ve-category evaluation uses a �ve-by-�ve table which had too many sparse cells to yieldaccurate results. For the two-category evaluation p = 0.011 (�2 = 6.519, DF = 2) and for thepreference evaluation p = 0.040 (�2 = 4.206, DF = 2).

88 CHAPTER 7. EVALUATION OF THE ADVISORTable 7.2: Sign Test Results5 Category 2 Category PreferencesReal Better 84 50 92Advice Better 104 79 122Ties 68 127 42p = 0.047 p = 0.014 p = 0.047Each row lists the number of times the particular treatment plan wasjudged better in a paired comparison. P values are from the two-sidedprobability of the sign test. Data aggregated from all raters (N = 256).case. Because my hypothesis of great inter-rater variability was con�rmed by thedata, this makes the combination of di�erent cases questionable. I used two separatemethods to correct for this bias. One correction involves examining only the resultsof the raters who evaluated every case. The second method involves aggregatingevaluations for each decision point so that each decision point is weighted equally.If the analysis is restricted to those three raters who examined every case, nostatistically signi�cant di�erence is apparent. With 120 data points, a di�erence ofopinion of 75{45 (5{3 or 62.5%{37.5%) would be signi�cant at the p = 0.05 level.This level of di�erence was not achieved. Applying the same three tests, there wasa di�erence of 5 to 6 choices, with the �ve-category and preference tests in favor ofthe real therapy and the two-category test in favor of the Advisor. The case with thefewest evaluators (case 15) was coincidentally the case in which the Advisor had theworst relative performance. This taints the aggregate results from table 7.2 becauseevaluations from the Advisor's worst case are fewer than evaluations from the cases inwhich it performed better. On the other hand, the absolute performance on case 15was the best.An aggregate evaluation measure at each decision point can be constructed bysubtracting the proportion of evaluators who preferred the real therapy from the pro-portion who preferred the advice. This procedure will yield a value in the range�1 to 1 representing the net preference fraction. A score of 1 would indicate unani-mous preference for the advice, �1 unanimous preference for the real treatment, and0 no net preference (the same number of votes for each). The results of this measureare shown in �gure 7.4. 19 decisions favored advice, 13 favored the real action and8 were ties. No signi�cance was demonstrated either by the Wilcoxon Signed Rankstest or the paired samples t test4.4The tests were applied to the underlying proportions before the subtraction used in the aggregatemeasure. Each value ranged from 0 to 1. The Wilcoxon Signed Ranks test showed p = 0.441(Z = �0:770). The paired samples t test had p = 0.423 (t = 0.810, DF = 39, mean di�erence =0.064, standard deviation of di�erence = 0.501)

7.4. RESULTS OF THE EVALUATION 89

0 2 4 6 8 10 12
-1

0

1
Case 11

Decision Point

P
re

fe
re

n
c

e

F
ra

c
ti

o
n

0 2 4 6 8
-1

0

1
Case 13

Decision Point
P

re
fe

re
n

c
e

F

ra
c

ti
o

n

0 2 4 6 8 10 12
-1

0

1
Case 15

Decision Point

P
re

fe
re

n
c

e

F
ra

c
ti

o
n

0 2 4 6 8 10
-1

0

1
Case 16

Decision Point

P
re

fe
re

n
c

e

F
ra

c
ti

o
n

Figure 7.4: Net Preference Fraction by CasePreference fraction is calculated by subtracting the proportion of evalu-ators who preferred the real therapy from the proportion who preferredthe advice. Values range from �1 to 1: 1 indicates unanimous prefer-ence for the advice, �1 unanimous preference for the real treatment,and 0 no net preference. Each decision point is calculated and plottedseparately.

90 CHAPTER 7. EVALUATION OF THE ADVISOR

Decision Point

Advice

0 2 4 6 8 10 12
-1

0

1
Case 11

M
e

a
n

S

c
o

re

Real

Advice

0 2 4 6 8 10 12
-1

0

1
Case 15

Decision Point

M
e

a
n

S

c
o

re Real
Advice

0 2 4 6 8 10
-1

0

1
Case 16

Decision Point

M
e

a
n

S

c
o

re
Real

Decision Point

Case 13

Advice

0 2 4 6 8
-1

0

1

M
e

a
n

S

c
o

re

Real

Figure 7.5: Two Category Evaluation by CaseScore calculated by assigning the value 1 to any evaluations in the topthree (\OK") categories and �1 to any evaluations in the bottom two(\Bad") categories. The mean score is the sum of scores divided bythe number of raters for each decision point. It indicates the relativeproportion of OK and Bad evaluations: Unanimitiy results in a score of1 (or �1) and equal numbers of OK and Bad evaluations gives a scoreof zero. Real score is plotted in black; advice is shaded.In light of these results it is clear that there was no discernable di�erence inthe quality of the decisions evaluated by the panel. The raw data do indicate thatparticular decisions varied widely in their acceptance, both in absolute and relativeterms. In the next section I examine the di�erences in depth.7.4.2 Breakdown by CasesThe cases showed di�ering success. The simplest summary involves aggregating thetwo-category evaluations. I assigned the value 1 to any scores in the top three (\OK")categories and�1 to any scores in the bottom two (\Bad") categories. The mean scorefor each decision point is shown in �gure 7.5. The mean score indicates the relativeproportion of OK and Bad evaluations. A score of zero indicates equal numbers of

7.4. RESULTS OF THE EVALUATION 91OK and Bad evaluations. Case 11 had the best Advisor performance and case 15had the worst. The other two cases were roughly similar in the aggregate, althougha di�erence in opinion between the attendings and the fellows was evident. Thefellows scored case 13 higher than attendings, while attendings scored both case 11and case 16 higher. Scores on case 15 showed no major di�erence.Closer examination of the results in �gure 7.5 reveals that the advice generallyremains in the upper half of the rating space. This means that the advice was rarelyjudged to be poor or dangerous by a majority of the evaluators. In contrast to thereal treatment, there was never a unanimous evaluation of the advice as being bad.(Compare with the real results in case 13, decision 6 and case 16, decision 5.) In thecase with the worst relative performance (case 15), the lowest scores were 0, meaningan even split between the OK and bad evaluations.In the following sections, I examine cases where the recommendations were markedlyinferior to the actual treatment. I will give a short summary of the issue in the deci-sion. If the reader wishes more detail, the case data are included in appendix A, andthe evaluation details in appendix B.For each case, the domain expert and I examined those decisions where the Advi-sor's performance was judged signi�cantly worse than the actual treatment. In thisanalysis we endeavored to identify likely elements of the decision that were responsiblefor the poor performance. The explanation of the poor scores comes from our post hocanalysis and does not have input from the evaluation panel. Because the evaluatorswere identi�ed only by level of training, the study design did not allow for followupdiscussions about individual evaluations. We also did not have the evaluator time fora general discussion of either the cases or particular decisions with the nephrologygroup.Case 11The results for case 11 are shown in �gure 7.6. The graph shows the average weight ofthe absolute scale. I calculated this by assigning dangerous a value of 1, poor a valueof 2, : : : , and excellent a value of 5. I then added the values together and dividedby the number of evaluations to provide a mean. The bars show the value of plus orminus one standard deviation. From the graph it is apparent that a large amountof variability in the evaluation was present. The transformation of an ordinal into acardinal scale is not without its pitfalls. The di�erence between excellent and good isnot necessarily the same as the di�erence between poor and dangerous. Nevertheless,the use of a scale similar to scholastic grade point averages has some bene�ts. Themajor advantage is that it allows the standard deviation to be used to quantify thedisagreement about the objective rankings. As �gure 7.6 shows, there is a great dealof variability in opinion.The Ketoacidosis Advisor had the best performance on case 11, with a signi�cantlybetter performance as evaluated by eight of the raters|four attendings and fourfellows. (See table 7.3).

92 CHAPTER 7. EVALUATION OF THE ADVISOR
Table 7.3: Case 11 Sign Test Results5 Category 2 Category PreferencesReal Better 26 16 29Advice Better 47 36 54Ties 21 42 11p = 0.008 p = 0.008 p = 0.008Each row lists the number of times the particular treatment plan wasjudged better in a paired comparison. P values are from the two-sidedprobability of the sign test. Data aggregated from all raters (N = 94).

S
c

o
re

±
1

S
D

0 2 4 6 8 10 12
1.0

2.0

3.0

4.0

5.0

Decision Point

Real
Advice

Figure 7.6: Case 11 Average ScoresScores are calculated by assigning numerical values to the categoriesanalagous to grade point averages. The following assignments wereused: Dangerous = 1, Poor = 2, Acceptable = 3, Good = 4, andExcellent = 5. The bars show � 1 standard deviation. The advicegraph has been o�set horizontally to increase legibility.

7.4. RESULTS OF THE EVALUATION 93Decision 9. The reason for this low evaluation was not completely clear. The chiefsuspects are the decision to recommend stopping the IV
uid infusion, and thedecision not to recommend a subcutaneous injection. The former relies on anassessment in the absence of strong evidence one way or the other about thepatient's
uid status. Whether the patient is capable of eating or not is di�cultto assess from the records. The program was working on the assumption thatthe patient was able to eat, and that
uid balance was therefore not a majorproblem.The issue of insulin injections is the other likely reason for the relatively poorAdvisor performance on this question. The actual treatment was to give thepatient his normal morning dose of 50U Lente insulin at 11:30am. This isoutside the time window that the Advisor uses for giving a morning dose ofinsulin. Since it is too late to give this morning's insulin, the Advisor wouldwant to continue a low level of insulin infusion and wait until the next morning tostart the patient on his regular course. In fact, the Advisor had recommendedgiving the 50U Lente insulin from 7am until 9:45am, showing a more timelyrecommendation.Decision 11. The Advisor recommends potassium supplements; the real treatmentdid not. This decisions runs into the domain controversy surrounding the ad-ministration of potassium. The Advisor follows a more aggressive rule than thepanel seemed comfortable with. The problem could also be one of degree, in-
uenced by the exact point where the threshold is set. The Advisor is followingits late-stage, less aggressive rule in making this particular decision, but it isstill perhaps more aggressive than the panel would like.Case 13Case 13 received the best evaluation from the fellows and the worst absolute ratingfrom the attendings. In terms of preferences, this case had the best results amongthe fellows and was in third place among the attendings. The case was evaluated byeight raters|four attendings and four fellows. (See table 7.4).Decision 2. The most likely point of dispute was the inclusion of bicarbonate sup-plements in the advice and not in the real therapy. The use of bicarbonate intreating dka is also controversial. The rationale in its favor is that patientswith very low serum bicarbonate are maintaining their pH by hyperventilation,thus reducing the amount of carbon dioxide in the blood. If they tire, then theymay not be able to compensate anymore, with a resultant quick fall in the bloodpH. The argument against giving the bicarbonate is that it is unnecessary andthat too much could could cause harm by changing the acid-base balance tooquickly.5 This decision was particularly di�cult to analyze because the expert5Bicarbonate needs time to di�use across the blood-brain barrier.

94 CHAPTER 7. EVALUATION OF THE ADVISOR
Table 7.4: Case 13 Sign Test Results5 Category 2 Category PreferencesReal Better 21 14 23Advice Better 25 19 30Ties 18 31 11p = 0.410 p = 0.486 p = 0.410Each row lists the number of times the particular treatment plan wasjudged better in a paired comparison. P values are from the two-sidedprobability of the sign test. Data aggregated from all raters (N = 64).

S
c

o
re

±
1

S
D

0 2 4 6 8
1.0

2.0

3.0

4.0

5.0

Decision Point

Real
Advice

Figure 7.7: Case 13 Average ScoresScores are calculated by assigning numerical values to the categoriesanalagous to grade point averages. The following assignments wereused: Dangerous = 1, Poor = 2, Acceptable = 3, Good = 4, andExcellent = 5. The bars show � 1 standard deviation. The advicegraph has been o�set horizontally to increase legibility.

7.4. RESULTS OF THE EVALUATION 95Table 7.5: Case 15 Sign Test Results5 Category 2 Category PreferencesReal Better 25 12 25Advice Better 8 6 9Ties 11 26 10p = 0.010 p = 0.238 p = 0.010Each row lists the number of times the particular treatment plan wasjudged better in a paired comparison. P values are from the two-sidedprobability of the sign test. Data aggregated from all raters (N = 44).panel did not agree on the need to use bicarbonate. Some members would haveused aggressive bicarbonate therapy, while others thought it unnecessary.Decision 4. This Advisor's decision was probably faulted for a combination of apotassium recommendation and its recommendation of a higher infusion ratefor intravenous
uids. The potassium recommendation follows the aggressiverule derived from Alberti and Hockaday [1]. The
uid rule can be attributedto the de�cit-estimation problem. The Advisor does not modify the de�citestimate based on other clinical signs. Since three liters of
uid were infused,blood pressure had risen, and pulse had dropped, the patient was most likelyno longer dehydrated. The inability to recognize this change of state is an errorin the knowledge base.Decision 5. Same as above. There is also the additional di�erence that the realaction was to reduce the insulin infusion. The Advisor would wait until theserum glucose concentration dropped below 240mg/dl. The most recent labora-tory measurement before this decision returned a value of 247. It is likely thatthe threshold chosen in the Advisor's rule was too low to satisfy the evaluationpanel.Case 15In case 15, the Advisor had the worst performance relative to the actual clinicaltreatment (see table 7.5). It received the second highest absolute performance ratingfrom the fellows, and the lowest absolute rating from the attendings. Nevertheless,examination of �gure 7.5 reveals that the Advisor's performance never drops belowthe zero line|the line at which there are equal numbers of OK and Bad ratings|sothere was no consensus that the Advisor's recommendations were unacceptable, evenon its worst case. The case was evaluated by two attendings and two fellows.

96 CHAPTER 7. EVALUATION OF THE ADVISOR
S

c
o

re
±

1
S

D

0 2 4 6 8 10 12
1.0

2.0

3.0

4.0

5.0

Decision Point

Real
Advice

Figure 7.8: Case 15 Average ScoresScores are calculated by assigning numerical values to the categoriesanalagous to grade point averages. The following assignments wereused: Dangerous = 1, Poor = 2, Acceptable = 3, Good = 4, andExcellent = 5. The bars show � 1 standard deviation. The advicegraph has been o�set horizontally to increase legibility.

7.4. RESULTS OF THE EVALUATION 97Decision 5. The di�erence between the real treatment and the recommendationconcerns when to start adding glucose to the
uids. The Advisor waits fora serum glucose below 240mg/dl before adding supplemental glucose to the
uids. The most recent previous measurement was 261mg/dl. This is similarto decision 5 in case 13.Decision 7. The poor performance was due to a programming bug in a KetoacidosisAdvisor rule. The Advisor was trying to switch from intravenous insulin to asubcutaneous regimen. This involved continuing a low
ow (1U/hr) of insulininfusion while awaiting an appropriate opportunity to give an injection. Un-fortunately, the wean strategy was not recognized as an insulin infusion by thesection of the Advisor which recommended
uid type. The consequence wasthat the Advisor did not recommend adding glucose (D5) to the
uid infusion,even though the patient's serum glucose level was fairly low (129{195). Thiswas the result of a programming error in the rule for deciding
uid type.Decision 8. Same as above, but with even lower serum glucose. A second factorwas the inability to identify the actual strategy as weaning the patient fromintravenous insulin. The infusion rate used for weaning in this case (2U/hr) ishigher than the 1U/hr weaning rate the program recognizes. Also, the weaningcontinued after the subcutaneous insulin was given. Since this is a commonstrategy, it should have been considered by the Advisor, but it was not.Decision 9. Similar to decision 8. The Advisor did not suggest adding glucose tothe infusion
uids because it wanted to stop giving intravenous insulin and thepatient was able to eat. The panel may not have attached the same importanceto the patient being able to eat as the program did.Decision 10. The real action was to end the 2U/hr insulin drip, whereas the Advisorwanted to continue the infusion. This decision was the result of a di�erentknowledge-base error. In this case a mistake was made in the insulin strategydetermination rule. Because of this mistake, the program incorrectly thoughtthe patient was becoming much more acidotic, and therefore not stable enoughto be weaned from the insulin infusion. After discussion with Dr. Meyer, Iconcluded that the rule responsible for this decision was incorrect.Case 16Case 16 was handled well by the Advisor, but there were insu�cient evaluations toshow a statistically signi�cant di�erence. This case was rated by two attendingsand four fellows. The attendings had a much stronger preference for the computer-generated advice than the fellows in this case.Decision 7. The only signi�cant di�erence in the treatment suggestions was in in-travenous
uid therapy. The Advisor recommended stopping
uids, whereas

98 CHAPTER 7. EVALUATION OF THE ADVISOR
Table 7.6: Case 16 Sign Test Results5 Category 2 Category PreferencesReal Better 12 8 15Advice Better 24 18 29Ties 18 28 10p = 0.050 p = 0.078 p = 0.050Each row lists the number of times the particular treatment plan wasjudged better in a paired comparison. P values are from the two-sidedprobability of the sign test. Data aggregated from all raters (N = 54).

0 2 4 6 8 10
1.0

2.0

3.0

4.0

5.0

Real
Advice

Decision Point

S
c

o
re

±
1

S
D

Figure 7.9: Case 16 Average ScoresScores are calculated by assigning numerical values to the categoriesanalagous to grade point averages. The following assignments wereused: Dangerous = 1, Poor = 2, Acceptable = 3, Good = 4, andExcellent = 5. The bars show � 1 standard deviation. The advicegraph has been o�set horizontally to increase legibility.

7.4. RESULTS OF THE EVALUATION 99the clinical sta� elected to continue IV
uids at 175ml/hr. Because the patienthad a blood pressure of 142/92, had a pulse of 84, had already received almostthree liters of
uid, and was able to take
uids orally, the domain expert didnot feel the data supported a need for continued IV
uid therapy.SummaryI have discussed the decisions for which the Ketoacidosis Advisor was judged to beinferior to the actual treatment above. The problems in the advice can be summarizedin the following categories:Data Problems There are fundamental problems in assessing hydration status whenone is unable to examine the patient physically. The medical record typicallydoes not contain enough information to make that determination on the basis ofthe entries. The mental state of a patient is generally not recorded, but entersinto an assessment of whether they are dehydrated or not. Similarly, it is notalways possible to determine from the clinical records when a patient was eating(although this is somewhat easier). In the absence of de�nitive data about theseconditions, the program can run into di�culty in making these judgements.If the information were available, the knowledge base could be reprogrammedto take advantage of the input. Some of this problem is the result of testingthe system in an o�-line mode. Because there is no interaction between theclinical sta� and the Ketoacidosis Advisor, it is not possible for the computerto request the types of information that are needed for its assessment. Forexample, �nding out if the patient were eating could be trivially accomplishedby simply asking the question. This is not invasive and would not require muchthought on the part of the person interacting with the system.Other data problems, such as the problem of unrecorded urine output frompatients who are ambulatory, cannot be solved so easily. It is possible to makethe
uid decisions consider the context of the patient care, since any patientwho is well enough to be up and out of bed is not severely dehydrated. Thiscould be used as a surrogate measure which is su�ciently precise to allow oneto conclude that intravenous
uids are not needed (or are needed only undermuch di�erent circumstances) compared to a patient who is con�ned to bed.Domain Controversy As noted in the chapter describing the design of the Ketoaci-dosis Advisor, several aspects of the treatment of dka remain controversial. Inparticular, the use of bicarbonate to treat acidemia and the aggressive use ofpotassium supplements early in dka provoke di�erences of opinion. The choiceof any strategy regarding these aspects of the treatment will result in someevaluators disagreeing not only with the speci�cs of the advice, but with theentire premise underlying the advice itself. In areas of medicine where there

100 CHAPTER 7. EVALUATION OF THE ADVISORis no consensus as to the \best" treatment, this problem is inevitable. Thecontroversy is addressed by Kassirer, et al. [41, p. 137]:The use of exogenous alkali in treating diabetic ketoacidosis is contro-versial. As with most medical controversies, the issue revolves aroundan assessment of the risks and bene�ts: : : . When the acidosis is se-vere (plasma bicarbonate concentration less than 8 to 10 mEq/L),however, the bene�ts of administering su�cient alkali to partially re-pair the de�cit (i.e., raise plasma bicarbonate to approximately 12 to14 mEq/L) far outweigh the risks.Particularly in the case of potassium supplements, the nephrologists may bein
uenced by the large number of patients that they treat who have kidneydisease. Since excessive potassium is also dangerous, there is a hesitation toprescribe potassium supplements when patients present with laboratory valuesin the upper part of the normal range. Normal healthy humans can easilyhandle excess potassium by excreting the surplus in the urine. Patients withkidney failure cannot. Giving too much potassium to a patient in kidney failurecan cause major problems, while the same is not true of patients in dka. Thejusti�cation for using an aggressive treatment is that dka patients have reducedtotal body stores of potassium. The e�ect of the acidosis is to cause potassium toshift out of the cells and into the blood stream, resulting in a normal laboratorymeasurement even though the total supply of potassium in the body is reduced.As the acidosis is corrected, the potassium will return to the cells, causing adrop in the serum concentration. This migration of potassium is also aided bythe administration of insulin.Advisor De�ciencies The one program bug identi�ed as the likely cause of poorperformance was one that could be easily �xed: the failure to consider theinsulin weaning strategy (which includes intravenous insulin adminstration) asa type of intravenous insulin. This is a trivial change. The general problemof actual strategy identi�cation is a more di�cult, albeit arti�cially contrived,problem. In an actual clinical setting, the Advisor could ask for the strategy,a possibility not open to the program when working retrospectively with caserecords.Adjustment of thresholds for recommending potassium supplements falls intothe class of easily amended rules. There are currently two di�erent strategiesused for recommending potassium corresponding to the early and late phases ofdka. In the early phase, total body stores are depleted and imminent potassiumshifts into the cells are anticipated. In the late phase, the patient is more stable,so a less aggressive approach is used. In each case, the program relies upon testvalues to determine how much potassium to recommend. The threshold valuesat which the supplements should be given can be easily modi�ed. The experts at

7.5. DISCUSSION 101New England Medical Center may be more amenable to a slightly less aggressiveapproach.A more di�cult problem is posed by the choice of thresholds for glucose tests.The choice of values was in
uenced too heavily by the endpoints of ranges onthe less accurate �nger-stick assessments. The discussion with the endocrinol-ogists indicates that the �nger stick is much less trusted as an assessment tool.Since I sought to have a less complex way of combining the two test types,I opted for compatible thresholds. Since one range of the �nger stick covered240{400mg/dl, I used 240 as the boundary below which glucose would be addedto the
uid recommendation. This value is a little lower than would have beenchosen in the absence of the desire to coordinate the two measuring systems,but it is consistent with published guidelines [15, 20]. Although it would involvemore complicated programs, separate thresholds could be used, with appropri-ate safeguards to prevent \thrashing" between recommendations in the eventthat the two types of tests alternated. This type of safeguard could involve nothaving the range 240{400 change the previous
uid type therapy at all.Although there were certain decisions for which the Advisor's decisions were con-sidered to be inferior to the actual clinical practice, none of the problems can be tracedto a systematic
aw in the tcs design. Aside from programming or rule-encodingproblems, the di�culties that the Advisor encountered in the evaluation were re-lated to properties of the domain which transcend the technology used to implementthe particular expert system. In no case was the problem an inablility properly tointegrate data that arrived over the course of time.7.5 DiscussionThe overall performance of the Ketoacidosis Advisor was su�ciently good to demon-strate that practical clinical applications can be implemented in tcs. The ability togive management advice comparable to actual treatment at a major medical centershows that the system can perform credibly in a dynamic environment.7.5.1 Acceptable PerformanceThe statistical analysis does not prove that the advice given by the program is betterthan the actual clinical treatment. It does, however, give reason for con�dence thatthe performance was similar to what was actually done in the clinic. (Unfortunately,the expert panel often did not really like what was actually done. Several of theevaluatiors expressed horror at the thought that DKA patients were being cared forin the manner that the medical records indicated.) In order to make the KetoacidosisAdvisor function at the level of the review panel, a more complete knowledge basewould be needed. Alternate methods for determining hydration status, such as the

102 CHAPTER 7. EVALUATION OF THE ADVISORanalysis of blood pressure and pulse changes, would need to be added. Similarly, therewould be a need to include such common-sense rules as concluding that a patient isin fairly good condition if he can leave his bed to void. Finally, special case featuresfor handling more complicated cases involving heart and kidney failure would benecessary. Since the management of those cases relies on a careful monitoring ofthe
uid balance, the ability of a computer-based system to do precise calculationsbecomes more important.The major question that the evalution as done here could not answer was whetherthere was a signi�cant time advantage from the e�ectively instant response of theKetoacidosis Advisor to incoming data. My own observations indicate that there isoften a lag between data becoming available and the clinical response to those data.Since a dedicated monitoring system would not be distracted by other importantchores, it would react more quickly. Since the data processing time is su�cientlyrapid, the computer system would not react to new information any more slowlythan the actual clinical sta�. This part of the evaluation was not done for the reasonscited above, but one can safely assume that any e�ect from the increased speed ofthe decision-making would be an advantage for the Ketoacidosis Advisor.Since the statistical tests were close to achieving statistical signi�cance, it maybe possible to show signi�cance with a larger data set. One of the di�culties at thedesign phase was that it was not clear what the magnitude of the di�erence would be.This prevented the performance of an a priori power analysis before the evaluationwas carried out.7.5.2 Lack of Clear ConsensusOn the other hand, the lack of a clear consensus as to the appropriate treatment isdemonstrated by the number of cases with a very large spread of evaluations. Forsome questions6 the same treatment was evaluated using the full scale of the mea-surement instrument. A single treatment suggestion in a concrete situation receivedratings from excellent to dangerous! There was only one case of unanimous choiceof evaluation.7 The mean category spread for real treatment was 3.25 and for advice3.5 categories. Such controversy makes it di�cult to say anything with a high de-gree of con�dence. There is an apparent lack of an unambiguous gold standard formeasuring the treatment options. In spite of this lack of individual consensus, thereis no apparent di�erence between the quality of the treatment recommended by theAdvisor and that actually rendered in the hospital.Matching human performance ful�lls the performance goal of the KetoacidosisAdvisor experiment. The expert system was able to monitor patients successfully overa period of many hours and respond to changes in the patient state while coping with6Advisor treatment case 11, question 11 and case 16, question 4; Real treatment in case 11,questions 1, 4 and 10.7Real treatment in case 16, question 5, with six reviewers.

7.5. DISCUSSION 103treatment decisions that did not match the advice generated by the program. Theability to function in such a demanding environment is a validation of the basic designpremise of tcs. All of the necessary reasoning constructs could be implemented withinthe tcs framework. As indicated in the section on general-purpose modules designedfor the Ketacidosis Advisor, some of the techniques used in the implementation haveapplication beyond the speci�c area of expertise. These include the code used to keeptrack of the state of a changing therapy, as well as the management of the interactionbetween the time advice is generated as a result of the arrival of new data and thetime that the advice is carried out.

104 CHAPTER 7. EVALUATION OF THE ADVISOR

Chapter 8Related WorkThe discussion of related work is divided into four parts. First, I dicuss work ontemporal reasoning. This line of research focuses more on reasoning about the rela-tionships among events happening at di�erent times rather than on the process ofupdating conclusions in response to changing data. The tcs side-steps this issue byrequiring exact time points, rendering the question of the relationship between twotime points or two intervals a trivial computation. In return, tcs gives up the abilityto deal with ambiguous time information. Fortunately, in the monitoring domain,this is not a major problem.In the second section I discuss Truth Maintenance Systems, which share the tcs'semphasis on providing an e�cient updating system based on the idea of data depen-dencies. In the third section I discuss medical systems, concentrating on the Ven-tilation Manager and topaz, both patient management systems. Finally, I brie
ydiscuss blackboard architectures and real-time expert systems.
8.1 Temporal ReasoningResearch in temporal reasoning has concentrated on the development of the represen-tation of time and on reasoning about the temporal relationships among individualevents or event clusters. Work on non-monotonic logics has focused on the problem ofrevising beliefs when new data becomes available. The problem that has been largelyignored in this line of research is the problem of characterizing data that is changingover time. The nonmonotonic logics, for instance, assume that there is only one truestate of the world, but that this is revealed bit by bit, so that it becomes necessaryto retract certain conclusions about the world. While this is often true, it does notprovide support for histories. 105

106 CHAPTER 8. RELATED WORK8.1.1 Temporal Representation and RelationsMost of the AI work on temporal reasoning has fallen into two categories: represen-tations for describing temporal events, and systems for reasoning about the temporalrelations among events. Little work has been done on the interpretation of datathat change with time, or on the reasoning processes associated with this type ofinterpretation.The most extensive work on a temporal representation has been the developmentof the temporal interval algebra of Allen [3, 4, 5], along with attempts to extend itby Kandrashina [40] and Ladkin [50, 49]. These systems provide a strict de�nition oftemporal intervals and an algebra for manipulating them. This allows reasoning aboutthe relationships among distinct intervals, for example, the determination of whetherthey overlap or not. An application of this that is being pursued by Allen is the useof this algebra in planning [6]. It is interesting that there is a desire to avoid havingboth points and intervals together because that would destroy mathematical purityand introduce di�culties in interpretation. This sidesteps a major reasoning problemat the system end by requiring the user to perform the hardest part of reasoning,namely the structuring of raw sample data into abstract intervals.Other researchers have been exploring the calculation of temporal relationshipsamong data points. Kohane [44] has investigated a method of propagating infor-mation about the endpoints to restrict the relationships among events organized ona timeline. An application of linear programming to the problem of calculating thetightest bounds of a set of temporal constraints is reported by Malik and Binford [55].By allowing uncertainty in the boundaries of intervals, these systems have a less re-strictive temporal representation than the tcs. The restriction to speci�c intervalsin tcs is dictated by computational convenience, since the speci�c intervals eliminatethe potential for combinatorial explosion. Unfortunately, these techniques cannotguarantee unique endpoints, so they could not be used to add fuzzy endpoints totcs.Mittal [59] has examined the relationship of information in medical records inparticular to certain key events, such as admission. He uses a disjoint decompositionof the time-line to produce e�cient reasoning about the course of a patient's hospitalstay. There is also a component of natural language processing involved in this e�ort(see Obermeier [65]).8.1.2 Logic-Based ApproachesAttempts to specify temporal reasoning in classical logic run into several problems.On a philosophical level one is faced with the problem of using a formalism designedexpressly for reasoning about the absolute truths of philosophy and mathematics.Attempts to modify logic for temporal reasoning must overcome the inherent designbias of logic as a language against representing changing concepts. The formalismwas created for eternal rather than temporary facts. As the tcs experiments show,

8.1. TEMPORAL REASONING 107there is great power in attaching a special interpretation to time. Unfortunately, thiscan be di�cult to do in the general case. The major practical di�culty is that usefultemporal logics are undecidable [31].It is also often di�cult to formalize certain types of common-sense reasoning thatpeople �nd quite easy to do. The circumscription approach [51, 58, 86] minimizeslogical predicates according to syntactic criteria. Similar minimization techniques canbe applied to nonmonotonic logics [79]. Hanks and McDermott [33] describe some ofthe di�culties of dealing with the frame problem using current nonmonotonic logics.The example which is used extensively in the literature is that of loading a gun,waiting and then shooting someone with the gun. The intuitive conclusion that theperson who is shot will then be dead is not the only conclusion admissible under thelogic's rules. As Hanks and McDermott show, it is possible to assume either that thegun stayed loaded during the waiting period or that it became unloaded. This wasdescribed by them as a very disturbing result, indicating that the approach beingtaken by the non-monotonic logics was in need of some help.What makes the example so intriguing is that both outcomes make sense. Themost likely intuitive result is that the person is dead because simply having a loadedgun sitting around will not cause it to become unloaded. On the other hand, ifa su�ciently long period of time elapsed, say several years, then it would also beplausible to believe that the gun had become unloaded in the waiting period. Becausethere is no metric, it is di�cult to express the dependence of the preferred conclusionon the length of the waiting period. The existence of a time metric in tcs makes iteasy to encode this particular inference. Although this particular reasoning strategyfor this particular domain can be programmed in tcs, a general-purpose reasonerwithout speci�c information about the domain and the particular inference to bemade is still out of reach.The following is a summary of the shortcomings of logic-based schemes:1. The Frame Problem. The duration of propositions in a logical formalismmust be explicitly stated. This means that every change of state must containthe information necessary to describe the new state completely. An active areaof research focuses on the attempt to automate the process of limiting the e�ectof state changes without explicitly mentioning the entire world. Unfortunately,these schemes run into the next problem.2. The Syntactic Solution. The circumscription approach creates an inferencemethod that allows all normal properties to endure (unless explicitly declared tobe abnormal). This provides a mechanism, but no guidance as to how it shouldbe used. What is being proposed is a syntactic solution to what is essentiallya semantic problem. Thus the circumscription approach is limited and hasdi�culty formalizing reasoning that most people �nd easy. The attempt to �nda syntactic solution to a semantic problem is
awed. There is some recognitionof this problem, since recent work in circumscription and nonmonotonic logic is

108 CHAPTER 8. RELATED WORKexploring ways of adding policies [52] or preferences [87] as a way of controllingthe reasoning. These represent attempts to introduce semantic content to thedefault reasoning decisions.3. Undecidability. In order to capture interesting temporal behavior, the logicsused must be so complex as to become undecidable. If undecidability is present,then part of the appeal of using the language is lost. If decidability is alreadyforfeit, then I would argue for adding Turing completeness to the system toallow the greatest
exibility in algorithms as well as to enable one to programin a convenient computer language.I have concluded that a general solution to this problem will be impractical due tothe complexity inherent in su�ciently powerful formal logical systems. It is also thecase that in many domains, the types of decisions that will need to be made by anexpert system are su�ciently constrained that they can be programmed without toomuch di�culty. These heuristic approaches have the advantage of reasoning e�cientlyin domains in which a strictly formal approach is too costly. By not restricting theform of the reasoning in the modules of the tcs, the greatest
exibility is preserved.The action that a programmer wishes a reasoning system to take is usually fairlystraightforward.8.2 Truth MaintenanceThe idea of a Truth Maintenance System (tms) can trace its roots to the dependency-directed backtracking and constraint-propagation work of Stallman and Sussman [83].This work was extended by Doyle [23] and McAllester [57]. The central idea was thata more e�cient recovery from errors or false assumptions could be made by keepinga record of the dependencies among conclusions. This introduced intelligence intowhat had been a blind backtracking approach. All the conclusions of a system wererecorded in a dependency structure which provided the database for backtracking.Although the details vary from system to system, the basic approach has data inthe form of facts (or propositions) in the database. They are connected by inferencerules or logical clauses. Since the system knows the meaning of the inference ruleor the logical combination rules, it can detect an inconsistent state. This triggers abacktracking procedure focused on the data which contributed to the contradiction. Atms provides one level of Boolean inference (see [56] for a more detailed discussion).A key feature of this strategy is the requirement that the system understand theinference procedure. This means that programming inside the tms is limited to useof the system-provided inference mechanisms. Other types of reasoning must takeplace outside the system. A problem-solving system is then built on top of this tohandle the decision-making and manipulate the tms clauses. A tms is a low-levelsubstrate upon which the larger reasoning program is built. The function of the tmsis to guarantee a consistent state of the database. This type of architecture is shown

8.2. TRUTH MAINTENANCE 109

Figure 8.1: Architectural Di�erences Between tms and tcs.in �gure 8.1a. The user program's decision units manipulate the tms database. Asystem based on this paradigm is described by Dhar [22], in which he builds hisdomain-speci�c constraint satisfaction code on top of McAllester's tms package. Thetms system is the substrate that is manipulated by a constraint-satisfaction problem-solver.An alternate approach pursued by tcs is to allow arbitrary programmer-speci�edtypes of reasoning to connect the variable values in a system. This causes the systemto lose the ability to analyze the reasoning units. To the system they appear as \blackboxes" which implement some decision-making procedure. All of the inputs to the\black box" are known to the system. The only constraint is that the inference notdepend on any variable value that is not explicitly identi�ed as an input to the \box."Because the main reasoning units are contained inside the tcs system, this yields aqualitatively di�erent architecture for a problem-solving system. (See �gure 8.1b.)The decision making chores of the problem-solver are embedded in the tcs system.Rather than being a utility program that is manipulated by the problem solvingapplication, the tcs provides an environment in which the application itself is run.Because the tcs system is not able to analyze the reasoning functions, the systemitself has no way to predict what the output of the inference mechanism will be. Itcan, however, execute the black-box procedure to calculate the new output values.Propagation of values continues until the system reaches a state of quiescence. Acomparison using equality (the simplest data comparison test) is used to control

110 CHAPTER 8. RELATED WORKpropagation of information. The data are only propagated in a forward direction. Bystopping the forward propagation when values don't change, a limit is imposed onthe amount of processing needed to perform any update.One major di�erence between the tcs and the tms is in the degree of knowledgeabout the inference methods that are used. The tcs does not make any assumptionsabout the nature of the inference method that is used, and is therefore able to accom-modate a wider range of methods. A tms constrains the types of inference used tosome speci�c method. Doyle's original tms system [23] used the presence or absenceof speci�c nodes to determine the validity or lack of validity of a given result. Otherorganizational principles also exist in Doyle's and de Kleer's [16] systems, but thebasic framework and system architecture are the same.The other major di�erence is that the tcs requires all of the variables and theentire dependency structure of the decision process to be known in advance, sincethe structure is compiled into the system via the declarations of dependencies. Nonew variables can be introduced into the system while it is running. A tms has amore
exible structure than a tcs , because new nodes, new types of nodes, and newconstraints can be added at any time. Since the type of inference is limited in a tms,e�cient algorithms for performing the updating can be implemented.Although the standard tms does not have special provisions for time-related rea-soning, Dressler and Freitag [24] have produced a variant on an assumption-basedtms which propagates temporal labels as well as the traditional assumption sets.This provides a second indexing method for database query answering. The propa-gation method they use requires time to be a symbolic interval, so it is not able tohandle metric information.Time Map Manager Dean and McDermott [19] have constructed a temporal ex-tension of a tms system called a Time Map Manager. This augments a conventionaltms with special constructs for handling the temporal extent of propositions. Timemaps are designed to assist a reasoning program doing planning with time constraints.It di�ers from the tcs in several ways:1. Time maps use the predicate calculus as the basic knowledge representation. Itis thus awkward to implement speci�c algorithms, since predicate calculus doesnot have the same rich supply of control constructs. Furthermore, the systemrelies upon the user to specify which propositions are contradictory.2. Time maps allow inexact endpoints and multiple competing viewpoints. Thismakes the updating algorithms more complex and leads to the third di�erence:3. States and persistences are handled asymmetrically. The beginning point maybe �xed by the user, but the ending point must \
oat" in order to guaranteecorrectness of the algorithms used. This is not a fundamental requirement ofthe approach, but it is needed to allow the use of an e�cient algorithm for

8.3. MEDICAL SYSTEMS 111clipping the persistence of states. Time-limited persistence, such as that usedwith laboratory data in the Ketoacidosis Advisor, cannot be implemented.4. Some of the updating functions are not automatic, and must be explicitly pro-grammed by the user. Although this is cited as a bene�t because it allowsthe user to control which inferences will be made as a result of changes to thedatabase, it introduces the possibility of incompleteness in the reasoning, bynot having all conclusions made, or inconsistency, by not having contradictedconclusions removed from the system.8.3 Medical Systems8.3.1 Non-AI Management SystemsSeveral computer systems have been designed for the outpatient management of dia-betics. These systems use data from several days of observations to adjust the regularinsulin dosage of the patients. The degree of modelling varies from the simple [21] tothe more complicated [9]. There are other data analysis systems that seek to identifytrends in the data and detect when changes in regimens have taken place [38].The Ketoacidosis Advisor di�ers in having to assimilate more types of data ina more dynamic environment. In all the modeling systems, there is an underlyingassumption that the basic lifestyle and meal pattern remained constant. (There aresome models that allow one to vary the food intake while holding other parametersconstant [74]) In dka, however, the patients are not well-compensated insulin-takingdiabetics, so the underlying premises of those systems are violated. Also, in mostcases either the treatment is based on the analysis of more data than is availablein the acute phase of dka , or the solution covers only a part of the treatmentregimen. Although I had to add other parts to the Ketoacidosis Advisor, the workon dosage adjustment proved to be a good starting point for my own subcutaneousinsulin adjustment algorithms. Like [2, 77], I applied a computerized process to theimplemetation of what were originally \paper" algorithms based on Skyler's work [81].8.3.2 Ventilation ManagerThe Ventilation Manager program vm [28] is the work most closely related to thisthesis. Vm is a rule-based expert system designed to monitor the progress of patientswho are being weaned from respiratory support devices. This task requires the mon-itoring of the patient's physiological parameters, their evaluation, and a comparisonwith expected values generated by the use of a standard weaning protocol. The ma-jor e�ort in the design of the vm program went into the parameter monitoring andevaluation functions. It is in this part of the work that the temporal aspects of thedomain exist.

112 CHAPTER 8. RELATED WORKThe monitored parameters change over time, thus requiring the program to beable to interpret not just a single value for any result, but rather a sequence of values.In addition, there is the need to consider the history of the parameter values inmaking some decisions about whether a patient is doing well on a particular type ofventilation support, or whether they are ready for the next stage of weaning. Thesehistorical summaries are provided through the use of special purpose functions in therule clauses. For example, it is possible to have a rule clause that matches on thebasis of a stable parameter value in the last 20 minutes.A further interesting feature of the vm data interpretation system is that themapping from measured numeric values to symbolic interpretations is made context-dependent. This is done by setting up a mapping table that is initialized each timethe context changes. Each context represents a di�erent type of ventilation support.Thus, as a patient progresses from one type of support to another, the exact thresh-olds used to establish ideal and acceptable monitor results change. This capabilityis required by the temporal aspect of the domain, since the type of interpretationrequired in any one patient will change with time.Relation of Ventilation Manager to TCSThe types of reasoning described above can be explained as a combination of certaintypes of more primitive reasoning activities using data that changes over time. Inthis domain, the interpretation of data (i.e., the mapping from continuous numericvalues to discrete symbolic categories) is, in itself, an atemporal reasoning process.In the simplest case, there exists a function F which maps numbers to categories.This function considers only the value of the number in deciding to which categorythe parameter belongs.Making this context-sensitive simply requires that rather than a single function,there exist a set of functions, indexed by contexts: fFc : c is a contextg. The temporalaspect is then controlled entirely by controlling the temporal extent of the contexts.Vm's establishment of context-sensitive evaluation functions for patient parameterswas a major innovation. These were de�ned as tables of thresholds that de�nedsymbolic ranges such as normal, low, very high, etc. These de�nitions were usedwhenever the type of ventilation method changed. Fagan refers to the tables asinitialization rules which set up the context for data interpretation. This can besimply modeled in the tcs by having contexts be the values of interval variables(since each context has a duration). The function to be applied for data evaluationcan then be selected based on the value of this interval variable's value. There isno need for the reasoning process itself to deal explicitly with the temporal aspectsof the reasoning at all. This is an example of what tcs terms a context-sensitivetransducer. The temporal dependency of the reasoning process is identical to that ofa temporal variable. In this case the control system itself can handle the temporaldependency of the reasoning, simplifying the programming. The tcs approach tothis type of de�nition involves the use of a context variable ventilation-type which

8.3. MEDICAL SYSTEMS 113(defmodvar ventilation-change :point) ; Reports change in ventilation(defmodvar ventilation-type :interval) ; Holds the current ventilation type(defmodvar vital-signs-raw :point) ; Measured vital signs(defmodvar vital-signs-eval :point) ; Evaluated vital signs(defpersistence ventilation-change ventilation-change ventilation-type); Just remember all changes in ventilation(deftransducer evaluate-patient vital-signs-raw vital-signs-eval#'(lambda (raw type)(evaluate-using-table raw (select-table-for type))):context (ventilation-type))Figure 8.2: TCS Implementation of VM Parameter Evaluationis an abstraction of the point variable ventilation-change. The latter reports achange in the settings of the ventilator. Evaluation is done by using the appropriatetable from a list. Sample code is shown in �gure 8.2The evaluation of historical data (e.g., for stability or trend detection, as is donein vm) can again be divided into two simpler processes, one atemporal and the othertemporal. For example, consider the clause \heart beat stable for 20 minutes." Thisconsists of the evaluation of some decision procedure (\heart beat stable") and arestriction on the temporal extent of this decision (20 minutes). The stability criterioncan be modeled as a function which takes a list of input values and determines whetherthey ful�ll the de�nition of stability1, and another procedure that determines whichvalues should be in the list of input values. This concept is implicitly temporal sinceit refers to the change (or rather the lack of change) in a dynamic variable.The decomposition suggested above is used to isolate the temporal aspects ofthe reasoning. The explicit temporal reasoning consists of a memory function (seesection 4.3.3) which constructs the list to be tested for the presence of the stabilityproperty. This memory has the fairly simple task of remembering all of the values ofthe heart beat parameter for the previous 20 minutes. This can again be modeled byan interval variable which, in any given interval, retains the values of the heart beatsamples from the previous 20 minutes (it is assumed that the heart beat is provided asa series of discrete samples, rather than as a continuous function.) Given this memory,the stability function can be applied in each interval. The temporal dependence ofthe stability criterion is re
ected only in its use of a list of values rather than a singlevalue. The extent to which time enters into the picture is again handled implicitlyby the control structure for the stability evaluation per se, and explicitly in the useof an auxiliary memory variable and associated reasoning machinery which maintain1The exact stability de�nition is not important here, so long as there is an e�ective procedureavailable for determining whether or not the property holds. In this case, one could imagine stabilitymeaning that the deviation from the mean heart beat over the given time period did not exceedsome threshold value, say 5%.

114 CHAPTER 8. RELATED WORKthe temporal aspects of the stability determination.As these examples have shown, the tcs is capable of handling the temporal rea-soning used in vm. It is further evident that there will be variety in the degree of timedependence of the reasoning. One bene�t of the tcs approach is the identi�cation ofthe degree of temporal dependence by allowing one to decompose the reasoning intoindividual units, some of which are, as we have seen, atemporal forms of reasoning.It is an advantage of the tcs that atemporal reasoning can be added without theneed to deal with time. More important, atemporal reasoning can be embedded ina tcs in such a way that the atemporal reasoning description retains its simplic-ity, but becomes time-dependent because of the supporting framework. By providingsome standard building blocks, the tcs facilitates the design of systems that interprettime-varying data.The ability of the tcs to accommodate these types of reasoning in a natural man-ner will allow vm-style systems to gain the bene�ts of having a facility for updatingdata as well. The vm architecture is a strictly forward-chaining decision-making sys-tem without backtracking or belief revision. Data are assumed to arrive instantlyand in chronological order. If these expectations are violated, one of two courses ofaction are open: either the data are treated as still re
ecting the current state of thepatient (i.e., they are treated as if they were current, new data), or they are rejectedas being too old (i.e., no use is made of the information). In vm's domain this isnot a problem because the program has the highly circumscribed task of monitoringthe progress of a patient following a prescribed path through a series of mechanicalventilator settings. There is no need to explain what is happening with the patientin terms of disease processes. The only information relevant to the program's taskis the current information and a restricted view of the history. The rule premisescan refer to past data in a limited fashion. This access is implemented via certainspecial functions that provide summary information about the value of parametersover past time periods. What is missing is a mechanism that provides a framework forde�ning more functions that can assimilate a series of data points and arrive at someconclusion about their meaning (the data interpretation problem). Certain functionsare provided by the system, but one is not able to add more without leaving theparadigm of the rule-based system. While this is certainly adequate in vm's domain,it is not general enough to serve as the basis for a more extensive temporal reasoningsupport system.Because past information could have an impact on the interpretation of events andalso on current therapy, any information that becomes available should be considered.The tcs can support this type of updating by propagating changed (or late-arriving)data along the dependency links in the reasoning structure so that the proper updatesare made. In particular, this can be done for a vm-type system. This will allow properutilization of all available data. It will also allow the correction of data later foundto be in error.

8.3. MEDICAL SYSTEMS 1158.3.3 Time Oriented Patient AnalyzerMichael Kahn implemented the Time Oriented Patient Analyzer (topaz) [39], asystem which uses multiple models to evaluate information and track a patient overtime. The research domain was cancer therapy. Patients were seen at visits over aperiod of months. Information about the course of the patients was used to adjustthe amount and type of drugs given to patients. This is an example of the patient-management problem, since it involves tracking the e�ectiveness of treatment overtime.Kahn uses three types of model in topaz. The �rst is a multi-compartment phys-iological model similar to the pharmacokinetic model described earlier. It is extendedby the ability to adapt its parameters to match the current patient. Kahn uses thismodel to interpret laboratory measurements and translate them into clinically use-ful concepts. He describes this as the data-interpretation part of the managementproblem.Once the data has been interpreted, it is abstracted into clinically useful \states,"using a second (non-mathematical) model. For this, an interval-based temporal modelof time is used. The abstraction procedure is similar to the persistence abstractionsdescribed in this thesis.Finally, there is a model of explanation that is used to generate patient summaries.It is used to structure the information in the temporal database and provide sum-maries to be read by people. It uses augmented transition networks and a straightchronological event order to translate the information about the patient's case.The organization and strengths of tcs and topaz re
ect the di�erences in theirdomain features. Topaz was designed to operate in a world in which consultationswere discrete events and there was no overlap between the data-gathering functionsand the therapy decisions. Furthermore, the need to follow patients for a long periodof time requires the use of more permanent data storage than tcs's variables. Tcs, onthe other hand, needs to be able to revise its decisions in response to data that arrivesin the middle of a consultation. It is this need for e�cient updating at unpredictabletimes that shaped the implementation of tcs. The major di�erences between topaz'sdomain and the problems that are addressed in tcs are:1. Topaz has a consultation structure in which all the information arrives inchronological order and is available at the next consultation. It is possibleto correct past errors. Because there is no updating, however, only futureinvocations of the decision procedure will get the corrected information. Tcsis designed to address the problems that occur when decisions are made in themiddle of the data gathering process.2. Topaz works with an external temporal database. The rules contain queriesthat retrieve information from the database. The temporal aspects of the dataare handled by the rule predicates. Because the database is not active, changesin information going into it do not a�ect rules once they have been executed. All

116 CHAPTER 8. RELATED WORKfuture invocations will get the information. Tcs is integrated with its databaseand takes an active role in scheduling the information that gets executed.3. Topaz is consultation-driven. Tcs is data-driven.4. Topaz focused on the types of models that are needed to make medical deci-sions. Tcs focuses on the temporal attributes of decision procedures. In thisway the work is complementary. The model-based data interpretation couldbe embedded inside a tcs module, which would schedule the interpreter torun whenever new data became available. The di�erence in focus is that tcshighlights the dependence of information-processing on temporal data, whereastopaz describes the conceptual tasks that must be accomplished in the decision-making.Kahn's program uses three models of temporal reasoning. The �rst is a \processmodel" of the physiology that underlies observations. In his implementation thisis a pharmacokinetic/pharmacodynamic model of bone-marrow e�ects of anti-canceragents. The second is an \interval model" which abstracts the interpreted informationfrom the process model. This provides a clinical context for the reasoning. The thirdmodel is an explanation model which can justify the results from the other two models.Time is handled di�erently in each of the three models. In the process model,it is a continuous parameter. In the context model, intervals describing clinicallyrelevant parts of the patient data are used. In the explanation model, the samedatabase as in the context model is used. The conceptual view is that of a sequentialmodel, which determines the order in which �ndings are discussed in the summary.The need to combine multiple models to handle a complex domain is a rati�cationof tcs's decision to allow maximum
exibility in specifying reasoning methods forheterogeneous systems.8.4 Other Relevant WorkIn this section I describe other work that is related to tcs. I discuss blackboardarchitectures for decision-making and special languages and hardware architecturesfor real-time expert systems.8.4.1 Blackboard SystemsBlackboard systems [61, 62, 12] consist of a central database (the blackboard) that isshared by several independent reasoning units (knowledge sources). Each knowledgesource (KS) is an independent unit which communicates with other units throughmessages placed in a commonly understood format on the blackboard. The inde-pendence of KS's allows the easy combination of heterogeneous reasoning methods.Since each KS is independent, there are fewer restrictions on the internal function

8.4. OTHER RELEVANT WORK 117calculated by an KS than is the case for tcs modules. On the other hand, the factthat each KS reads information of interest from the bulletin board and then postsits results means that there is no general method for retracting conclusions. Any KSthat can retract conclusions must be speci�cally programmed to do so. Even then,there is no guarantee that another KS which used the retracted information will inturn revise its conclusions.For example, HASP/SIAP uses a blackboard architecture to do sonar signal anal-ysis. [63] The analysis takes place over time and the results of previous analyses arecombined in calculating the current situation description. Since ships cannot arbi-trarily appear and disappear, it is possible to use previous situation analyses as asource of guidance in identifying and classifying the current set of sonar signals. Twosimilar signals could be from the same source if they appear close enough togetherthat the ship could have moved from one point to the other in the intervening time.Unfortunately, since the system cannot backtrack, it cannot automatically retractearlier conclusions and have the e�ects propagated through the system. This is trueof all blackboard systems. It may be easy to change the original data, but eachknowledge source that relied on that information would have to be programmed tonotice the change and deal with it appropriately.It is also not clear to what extent the system can incorporate subsequent infor-mation. For example, it is possible to use a priori intelligence reports about theexistence of enemy ships to identify signals, but apparently the reports must be avail-able at the time the signal analysis is done. Such reports could therefore not be usedto disambiguate an uncertain past identi�cation.In summary, the blackboard architecture allows more freedom in the implemen-tation and integration of di�erent types of reasoning than tcs, but it does not havethe same level of support for the retraction and revision of data and conclusions.8.4.2 Real-Time SystemsReal-time systems are characterized by the need to guarantee a response within aprede�ned period of time. If arbitrary calculations are permitted, this guaranteecannot be enforced. Real-time expert systems such as G2 [29, 60] can guaranteeresponse time by limiting the language to rules which can be easily interpreted. Byrestricting information storage to statically allocated data areas, G2 can also avoid theneed to garbage-collect. Given these constraints, it is not possible to have a generaldependency-directed updating system, since the retraction of information can takearbitrarily long.Researchers at Yale [26, 27] have explored the use of a parallel architecture calleda process trellis for processing real-time monitor data. The process trellis uses ahierarchy of processors, each of which handles a small part of the interpretation. Theconnections between processors form a directed, acyclic graph. Processor outputs arecoordinated by synchronization with a global clock. The synchronization simpli�es

118 CHAPTER 8. RELATED WORKthe task of maintaining a coherent database, but it forces all processes to run at thespeed of the slowest processor. For carefully selected, matched tasks in the signal-processing domain where the process trellis is used, these restrictions are acceptable.The hindsight example presented earlier requires that previously-made decisionsbe retained in memory and then revised. The ability to go back in time and reviseprevious conclusions is incompatible with a real-time response deadline. The ma-jor di�erence between tcs and real-time expert systems is that tcs can reason atgreater length about some of its problems. This ability makes it impossible for tcsto provide real-time response time guarantees. Since the updating model of tcs callsfor completeness, real-time can be hard to achieve. Tcs's ability to have reasoningloops, both through the use of circular data-dependency structures as well as thehistory-oracle mechanism, also prevents the guarantee of speci�c respnose times. Insummary, real-time systems respond to current information, without spending a lotof time reasoning about the future, or analyzing past decisions. This allows them toful�ll their mission of providing a guaranteed time response, but does not allow thefull sophistication of reasoning available in tcs.There is potential for synergy between real-time systems and a tcs-based system.The process trellis, for example, could process the raw sensor data and provide inputsto a tcs system at an appropriate level of detail for further processing.

Chapter 9ConclusionExperience with the implementation of expert systems using tcs shows that it is
exible enough to support projects in disparate parts of the medical domain. Theapplication of this methodology to the control of mathematical models, disease assess-ment, reasoning with expectation failures and the management of patient treatmentover time shows breadth of coverage. On this basis, it is reasonable to assert thatthis approach can also be applied outside the area of medicine.The contributions of this thesis consist of a programming system for constructingexpert systems that use time dependent data as well as insight into the structureof reasoning over time. In the �rst section I discuss the practical applications thatillustrate the usefulness of tcs as a programming tool. In the next section I discussthe conceptual contributions.9.1 Practical ApplicationThis thesis presents an engineering approach to dealing with time in AI reasoning.It is a language design that provides a basis on which to build temporally dependentapplications programs. Some common types of temporal reasoning are supported viasystem utility routines, but there is no claim that the tcs will have a complete set ofhigh-level reasoning routines. I do claim, however, that it will be possible to programsuch high-level routines inside the tcs framework.Since this thesis project involves language design, it cannot be evaluated solely bya rigorous test. Certain aspects, such as the correctness of the change propagationalgorithm, are amenable to such analysis. It cannot be rigorously proven that thissystem makes the development of temporal applications simpler by taking over therecord-keeping functions that would otherwise need to be done by an applicationsprogrammer. The evaluation of the usefulness of the program is necessarily subjec-tive. The argument in favor of using this language is that it provides the bene�tsof adding another layer to the programming system, making it a higher-level lan-guage for programming temporal processes. The projects that have been successfully119

120 CHAPTER 9. CONCLUSIONimplemented demonstrate that clinically useful behavior can be recreated using thesystem.9.1.1 Projects ImplementedThe practical utility of this approach has been demonstrated by the implementationof the following projects:1. Demonstration Examples. These examples show system capabilities. This in-cludes the percent program used to illustrate the data propagation method andthe fever handler in the reference manual [70].2. Reasoning by Hindsight. The use of hindsight shows a more sophisticated useof the history and oracle mechanism to solve a reasoning problem that relies onthe observation of change over time and the inconsistencies between expectedand observed behavior. This shows how tcs can be used to build a system thatimplements a di�cult clinical reasoning task. I discussed this example at lengthin section 5.2.3. Pharmacokinetic Modeling System. This example can model the changing phar-macokinetics of drugs and adjust model parameters in response to changes inrelevant clinical data. An argument for the importance of using models in treat-ment programs can be found in the Oncocin project [80] and in topaz [39]. Thetcs provides a control environment in which the model can be executed. Thisdemonstrates some of the control ideas and reasoning issues related to discrep-ancies between system recommendations and actual user actions.4. Disease Assessment Program. Using an earlier version of tcs, Steve Novick de-veloped an expert system for assessment of the underlying causes of ventriculararrhythmias as his Master's thesis project. [64] This demonstrates the use oftcs in a diagnostic tracking task.5. Ketoacidosis. The major test project was the design of an advisor for acuteacid-base and electrolyte balance disorders found in diabetic ketoacidosis. Thiscollaborative work involved the Tufts-New England Medical Center, with twophysicians, Michael Hagan and Klemens Meyer, serving as domain experts.In the formal evaluation reported in this thesis, the Ketoacidosis Advisor wasshown to perform at a level indistiguishable from actual clinical care. Thisperformance was in a domain in which the patient state changes over time andwhich requires an ability to track these changes.

9.2. DESCRIPTION OF TEMPORAL REASONING 1219.2 Description of Temporal ReasoningThe division of temporal reasoning into a static and dynamic component creates aformalism that can be used to describe di�erent aspects of reasoning over time.9.2.1 Types of Temporal ReasoningSeveral types of temporal reasoning have already been identi�ed. Each of the classesbelow shares some characteristic that can be readily identi�ed using the computa-tional model of the tcs.1. Atemporal rules and transducers. These are modules that use neither historynor oracle variables. They are static mappings from inputs to outputs, and arethe simplest time-related reasoning methods. They can be handled automati-cally by the tcs.2. Relationship between state change actions and states. Modules that embodythis change make a transformation between the types of variables in the inputsand outputs. For example, going from points to intervals is a mapping from(potential) state change actions to states. Similarly, the process of producingpoints from intervals operates in the reverse direction. These modules generallyrequire a limited use of history information. Oracles are typically not neededbecause of the unidirectional
ow of time.3. Forward temporal reasoning. Related to the previous point is the extension ofdata over time. This is a subcase of the above, but is su�ciently common towarrant separate discussion. In a changing domain such as medicine, data ageand become less reliable. This limits the usefulness of the information, so thatit is often convenient to limit the temporal extent of states induced from datasamples. On the other hand, some planning problems do not have to worryabout decay and can easily establish states that remain without change untilacted upon by an outside action. By appropriately using the metric informationfrom the timeline, either e�ect can be had. This includes the ability to makepredictions of future events.4. Backward temporal reasoning. This involves the use of future information toa�ect the past. Using hindsight is a complicated concept and is handled in itsown section below.5. History and forgetting. By establishing a model of how information propagatesalong the timeline (via the history variables) and providing a method for con-trolling the propagation (the function in a module), it is possible to developapplications that have di�ering degrees of dependence on the past or future.The facilities for using histories and oracles introduce a variable amount of time

122 CHAPTER 9. CONCLUSIONdependence. It is possible to specify complete time dependence, in which casethe output of a module depends on the entire time history of the entering data.The full range of temporal dependencies can be supported. At one extreme are therules and transducers that do not rely on information outside of their own executioninterval. At the other extreme is a module with complete time dependence. A trivialexample of such a module would be a module that calculated (internally) the average(over time) of all of the input values and had as its output each input value's percent-age of that average. For each output datum, it is necessary to know something abouteach of the other values in order to compute the average. Furthermore, any change oraddition to the data points would require the entire output over the complete timelineto be recomputed. This example is shown in the reference manual. [70, p. 30f.]For e�ciency reasons it is often desirable to put a temporal limit on the in
uenceof any particular piece of data. Vere [85] demonstrates the practical utility of thisconcept in planning by using a temporal window to limit the time period that isexamined by his reasoning system. Although the mechanisms di�er, the underlyinge�ciency motive in both cases is supported by the fact that in most real systems thereis a limited interaction between di�erent world entities and processes. Furthermore,such interaction as occurs is often limited in scope, both physically and temporally.It is the temporal limitation that is exploited by establishing a cuto� on the lengthof time that a proposition can in
uence the decision making.9.2.2 Explaining \Why I Changed My Mind"One of the major goals of this system is to make it easy for new data to be incorporatedinto the reasoning framework. This means that the program should be able to \changeits mind." By keeping records of the processes that were run, and the state of thedata at that time, a history of the decision-making can be constructed. This historywill provide the basis for an ability to explain why conclusions were changed. Unlikea standard updating system which can only give the current reasons for its beliefs,an historical record could even explain why an earlier (and since revised) opinion washeld. For instance, the hindsight example from section 5.2 could then be explainedby saying that on the �rst day, only the cu� pressure was available, and using theassumption that it was correct, a therapy to raise blood pressure was instituted.Later, when the assumptions was shown to be violated, a revision in the conclusionabout the patient's fundamental problem was the impetus for changing the therapyto one which would reduce the blood pressure. It is important to remember thatonly conclusions can be revised, whereas past actions cannot be undone. Di�erentdatabase designs and the types of queries that they can answer are discussed bySnodgrass in [82].The ability to maintain a history makes the system capable of providing explana-tions that involve changes in the belief structure about the world, by maintaining twoseparate temporal markers with each piece of reasoning: The world time to which

9.3. FUTURE WORK 123the reasoning applies, and the real-time at which various bits of information thata�ect that reasoning process were available to the reasoner. The existence of suchmultiple views allows one to generate not only a picture of a program's belief aboutthe changing values of variables in its world, but also allows one to capture a historyof the changing beliefs of the program about the changing values of variables in itsworld. This is a latent capability in tcs that has not yet been exploited.9.3 Future WorkThe tcs functions as a programming system. There are a number of improvementsthat could be made to the implementation and some extensions to the way tcs isused.9.3.1 E�ciency ImprovementsThe greatest e�ciency loss in the present implementation involves the process queue.Process instances are spawned as soon as values change and then must wait in thequeue until they can be executed. While waiting in the queue, the input values for theprocess instance could change. Since a process instance accesses its variable valuesat the start of execution, but has its duration determined when it is spawned, therecould be a mismatch between interval values at execution time and the time boundson the process instance. Since one of the guarantees that tcs makes is that intervalvariables have a single value, each time a module is queued, the entire queue must bechecked to �nd processes for which this guarantee is violated. Such process instancesmust be rescheduled to take the new variable value times into account. In a largesystem with many items in the queue, the need to examine the entire queue everytime a process is added contributes greatly to the running time of the program. Thenumber of processes examined is proportional to the square of the length of the queue.The most satisfactory solution would be to maintain a database of the intervalsfor which a module is scheduled but to delay the actual creation of process instances(and determination of their execution intervals) until the system is ready to run theprocess. This will require a complete overhaul of the process queueing code in thetcs. In the near term, processing time could be shortened by maintaining a separatequeue for each module. Since the only process instances that can be a�ected bythe new values are the ones for which a module is being queued, the queue scanneed only examine the process instances from that module. The search space can belimited to the set of relevant process instances using the module (process type) as anindex. Either of these solutions would also contribute to the distributed nature of theproblem-solving model (see below). This redesign would be coupled with an e�cientmechanism for determining which modules had pending process instances.Other areas for performance improvement are the internal representation of thetemporal database and the local execution strategy. The currently implemented rep-

124 CHAPTER 9. CONCLUSIONresentation uses a linked list of variable values ordered by time. They are stored inreverse chronologic order, based on the assumption that most of the changes occur atthe \future" end of the timeline. Linked lists have the advantage that insertions anddeletions can be easily performed. They have the disadvantage that locating a par-ticular time involves a linear search. An alternate representation based on balancedtrees should be investigated. The performance tradeo� between the searching timeand the time to insert and delete items will need to be examined.It is possible to use a more e�cient execution order for modules like that used inthe percent example in section 2.3.1. Since the tcs design treats reasoning modulesas black boxes, it is not possible to determine the history and oracle behavior. Onescheduling heuristic suggested by the percent module is to establish a direction ofexecution and move �rst from past to future and then back again. Since this caneliminate oscillations, the execution e�ciency can be enhanced. Whether this speedimprovement will be worth the increased overhead in queueing complexity requiresfurther investigation.9.3.2 Extension of CapabilitiesThe simplest extensions to tcs can be made within the framework that currentlyexists. By using the Common Lisp macro facility, certain general-purpose routinesand abstractions can be provided. This is already the case for forms like the valuepersistence modules de�ned by defpersistence. This process can be extended toinclude those routines found useful in the Ketoacidosis Advisor, for example, thegeneration of regular time points for periodic actions (eight-hour
uid summaries) andthe subdivision of the day into di�erent dosage \windows" (the AM, PM and bedtimeperiods for insulin administration). This extensibility allows tcs to be customizedfor speci�c domain capabilities.Other enhancements would require some changes to the implementation or theunderlying computational model. A priority queueing mechanism (with �xed priori-ties) could be added with only minor changes. Executing process instances in priorityorder (depending on the module they implement) could enhance e�ciency by allow-ing a programmer to specify the order of execution. This would allow tasks to bedeferred until all of their predecessor processes had been executed. For modules thathave multiple inputs, this could reduce the number of times they would need to beevaluated. For example, if a module with three inputs were executed after the �rsthad changed, and then again as changes propagated to the second input, etc., it couldbe run more often than necessary. If it had a lower priority, then all of its inputswould have time to stabilize before it was invoked, yielding an increase in execu-tion e�ciency. A limited form of this prioritization could be performed following ananalysis of the data dependency structure.1A priority queue also has its uses in time critical applications. Because complete1There would, of course, have to be provisions for loops.

9.3. FUTURE WORK 125updating is assured by the nature of the tcs design, it is not possible to guaranteereal-time responses, because the system must run to completion. If priority queueswere used, one could have all of the critical decisions run �rst, providing answers to themost important questions before other less critical tasks were done. In the ketoacidosisdomain, this would mean handling low blood sugar (a very dangerous condition)before calculating the eight-hour
uid balance (a less important bookkeeping task).By displaying the results as they were produced, the important advice would beavailable �rst, with re�nements to the advice and less important reasoning occuringlater as time permitted.A more ambitious extension would be to separate the determination of process in-stance scheduling intervals from the tcs internals. By making the scheduling programavailable as an option for individual modules, more
exibility in the determination ofendpoints could be achieved. There would still be a need for tcs surveillance of theprocesses actually executed (to assure completeness of data propagation), but some ofthe scheduling decisions made centrally could be made speci�c to individual modules.For example, using the interval scheduling method, there are two options when aninterval value changes. One is to schedule the minimal length interval that needs tobe executed in order to handle the change. An alternate choice would be to schedulethe largest interval with single values. Either choice will provide correct programresults and complete updating. Depending on the domain, however, one choice maybe more e�cient than the other. By allowing this choice to be made on a module-by-module basis, the expert-system designer is given more control over the executionbehavior of his program. This change would be consistent with the design philosophyof introducing the most
exible design space while preserving enough restrictions tomaintain the fundamental guarantees of the tcs.The �nal extension would be to embed a tcs-based advisor inside a program thatcould reason about the constraints on the temporal intervals. Since the tcs requiresexact bounds, these could be provided by a constraint reasoner. As more constraintsbecame available, it could change the exact bounds that were given to the embeddedtcs, which would then propagate the e�ects of those changes on its internal reasoning.This division of labor would be a method of exploiting the strengths of both typesof reasoning. It does run the risk of forcing the exploration of a combinatorial set oftcs models.9.3.3 Distributed ModelThe decomposition of the reasoning into modules with well-de�ned outputs providesa modular representation of parts of the program. The data dependencies describethe communications paths between individual parts of the entire system. Such ade�nition provides a speci�cation for a distributed architecture for problem-solving.Since each module is complete and (except for its inputs) separate from all otherelements of the system, one could create a distributed processing environment using

126 CHAPTER 9. CONCLUSIONthe tcs process structure.Outwardly, the dependency network of a tcs system resembles the process trellisarchitecture [26] developed at Yale. Tcs provides a more general architecture be-cause there is no need for synchronization between individual modules, and becauseloops are allowed in the data dependency structure. The existence of non-uniformcommunication paths and the lack of uniformity in the amount of time needed forindividual modules to run are evidence for using a distributed architecture ratherthan a �ne-grained parallel implementation.9.3.4 Open ProblemsThere is a fundamental problem that any temporal tracking system must face. Theamount of work that must be done in response to \clock ticks," (i.e., the advanceof time without additional data becoming available) can be quite large. This is to acertain extent unavoidable. A module that projects the e�ects of following the advicein the future, given what has been done in the past, cannot avoid having to recomputeits state as the clock advances. Since the premise of the projection is that the userwill implement the advice right away, any time delay means that more of the other(actual) therapy was carried out. This changes the state from which the projectionwas made. There is no general answer to this problem, and the development ofsolutions to this di�culty remains an open problem.There are also inherent limits to how cleverly a scheduling job can be done withoutknowledge of the workings of a module. Another open problem is whether general-purpose heuristics or methods can be developed that will enhance the optimality of amechanical scheduler. An example of such a heuristic embedded in tcs is the desireto complete the execution of a given module's adjacent process instances before theprocess instances of modules further along the dependency path. One such heuristicwould be to try to execute process instances in a single direction before moving infor-mation back in the opposite direction. Support for this can be found in considerationof the example of the percent program (section 2.3.1), where eight processes wereused to calculate four values. The minimum needed to propagate the values wouldbe seven|if all process instances were evaluated left to right and then right to left(the rightmost process instance would only need to be executed once).9.4 SummaryIn this work I have developed a computational model for describing reasoning overtime. The key idea embodied in the model is that it is possible to decompose thetask of reasoning over time into static and dynamic components. The use of staticcomponents simpli�es the job of building expert systems by isolating the e�ects oftemporal change, and in some cases hiding it entirely in the abstractions of the Tem-poral Control Structure.

9.4. SUMMARY 127Furthermore, the conceptual model provides a means for examining the temporaldependence of reasoning functions. This a�ects the e�ciency of their execution anddetermines the extent to which they are exposed to information changing over time.Because both the temporal e�ects and the algorithms used in the implementation ofthe reasoning are explicit, knowledge engineers are free to choose appropriate methodsfor their domain. For design work, it is crucial that the person implementing a systemhave enough freedom to make whatever tradeo�s between accuracy and performanceare suitable for the domain.The computational model has a natural and e�cient implementation that guar-antees complete and carefully directed use of information. Except for conceptuallyneeded distinctions between reasoning in the past or the future, a system programmedin the tcs is insensitive to the order of arrival of data. The bookkeeping chores neededto achieve this insensitivity are provided by tcs.Finally, I have substantiated these claims through the implementation of sev-eral projects in real world domains. The Ketoacidosis Advisor clearly shows thathuman-level performance can be achieved in a medical domain. The characteristicsof ketoacidosis required the system to track data which changed over time and whichwere not immediately available. The success of the program in the formal evaluationreported in this thesis validates the computational model used in its implementation.

128 CHAPTER 9. CONCLUSION

Chapter 10References[1] K. G. M. M. Alberti and T. D. R. Hockaday, \Diabetic Coma: A Reappraisalafter Five Years," Clinics in Endocrinology and Metabolism, 6(2):421{455, July1977.[2] A. M. Albisser, A. Schi�rin, et al., \Insulin Dosage Adjustment Using Man-ual Methods and Computer Algorithms: A Comparative Study," Medical andBiological Engineering and Computing, 24(6):577{584, 1986.[3] James F. Allen, \Maintaining Knowledge About Temporal Intervals," Commu-nications of the ACM, 26(11):832{843, November 1983.[4] James F. Allen, \Towards a General Theory of Action and Time," Arti�cialIntelligence, 23:123{154, 1984.[5] James F. Allen and Patrick J. Hayes, \A Common-Sense Theory of Time," inProceedings of the Ninth International Joint Conference on Arti�cial Intelligence,pages 528{531, 1985.[6] James F. Allen and Johannes A. Koomen, \Planning Using a Temporal WorldModel," in Proceedings of the Eighth International Joint Conference on Arti�cialIntelligence, pages 741{747, 1983.[7] Ames Co., Davison Miles Laboratory, Inc., Elkhart, IA, Modern Urine Chem-istry: A Guid to the Diagnosis of Urinary Tract Diseases and Metabolic Disor-ders, 1976.[8] Eugene J. Barrett and Ralph A. DeFronzo, \Diabetic Ketoacidosis: Diagnosisand Treatment," Hospital Practice, pages 89{104, April 1984.[9] M. P. Berger, R. A. Gelfand, and P. L. Miller, \Combining Statistical, Rule-based and Physiologic Model-based Methods to Assist in the Management ofDiabetes Mellitus," Computers in Biomedical Research, 23(4):346{357, August1990. 129

130 CHAPTER 10. REFERENCES[10] Markus Berger and David Rodbard, \Computer Simulation of Plasma Insulinand Glucose Dynamics after Subcutaneous Insulin Injection," Diabetes Care,12(10):725{736, November{December 1989.[11] Christian Binder, Torsten Lauritzen, et al., \Insulin Pharmacokinetics," Dia-betes Care, 7(2):188{199, March{April 1984.[12] Blackboard Technology Group, Inc, \The Blackboard Problem-Solving Ap-proach," AI Review of Products, Services, and Research, pages 27{32, July{August 1991, A publication of the American Association for Arti�cial Intelli-gence.[13] Enrico W. Coiera, Reasoning with Qualitative Disease Histories for DiagnosticPatient Monitoring, PhD thesis, University of New South Wales, 1989.[14] Enrico W. Coiera, \Monitoring Diseases with Empirical and Model-generatedHistories," Arti�cial Intelligence in Medicine, 2:135{147, 1990.[15] Mayer B. Davidson, \Diabetic Ketoacidosis and Hyperosmolar NonketoticComa," in Diabetes Mellitus: Diagnosis and Treatment, volume 2, chapter 9,pages 225{281, John Wiley & Sons, New York, second edition, 1986.[16] Johan de Kleer, \An Assumption-based TMS," Arti�cial Intelligence, 28:127{162, 1986.[17] Thomas Dean, Time Map Maintenance, Research Report 289, Yale UniversityDepartment of Computer Science, 1983.[18] Thomas L. Dean and Keiji Kanazawa, A Model for Reasoning About Persistenceand Causation, Technical Report CS-89-04, Brown University, Department ofComputer Science, February 1989.[19] Thomas L. Dean and Drew V. McDermott, \Temporal Data Base Management,"Arti�cial Intelligence, 32:1{55, 1987.[20] Ralph A. DeFronzo, \Diabetic Ketoacidosis and Hyperosmolar Syndromes,"notes on treating diabetic ketoacidosis, July 23, 1983.[21] T. Deutsch, M. A. Boroujerdi, et al., \The Principles and Prototyping of aKnowledge-based Diabetes Management System," Computer Methods and Pro-grams in Biomedicine, 29:75{88, 1989.[22] Vasant Dhar and Casey Quayle, \An Approach to Dependency Directed Back-tracking Using Domain Speci�c Knowledge," in Proceedings of the Ninth Inter-national Joint Conference on Arti�cial Intelligence, pages 188{190, 1985.

131[23] Jon Doyle, \A Truth Maintenance System," Arti�cial Intelligence, 12(2):231{272, 1979.[24] Oskar Dressler and Hartmut Freitag, \Propagation of Temporally Indexed Val-ues in Multiple Contexts," in Proceedings of the Thirteenth German Work-shop on Arti�cial Intelligence, Informatik Fachberichte, pages 2{6, Berlin, 1989,Springer Verlag.[25] Daniel Dvorak and Benjamin Kuipers, \Model-based Monitoring of DynamicSystems," in Proceedings of the Eleventh International Joint Conference onArti�cial Intelligence, pages 1238{1243, 1989.[26] Michael Factor and David H. Gelernter, \The Process Trellis: A Software Archi-tecture for Intelligent Monitors," in Tools for Arti�cial Intelligence: TAI 89",pages 174{181, IEEE Computer Society Press, October 1989.[27] Michael Factor, Dean F. Sittig, et al., \A Parallel Software Architecture forBuilding Intelligent Medical Monitors," in Symposium on Computer Applicationsin Medical Care, pages 11{16, 1989.[28] Lawrence Marvin Fagan, Vm: Representing Time-Dependent Relations in aMedical Setting, PhD thesis, Stanford University, June 1980.[29] Gensym Corporation, Cambridge, MA, USA, G2 Reference Manual, August1990, For G2 Version 2.0.[30] John W. Graef, editor, Manual of Pediatric Therapeutics, Little, Brown andCompany, fourth edition, 1988.[31] Joseph Y. Halpern and Yoav Shoham, \A Propositional Modal Logic of TimeIntervals," in Proceedings of the Symposium on Logic in Computer Science, pages279{292, IEEE, 1986.[32] Walter Hamscher, \Temporally Coarse Representation of Behavior for Model-based Troubleshooting of Digital Circuits," in Proceedings of the Eleventh Inter-national Joint Conference on Arti�cial Intelligence, pages 887{893, 1989.[33] Steve Hanks and Drew McDermott, \Default Reasoning, Nonmonotonic Logics,and the Frame Problem," in Proceedings of the National Conference on Arti�-cial Intelligence, pages 328{333, American Association for Arti�cial Intelligence,1986.[34] Michael C. Higgins, Don Goodnature, et al., \An Architecture for CombiningAlternative Reasoning Strategies in Real-time Patient Monitoring," in AI inMedicine: Working Notes, 1990 Spring Symposium Series, pages 74{76, Ameri-can Association for Arti�cial Intelligence, March 27{29, 1990.

132 CHAPTER 10. REFERENCES[35] T. D. R. Hockaday and K. G. M. M. Alberti, \Diabetic Coma," Clinics inEndocrinology and Metabolism, 1(3):751{788, November 1972.[36] R. W. Jeli�e, D. Z. D'Argenio, et al., \A Time-Shared Computer Program forAdaptive Control of Lidocaine Therapy Using an Optimal Strategy for ObtainingSerum Concentrations," in Symposium on Computer Applications in MedicalCare, pages 975{981, 1980.[37] Roger W. Jelli�e, \Clinical Applications of Pharmacokinetics and AdaptiveControl," IEEE Transactions on Biomedical Engineering, BME-34(8):624{632,August 1987.[38] Michael G. Kahn, Charlene A. Abrams, et al., \Automated Interpretation ofDiabetes Patient Data: Detecting Temporal Changes in Insulin Therapy," inSymposium on Computer Applications in Medical Care, pages 569{573, 1990.[39] Michael Gary Kahn, Model-Based Interpretation of Time-Ordered Medical Data,PhD thesis, University of California, San Francisco, December 1988.[40] E. Yu. Kandrashina, \Representation of Temporal Knowledge," in Proceedingsof the Eighth International Joint Conference on Arti�cial Intelligence, pages346{348, 1983.[41] J. P. Kassirer, D. E. Hricik, and J. J. Cohen, Repairing Body Fluids: Principlesand Practice, W. B. Saunders, 1989.[42] Saulo Klahr, editor, The Kidney and Body Fluids in Health and Disease, PlenumMedical Book Company, New York, 1984.[43] Michael D. Klein, \Development of a Ventricular Arrhythmia Management Ad-visor," National Institutes of Health Research Grant Application, June 1983.[44] Isaac S. Kohane, \Temporal Reasoning in Medical Expert Systems," in R. Sala-mon, B. Blum, and M. J�rgensen, editors, MEDINFO 86: Proceedings of theFifth Conference on Medical Informatics, pages 170{174, Washington, October1986, North-Holland.[45] Isaac S. Kohane, Temporal Reasoning in Medical Expert Systems, TR 389,Massachusetts Institute of Technology, Laboratory for Computer Science, 545Technology Square, Cambridge, MA, 02139, April 1987.[46] George P. Kozak and Arturo R. Rolla, \Diabetic Comas," in George P. Kozak,editor, Clinical Diabetes Mellitus, chapter 10, pages 109{145, W.B. SaundersCo., Philadelphia, 1982.

133[47] E. W. Kraegen and D. J. Chisholm, \Insulin Responses to Varying Pro�lesof Subcutaneous Insulin Infusion: Kinetic Modelling Studies," Diabetologia,26:208{213, 1984.[48] Robert A. Kreisberg, \Diabetic Ketoacidosis, Alcoholic Ketosis, Lactic Acidosis,and Hyporeninemic Hypoaldosteronism," in Max Ellenberg and Harold Rifkin,editors, Diabetes Mellitus: Theory and Practice, chapter 30, pages 621{653, Med-ical Examination Publishing Co., Inc., third edition, 1983.[49] Peter Ladkin, \Primitives and Units for Time Speci�cation," in Proceedingsof the National Conference on Arti�cial Intelligence, pages 354{359, AmericanAssociation for Arti�cial Intelligence, 1986.[50] Peter Ladkin, \Time Representation: A Taxonomy of Interval Relations," inProceedings of the National Conference on Arti�cial Intelligence, pages 360{366,American Association for Arti�cial Intelligence, 1986.[51] Vladimir Lifschitz, \Pointwise Circumscription: Preliminary Report," in Pro-ceedings of the National Conference on Arti�cial Intelligence, volume 1, pages406{410, 1986.[52] Vladimir Lifschitz, \Circumscriptive Theories: A Logic-Based Framework forKnowledge Representation (Preliminary Report)," in Proceedings of the SixthNational Conference on Arti�cial Intelligence, pages 364{368, American Associ-ation for Arti�cial Intelligence, 1987.[53] William J. Long and Thomas A. Russ, \A Control Structure for Time DependentReasoning," in Proceedings of the Eighth International Joint Conference onArti�cial Intelligence, pages 230{232, 1983.[54] William J. Long, Thomas A. Russ, and W. Buck Locke, \Reasoning from Mul-tiple Information Sources in Arrhythmia Management," in Proceedings of theConference on Frontiers of Engineering in Health Care, pages 640{643, IEEE,1983.[55] J. Malik and T. Binford, \Reasoning in Time and Space," in Proceedings of theEighth International Joint Conference on Arti�cial Intelligence, pages 343{345,August 1983.[56] David A. McAllester, \Truth Maintenance," in Proceedings of the NationalConference on Arti�cial Intelligence, pages 1109{1116, American Associationfor Arti�cial Intelligence, 1990.[57] David Allen McAllester, A Three Valued Truth Maintenance System, AIM 473,Massachusetts Institute of Technology, Arti�cial Intelligence Laboratory, 545Technology Square, Cambridge, MA, 02139, 1978.

134 CHAPTER 10. REFERENCES[58] John McCarthy, \Circumscription | A Form of Non-Monotonic Reasoning,"Arti�cial Intelligence, 13(1):27{38, 1980.[59] Sanjay Mittal, \Event-based Organization of Temporal Databases," in FourthNational Conference of the Canadian Society for Computational Studies of In-telligence, pages 1{8, 1982.[60] Robert Moore, Lowell Hawkinson, et al., \The G2 Real-Time Expert System,"in Proceedings of the ISA/88 International Conference and Exhibit, pages 1625{1633, Instrument Society of America, 1988.[61] H. Penny Nii, \Blackboard Systems, Part 1: The Blackboard Model of ProblemSolving and the Evolution of Blackboard Architectures," AI Magazine, 7(2):38{53, Summer 1986.[62] H. Penny Nii, \Blackboard Systems, Part 2: Blackboard Application Systems,Blackboard Systems from a Knowledge Engineering Perspective," AI Magazine,7(3):82{106, August 1986.[63] H. Penny Nii, Edward A. Feigenbaum, et al., \Signal-to-Symbol Transformation:HASP/SIAP Case Study," AI Magazine, 3(2):23{35, 1982.[64] Steven L. Novick, \Reasoning Over Time About the Causes of Arrhythmias,"Master's thesis, Massachusetts Institute of Technology, 1987.[65] Klaus K. Obermeier, \Temporal Inferences in Medical Texts," in 23rd AnnualMeeting of the ACL, pages 9{17, Association of Computational Linguistics, 1985.[66] Mathew J. Orland and Robert J. Saltman, editors, Manual of Medical Thera-peutics, Little, Brown and Company, 25th edition, 1986.[67] Burton David Rose, Clinical Physiology of Acid-Base and Electrolyte Disorders,McGraw-Hill Book Company, New York, second edition, 1984.[68] Thomas A. Russ, \A Knowlege-Based Approach to Ventricular ArrhythmiaManagement," in Proceedings of the International Conference on Cyberneticsand Society, pages 10{14, IEEE, 1982.[69] Thomas A. Russ, \A System for Using Time Dependent Data in Patient Man-agement," in R. Salamon, B. Blum, and M. J�rgensen, editors, MEDINFO86: Proceedings of the Fifth Conference on Medical Informatics, pages 165{169,Washington, October 1986, North-Holland.[70] Thomas A. Russ, Temporal Control Structure Reference Manual, TM 331, Mas-sachusetts Institute of Technology, Laboratory for Computer Science, 545 Tech-nology Square, Cambridge, MA, 02139, June 1987.

135[71] Thomas A. Russ, \Using Hindsight in Medical Decision Making," ComputerMethods and Programs in Biomedicine, 32(1):81{90, May 1990, Also publishedin Proceedings of the Symposium on Computer Applications in Medical Care,pp. 38{44, 1989.[72] Thomas A. Russ, \Coordinating Advice and Actual Treatment," in Martin D.Fox, Mary Anne F. Epstein, et al., editors, Proceedings of the 1991 IEEE Seven-teenth Annual Northeast Bioengineering Conference, pages 261{262, IEEE, April1991.[73] Thomas Anton Russ, \Ventricular Arrhythmia Management: A Knowledge-Based Approach," Master's thesis, Massachusetts Institute of Technology, 1983.[74] A. Rutscher, E. Salzsieder, et al., \kadis|A Computer-aided Decision SupportSystem for Improving the Management of Type-I Diabetes," Experimental andClinical Endocrinology, 95(1):137{147, February 1990.[75] R. Salamon, B. Blum, and M. J�rgensen, editors, MEDINFO 86: Proceedings ofthe Fifth Conference on Medical Informatics, Washington, October 1986, North-Holland.[76] David S. Schade and R. Philip Eaton, \Diabetic Ketoacidosis | Pathogene-sis, Prevention and Treatment," in Clinics in Endocrinology and Metabolism,volume 12, chapter 4, pages 321{338, W.B. Saunders Company Ltd, July 1983.[77] Alicia Schi�rin, Marko Mihic, et al., \Computer-assisted Insulin Dosage Adjust-ment," Diabetes Care, 8(6):545{552, November{December 1985.[78] Robert S. Sherwin, Karl J. Kramer, et al., \A Model of the Kinetics of Insulinin Man," The Journal of Clinical Investigation, 53:1481{1492, May 1974.[79] Yoav Shoham, \Chronological Ignorance: Time, Nonmonotonicity, Necessityand Causal Theories," in Proceedings of the National Conference on Arti�cialIntelligence, volume 1, pages 389{393, 1986.[80] Edward H. Shortli�e, A. Carlisle Scott, et al., \ONCOCIN: An Expert Systemfor Oncology Protocol Management," in Proceedings of the Seventh InternationalJoint Conference on Arti�cial Intelligence, pages 876{881, 1981.[81] Jay S. Skyler, Denise L. Skyler, et al., \Algorithms for Adjustment of InsulinDosage by Patients Who Monitor Blood Glucose," Diabetes Care, 4(2):311{318,March{April 1981.[82] Richard Snodgrass and Ilsoo Ahn, \Temporal Databases," Computer, 19(9):35{42, September 1986.

136 CHAPTER 10. REFERENCES[83] Richard M. Stallman and Gerald J. Sussman, \Forward Reasoning andDependency-Directed Backtracking in a System for Computer-Aided CircuitAnalysis," Arti�cial Intelligence, 9(2):135{196, 1977.[84] Pate D. Thomson, Kenneth L. Melmon, et al., \Lidocaine Pharmacokinetics inAdvanced Heart Failure, Liver Disease, and Renal Failure in Humans," Annalsof Internal Medicine, 78:499{508, 1973.[85] Steven Vere, \Temporal Scope of Assertions and Window Cuto�," in Proceed-ings of the Ninth International Joint Conference on Arti�cial Intelligence, pages1055{1059, 1985.[86] Brian C. Williams, Circumscribing Circumscription: A Guide to Relevance andIncompleteness, AIM 868, Massachusetts Institute of Technology, Arti�cial In-telligence Laboratory, 545 Technology Square, Cambridge, MA, 02139, October1985.[87] W lodek W. Zadro_zny, \A Theory of Default Reasoning," in Proceedings of theNational Conference on Arti�cial Intelligence, pages 385{390, American Associ-ation for Arti�cial Intelligence, 1987.

Appendix ACases Used for Evaluation
The cases used for the program evaluation are presented here. For each case the datais arranged chronologically in three tables: vital signs, oral
uids and urine output;blood chemistries and blood gas measurements; and the actual treatment given. Thisis followed by a table identifying the decision points and presenting the competingtreatment plans. As in the evaluation results, an asterisk (*) identi�es those decisionswhich were eliminated from the analysis because of data coding errors.
A.1 Case Keto 11Keto 11, a 15yo male: This is one of several admissions for this patient with a 2 yearhistory of IDDM. Since diagnosis, patient has been hospitalized 7{8 times for controlof his diabetes. Patient was in his usual state of health until 1 week prior to admissionwhen he developed upper respiratory tract infection syndrome with cough and runnynose. \He felt warm" all week but he never took his temperature. Aspirin o�ered norelief, and Contac simply made him drowsy. On the evening prior to admission heate a late dinner, but had not eaten all day. The morning of admission he took hisinsulin, went to school without eating breakfast and started to feel extremely tired andnauseated with dyspnea on his way to school. He vomited once and returned hometo fall asleep. Upon arrival at the hospital for his usual appointment an acetone-likeodor was noted on his breath and he was referred to the Pediatric Walk In Clinic.HPI: INFECTIONx3 days, NAUSEAx1 day, VOMITINGx1, INSULIN-TAKENPMH: IDDMx2 years, DKAx8Baseline Insulin: 50U Lente SQ qam 137

138 APPENDIX A. CASES USED FOR EVALUATIONVital Signs UrineTime Temp HR BP RR Weight PO-In Vol Ket Gluc10/6 11:00a 34.8 96 110/60 24 49.0kg1:00p 35.8 88 18 240 1500 ++++ ++++1:30p +++ ++++3:00p 36.8 80 122/80 28 49.8kg10:30p 1100 ++++ ++++10/7 12:00a 4801:00a 36.5 86 120/80 208:00a 37.0 90 2011:00a 36.8 86 120/80 24 49.0kg11:30a 1503:00p 19504:50p 36.9 84 122/84 248:45p 37.1 84 124/90 2011:30p 950 ++ ++++
Laboratory (Serum) Blood GasTime Na K Cl CO2 Cr BUN Phos Ket Gluc pH pO2 pCO2 HCO3 FIO210/6 11:30a 240-40011:35a 140 4.0 104 12 0.7 12 3.9 ++ 437 V 6.96 26 36 8 RA12:55p 136 4.4 106 9 468 V 6.94 39 32 7 RA1:00p 240-4002:35p 240-4002:50p 138 4.4 112 8 2.7 366 A 7.05 148 16 44:30p 136 4.3 111 11 0.5 9 2.7 3474:45p 180-2406:10p 120-1807:30p 120-1809:00p 120-18011:00p 120-18010/7 1:00a 120-1803:00a 120-1805:00a 80-1207:00a 137 3.4 112 18 0.7 10 194 V 7.26 55 38 1711:00a 180-24012:30p 180-2402:00p 240-4003:00p 180-2404:45p 180-2407:00p 120-18010:30p 240-40011:30p 240-400

A.1. CASE KETO 11 139IV Fluid Therapy Insulin TherapyTime Type Rate Addition Type Rate Add. Total IV-Drip IV-Bolus SQ10/6 11:00a11:30a NS 857 0 012:40p # 194 1000 01:30p # 140 20KCl, 2.5KPhos 1162 02:00p # 180 # 1232 5U/hr3:00p # 400 40KCl, 5KPhos 1412 10U/hr4:00p # 118 # 1812 5U/hr8:00p # 133 # 2284 2U/hr9:00p # 123 # 2417 #10/7 11:30a # 110 # 4201 # 50U Lente1:30p # # # 4421 01:45p | 0 | 4449 011:30p | 0 | 4449 0

140 APPENDIX A. CASES USED FOR EVALUATION# TimeReal Advice1. 10/611:30a NS at 1500ml/hrNo IV insulin drip NS at 80ml/hrNo IV insulin drip5U Reg insulin SQ2. 10/612:40p NS at 180ml/hrNo IV insulin drip 12NS w/ 20mEq KCl/` at 125ml/hrInsulin at 5U/hr5U Reg insulin IV bolus3. 10/61:30p NS w/ 20mEq KCl, 2.5ml KPhos/`at 180ml/hrNo IV insulin drip 12NS w/ 20mEq KCl, 1amp Bicarb/`at 600ml/hrInsulin at 5U/hr5U Reg insulin IV bolus4. 10/62:00p NS w/ 20mEq KCl, 2.5ml KPhos/`at 180ml/hrInsulin at 5U/hr NS w/ 20mEq KCl, 1amp Bicarb/`at 600ml/hrInsulin at 5U/hr5U Reg insulin IV bolus5. 10/63:00p NS w/ 40mEq KCl, 5ml KPhos/`at 180ml/hrInsulin at 5U/hr NS w/ 20mEq KCl, 1amp Bicarb/`at 600ml/hrInsulin at 2U/hr6. 10/64:00p NS w/ 40mEq KCl, 5ml KPhos/`at 130ml/hrInsulin at 5U/hr NS w/ 20mEq KCl, 1amp Bicarb/`at 500ml/hrInsulin at 5U/hr7. 10/68:00p NS w/ 40mEq KCl, 5ml KPhos/`at 130ml/hrNo IV insulin drip D5-NS w/ 20mEq KCl/` at 250ml/hrInsulin at 5U/hr8. 10/69:00p NS w/ 40mEq KCl, 5ml KPhos/`at 130ml/hrInsulin at 2U/hr D5-NS w/ 20mEq KCl/` at 125ml/hrInsulin at 2U/hr9. 10/711:30a NS w/ 40mEq KCl, 5ml KPhos/`at 130ml/hrInsulin at 2U/hr50U Lente insulin SQ No IV
uidsInsulin at 1U/hr40mEq KCl10. 10/71:30p NS w/ 40mEq KCl, 5ml KPhos/`at 130ml/hrNo IV insulin drip No IV
uidsInsulin at 1U/hr40mEq KCl11. 10/71:45p No IV
uidsNo IV insulin drip No IV
uidsNo IV insulin drip40mEq KCl12. 10/711:30p No IV
uidsNo IV insulin drip6U Reg insulin SQ No IV
uidsNo IV insulin drip5U Reg insulin SQ40mEq KCl

A.2. CASE KETO 13 141A.2 Case Keto 13Keto 13, a 21yo male: Patient has had IDDMx8yrs. Approximately 24hrs beforeadmission he was at a party and drank heavily such that he had a prolonged episodeof nausea and vomiting. He reported to ER feeling dehydrated, with complaints of left
ank pain. Patient presents afebrile and in moderate distress. Mucous membranesdry, lungs clear. Patient complains of polydipsia, denies polyuria. Patient deniesinfection of any sort, no diarrhea, cough, rhinitis, etc.HPI: VOMITINGxMULTIPLE, NAUSEAx1 day, POLYDIPSIAx1 day, ETOH,INSULIN-TAKENPMH: IDDMx9 years, DKAx1Baseline Insulin: 40U LENTE SQ qamVital Signs UrineTime Temp HR BP RR Weight PO-In Vol Ket Gluc6/23 11:35a 37.4 124 120/76 2211:45a 37.4 120 150/80 222:55p 104 130/86 22 6803:00p +++ ++++6:45p 37.4 92 140/90 22 66.2kg9:00p 96 150/90 206/24 12:00a 36.5 89 110/66 166/23 11:35a Pulse and BP: ! 120 160/90, " 124 120/76Laboratory (Serum) Blood GasTime Na K Cl CO2 Cr BUN Phos Ket Gluc pH pO2 pCO2 HCO3 FIO26/23 11:35a 140 6.0 98 7 1.2 26 8.2 +++ 5721:05p A 7.12 138 19 6 RA2:30p 142 5.0 108 12 1.1 22 ++ 3425:40p 138 4.7 108 17 1.0 20 ++ 2476:45p 240-4009:00p 138 4.9 108 21 1.9 1656/24 12:00a 40-80IV Fluid Therapy Insulin TherapyTime Type Rate Addition Type Rate Add. Total IV-Drip IV-Bolus SQ6/23 11:45a NS 2667 0 012:30p # 500 2000 0 10U Reg1:00p # # 2250 3U/hr1:30p # 95 2500 6U/hr6:45p # 185 2999 #7:30p # 186 3138 3U/hr10:20p # 200 3665 2U/hr 15U Reg11:30p # # 3898 06/24 12:00a # 143 30KCl 3998 0

142 APPENDIX A. CASES USED FOR EVALUATION# TimeReal Advice1. 6/2311:45a NS at 1500ml/hrNo IV insulin drip NS at 1000ml/hrNo IV insulin drip* 6/2312:30p NS at 250ml/hrNo IV insulin drip10U Reg insulin IV bolus NS at 350ml/hrNo IV insulin drip2. 6/231:00p NS at 250ml/hrInsulin at 3U/hr 12NS w/ 1amp Bicarb/` at 350ml/hrInsulin at 3U/hr3. 6/231:30p NS at 250ml/hrInsulin at 7U/hr 12NS w/ 1amp Bicarb/` at 250ml/hrInsulin at 3U/hr4. 6/236:45p NS at 200ml/hrInsulin at 7U/hr NS w/ 20mEq KCl/` at 500ml/hrInsulin at 7U/hr5. 6/237:30p NS at 200ml/hrInsulin at 3U/hr NS w/ 20mEq KCl/` at 500ml/hrInsulin at 6U/hr6. 6/2310:20p NS at 200ml/hrInsulin at 3U/hr15U Reg insulin SQ NS w/ 5ml KPhos/` at 250ml/hrNo IV insulin drip7. 6/2311:30p NS at 200ml/hrNo IV insulin drip NS w/ 5ml KPhos/` at 250ml/hrNo IV insulin drip8. 6/2412:00a NS w/ 30mEq KCl/` at 200ml/hrNo IV insulin drip NS w/ 5ml KPhos/` at 250ml/hrNo IV insulin drip
A.3 Case Keto 15Keto 15, a 25yo female: Patient with c/o nausea and vomiting since 5am (hasvomited 4{5x). Also c/o pleuritic mid-sternal CP x 2 days. Pain not related toexertion and does not change with position. Patient was seen yesterday with negativeCXR and EKG. No cough or SOB. No fever or chills. Recent UGI was negative. Hasnot been feeling well for about 4 weeks. Concerned about younger sister w/ cancerand an upcoming move to California. Has taken her insulin as usual (last dose lastnight). No dysuria.HPI: NAUSEAx1 day, DIARRHEAx1 day, VOMITINGx6PMH: IDDMx7 years, DKAxMULTIPLEBaseline Insulin: 7U Reg, 35U Lente SQ qam

A.3. CASE KETO 15 143Vital Signs UrineTime Temp HR BP RR Weight PO-In Vol Ket Gluc6/3 7:23a 120 116/747:30a 96 118/70 288:30a 108 112/70 2210:30a 98 116/70 2011:15a 37.1 102 201:00p 37.0 90 114/60 20 56.1kg 2502:00p 2504:00p 37.0 95 108/64 20 500 ++++ +++6:30p 90 110/60 187:00p 1808:00p 37.4 101 108/64 189:00p 12010:00p 89 104/68 16 120 4006/4 12:00a 36.7 72 104/66 161:00a 180 6002:00a 76 114/76 164:00a 36.8 74 110/70 165:00a 180 5756:00a 79 120/88 188:00a 36.2 83 102/64 189:00a 180 800 010:00a 88 102/66 16 18012:00p 98 106/64 16 180 700 06/3 7:23a Pulse and BP: ! 96 118/70, " 120 116/74Laboratory (Serum) Blood GasTime Na K Cl CO2 Cr BUN Phos Ket Gluc pH pO2 pCO2 HCO3 FIO26/3 7:35a 138 5.0 107 11 0.8 15 3.5 5627:57a A 7.15 128 21 7 RA10:13a 146 4.5 118 14 0.7 14 2612:45p 134 4.3 112 15 2803:00p 3144:00p 2165:00p 1647:00p 137 4.0 112 18 1298:00p 1959:00p 19410:00p 120-18011:00p 16611:40p 136 4.2 111 21 1616/4 1:35a 864:00a 138 4.2 112 22 0.8 8 2.3 0 1238:00a 1428:40a 138 4.3 113 18 0.7 5 1.8 0 14910:00a 9312:00p 93

144 APPENDIX A. CASES USED FOR EVALUATIONIV Fluid Therapy Insulin TherapyTime Type Rate Addition Type Rate Add. Total IV-Drip IV-Bolus SQ6/3 7:23a7:30a NS 750 0 08:30a # # 750 5U/hr 10U Reg8:50a # 414 1000 #9:15a # # 1172 10U/hr9:20a # # 1206 4U/hr11:15a D5-NS 133 2000 #3:00p D5- 12NS 200 40KCl, 3KPhos 2499 #8:00p # 169 10KPhos 3499 #6/4 1:35a # 196 # 4443 2U/hr8:30a # 200 # 5799 # 7U Reg, 35U NPH10:30a # # # 6199 012:00p # # # 6499 0# TimeReal Advice1. 6/37:30a NS at 1000ml/hrNo IV insulin drip NS at 1000ml/hrNo IV insulin drip* 6/38:30a NS at 1000ml/hrInsulin at 5U/hr10U Reg insulin IV bolus NS w/ 1amp Bicarb/` at 250ml/hrNo IV insulin drip2. 6/38:50a NS at 500ml/hrInsulin at 5U/hr 12NS w/ 1amp Bicarb/` at 250ml/hrInsulin at 5U/hr3. 6/39:15a NS at 500ml/hrInsulin at 10U/hr 12NS w/ 1amp Bicarb/` at 150ml/hrInsulin at 5U/hr4. 6/39:20a NS at 500ml/hrInsulin at 5U/hr 12NS w/ 1amp Bicarb/` at 150ml/hrInsulin at 5U/hr5. 6/311:15a D5-NS at 200ml/hrInsulin at 5U/hr 12NS w/ 20mEq KCl/` at 150ml/hrInsulin at 3U/hr6. 6/33:00p D5- 12NS w/ 40mEq KCl, 3ml KPhos/`at 200ml/hrInsulin at 4U/hr 12NS w/ 20mEq KCl/`at 90ml/hrInsulin at 4U/hr7. 6/38:00p D5- 12NS w/ 10ml KPhos/` at 200ml/hrInsulin at 4U/hr NS w/ 20mEq KCl/` at 90ml/hrInsulin at 1U/hr8. 6/41:35a D5- 12NS w/ 10ml KPhos/` at 200ml/hrInsulin at 2U/hr NS w/ 20mEq KCl/` at 175ml/hrInsulin at 1U/hr9. 6/48:30a D5- 12NS w/ 10ml KPhos/` at 200ml/hrInsulin at 2U/hr7U Reg, 35U NPH insulin SQ No IV
uidsNo IV insulin drip7U Reg, 35U Lente insulin SQ10. 6/410:30a D5- 12NS w/ 10ml KPhos/` at 200ml/hrNo IV insulin drip D5-NS w/ 5ml KPhos/` at 200ml/hrInsulin at 2U/hr11. 6/412:30p D5- 12NS w/ 10ml KPhos/` at 200ml/hrD10 at 75ml/hrNo IV insulin drip D5-NS w/ 5ml KPhos/` at 300ml/hrNo IV insulin drip

A.4. CASE KETO 16 145A.4 Case Keto 16
Keto 16, a 25yo female: Patient has \kidney infection" and c/o nausea. She camein to have her BS checked. Is now being Rx for UTI from four days PTA. Three daysago BS = 325, declined with 5U regular insulin. BS 304 this am, 469 in pm. CalledEndo-on-call who Rx'd 4U extra insulin. Rechecked in evening (> 400). Presentedat ER.HPI: INFECTIONx5 days, NAUSEAx1 dayPMH: IDDMx17 yearsBaseline Insulin: 10U Reg, 30U NPH SQ qam; 8U Reg, 10U NPH SQ qpmVital Signs UrineTime Temp HR BP RR Weight PO-In Vol Ket Gluc8/14 7:02p 36.6 76 130/80 1810:30p + ++++8/15 12:30p 37.2 120 120/906:15p 36.8 84 142/92 20 74.9kg8/16 7:00a 230 + ++++8:00a 36.7 84 130/78 168/15 12:20a Patient Discharged to home.8/15 11:25a Patient returned to emergency room.8/15 6:15p Patient enters ward from emergency room.Laboratory (Serum) Blood GasTime Na K Cl CO2 Cr BUN Phos Ket Gluc pH pO2 pCO2 HCO3 FIO28/14 10:00a 4695:00p 400+7:25p 133 4.7 94 26 0.9 19 51410:45p 3788/15 7:00a 42112:30p 132 4.9 92 23 1.1 21 6752:29p ++10:00p 2458/16 2:00a 2177:00a 3088:30a 138 4.6 103 27 26912:00p 1354:30p 1868/17 7:00a 109

146 APPENDIX A. CASES USED FOR EVALUATIONIV Fluid Therapy Insulin TherapyTime Type Rate Addition Type Rate Add. Total IV-Drip IV-Bolus SQ8/14 10:00a2:00p | 0 | 0 0 4U Reg5:00p | 0 | 0 0 8U Reg, 10U NPH8:45p | 0 | 0 0 4U Reg8/15 7:00a | 0 | 0 0 10U Reg, 30U NPH1:00p NS 95 0 02:10p # # 111 0 10U Reg6:15p # 171 499 09:45p # 186 10KCl 1097 08/16 7:00a # 131 # 2817 0 10U Reg, 30U NPH4:00p # 78 # 3996 0 8U Reg, 10U NPH8/17 7:00a # # # 5166 0# TimeReal Advice1. 8/148:45p No IV
uidsNo IV insulin drip4U Reg insulin SQ NS w/ 20mEq KCl/` at 90ml/hrInsulin at 6U/hr6U Reg insulin IV bolus2. 8/157:00a No IV
uidsNo IV insulin drip10U Reg, 30U NPH insulin SQ NS at 90ml/hrNo IV insulin drip10U Reg, 15U NPH insulin SQ3. 8/151:00p NS at 100ml/hrNo IV insulin drip NS at 90ml/hrNo IV insulin drip4. 8/152:10p NS at 100ml/hrNo IV insulin drip10U Reg insulin SQ NS w/ 20mEq KCl/` at 90ml/hrInsulin at 6U/hr6U Reg insulin IV bolus5. 8/156:15p NS at 175ml/hrNo IV insulin drip NS w/ 20mEq KCl/` at 100ml/hrInsulin at 7U/hr7U Reg insulin IV bolus6. 8/159:45p NS w/ 10mEq KCl/` at 175ml/hrNo IV insulin drip NS at 100ml/hrNo IV insulin drip7. 8/167:00a NS w/ 10mEq KCl/` at 175ml/hrNo IV insulin drip10U Reg, 30U NPH insulin SQ No IV
uidsNo IV insulin drip15U Reg, 30U NPH insulin SQ8. 8/164:00p NS w/ 10mEq KCl/` at 175ml/hrNo IV insulin drip8U Reg, 10U NPH insulin SQ No IV
uidsNo IV insulin drip9. 8/177:00a NS w/ 10mEq KCl/` at 175ml/hrNo IV insulin drip10U Reg, 30U NPH insulin SQ No IV
uidsNo IV insulin drip10U Reg, 30U NPH insulin SQ

Appendix BEvalution Results by CaseTables B.1{B.4 show the raw data for the Ketoacidosis Advisor evaluation. Raters aredesignated by a code which identi�es their training: \S" for students, \F" for fellows,and \A" for attending physicians. Student ratings were not used in the performanceevaluation. The scores for the \real" and the \advice" rows are encoded by the �rstletter of the scale: Dangerous, Poor, Acceptable, Good, Excellent. The \prefer" rowuses \R" to designate the real treatment, \A" to identify the advice and a single plussign (+) to indicate that the given treatment choice was deemed better. Two plussigns (++) denote much better. No preference is indicated by \None." An asterisk (*)in the \Decision Point" column indicates the value was not used in the data analysisbecause the data collection was corrupted|Information was available in the clinicthat was not provided to the evaluators. The reader can con�rm that eliminatingthese evaluations improves the relative performance of the actual treatment.

147

148 APPENDIX B. EVALUTION RESULTS BY CASE
Table B.1: Evaluation of Case 11Item Decision PointRater Type 1 2 3 4 5 6 7 8 9 10 11 12Real E G A P P P P A G P A AF1 Advice P A G G G G G G P G A APrefer +R +R +A +A +A +A +A +A +R +A +R +AReal P P P G P P P P P P A AA3 Advice E E G A E G E E P P P GPrefer ++A ++A +A +R ++A ++A ++A ++A None None +R +AReal A D D P A A D P A P D DS5 Advice P E G A D P P P D D D DPrefer +R +A ++A +A +R +R +A None +R None None NoneReal P P P P P P A P E E G AF6 Advice G G G G G G A P D P P DPrefer +A +A +A +A +A +A None None ++R ++R ++R +RReal P P P A A G A A P P D PA7 Advice G G A P P A P A P P D APrefer +A +A +A +R +R +R +R None +R None +R +AReal D D A E G E G A G D A GA9 Advice E E A A P P E E P E E APrefer ++A ++A None +R +R ++R None +A ++R ++A ++A NoneReal G P P G G A P P G A G AF10 Advice G P G A A G G G P P P APrefer +A +A +A +R +R +A +A +A +R +R +R +AReal P P D D A G A A G A G AA11 Advice A G E E G A E G A A A GPrefer +A ++A ++A ++A +A +R ++A +A +R None +R +AReal P P P P P P P P A A | |F13 Advice P A P A P P A A A A | |Prefer +A +A +R +A +A +A +A +A +A None | |

149
Table B.2: Evaluation of Case 13` Item Decision PointRater Type 1 * 2 3 4 5 6 7 8Real G P G A P G P A AF1 Advice A G P P P P A A GPrefer +R +A +R +R +A +R +A +A +AReal A P P A A G A A GS2 Advice A A G G G G G G APrefer None +A +A +A +A None +A +A +RReal G P G G A G P G PF4 Advice G G E E G G G G PPrefer None ++A ++A +A +A None ++A None NoneReal P P A A A P P P DS5 Advice A P P P P A P P DPrefer None None None +R +R +A None None NoneReal G P P P G G P P PF6 Advice A G G G P P A A PPrefer +R +A +A +A +R +R +A +A NoneReal A P A A A G D P PA7 Advice A A A A A A G A PPrefer None +A +A +R +R +R +A +A NoneReal A P P P G G D A DA8 Advice A A A A P P G A DPrefer +A +A ++A ++A +R ++R ++A +R NoneReal D P G G G E P G PA9 Advice D A P P P P E A GPrefer None +A +R +R +R ++R ++A None +AReal A D G G P P P A AF10 Advice A G P A G G G G GPrefer +A +A +R +R +A +A +A +A +AReal P A G G A A P P AA11 Advice A G A A P P A A APrefer +A +A +R +R +R +R +A +A None

150 APPENDIX B. EVALUTION RESULTS BY CASE

Table B.3: Evaluation of Case 15` Item Decision PointRater Type 1 * 2 3 4 5 6 7 8 9 10 11Real G P P P P G A G G G G GF6 Advice G G G G G P A P P P A APrefer None +A +A +A +A +R None +R ++R +R +R +RReal A P G A A A P A A P A AA7 Advice A A A P P P P P D D P APrefer None +A +R +R +R +R +A +R +R +R +R +RReal P D E G A P P G E G G GA9 Advice P P P A A E G G A A P GPrefer None None ++R None None ++A ++A None +R +R +R NoneReal G G G G G A E G G A A PF10 Advice G A A A A G A A A A G APrefer None +R +R +R +R +A +R +R +R +A +A None

151

Table B.4: Evaluation of Case 16` Item Decision PointRater Type 1 2 3 4 5 6 7 8 9Real G A A A A A G P AS2 Advice P G A G G G P A APrefer +R +A None +A +A +A +R +A NoneReal A P E A P A G D DF4 Advice G E G G E P P G DPrefer +A +A None +A +A None +R +A NoneReal A G G G P A G G PF6 Advice P A G D P G P P GPrefer +R +R None ++R None +A +R ++R +AReal P P P P P P P D AA7 Advice A P P A A A P P PPrefer +A +A None +A +A +A +R +A +RReal P D G A P P P D PA8 Advice A P G A A A G E APrefer +A +A None +A +A +A +A ++A +AReal A A G P P D P G AF10 Advice A A A E E D P A GPrefer +R +A +R +A +A None None +R +AReal P A A A P A A A PF13 Advice A A A A P A A P APrefer +A None +A +A +R +R +R +R +A

