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Abstract

Knowledge-based systems that perform monitoring and management must contend
with information that changes over time. Information that is changing, is delayed
and arrives out of order complicates the task of programming such systems. To
simplify the construction of monitoring and management systems, a Temporal Control
Structure (Tcs) has been developed which manages data dependencies over time. The
TCS simplifies the job of a system builder by decomposing reasoning into static and
dynamic components. To the extent that the decomposition is successful, each part
of the reasoning problem can be addressed separately and the overall task is easier to
accomplish.

The Temporal Control Structure performs the bookkeeping tasks needed to as-
sure that information is propagated and that the reasoning in the system is complete.
Completeness means that all data entered into the system have been processed, and no
more changes in the outputs of the system occur. To deal with the temporal complex-
ities of the monitoring domain, TCS exploits two properties common in monitoring;:
exact knowledge of when events occur and a fixed plan for handling eventualities.
These properties allow automatic scheduling of reasoning processes in response to
data changes and also allow data dependencies (needed for change propagation) to
be compiled into the program.

This report describes the design of the Temporal Control Structure and reports
the results of several reasoning systems implemented using the formalism. The most
ambitious system can track the progress of patients suffering from diabetic ketoaci-
dosis over the course of several days. In a formal evaluation by an expert panel, the
computer-generated advice was judged similar in quality to actual hospital treatment.
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Chapter 1

Introduction

Expert systems have typically involved a single consultation in which all of the in-
formation is available for analysis in reaching a diagnosis or other conclusion. This
is not always feasible in the real world. As systems evolve from one-shot consulta-
tion toward management, there will be a need to track information over time. The
very concept of management implicitly assumes there will be changes. In medicine,
for example, data that affect the medical decisions change over time, necessitating a
revision of the description of the patient.

Programs that solve problems over time need to use data that are time dependent,
i.e., information that changes with time. Typical examples would be a patient blood
pressure in medicine, or wind direction and strength in handling a chemical plant
accident. The ability to accept and react to changing data lies at the heart of the
management task.

There are several complications that increase the difficulty of finding solutions.
First, information may not be instantly available. Some laboratory analyses take
time to perform. When the information becomes available, it refers to conditions
at some time in the past. Because the delays are not uniform, information can also
arrive out of sequence. In order for the data to be properly interpreted, updating of
conclusions must take place. In this process care must be exercised because actions
taken in the past cannot be undone. They must be accepted and compensated for
in the future. Although it is legitimate to use all information when evaluating the
correctness of decisions, any explanation of why certain actions were taken must use
only information that was available at the time the decision was made.

I solve these problems using a model of temporal reasoning which divides con-
tinuous dynamic processes into static segments, coupled with a dependency-directed
updating system that allows conclusions to be retracted as information changes. The
static segmentation is used to simplify the reasoning process and is similar to tech-
niques used in other engineering disciplines. Two examples are the piece-wise linear
decomposition of more complex functions and the division of device characteristics
into operating regions in electronics.
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In this work, I supplement the static elements with data links to model dynamic
processes. Finally, I use data-directed updating to ensure that conclusions have access
to all relevant data, and to retract conclusions that are no longer supported by the
data.

1.1 Motivation: Clinical Management

The initial impetus for this work was a need to improve the technology for designing
intelligent monitoring systems. Management imposes the need to monitor data that
change over time, the need to retract erroneous assumptions or refine initial assess-
ments, and the need to act in spite of the incompleteness of the data. Many past
Artificial Intelligence in Medicine (AIM) programs have concentrated on the diagnos-
tic problem in the context of a single consultation. Even programs which evaluate the
temporal course of an illness [45] assume all of the information that is known about
the patient is available at the time of the consultation.

An expert system for cardiac intensive care monitoring (the Arrhythmia Advi-
sor) [68, 73] demonstrated a need for better tools for expert system construction. In
that environment, continuous heartbeat monitoring information is available, along
with occasional input from clinical laboratory tests and bedside examinations [54].
The original expert system for therapy management was able to handle some time-
varying data, but it did not have a general mechanism for dealing with time. Con-
sequently, some of the time-varying data were not properly used, because special-
purpose coding of the temporal aspects of the reasoning was needed.! Aside from
being inelegant, the need to use special care in the system implementation increased
the likelihood that programming errors would be introduced, particularly the omission
of updating in response to data changes.

In the case of laboratory test data, changes in patient state or clinical interventions
often occur between the time samples are sent to be tested and the time the results
are reported. The state of the patient disease can change, and interim therapy can
be instituted without waiting for all of the data. Figure 1.1 illustrates the interaction
of these events in a clinical setting. Acting before all of the data is gathered is
especially common in emergency rooms and intensive care units, where the urgency of
life-threatening problems precludes a strategy of waiting for complete data collection
and a definitive diagnosis.

Even if there were no problem caused by data that arrive out of temporal sequence,
some capability to change past information entered into the system is also required of a
real-world system, because it must be possible to make changes in the data in order to
correct data that are later determined to have been in error. This problem appears
in cardiac intensive care, because one of the primary sources of data, automated

1An example was the effect of changes in weight or cardiac output on models used to predict
drug concentration. An example showing how Tcs successfully handles this problem is presented in
chapter 3.
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electrocardiographic monitoring, is prone to a small but significant number of errors
that can be detected during post-editing by trained clinical personnel. If such post-
editing indicates an error in the data, then the program should be able to take that
into account. Since events occurring in the past can affect the current assessment and
treatment of a patient, one cannot simply ignore changes to “old” data.

These problems led to the invention of a mechanism to support the programming
of monitoring systems. In addition to the development of a software architecture
for such expert systems, I report the results of applying the approach to a clinical
problem: the management of patients in acute diabetic ketoacidosis. I demonstrate
the effectiveness of the program by a formal evaluation of the computer-generated
advice by a panel of physicians in a blind study. In the remainder of this chapter I
discuss the design considerations and sketch the function of the system architecture.
A more detailed discussion of the implementation of the programming shell follows.
I then present the design and evaluation of a Ketoacidosis Advisor, followed by a
comparison of this approach with previous work in the field. Finally, I present a
summary of the work and directions for further research.

1.2 Constraints: System Design Considerations

In this section I describe the problems that must be solved by a tool for creating
systems that use time-dependent data. I first present the requirements that make the
solution of the reasoning problem more difficult; then I examine domain features that
can be exploited to simplify the programming task. The design challenge is to use
the latter to make coping with the complicating factors work reasonably.

A system with a management component interacts with its environment in pursuit
of some goal such as “stabilizing a patient” or “protecting citizens from a chemical
cloud.” To solve the task, the system has actions that can affect the environment,
but action is complicated because the environment can change autonomously, and
reports concerning the state of the environment may be delayed or arrive out of
sequence. These characteristics require an ability to modify conclusions which depend
on the newly available data. A thesis of this work is that such updating should be
incremental and opportunistic, rather than global. This hypothesis is based on the
presumed locality of effect. In a complicated system, it is rare that one piece of
information will radically change the interpretation of all of the other information in
the system. This premise justifies using a dependency-based updating scheme.

In sum, the complicating features that characterize management and monitoring
tasks are:

1. Data change over time. Since a single measurement or variable can have different
values at different times, a model of time is required.

2. Information does not arrive in order. A mechanism for generating the correct
conclusions using data that arrives after a time delay and out of order must
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be present. To the greatest extent, this function should be transparent to the
program.

3. Reasoning in the past and in the future are different. Conclusions and interpre-
tations can change in the past, while actions cannot. This dichotomy must be
supported.

4. Complete updating is required. The system must insure that all decisions that
rely on a particular datum are updated when changes to that datum occur.

5. The system is not in complete control. Management is complicated because
the environment can change autonomously. In addition, the actions that can
be taken do not always have the desired effect (predictability is limited). This
aspect of the domain needs to be considered in the system design.

These features make the job of constructing an expert system more difficult. To ease
the task, a programming system can exploit three characteristics of the monitoring
domain:

1. Good temporal resolution. Since the environment is under surveillance, the
system knows when observations of the environment take place and when actions
are carried out. This eliminates the uncertainty in the time of data and actions.
This is a powerful feature that can be exploited to limit the work that the
system must perform.

2. Protocol-driven management. In the medical domain, much of the treatment
of specific problems is driven by a protocol, a set plan of action. Although the
plan itself is flexible enough to be adapted to individual patient circumstances,
it is not necessary to generate a complete plan from scratch.

3. Parameters and actions are known in advance. The range of input variables
the system can observe and the type of actions that can be performed can be
determined in advance. Since the structure of the problem-solving task is not
in flux, compilation of the reasoning and, crucially, of the dependency structure
is possible.

I developed a computational model that exploits these general domain character-
istics to meet the requirements listed earlier. A system coupling dependency-directed
updating with temporal data can effectively deal with the problems encountered in
the patient management problem. The resulting techniques can be applied beyond
the intensive care domain that provided the initial motivation. The computational
model of temporal reasoning also provides a formalization of the data and reasoning
processes that gives insight to different fundamental types of reasoning with temporal
data. This insight can identify which processes are computationally more expensive
than others. In addition, this approach has the following advantages:
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1. There is no system-mandated reasoning paradigm. Decisions are specified in
Lisp, which is a powerful general-purpose programming language. Applications
can make use of disparate sources of information as well as heterogeneous deci-
sion procedures.

2. The algorithms for the actual decision making and the combination of evidence
are specified by the programmer. The programmer can make an informed deci-
sion about the algorithms used in the system.

3. Programming is simplified by an abstraction that separates static and dynamic
analysis. A static environment for reasoning is established with a series of such
static environments linked together to form a dynamic process.

4. The dichotomy between the static and dynamic components simplifies the tran-
sition from existing non-temporal expert systems to temporal ones. Existing
systems can be encapsulated in the static abstraction and the dynamics can be
implemented with the control structure.

The problems encountered in the arrhythmia monitoring project led to the design
and construction of a programming framework: one that could schedule reasoning
processes and update conclusions in the face of changes [53, 69]. Although the mo-
tivation for this approach arose in a medical setting, the mechanism itself does not
contain domain-specific knowledge, so it can be applied in other domains with similar
requirements.

1.3 Solution: Temporal Control Structure

I have designed and implemented a Temporal Control Structure (Tcs) which applies
the method of dependency-directed updating to the problem of data that change over
time. This extends and generalizes previous work on truth- (or reason-) maintenance
systems. My extension removes restrictions on the reasoning method and inverts
the system architecture. The basic reasoning unit is a temporal process instance,
which is treated as a “black box” by the system. The inputs and outputs of the
“black box” are monitored by the system and drive the updating process. I present a
detailed comparison of TCS and truth maintenance systems in section 8.2. The first
fundamental design decision was to use dependency-directed updating.

A second fundamental design decision was to separate the problem of reasoning
over time into two components: a static component and a dynamic component. A
continuous process is divided into a series of “segments,” each of which is a static
context. Temporal change is handled by the dynamic component, which links succes-
sive static components. A series of static states is used to model a dynamic process.
The segmentation is illustrated in figure 1.2.
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Figure 1.2: Segmenting a Temporal Process

Segmentation corresponds to the description of the problem by domain experts
in terms of states and changes of state. The usefulness of the state abstraction
explains the success and popularity of the rule-based paradigm of expert systems
design. In a classic rule-based system, each rule has a set of antecedents which refer
to a static situation, one in which each antecedent has a single value. The rule clauses
do not consider the possibility of changes in the values of the antecedents that are
being checked.? By being clever, we can use this state abstraction to simplify decision
making. Tcs supports this static abstraction as a principal technique in expert system
design. The TCs framework handles the bookkeeping details needed to schedule the
static reasoning units in an environment with changing data. This allows one to divide
reasoning in time into nearly orthogonal components: one which examines current,
unchanging values, and another which handles the changes in values.

By segmenting the reasoning, a designer can divide the task of reasoning over all
of time into smaller pieces that can be more readily handled. This division of the
timeline through segmentation creates distinct temporal regions. As figure 1.3 shows,
each process instance has the time divided into a current period, a (relative) past and
a (relative) future. By appropriately choosing the starting and ending times of the
process instance, the values of inputs to a decision can be held constant during the
current period, with all changes in value taking place either in the future or the past.
It is important to make a distinction between the absolute past (or future) and the
relative past (or future). The absolute times are measured against the real-world time.
Maintaining this distinction is important because no system can take actions in the
past. The point of reference for absolute time is now, a TCS variable which represents
the time in the real world. Relative time is the timeline seen from the point of view
of an executing process instance. Parts of the reasoning process that occur earlier
on the timeline than the current process are in the relative past, while parts of the

2Exceptions to this are vM and TOPAZ which T describe later (see sections 8.3.2 and 8.3.3).
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Figure 1.3: The View from a Single Process Instance

decision that occur later are in the relative future. The point of reference for relative
time is the execution interval for the current process instance. For reasoning that
processes data as it arrives, the relative and absolute reference points may coincide.
In reasoning about changed data or speculating about the future, the relative and
absolute reference points will typically be different. In general, the meaning of the
terms “past” and “future” will be clear from the context. When necessary, I use the
qualifying terms “relative” and “absolute”.

In order to provide the updating services, the Temporal Control Structure must
know the data dependencies of each decision. Since complete updating is required,
access to data must be limited to that which has been declared to the system. At
the same time, however, the system should impose the minimum restrictions on the
calculation performed by the reasoning elements. To accomplish this, each reasoning
unit, called a module, declares the time-varying information upon which its conclusion
depends. A module is the static description of a process instance, and corresponds to
a procedure definition in a programming language; the process instance corresponds
to a procedure invocation. The interface declared to the TCS consists of the inputs,
outputs and internal state variables. The inputs and outputs link different modules
whereas the state variables link successive process instances of the same module.
Figure 1.4 shows the interfaces between process instances. The details of the algorithm
or reasoning method used inside the module are of no interest to the TCs. It is only
required that the algorithm be a deterministic function of the inputs and internal
state. The reasoning modules themselves serve as black boxes, whose interface to the
world is only through variables that have been declared to the Tcs. The updating is
accomplished by having the TCS monitor the value of all of the temporal variables and
then schedule the appropriate reasoning modules whenever the input values change.
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Figure 1.4: Interfaces Between Process Instances in the TCS.

The TCS need only be able to establish equality of value for the variables.

Tcs restricts the data availability of each process instance to the values of its input
variables during the interval of execution. The only access to data from outside this
interval is through the use of internal state variables (which are made known to TCs).
This restriction allows a clean implementation of the updating mechanism without
sacrificing data access. It also means that the need to update a process instance can
always be determined on the basis of locally available information.

The TcCs is able to support the static abstraction and guarantee complete updating
by imposing only minimal restrictions on the data values and on the types of reasoning
that can be implemented in the modules. Variable values are limited in only two ways:

e Times on variable values must be exact.

e Equality of variable values must be computable.

The first restriction allows automatic scheduling of process instances in response to
changing values without ambiguity or the need to have a branching model of time. The
second restriction is used to stop the propagation of values when they are no longer
changing. Since the only system-imposed requirement is that the equality of values
be computable, the data representation remains largely unconstrained. Reasoning
modules also have very few restrictions:

e Functions must be deterministic. If invoked with the same inputs, the same
output must be produced.
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e There can be no hidden state. The only communication between process in-
stances must be through system-declared variables, or state variables known to
the system.

These restrictions give the TCS the freedom to execute the process instances in any or-
der, and even to evaluate them more than once without affecting the outcome. Within
the restrictions noted above, each reasoning module can use any type of reasoning.
Arithmetic calculations, formal logical inference, statistical analyses and heuristic de-
cision rules are examples of the range of reasoning types that can be accommodated.
Since all decisions must be made in the black box modules, the system cannot be re-
sponsible for combining the effects of several different reasoning modules on any one
value, so any given variable can be the output of at most one reasoning module. Any
combination of values from different sources must be explicitly programmed by the
application designer in a module. This flexibility allows the programmer to specify
any method he wishes: a dominance relation, Bayesian combination of probabilities,
Dempster-Shafer evidence combination, an ad hoc method, etc. The decision-making
will be organized around the individual output variables. All immediate influences
on a particular value must be concentrated together in one module. The information
dependence of any variable’s value can therefore be readily determined simply by
examining the inputs of the reasoning module. Of course, a complex computation
may be decomposed into meaningful subparts by introducing additional variables and
corresponding reasoning processes.

The fundamental thesis of this work is that the division of the reasoning into static
and dynamic components is a suitable abstraction for simplifying the construction
of time-dependent expert systems. Techniques developed for constructing current
non-temporal expert systems can be incorporated into TCs-based systems through
the static context. Additional programming necessary for recognizing the important
dynamic aspects of the application domain can be added separately, resulting in a
natural decomposition of the development effort.

1.4 Overview of the Thesis

The remainder of the thesis is divided into three major sections. In the first section
(chapters 2—4) T describe the Temporal Control Structure design. In chapter 2 T
describe the low-level function of the Tcs. Chapter 3 contains an extended example
showing the implementation and control of a mathematical model, and in chapter 4
I present higher-level abstractions built on underlying TCS structures. In the second
section (chapters 5 and 6) I report on the design and evaluation of a major application:
a therapy advisor for handling diabetic ketoacidosis. The construction of an effective
expert system demonstrates the practicality of using TCS in a real world domain.
Finally, in chapters 7 and 8 I relate TCS to other work in the field and discuss the
future development of the Temporal Control System.



Chapter 2

Reasoning Model

The core of TCS is a simple but low-level system that assures complete updating.
A programmer working at this level has the greatest flexibility, but at the cost of
having to write the most detailed code. More abstract reasoning tasks can be built
on top of this substrate. Such reasoning abstractions exploit the combination of
common temporal reasoning tasks to provide higher-level functions which hide some
of the detailed calculations. The updating guarantees are preserved at the higher level
because they are derived from the underlying substrate. This approach has the further
advantage of allowing TCS to acquire more powerful tools as experience in using the
system grows. Most of the higher-level tools were developed as generalizations of low-
level inference procedures that solved commonly occuring problems. One example is
a module which calculates the persistence (for reasoning purposes) of information
derived from a point sample.

In this chapter T describe the basic components of the Tcs. I show in the next
chapter how TCS can be used to implement a simple time-dependent mathematical
model. In chapters 4 and 5, I introduce the higher-level abstractions.

The control structure embodies a model of temporal reasoning that facilitates
the efficient updating of the state of knowledge of the system. Tcs updating uses
data dependency to limit the work performed to that which is absolutely required.
This requires that the control system be aware of the data dependencies among the
individual reasoning elements that implement the decision-making. For example,
a weather module that uses temperature, wind speed and humidity in producing a
forecast must declare the dependence of its reasoning on those variables. This enables
TCS to monitor variables and update conclusions that depend on the variable values.
I describe the exact requirements and their effects below in section 2.2

All data in the system are associated with points or intervals on a time line. These
data are stored in point or interval variables. The variables collectively provide a cen-
tral repository for all of the information used by a TCs application. The database is
as complete a description of the world as possible. The description becomes progres-
sively more complete as inaccuracies are corrected and more conclusions are made.

11
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;5 Syntazx for defining TCS variables
(defmodvar name type options...) ; type is one of :point or :interval

;5 Syntazx for defining TCS reasoning modules
(defmodule name (inputs...) Coutputs...)
;1 process state declarations:
((type name options...) ; type is one of :history or :oracle

)

;5 implementation of the reasoning. In the body of the code, the input, output,
;5 and process state variables are referred to as ordinary Lisp variables.
program code

)

Figure 2.1: Basic Tcs Constructs

Based on this interpretation, incorrect past conclusions should be changed at their
moment in history. The “mistakes” are removed from the database whenever they
are discovered. (If it should be desirable to remember that things have changed, then
an audit trail of these changes can be maintained. Indeed, this allows a system to
explain why a change in values occurred. This is particularly useful in explaining
some action taken on the basis of information later determined to be false.)

Reasoning is performed by user-specified functions that act on information con-
tained in the temporal variables. As part of the definition of such a function, the
user must also declare the data dependencies. The syntax for defining variables and
reasoning modules is shown in figure 2.1. The program fragments in this thesis give
a general impression of TCS as a programming language. For a complete description
of the syntax and a discussion of the options the reader should consult the reference
manual [70].

2.1 Time and Data Model

A distinction can be made between several types of time-related databases. This
distinction, following terminology developed by Snodgrass [82] is made on the basis
of the types of questions that can be answered. A conventional database storing only
a set of facts without special support for time is called a snapshot database, because
is holds only the currently believed value for each entry. For example, one can only
ask “Do we know anyone who has broken the Enigma code?” When time is added,
there are two separate time axes that define the information in a database. The
first time axis is transaction time, which describes when information is entered into
a database. By keeping track of transaction time, one can answer questions about
the state of a database as of any particular time: “As of February 1945, do we know
anyone who has broken the Enigma code?” At any moment, however, there is only
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Figure 2.2: Time and Databases

one entry for each variable. Such a database is called a rollback database, because
we can always roll back the contents of the database to their values at a previous
time. The second, orthogonal axis is the valid time axis, which represents the time
(in the world) when a particular fact holds. Such a database is called historical.
The database can contain more than one value for each entry, as long as the entries
occur at different times. With this time axis, a different question is possible: “Do
we know anyone who has broken the Enigma code on January 1, 19427” Since the
value of the basic question—people who have broken the Enigma code—can change
over time, multiple entries are possible. With a historical database, one can ask for
any particular value. Since the two time axes are independent (see figure 2.2), one
can combine them and implement a temporal database, combining the features of the
rollback and the historical databases. This allows a combined question such as “As of
February 1945, do we know anyone who has broken the Enigma code on January 1,
19427” Such a question addresses both the time when an entry had a particular value
(valid time) and the time we found out the value of that entry (transaction time).

The database used in TCS is fundamentally a historical database, but in the im-
plementation I made provision for storing the additional information needed to make
it a temporal database. In order to conserve memory space, I have not exploited this
capability in any of the experiments I have conducted so far.

What distinguishes TCS from a conventional historical or temporal database is the
close link between the contents of the data base and the inference methods. This link
is analogous to the connection between the database in a rule-based system and the
rules, insofar as both systems relieve the application creator of the need to program
explicitly the connection between information being entered into the database and
the execution of inferences. By automatically scheduling inferences in response to
data as they become available, TCS allows an implementor to ignore the effects of the
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Figure 2.3: Inputs without Exact Endpoints

transaction time axis on the program. Since all relevant decisions will be reconsidered
if the data change, the order in which individual pieces of information arrive is irrel-
evant. One benefit of using the TCS is that it frees the implementor from the need to
handle the transaction time axis. Since this axis is an artifact of when information is
reported to the system, rather than a feature of the domain itself, transaction time
should not directly influence the decision-making.

2.1.1 Model of Time

The time model that T have implemented is a discrete time model. The time points are
the integers from negative to positive infinity. The code itself does not require integer
values, but some computational complexity results rely on the fact that the temporal
model is discrete rather than continuous. Aside from the computational issues, the
underlying model of time, whether discrete or continuous, is largely irrelevant to the
discussion in this thesis. It is important that all time points are precisely specified.

Time ranges (except as intervals with exactly fixed endpoints) are not permitted.
In other words, all times and extents must be explicitly specified. It is not possible,
for example, to have “fuzzy” endpoints on intervals. The problem with allowing
inexact time points is that it places the system’s scheduling algorithm in an awkward
position. Given the input situation in figure 2.3, where an inexact endpoint overlaps
another input’s endpoint, there are three qualitatively different orderings:

1. A’s value changes before B’s.
2. Both variables change values at the same time.
3. A’s value changes after B's.

In order to schedule this situation while maintaining the static abstraction that we
find so useful, the system would need to create three future branches. It is easy
to see that this would greatly increase the computational load on the system. The
real situation could be even worse than the qualitative analysis suggests. Since the
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duration of the intervals might also be of interest, the number of possible points at
which A’s new value might begin is the same as the length of the fuzzy interval (using
a discrete time model). The number of branching futures that are required could be
equal to the duration of the uncertain interval. The TCS therefore does not support
fuzzy endpoints on intervals.

This restriction is not as limiting as it seems, however. This is because of the
freedom in the choice of value that is assigned to any particular interval. Unlike
logic-based systems that allow only one of two choices for an interval’s value, the
TCsS allows arbitrary values. Although in logic one could specify that either A or
not-A is true over an interval, one could not specify that A changes to not-A over
some interval. The notion of change is absent from logic-based systems, since they
assume universal truth values. The example in figure 2.3 could be transformed into
the situation shown in figure 2.4, where three fixed intervals are used instead of two
fuzzy intervals. The three intervals correspond to two intervals with definite values
and one with an uncertain or mixed value. It is then up to the user-specified decision
procedure to handle this situation. I do not feel that the programming language
should dictate an inescapable solution which has potentially disastrous effects on the
efficiency of the problem solution. In section 8.1.2, I take issue with the approach
of having a system-imposed and, of necessity, syntactic approach to the resolution of
conflicts.

2.1.2 Model of Data

Since the data are time dependent, variables will need to represent not just data
values, but also the time over which those values are valid. Each value has associated
with it an expression denoting its temporal validity. For simplicity, this validity must
be completely and unambiguously given.

The model of data used in this system divides temporal data into two distinct
classes, that of points and intervals. Point variables contain values that are associated
with a single instant of time. They have zero duration. Interval variables, on the other
hand, consist of a series of values with a non-zero duration. Point and interval values
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cannot be mixed in the same variable. Point variables provide a natural representation
for a data sample or a discrete action: each can be described by a value which has
a single time associated with it. Each interval variable value has a datum and a
beginning and ending time associated with it. They form a natural representation for
states or continuous actions, namely a period of time in which certain values hold.
The value of an interval variable must hold throughout each subinterval. This is a
basic premise underlying the scheduling algorithm and the static abstraction.! It also
allows TCS to combine adjacent intervals with the same value, reducing the amount
of computation that must be done by process instances that use that interval as an
input.

In theory it is not necessary to have both point and interval variables as base
types, since they can be defined in terms of each other: points can be degenerate
intervals, or intervals can be defined by pairs of points. In practice, however, the data
manipulations and the ways values are used in calculations depend on the type of
data they represent. Since this division into two classes has a practical significance,
TCS supports the dichotomy with primitive elements.

The question of whether intervals or interval variables are open or closed will not
arise in use, because reasoning is done only within intervals chosen so that inter-
val variables will have only one value throughout the interval. By using the same
interval determination in the variables and in the processes that reason about the
variables, I finesse the problem of open or closed intervals, as far as interval variables
are concerned.? The value of an interval value on the boundary between two values
is undefined and inaccessible to any reasoning module. A query to the data base will
return either the earlier or the later value at the user’s option.

Unfortunately, when point variables are used, the question of whether intervals
should be open or closed is unavoidable. It would be naive to imagine that one could
avoid this issue entirely. One place where the problem surfaces is when considering
whether intervals should be open or closed with regard to the point variable values
that are accessible within a reasoning interval. In TCS all input intervals will be closed.
This is the most general case, because reasoning programs can enforce an open-ended
interval policy on themselves, by not examining point values at the extremes of an
interval. Since all point variables have times associated with them, and a process
instance knows its beginning and ending time, this is a trivial operation.

When point variables are the output of a module, the problem is trickier. A
decision must be made and communicated to the control structure so that the value
for a point variable on the boundary between two process instances can be set by the
appropriate process. For instance, assume a point data value was located at time ¢
and two process instances which produce values for this variable meet at time ¢ as
well. If both process instances will produce the same answer, then it does not matter

!This corresponds to the notion of a property in Allen’s interval calculus [4].
2This is not a new idea. Allen [3, 4] and Ladkin [50, 49] restrict their temporal algebras to
consider only intervals in order to finesse this problem.
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which one is chosen to update the variable. In some cases, though, the answer will
differ. A common example is in the context-dependent interpretation of a data value.
If a data sample occurs at the same time the context changes, then the interpretation
of that data value can change as well. The appropriate behavior at such a point
depends heavily on the semantics of the variable and the reasoning process. With no
naturally favored best choice, the desired behavior must be specified by the expert
system designer.?

2.1.3 Past, Future and Now

The current time has an influence on the reasoning produced because of the difference
between actions and interpretations. Actions can only be taken in the future. Past
actions cannot be changed. Modules whose results are affected by the current time
need a method of determining that time. TcS provides the current time as a point
variable (now) as well as past and future as the interval variables past? and future?.
The current time is a point value at the current time on the timeline whose value
is the current time. (The value and time parts are the same). Past and future are
intervals with boolean values of true over the past or future, respectively. They are
accessible in the same manner as user-defined variables and cause reasoning to be
updated as the time changes.

2.2 Model of Inference

The foundation of this approach is imagining an agent reasoning about things that
change with time. Over any suitably chosen interval in time, the agent will have the
inputs of its sensors available for inspection. This provides a means for dealing with
data that are temporally current. This is represented by the diagram in figure 2.5. In
addition to the current inputs, an agent is able to remember information, both raw
input and inferred conclusions, from the relative past. The TCS provides a method
for storing information that will always (subsequently) be available to the reasoning
process. Such storage implements the process state of a reasoning process over time.
Because the information concerns the relative past, such a process state variable
is known as a history variable. This model is shown in figure 2.6. The history
mechanism allows information to flow forward in time. In some cases, it is useful
to have information flow backward in time as well. In this way, a process instance
can have access to information from the relative future. Such information is stored
in an oracle variable. An oracle is the dual of a history variable. The complete

31t is important for this to be specified, since process instances can be executed in any order. The
underlying assumption derived from the determinism condition is that the order in which processes
are executed does not matter. If adjacent process instances can each set a different value on the
boundary, then a race condition occurs and the results can be unpredictable.
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Figure 2.7: Schematic of a Process with Oracle.

model is shown in figure 2.7. The process state of a reasoning process is completely
characterized by the contents of its history and oracle variables.

Inference takes place inside process instances, which take data from input values
and transform them into output values. This transformation may also be influenced
by the values of the process state variables. The access of a process to data in its
input variables is restricted to the period of time over which it is instantiated. A
module defines the interface and reasoning code used by processes. The mechanism
by which modules are instantiated and scheduled is the topic of the next section.

2.2.1 Process Instances and Updating

A process instance is a module being executed in a specific time interval. The interval
is chosen so that all of the interval variables in the input list have a single value. This
enforces a state abstraction to make the reasoning easier. The only input variable
values made available to the reasoning code are the ones current during the interval in
which the process is being executed. Information from intervals other than the current
one must be explicitly recorded in a process state variable by the module’s code. The
simplest method of using information from other intervals is to “remember” data
from past time periods. Any information placed in one of these history variables will
be available to the next process in the chain. This is shown graphically in figure 2.8.
By programming the module to continue the propagation of remembered data, the
information can be available at any arbitrary time in the future. Similarly, it is
also possible to propagate information backwards in time through the use of oracle
variables. This opens the area of reasoning by hindsight, which I discuss in the next
section. Histories and oracles comprise the process state of a process or module.
Because the contents of the process state variables are under the direct control of
a reasoning procedure, one can implement both selective memory and forgetting (the
purging of memory) by deciding what to store in the histories. Although it would
be possible to retain all of the information, it generally should not be done in the
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Figure 2.8: A Chain of Reasoning Processes.

interests of efficiency of reasoning.?

The contents of both the memory and the oracle variables that comprise the pro-
cess’ state are monitored by the control structure. This ensures that any information
that changes the process state of a process causes any successor (or predecessor) pro-
cess that (potentially) depends on that information to be reexecuted. This is needed
to guarantee the correctness of the updating scheme. The ability to send information
in both directions along the timeline allows a programmer to construct loops in the
data-dependency and also non-terminating programs. As long as these loops have a
fixed point, the processing will always terminate.

The final information that is made available to a process instance is the beginning
and ending times of the interval over which it is being executed. These data are
contained in the variables begin_time and end_time.

For example, consider a pharmacokinetic model which is used to estimate drug
concentration in the blood. A typical model with two compartments is shown in
figure 2.9. The difference equations that specify the behavior of a model of this type
are given below:

Ai(t+1) = Ai(t) +D(t+1) + kot Ag(t) — kioAq(t) — kaAy(t) (2.1)

These equations can form the basis of the simulation used to calculate concentration
values. Those values are the absolute amount of drug in the first compartment divided
by its volume. Starting with no drug in the system, one can use the history of drug
administration (D) to calculate the serum concentration at any point in time. This
level is governed by the distribution between compartments (controlled by (ks and
ko1) as well as the elimination of drug from the system (k). The iterative formulas
used depend on past information about the amount of the drug in the system. This

4Selective updating of the memory contents when a need for this only becomes apparent in the
future is more difficult. It could be modeled using oracles as control variables to propagate the
request for information back in time.
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In this model “D” is the amount of drug entering the system, “V;” is
the volume of the i-th compartment, “A;” is the absolute amount of
drug in the compartment, and “k;” is a rate constant describing the
flow between compartments.

can be read directly from the equations above because A;(t+1) depends on the values
of A;(t). The previous value of the amount in the system is needed to calculate the
current amount.

If we wish to interrupt the process performing this calculation and later continue
the calculation, it is necessary to record the values of A;. A process that embodied this
simulation would only need to keep the previous value of A; to enable it to continue
the calculation of the simulation. Only the most recent value need be remembered.

But why split this calculation? There are two reasons: First, some of the rate
constants in a pharmacokinetic model are dependent upon outside factors such as
patient weight, cardiac output or kidney function. These influences can be conve-
niently represented as interval variables. If these values are different over the course
of the simulation, then it is most convenient to have the continuous simulation seg-
mented into individual processes in which the parameters are constant. This relieves
the simulation program of the need to check for the current values at each step of
the iteration. This type of scheduling is done automatically by the Tcs. The second
reason to split a calculation is to limit its temporal extent. I address this concern in
section 2.2.3.

2.2.2 Process Scheduling

The TCS system schedules processes to be run using heuristic methods to determine
the intervals over which separate process instances should be created. It is possible
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Figure 2.10: Scheduling Modules with Interval Variable Inputs

for the process instance itself to override this decision by changing the endpoints of
its execution interval. So that data remain consistent, process instances can only
decrease the length of the interval in which they are running. Any time not covered
will cause the TCS to schedule a new process instance for the gap.

With Interval Variables Inputs

The simplest case is a process instance that has interval variables as inputs. The
interval of execution is found by intersecting the intervals of all the interval input
variables as illustrated in figure 2.10. Tcs thereby assures the module function that
the input variables will only have a single value. The intersection of data intervals
is quite common in other systems as well, either implicitly in the definition of rule
application (see [24]) or as an explicit calculation in rules (for example [32]). This
approach can also be used for the case of mixed interval and point value inputs.
Because the point variables do not have specific time extents associated with them,
they do not influence the scheduling. This lets each process be executed in the longest
interval in which the static abstraction of interval variables having a single value is
valid. This method of process scheduling is very useful in practice. As a bonus, it
allows one to add a temporal component easily to a static expert system simply by
wrapping the static decision making units in modules with the appropriate inputs
and outputs.

Without Interval Variable Inputs

If only point variables are inputs, there is no natural way of splitting the timeline.
In this case a process instance is created which covers the entire timeline. If it is
necessary to produce interval output, the process instance can adjust the length of
its execution interval so that it covers the appropriate time span. The part of the
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timeline not covered is detected by TcCs, which schedules one or more new process
instances to handle that part of the original execution interval that has not yet been
taken care of. For subsequent updates, the scheduling intervals are determined by
examining the process intervals that were created by the user function.

This is a heuristic which attempts to minimize the amount of recalculation that
is done. It is assumed that the user’s process had some reason for shortening its
execution interval and that the old process interval is a good first approximation to
what is correct if there is a change in the data. This strategy can lead to a fragmen-
tation of processes, but this fragmentation is limited to one level of the system. If
the output values of the sequence of process instances can be combined, TCS auto-
matically does this before the next level of reasoning processes are executed. Because
interval values are combined at the next level, this approach minimizes the period
of time over which new process instances need to be run. Without analyzing the
user-supplied functions (an impossible task), the TCS has no way of knowing a priori
whether adjacent process instances will calculate the same result. I feel that the cost
of storing extra process instances when fragmentation occurs is worth the savings in
not having to create multiple process instances if TCS combines intervals which turn
out to have different values. Informal testing with both strategies indicates that this
approach results in fewer process instances being created and run.

The decision to use this scheduling heuristic stems from a practical consideration
encountered in the Arrhythmia Advisor project. Some of the data came regularly
from an automated arrhythmia monitor. Since it was expected that many similar
values could arrive in sequence, TCS needed an ability to “batch process” many point
values in a row without incurring the overhead of process creation and scheduling.
For that reason, multiple point values are available in each process instance. This
was also the most flexible choice, since any modules which wished to handle data in
smaller parts could be programmed to restrict their execution intervals.

2.2.3 Process Control Issues

In addition to the scheduling that is done automatically by the control structure itself,
there are some additional control issues that the TCS user must address. One that was
alluded to above was the need to adjust process duration, particularly when dealing
with point input data. If point data are being abstracted into intervals, a decision
must be made as to the extent of those intervals. Since this is a common procedure
and the programming details are tedious, TCS provides a higher-level module which
extends the value part of a point variable either until a new value occurs, or until a
user-specified maximum duration is reached. The use of such persistence modules is
quite common in TCs-based systems. It also forms the core of reasoning in Dean’s
Time Map Manager [17, 19].

Returning to the pharmacokinetic example used above, it is clear that the sim-
ulation program, once started, could in principle (and very easily in programming
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practice as well!) calculate the serum concentration out to infinity. This would, un-
fortunately, take a rather long time to execute, so some form of control would be more
reasonable. This could either be a restriction on how long into the future (relative to
the variable now which holds the current time) to calculate, or it could be a separate
control variable (such as some interval variable) that is set either by a Tcs module
or by some external program using the Tcs. The ability to stop the simulation while
retaining sufficient state information to restart it later allows one to project the values
into the future on an as-needed basis. For instance, the model could be set up so
that it always had available predictions for the next eight hours. As the time of day
advanced, the model would be restarted to maintain the eight hour forecast.”

2.3 Reasoning Units

As noted earlier, the TCS treats the calculation in a module as a black box. The
user provides the reasoning function; TCS handles the job of applying the function as
information changes and maintaining the database with the external values and the
process state of the function. The function itself is not allowed to have any variable
value storage that persists beyond its execution. All such information must be placed
either in the external variables or in the process state of the reasoning function.

The module’s function can exist in a static environment and not pay any attention
to time. The environment is set up so that the current input values are passed to
the function. When invoked the function receives the following information (see also
figure 2.11):

1. The bounds of the time interval chosen by the scheduler.

2. The values of its input variables over that time interval. For interval variables,
this is a single value. For point variables it is all of the points that occur during
that interval (inclusive of endpoints).

3. The value of the history variables from the earlier invocation of the function.

4. The value of the oracle variables from the later invocation of the function.
The user function returns the following values:

1. The bounds of the time interval actually handled by the function.

2. The values of its output variables over that time interval. For interval variables,
this is a single value. For point variables it is all of the points that occur during
that interval. Endpoints are included or not according to declarations made at
function definition time.

5Even in the Arrhythmia Advisor, with its lack of ability to take changing patient influences
into account, some control over the execution window for the prediction was still necessary, or that
implementation of the model could also run to infinity.
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Figure 2.11: Inputs and Outputs of the Module Function

3. The value of the history variables to be passed to the following invocation of
the function.

4. The value of the oracle variables to be passed to the preceding invocation of the
function.

Of these, only the output variables must be set by the function. By default the
execution interval and process state variables retain their values. The execution
interval is further restricted to be less than or equal to the initially scheduled interval;
i.e., the execution interval can only shrink, not expand. Expansion is ruled out
because process instances are only given access to the data covering their initial
execution interval. They are not allowed to set a value over an interval for which they
have not received data.

2.3.1 Percent Example

As a concrete example of the use of histories and oracles, consider a module that
calculates what percentage a given value is relative to the maximum value ever seen.
This example is not particularly efficient, but it will serve as a simple introduction to
the updating and scheduling behavior of the TcCs.

The example module (figure 2.12) sets its output variable percent to be the
current value of value as a fraction of the maximum value of value over all time.
In order to do this, the largest previous value must be remembered in a process
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(defmodvar value :interval :initial-value 0) ; An input value (> 0).
(defmodvar percent :interval :initial-value 0) ; Output: Percent of mazimum value.

(defmodule percent (value) (percent) ; name (input) (output)
((:history past-max :initial-value -1000) ; for the past
(:oracle future-max :initial-value -1000)) ; for the future

(setq past-max  (max value past-max)) ; update history variable
(setq future-max (max value future-max)) ; update oracle variable
(setq percent (/ value (max future-max past-max))) ; set output variable

)

Figure 2.12: Histories and Oracles: Percent Program

history variable (called past-max) and the largest “future” value in a process oracle
variable (called future-max). This allows the information from other time periods
to influence the value in this period. It is the programmer’s responsibility to see that
these variables are properly handled.

The history value will initialize past-max for the process scheduled to run in
the time interval after the current interval, and the oracle value will initialize the
variable future-max for the process scheduled to run in the time interval before the
current one. The initial value of —1000 is arbitrary. A sample run of this module
is shown in figure 2.14, with the input, output, history and oracle values identified.
Understanding this figure is the key to understanding the data-directed updating
scheme using histories and oracles. As each process is run, the history and oracle
values change, with the values being propagated along the timeline to temporally
adjacent process instances. These changes cause the outputs of most process instances
to change. In line 8, process instance P8 is run because the incoming oracle changed
from “10” to “8.” Since the function implemented by the module is a black box,
the change in any incoming value leads to the recalculation of the function. Note
that P8 does not change its output or the values of future-max or past-max. The
ever-vigilant TCS then notices that there are no changes, and the updating process
ends.

In the example, only P1, P2, P4 and P7 are triggered by the arrival of the external
data. The other four process instances are created in response to changes in the
history and oracle values. The creation of process instances for modules which depend
on the output of the module percent is not shown, but they would be queued by
the change in the output variable percent resulting from the execution of process
instances P1-P7.

A total of eight process instances are created in order to calculate the value for
the four input variable values. Using information about the history and oracle value
propagation behavior of this module, it would be possible to solve the problem using
fewer process instances (seven in this case®), by running process instances from left

6The process instance with input eight need only run once, since it is at the end of a propagation
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Figure 2.13: Histories and Oracles: Percent Process Key

to right and then back again. Although more efficient in terms of number of process
instances run, this type of clever scheduling requires more knowledge of the behavioral
characteristics of the system than is available to TCS. It also requires a global plan
for the scheduling of the module.

In Tcs I opted for the simpler solution of making all the scheduling decisions
locally, at the cost of more updating than strictly necessary in certain cases.” In
a realistic situation where the data is being added over time, there is always the
possibility that a new value larger than all others will be added, necessarily causing
recalculation over the entire timeline. This is inherent in the function programmed
in the module. (A more realistic application would limit the time over which the
percentage calculation is being performed.) One of the strengths of TCS is that the
resolution of efficiency issues is left in the hands of the implementor, who can best
determine how to trade computational effort for more precise answers.

2.4 Using the TCS

The history and oracle features allow the functions to maintain state information
over time. They provide a communication path for information from previous or
subsequent invocations of the function along the time path.

In a conventional programming language, information can only be passed forward
in time. All state information used by a function must have been calculated before
the function which uses this state information is invoked. There is no alternative to
this because the temporal dimension is not represented explicitly in the language. It
is implicit in the calling sequence of the function and corresponds to the real time in
which the function is being executed.

chain and has all the history data.

"The current implementation of TCS uses a single scheduling strategy for all modules. One
avenue for extending the paradigm involves allowing the user to provide advice to enable more
efficient scheduling.
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P1 Just Ran

P2 Just Ran
P1 Obsolete

P3 Just Ran
P2 Stable (for now)

P4 Just Ran
P2 Obsolete
P3 Stable (for now)

P5 Just Ran
P4 Stable (for now)
P3 Obsolete

P6 Just Ran
P5 Stable
P4 Stable (for now)

P7 Just Ran
P6, P5 Stable
P4 Obsolete

P8 Just Ran
P7, P6, P5 Stable

No more updates.

Figure 2.14: Histories and Oracles: Percent Process Trace
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For symbol key, see figure 2.13. Underlined numbers are new output
values. Circled numbers are newly propagated history or oracle values.
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Although TCs has the same constraints at low level, the ability to reinvoke func-
tions as needed allows one to hide this limitation from the user. Because the timeline
and the resulting process state are represented explicitly, the order in which the func-
tions are actually executed does not have to match the order of the timeline. If oracles
are used, the order cannot be chronologic. One consequence of this architecture is
that functions can potentially be invoked more than once in the same time interval.
Since all functions must compute a deterministic result based only on their inputs,
histories and oracles, multiple invocations of the function with the same data, must
produce the same answer. This means that the answer is independent of the number
of function invocations in any time interval. This allows mutually dependent invoca-
tions (i.e., ones using both histories and oracles) to be handled. One time interval
is arbitrarily chosen for execution. The process state information is passed to the
function for the adjacent time interval. If its process state variables change, then the
function is invoked again over the first interval. The cycle continues until the mu-
tually dependent functions reach a steady state wherein no more changes are being
made to their outputs. This stable state must exist for any such functions in order
for the TCcs-based system to terminate its reasoning. This mechanism applies equally
well to cycles that occur between modules linked by TCSs variables and to those linked
by the history/oracle mechanism.

The ability to write mutually dependent functions means that it is possible to
construct non-terminating loops. It is assumed that in any well-ordered monitoring
system this will not happen. The only safeguard, however, is to use care when setting
up reasoning cycles.

2.5 Formal Definition of Module Function

A Tcs application is created by defining the modules that do the reasoning. In the
general case, the processing function in each module has three sources of input:

1. Input Variables. Input variables are used for inter-module communication, as
well as for the interface between the TCS code and the outside world. Variables
may take on arbitrary programmer-specified values. Each input variable holds
the portion of the value of the variable valid over the execution interval of a
process instance (PI). For an interval variable, this is a single value for the entire
execution interval.

2. Execution Interval. Each process runs in an interval as scheduled by Tcs.
The endpoints of this interval are available for examination (and restricted
modification) by process instances.

3. Process State. The process state provides a link along the time axis between
temporally adjacent process instances. These are PIs whose execution intervals
fulfill Allen’s MEETS relation with the current PI. There are two subtypes:
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(a) History. Transmits information forward in time. It provides the process
state from the previous adjoining process instance along the timeline.

(b) Oracle. Transmits information backward in time. It provides the process
state from the next adjoining process instance along the timeline.

The output of each module function can also be divided into three classes:

1. Output Variables. Output variables are used for inter-module communica-
tion, as well as for the interface between the TCS code and the outside world.
They may be assigned arbitrary values. Each output variable can be assigned
a value only for the execution interval of a process instance (PI). For interval
variables, this must be a single value for the entire execution interval.

2. Execution Interval. The beginning and ending times of the execution interval
can be modified within the following restrictions:
(a) The begin time must be strictly less than the end time.

(b) The new execution interval must not extend beyond the original execution
interval. In Allen’s calculus, this means the new execution interval must
EQUAL, START, END or be DURING the original execution interval.

By default, the endpoints remain unchanged.

3. Process State. The values of the process state variables are under the control
of the program. By default, the input values of the process state are propagated
unchanged. Using these variables is the only way for process instances to gain
access to information outside their own execution intervals.

2.5.1 Terminology

In order to specify the functions formally, I introduce the following definitions:

Variable: VY Begin Time:  Tyegin
Point Variable: V,, End Time: 7.4
Interval Variable: V;,; Execution Time:  Topee = (Toegins Tena)
Process State: S Zero or more X's:  X*
History:  Spis One or more X'’s: X7*
Oracle: S, qc Identity Function: Zd

Null Function: ()

2.5.2 Formal Definition

Each module contains a function described by the applications builder which imple-
ments the reasoning in such a module. The general form of this function is then

Module: f: V' X Topee X 8* = VT X Topee X S*
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For analysis, the module function f can be decomposed into three components,
each of which handles a different part of the output. This decomposition yields
functions that calculate the output variable values (f,), the execution time (f,) and
the process state (fs):

1. fo: VT X Togee X S8* = VT
2' fﬂ?zv—i— XZIECXS*HZIEC
3. fo i VT X Togee X 8F = S*

I will use these formal definitions in a later chapter to describe certain restricted
types of modules with special properties. For example, some modules do not need
to modify their initial interval of execution, and so have the identify function for
fr. Since this is the default behavior of modules defined in TCS, no program code
is required to specify this behavior. For such modules, the programming task is
therefore simplified.
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Chapter 3

Example: Pharmacokinetic Model

The top-level structure of a system implemented using the TCS consists of variables
linked through modules. The decision is modeled as a process over time, and divided
into individual process instances in a manner that is convenient to the calculation.
The inputs that can be used are data associated either with a single point in time
(points) or with an extension over a period of time (intervals). The TCs design
philosophy assumes that intervals are relatively stable, so that it makes sense to
use different values of intervals as the basis for scheduling process instances. This
conveniently eliminates the need for most processes to consider the effects of time at
all.

To illustrate the concepts, T describe the implementation of a pharmacokinetic
model for lidocaine. This is a mathematical model, developed by statistical methods,
that predicts the blood concentration of the drug lidocaine. It is a two-compartment
model, with the structure shown in figure 3.1. This is the same model introduced in
the previous chapter. Each compartment has a volume of distribution (V) and an
amount of drug in the compartment (A). The blood concentration is the amount of
drug in compartment 1 divided by the volume of compartment 1. Drugs enter the
first compartment as a function of time (D(t)). Movement of the drugs in the model
is controlled by rate constants linking the compartments (kis, koy) and providing a
pathway for the elimination of the drug (ke). The behavior of the model is governed
by the following discrete time difference equations:

Ai(t+1) = Ai(t) +D(t+ 1) + kot Ao(t) — koA (1) — ke Ay (7) (3.1)
Ar(t+1) = Ay(t) + kioAq(t) — ka1 As(2) (3.2)

Functionally, the model takes external information about the drug doses (D(¢)) and
provides information about the drug concentration (A;(¢)/Vi(t)). Lidocaine can be
administered as a continuous infusion over some time period or as a single shot (bo-
lus) at a particular time. The drug inputs are divided into an interval input for the
continuous infusion and a point variable for the bolus. The output for this example
will consist of samples of the drug concentration, and will be represented by a point

33
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D(t) = infusion + bolus

i

Compartment 1 12 ) Compartment 2

Amount A, (t) | & Amount A, (t)
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Figure 3.1: Structure of a Two-Compartment Model
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Figure 3.2: Schema for Pharmacokinetic Model Simulation

variable. Other potential outputs could be samples produced in response to an ex-
ternal trigger (also point variable output) or intervals in which the concentration is
in important ranges.

As noted before, in order to run a simulation of the model, internal state infor-
mation (the contents of A;(¢) and Ay(¢) must also be maintained. This calculation
is shown schematically in figure 3.2 and could be coded as shown in figure 3.3. The
code separates the external information about doses and concentrations (the inputs
and outputs) from the internal state variables containing the amounts (the history
variables). It is necessary to keep the amount of drug in each compartment available
so that the simulation will work with multiple process instances. If the infusion rate
changes, then a new process instance will need to be created to maintain the static
abstraction of interval values. Note that the code in figure 3.3 does not need to con-
sider the temporal limits of the value of the variable infusion, since its validity is
implicitly limited by the duration of the process instance (begin_time to end_time).



(defmodvar infusion :interval :initial-value 0)
(defmodvar bolus :point)
(defmodvar concentration :point)

(defconstant k12 ...)
(defconstant k21 ...)
(defconstant kel ...)
(defconstant vi )

(defun get-bolus-value (bolus time)
;; Returns bolus amount for time or zero if no bolus is given then.

o)

(defmodule pk-model (infusion bolus) (concentration)
((:history al :initial-value 0)
(:history a2 :initial-value 0))

(loop for time from begin_ time to (- end_time 1)
initially (setq concentration nil)
do (psetq al (+ al infusion (get-bolus-value bolus time)
(* k21 a2) (- (* k12 al)) (- (* kel al)))
a2 (+ a2 (x k12 al) (- (x k21 a2))))
(pushpoint (/ al vl) time concentration)))

Figure 3.3: Code for Pharmacokinetic Model Simulation

The time units for this simulation are minutes. For convenience, the
step size of the simulation is one time unit, although this is not required.
The function pushpoint is a TCS construct which creates a point value
data structure from a value and a point and pushes it onto a list of
such points.

35
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It is, however, necessary to provide special time-aware processing to extract the value
of a bolus.

The output of the module, concentration, is a series of individual point variables,
corresponding to the estimated blood concentration of the drug at different times.
With one value produced per minute, this process will create many data points. The
builder of a real system may want to perform an abstraction operation or use only
every n-th value to reduce the number of values produced. Since there is the potential
for producing many similar values, the process-scheduling algorithm allows for bulk
processing of point values, since greater efficiency is possible if new process instances
do not need to be created to handle each of a large number of individual points.

There is only one problem with the module as currently programmed: namely,
the simulation will try to cover the entire timeline from negative to positive infinity.
This would clearly take a long time to calculate, and would not be suitable for a
real system. In the real world, there is only a certain amount of time over which
one requires the information provided by the simulation. The time of simulation can
be restricted by the addition of another external variable used for control purposes.
The simulation would then only operate during the period(s) the control variable
allowed. Since control can easily be achieved by using a TCS variable, adding the
control information does not require any changes to the underlying structure of the
TCS. The value of the control variable can either be set externally to this process or
it can be produced internally. Since the control information is available as a regular
variable, an expert system can set it as a result of the inferences that the program
itself makes. A simple control scheme would involve only doing the calculation for
a limited span around now, a capability that is easily implemented using persistence
and anticipation modules.! The pharmacokinetic system, modified to use a control
variable, appears in figure 3.4. The output from a system using standard lidocaine
parameters from Thomson [84] is shown in figure 3.5.

The control variable used to limit the execution of the pharmacokinetic model
can either be supplied as an input from outside the TCS, or it could be computed.
One such computation, which makes use of the system time variables now and past?,
is shown in figure 3.6. The variable values for such a control structure are shown
in the graph in figure 3.7, for a starting time of 0 and a current time of 600. This
sample control strategy limits the calculation in the past to “interesting” times as
defined by the variable start-time. In the future, projections will be made for 500
time units. Landmark times combined with the current system time can be used to
control the operation of other modules. The ability to program the control into the
system allows a great deal of flexibility to handle domain- and application-specific
problems. For example, one could imagine an “as needed” control system where the
control variables were set in response to an outside request from the user.

1 An only slightly more complicated control would use an offset from now to control projection in
the future and the time since the beginning of the consultation in the past. This would require the
TCS-based system to include the initial consultation time as one of its variables.



(defmodvar control :interval :initial-value nil)

(defmodule pk-model (infusion bolus control) (concentration)
((:history al :initial-value 0)
(thistory a2 :initial-value 0))

(if control

(loop for time from begin time to (- end_time 1)

initially (setq concentration nil)

do (psetq al (+ al infusion (get-bolus-value bolus time)

(*x k21 a2) (- (* k12 al1)) (- (x kel al)))
a2 (+ a2 (x k12 al) (- (x k21 a2))))
(pushpoint (/ al v1) time concentration))

(setq al 0 a2 0 concentration nil)))

Figure 3.4: Control Added to Pharmacokinetic Program
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Figure 3.5: Pharmacokinetic Program Output
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(defmodvar start-time :point) ; Externally set to t at the starting time.

(defmodvar ctrl-1 :interval :initial-value nil) ; Internal variable.
(defmodvar ctrl-2 :interval :initial-value nil) ; Internal variable.

;; The arguments to a defpersistence form are the name of the module to
;1 be created, a point variable input, an interval variable output, and options
:; that specify the length of persistence in the absence of new data, as well as
:; default values to cover the periods when no valid data is available.

;o ctrl-114s t from the starting time until infinity.
(defpersistence ctrl-start start-time ctrl-1 :persistence :infinity :default nil)

5 ctrl-2 is t for 500 time units from now into the future.
(defpersistence ctrl-future now ctrl-2 :persistence 500 :default nil)

;; control is t from the starting time until now because the value of
5 ctrl-1 in the past (which is t from start-time to infinity).
;; control is also t for 500 units after now because of ctrl-2
;o in the future.
(defmodule model-control (ctrl-1 ctrl-2 past?) (control)
(setq control (if past? ctrl-1 ctrl-2)))

Figure 3.6: Simple Control Strategy
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Figure 3.7: Control State at Time 600
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The use of a control or data manipulation rule that uses one source of information
in the past and a related, but often different, one in the future is a programming
paradigm that recurs frequently in a TCS system. A common application is the use
of the actual therapy in the past and the recommended therapy in the future when
trying to project the effects of the advice. This arises in the use of a pharmacokinetic
model. The model state must reflect the actual treatment in the past in order to form
a valid basis for understanding the patient’s current state. But the future expectations
should be generated using the advice the program provides. In a situation where the
output of the model is used in the process of designing the dosage regimen, as it was
in the Arrhythmia Advisor [73] or in the extensions to the Oncocin project [39], this
dichotomy around the current time (or next feasible decision point) is essential to the
correct functioning of the system.

We can continue the expansion of this example by making the model parameters
depend on the patient’s state. For some drugs, estimates of the a priori effects of
different medical conditions on the parameter values have been published [84]. In this
study relevant parameters included the presence of congestive heart failure and liver
disease. The use of contextual information changes the rate “constants” of the model
into variables whose values depend on the state of the patient. Certain aspects of the
state can change over time. For example, a digitalis (another cardiac drug) model [37]
uses a measured parameter, creatinine clearance, to calculate the value of one model
parameter. Since the measured patient parameter can change over time, so can the
model parameters. Complicating matters is the problem that not all of the contextual
information will be available initially. Liver disease may be detected only on the basis
of a more complete diagnostic workup than would be possible before treatment begins
for arrhythmias. The ability of the TCS to update past information as the underlying
basis for those decisions changes is an important advantage in handling this situation.
As more complete information becomes available, the parameters can be adjusted and
the affected blood concentration estimates can be revised.

The back-and-forth nature of the decision-making becomes more pronounced if
more sophisticated mathematical modeling techniques are applied. The model param-
eters, which are derived from population standard estimates, can be refined or adapted
to an indivdual patient by comparing the estimates to measured samples. [36, 37, 39]
It is important to update even the past drug concentration estimates because of the
potential effects on the current and future decision-making process. For example,
one of the rules from the arrhythmia advisor required a switch from lidocaine to pro-
cainamide if the patient appeared not to respond to therapeutic concentrations of
lidocaine. The diagnosis of lidocaine resistance depends on the lack of response to an
adequate amount of the drug. If revisions of the model parameters indicate that the
model produced concentration estimates that were significantly higher than the ac-
tual values, a previous decision that the patient had lidocaine-resistant arrhythmias
would need to be revoked. The prospective impact of revoking this past decision
would be to return lidocaine to the armamentarium of therapeutic interventions. If
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this past decision is not reexamined and revised, then the old (and incorrect) observa-
tion of lidocaine resistance will prevent the use of a potentially useful drug. Note also
that, because the model will have been modified, the future dosage recommendations
should result in an effective drug concentration, because the dosage will be higher.



Chapter 4

Types of Reasoning Module

Using the formalism described in chapter 2, we can distinguish among the charac-
teristics of different types of reasoning over time. This differentiation is determined
by the types of variables that are used in the reasoning modules. In this section,
I will describe several more abstract reasoning modules. In addition to the textual
description, I will provide a schematic diagram of the reasoning flow over time, as well
as a description in terms of the form of function embodied in the module functions.
A general overview of the interrelations of four classes of module can be seen in
figure 4.1. These four basic types are characterized by the relation between the type
of input and output variable. Two have the same type (both point or interval). The
other two perform transformations between the two types (point to interval or vice
versa). As one might expect, the modules which perform the type transformation
have more complicated implementations. I detail each of these basic types, as well
as other derivative types, in the following sections. To aid the comparison with fully
general modules, I repeat the three functional parts of a standard module here:

1. fo i VT X Togee X S* = VT Calculates output variable values.

2. fo: VT X Topee X 8* +— Towee  Calculates process instance execution interval.

3. fo VT X Toree X 8* = S* Calculates process state (histories and oracles).
4.1 Rules

Rules are the most straightforward of the reasoning types to be explored, because
they exhibit no overt time dependence. When viewed as a statement in a logical
form, rules possess universal validity. The temporal aspect of a rule can be handled
completely outside the rule itself. Figure 4.2 shows a typical rule schematic for a
static rule. In the formal analysis, I discuss both static and temporal rules.

4.1.1 Static Rules

The functional definition of static rules is quite simple:
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Point Variables Transducer
Generator Abstracter
Interval Variables Rule

Figure 4.1: Basic Types of Reasoning Modules
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Figure 4.2: Schematic of a Rule Module
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1. fy: V;t — V;,;t

2' f.’l? : 7;$EC = 7;$€C

—~
;h
Il

= 7d)
3. fs=10

Since there is no change in the execution interval, and there are no functions that
rely on internal state variables, this rule can only have effects inside the interval in
which it is scheduled. The computational consequence is that the maximum number
of process instances that can be spawned is limited to the length of the time interval
over which an input value changes. The time interval affects the scheduling because
of the other input variables.

4.1.2 Temporal Rules

The functional definition of temporal rules adds a function to manipulate the process
state:

1. fy: Vit xSt — Vi

int int

2. fm : 729360 = 7;alnec (fo: = Id)
3' fs : Vi-l;zt X 8+ '_>8+

Temporal rules use state information from previous or future process instances. This
means that any change in an input variable can potentially affect all other intervals,
as was the case in the percent calculation used in chapter 2. Realistic applications
will most likely limit the extent of influence of any particular input interval. Since
the applications programmer supplies f,, the computational complexity of a temporal
rule is under the control of the developer. The difference from a static rule is that
the function f, is defined and f, has added a reference to the process state (S).

4.2 Transducers

Transducers are atemporal reasoning units whose primary characteristic is that they
convert the value part of their point variable input to a different value at the same
time. There is thus no temporal processing involved, since the time part of the point
value is not even examined by the function that does the reasoning. The function
defining the value conversion is just applied to each point variable in turn. Schemata
are shown in figure 4.3.
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Figure 4.3: Schemata of Transducer Modules

4.2.1 Simple Transducers

The functional definition of a simple transducer is similar to that of a static rule. The
only difference is the substitution of a point for an interval variable:

1. fv : th — th
2. fm : 729360 = ﬁmec (fo: = Id)
3. fi=0

This module maps point values by considering only the value of the individual point
variable and leaving the time part unchanged. The difference in which part of a point
variable is processed defines the difference between a context-sensitive transducer and
a generator.

4.2.2 Context-Sensitive Transducers

Context-sensitive transducers add interval variables which provide context:
Lo fo: Ve X Vit = Vy
2. fo Tewee = Tewee  (fo =Td)
3. fo=10

This module is a transducer whose processing function determines the output value
based on the value of a single point variable and the values of additional interval
variable inputs. The presence of the context variables provides an easy method for
modifying the point evaluation function over time without any direct reference to time
in the calculation. The tables used in Fagan’s vM for generating acceptable boundary
ranges for parameter values are transducers of this type. Depending on the particular
context in which the mapping from raw input data to a qualitative evaluation is done,
the thresholds are different. Although the context can change over time, the extent
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Figure 4.4: Schemata of Abstractor Modules

of the context’s validity and the particular time at which a point datum is evaluated
are not considered by the transducer function. It simply receives the value part of the
point variable along with the values of the relevant contexts and produces the value
part of the output point variable.

The common feature of all transducers is that they operate only on the value part
of point variables.

4.3 Abstractors

Abstraction is the process of changing the form of the data from a collection of point
variables to a set of intervals. This reflects an expansion of the duration of validity of
point data samples. This is an inductive process and is not so straightforward as the
deductive processes used in executing rules. As the time extent of the data expands,
it becomes a more abstract entity. By setting up the boundaries and attaching an
interpretation to the individual sample points, the abstraction process takes a loose
collection of data and produces a more ordered description.

As an example of abstraction, consider the examination of a series of daily reports
of rainfall and the resulting conclusion that a drought was in progress. A drought
covers a longer time interval and is a more abstract description than a single dry day
or even a sequence of two or three dry days. Furthermore, by attaching the label
“drought” to the condition, the abstraction allows the application of more general
knowledge associated with droughts. This knowledge could also be applied on the
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basis of an individual analysis of the run of dry days, but the application is much
more tedious. Moving up the abstraction hierarchy in the reasoning also increases
the size of time interval covered. More abstract descriptions tend to cover a larger
time span than the more detailed descriptions.

Tcs provides only the simplest form of persistence, namely the extension of data
values for a fixed period of validity. Other researchers have investigated the deeper
relation between causation and the notion of persistence that this simple model cap-
tures [18], as well as having proposed more rigorous models of the probalistic nature
of the resulting interval value [34]. In the experiments I have conducted so far, the
simple approach used by TCS has been adequate.

The expansion of the time covered can occur in both directions. I term the ex-
tension into the future persistence and into the past anticipation. Schemata are illus-
trated in figure 4.4. This specification of a simple persistence as shown in figure 4.4a
requires only the specification of a maximum duration interval. In the case of antic-
ipation, the resulting abstracted interval is projected into the past, rather than the
future (see figure 4.4b). These can also be made into a combination which assumes
that the abstract intervals extend both into the past and into the future, in effect
splitting the timeline between adjacent sample points (figure 4.4c). The first three
types of abstractor are distinguished only by the relationship between the time of the
point variable’s values and the endpoints of the resulting intervals, as illustrated in
the diagram.

One can also limit the persistence of information from a sample point to a maxi-
mum interval. This time-limited abstraction can be used to implement reasoning in
which the data become too old to be useful or safe to use in calculations (figure 4.4d)."

4.3.1 Time-Limited Persistence

In the formal analysis I will only address the last type of single point abstractor:
1. fy: pt X Tezee X Shist = Vint
2. fot Vot X Tewee X Shist = Texee
3. fs: pt X Tezee X Shist — Shist

Persistences provide a simplification for the user because he need only specify one
parameter, the maximum duration of a point value, in order to define a time-limited
abstractor. This parameter is sufficient then to generate code which implements all
three functions shown above! The detailed implementation is complicated because
the duration of the output V), is influenced by any points during the system-chosen
execution interval Tg,.. as well as by previously seen input values (contained in Sp;s).

I This type of limitation is not supported in all temporal reasoning systems. The tractibility of
the Time Map Manager’s contradiction resolution algorithm depends on the absence of time-limiting
constraints on the extent of persistences [19, Rule 3, p. 45].
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The internal execution time function f, must partition the initial execution inter-
val into smaller pieces, each of which can be handled by f, and f;. This division of
a large execution interval into smaller pieces is an example of the divide-and-conquer
approach to simplifying the reasoning. The method of setting the duration of interval
variables requires this type of programming style inside TCS modules. There is a dual
to this function which operates in the opposite direction on the timeline.

4.3.2 Two-Point Abstractor

The difference between a two-point abstractor and the persistence module above is
that information from two adjacent points is processed. Functionally, this is shown
by the presence of both history and oracle variables in the process state:

L. fv . pt X exec X Shzst X Sorac — th
2. fm . pt X ewec X Shzst X Sorac = ﬁmec
3. fs . pt X exec X Shzst X Sorac = Shzst X Sorac

Although the internal details are complex, the user need provide only a single function
f! +x x x+ y. This function takes two input values (one from each of two adjacent
point variable values) and produces one output value (the value for the interval be-
tween the points). The data evaluation is shown schematically in figure 4.5. The
remainder of the internal code is common to all instances of this type of abstractor
and can be generated automatically. The programmer benefits by needing to pro-
vide only the domain-dependent part of the reasoning and allowing the system to
implement the generic temporal reasoning task.

4.3.3 Memory

The memory used in the system thus far is limited to that of the history inside a single
process. It is, however, easy to transform the value of an internal memory variable into
an output variable. This allows the system to “remember” past values when it makes
any given decision. I have implemented four types of memory module, all dealing
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Figure 4.6: Schemata of Memory Modules

with point variable input. They represent the interaction of two design dimensions:
the number of items to remember (either all events or just the most recent) and the
length of time to remember them (either forever or limited to a specified time period).
The first of these conditions can also be generalized to allow an arbitrary number of
items to be remembered without requiring all items to be retained. The four memory
types are:

1. Remember only the most recent event.

2. Remember the last n events.

3. Remember all events for the past ¢ time units.
4. Remember all events for all time.

This list of memory modules covers two common domain-independent criteria for
deciding how much information to keep for how long. It is not an exhaustive coverage
of all memory modules. Making the length of time a datum is remembered depend
on the value of point variable is an example of a domain-dependent strategy that I do
not cover. Memory types 2 and 3 are shown in figure 4.6. Their formal specification
is shown below.

Just as persistence has an analog that moves data backward in time, there is an
analog to the memory module that also moves data backward in time. This is termed
a “future” module. I will present an example of how this can be used in practice in
chapter 6, in the section on measuring urine flow.

N Item Memory

Memory of n items, a variant of abstractor:
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L. fo: Vot X Shist = Vint [f» = cons(V,, subseq(S,1,n — 1))]
2. fm . pt X ewec 7;alnec
3. fs 1 Vot X Shist > Shist [fs = cons(Vy, subseq(S,1,n — 1)) = f,]

This module has only one point input variable. The internal state contains the values
of the previous n states of V,;. Any change in the value of an input will therefore
cause at most n+2 processes to be executed. One is for the process that gets changed.
Another is possible if the change causes an interval value to be shortened.? Finally,
there are n executions as the information gets propagated to the next n process
instances. The amount of recalculation in this module is therefore determined solely
by the number of intervals remembered and is not affected by the size of the interval
changed.

Time-Limited Memory

This module remembers all V,; values for a fixed interval of time:
L fy: Vi X Tewee X Shist F Vint
2. fao 1 Vpr X Tewee = Teec
3. fs: Vi X Tezee X Shist — Shist (fs = fv)

The programmer need only specify the retention time. This differs from the persis-
tence abstraction in two ways. First, both the value and the time of the point is
retained in the interval output, and second, more than one value can be retained. In
the persistence case, only the value of the point variable is used in determining the
value of the output. The output of a memory module is therefore more general.

In a memory module f; = f,, providing a additional simplification. This equiv-
alence is not surprising since the module simply makes its internal history variable
available to other modules as an output.

The abstractors show the benefit of introducing specialized modules for handling
common reasoning tasks. Although the internal implementation of the modules re-
quires the full generality of the TCS mechanism, much of the code can be automatically
generated, allowing the programmer to control the process by specifying only those
parts of the module that depend on the domain itself.

2This requires a new process instance because the endpoint changes; the value of the state variable
at that time is indeterminate, since it has not yet been calculated, and is thus unavailable to TCs.
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Figure 4.7: Schemata of Generator Modules

4.4 (Generator

Data generation is the process by which some general description of a process (con-
tained in an interval variable) is transformed into specific items of information or calls
for atomic actions (contained in a point variable). This is the opposite of abstraction.
For example, the general treatment directive “Take two aspirin every four hours”
can be transformed into a series of individual actions “Take two aspirin” which are
scheduled to be done as atomic actions at times four hours apart.

Similarly, a model can be used to generate information which can be viewed as
point samples of a continuous process. For example, if it is known that over the
period of four hours, the concentration of a certain drug in the blood will rise linearly
from its present value of 1.0 to a final value of 2.0, intermediate predictions of 1.25
at one hour, 1.5 at two hours, etc. can be made. Figure 4.7 contains schemata of
generators.

4.4.1 Point-Triggered Generator

A point-triggered generator ignores the value part of the input point variable and
uses only the time part to determine when a value should be output:

Lo fo : Ve X Vi = Vit
2- fx : 7;5060 = 7'exec (f«’U = Id)
3. fi=0

The point variable is used solely for timing; data values come from the interval vari-
ables. This is in contrast to the context-sensitive transducers described above, which
processed only the value part of the point variable. This is another example of the
use of TCS variables for the control of reasoning.
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Self-Timing Generator

Self-timing generators produce point output without an external trigger:
L. fo: Tewee X Vi = Vit
2. fo i Tevee = Tewee  (fo =1Id)
3. fo=10

In place of the external trigger, information from the execution interval is used. The
functional definition shown above is a pure form of this type of module. The pharma-
cokinetic model simulation was a hybrid form which used a combination of interval
and point input variables in its the basic calculation. The identification of output
points was not determined by an external trigger, but came from the internal timing.
In the model’s case, every simulation step was used as a trigger, but it would only be a
trivial change to make a simulation provide an output value for every fifth simulation
step.

This completes the list of basic types of reasoning modules that Tcs provides for
a programmer. In the next chapter, I discuss higher-level reasoning concepts that can
be implemented on top of the TCS substrate.
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Chapter 5

Higher-Level Reasoning
Abstractions

In this chapter T describe a level of reasoning further from the underlying module
structure of the Tcs . I will present a simple model for temporal pattern-matching.
The purpose of the presentation is to demonstrate that such a matching function can
be easily implemented in TCS. I make no claim that the pattern-matcher is complete.
In fact, the system provided by TCS is currently very limited in scope. I discuss one
method of expanding the functionality of the pattern-matcher.

In the second section I describe reasoning by hindsight. The revision of past infer-
ences as new information becomes available plays to the strength of the TCs design.
As in the previous chapter, the TCS substrate is used to provide the administrative
functionality needed for updating in the face of changing information. Reasoning
by hindsight uses this foundation for the implementation of a solution to a difficult
medical reasoning problem.

5.1 Temporal Pattern-Matching

The modules I have introduced thus far have concentrated on the processing of data
in a particular execution interval. Through the use of history and oracle variables, one
can make decisions in any particular execution interval depend on the values of data
from outside that interval. This capability allows the matching of temporal patterns
to sequences of interval values. History variables in a module are used to remember
past interval values, including information about the length of the intervals over
which values were valid. Although the time span of interval variables is not provided
to modules directly, it can be easily calculated by reference to the endpoints of the
execution intervals of the process instances'.

I Actually, some care must be taken to ensure that the current input value is different from the
previous one, but since that information is being accumulated in a history variable anyway, this is
easily accomplished.

53
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((:value b :min 10) (:member (a e i o u) :min 20 :max 50))

will match any part of the timeline where there is a b of at least 10
units duration followed by a single instance of a, e, 7, 0o, u of 20 to
50 units duration.

((:value a :min 10) (:not a :max 50) (:value a :min 10))

will match a pattern of two a’s of duration at least 10 separated by a
single interval value other than an a of duration not greater than 50.

Figure 5.1: Examples of the Pattern-Matching Language

With such a history, one can search for patterns of values that have special signifi-
cance. An example from the medical domain is a characteristic rise and fall in cardiac
enzymes following a heart attack. If these enzyme levels were being monitored by a
TCS system, this pattern could be detected. Looking for characteristic seismic waves
in order to monitor nuclear testing treaties is another example.

5.1.1 The Current Implementation

At present TCS provides a limited pattern-matching language capable of matching
fixed-length patterns. The fixed-length restriction is imposed in order to limit the
amount of information that must be accumulated in history varibles of the pattern-
matching module, thus improving the efficiency of the calculation in the face of chang-
ing data.

The primitives of the matching language are the following:

(:value walue) Matches if the tested value is equal to value.
(:not walue) Matches if the tested value is not equal to value.
(:member wvalue-list) Matches if the tested value is in value-list.
(:none-of walue-list) Matches if the tested value is not in it value-list.
(rany t) Always matches.

(:predicate function) Uses function to test the value (only) of the inter-

val to be matched.
(:full-predicate function) Uses function to test the value and duration of the
interval to be matched.

A pattern consists of a list of these primitives, specifying the order of the matching.
In addition to the basic forms listed above, all keywords except :full-predicate can
also have :max and :min keywords followed by non-negative values. These values are
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used to put lower and upper inclusive bounds on the length of time that an otherwise
suitable match must last. Even with a 0 lower bound, the pattern element must be
present. A pattern of fixed time lengths can be enforced by making the :min and
:max values the same. There is no disjunction. The example in figure 5.1 shows the
use of this language.

Although the basic temporal model used in TCS requires that all times be exactly
specified, the patterns used for matching against this database do not have to have
exact endpoints.

5.1.2 One Potential Extension

The current implementation of pattern-matching uses a very rudimentary language
and limits the matching to fixed-length patterns. A more flexible approach would be
to build a regular language parser based on a finite-state machine. Since the amount
of data needed to perform a match could not necessarily be calculated in advance,
a different strategy would be needed. Assembling all of the values in each execution
interval would be computationally prohibitive.

Instead of a complete evaluation of the pattern match in each process interval
being done, the task could be broken down into segments. The state information for
the finite-state machine could be transmitted via the history and oracle mechanism.
Using that state information, each process instance could perform an incremental
check for a match based on the current input value during that execution interval.

A number of details remain to be worked out. A way to transmit the news of
a successful match to all of the intervals that contributed to that match is needed,
as well as some administrative functions for data fusion between adjacent process
instances with the same value. Neither of these problems should be insurmountable,
however.

Dvorak and Kuipers [25] and Coiera [13, 14] are investigating the use of qualitative
models to match behavior. The combination of their analysis techniques with a
monitor built using the TCS could combine the flexibility of the model-based approach
to matching with the convenience of being able to modify and retract the information
that feeds into such a model.

In a development outside the scope of Tcs-amenable applications, Kahn [38] has
developed a technique for analyzing a collection of variable daily records in order to
detect changes. Taking advantage of the cyclical nature of the records, his system
identifies clinically meaningful changes in chronic medication doses. This system has
been successfully applied to analyze home care journals of diabetic outpatients.
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5.2 Reasoning by Hindsight?

In this section I describe the phenomenon of reasoning by hindsight, using an ex-
ample drawn from cardiac patient care. As the clinical picture of a patient evolves
over time, more information becomes available. The availability of more data allows
a more accurate assessment of the patient. With more information one can revise
observations, reinterpret previous data and confirm or retract assumptions. Uncer-
tainties, guesses or errors that were made early in the clinical course of patient care
can also be identified and resolved.

Hindsight also allows one to use response to therapy as diagnostic information.
Since the response of a patient to a particular treatment is modulated by the under-
lying disease process, an analysis of this response can shed light on that process. The
identification of errors, the discovery of violated assumptions, or simply the resolution
of ambiguous findings becomes possible. But the use of hindsight in expert systems
also requires that appropriate attention be paid to the temporal relations of the data
and that care be exercised in revising decisions.

5.2.1 Clinical Example

The clinical example uses an abstraction of an actual case from cardiology. It shows
the revision of diagnosis and the modification of therapy in response to evolving
information about the patient’s condition. The crucial feature of the example is that
an analysis of the response to therapy is necessary in order to come to the correct
conclusion.

Consider a woman presenting with a heart attack and ventricular premature beats
(VPBs):

The patient was a 56 year old female with acute chest pain, ice cold hands,
clammy skin, bibasilar rales, left S3 gallop, no murmurs, blood pressure
of 80/50 by cuff, pO, of 64 (slightly low), pCO, of 36 (a bit low, reflecting
hyperventilation), pH of 7.36, BUN of 19, serum creatinine 1.1 and K 4.9.
The ECG showed multifocal VPBs, short runs of ventricular tachycardia
of 3-8 beats at a rate of 130-160, ST elevated in V1-5 (suggesting a
fairly large anterior wall infarct), and no Q waves. She was treated with
dopamine and lidocaine. She was excreting some urine but was oliguric
(< 500cc/day). After some hours a Swan-line was inserted, showing a
PA pressure of 50/30 and a wedge of 29, confirming the left ventricular
failure.

There was limited response to the lidocaine or dopamine after a day. The
blood pressure only went up to 90/50 and her hands remained ice cold and
the S3 gallop and bibasilar rales persisted. The arrhythmias improved, but

2The material in this section has been separately published [71].
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multifocal VPBs and short runs of ventricular tachycardia still persisted.
An arterial line was put in and the blood pressure was 200/120. [43, p. 34]

The initial presentation has the classic signs of an acute myocardial infarction.
Based on the information available at presentation, the initial therapy decision is
correct. Since the data indicate a patient in cardiogenic shock (a low blood pressure
state), action should be taken to boost the performance of the heart in order to raise
blood pressure and provide more oxygen to vital tissues (including the heart!).

Unfortunately, this case has a twist. One of the body’s normal reactions to a fall
in blood pressure is to reduce peripheral circulation in order to maintain adequate
blood pressure in the central, vital part of the body. In this patient, the reduction
in peripheral circulation was so extreme that the blood pressure reading obtained by
using a cuff on the arm was no longer representative of the true blood pressure in
the core of the body. This violates the basic (unstated) assumption of blood pressure
measurement: the pressure in the upper arm is an accurate indicator of the blood
pressure in the aorta.

Because the low blood-pressure measurement was expected in a heart attack vic-
tim, there was no reason to doubt the accuracy of the measurement during the initial
assessment. The important ramification is that data consistency checking cannot de-
tect this mistake! 1t is only clear that something is amiss over the course of the next
day. The problem first becomes apparent when the expectations of therapeutic re-
sponse were violated. The expected reaction to the dopamine would be a rise in blood
pressure, an increase in urine flow and an improvement in the heart failure. These
effects do not occur. At this point it is necessary to reassess the available information
and the decisions based upon that information.

Since the therapy decision was correct, based on information available at the time,
the focus must be on the data evaluation. A reconsideration of the data evaluation
leads one to suspect that the equivalence between the measurement of the blood
pressure at the arm and the underlying datum of interest, central arterial pressure,
is not present. By using an invasive, but more accurate method for measuring blood
pressure, it is possible to confirm this suspicion.

The new assessment removes the justification for giving a positive inotropic agent
and also calls the initial dopamine therapy into question. The revised opinion, which
benefits from hindsight, is that a drug to dilate the patient’s arteries should have
been used instead of one to make the heart beat more strongly.

5.2.2 Program Results

To demonstrate how the TCS supports this type of reasoning, I programmed a simpli-
fied version of the cardiac management decision above. The program used to generate
the output shown here consisted of 26 variables (of which only seven are shown in
the figures) and 14 reasoning modules. Selected portions of the program output after
the initial consultation (figure 5.2) and after the reconsideration of the information
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(figure 5.3) are shown. The initial evaluation executed 38 process instances for the
14 modules. The two stages of the revision at times 24 and 25 combined executed 85
process instances. For this example, the time scale uses units of hours.

The program takes the clinical observations and test data as its input and ab-
stracts this into a description of the state of the patient. The initial decision uses
the low blood-pressure measurement (80/50), the constricted vascular status (from
cold, clammy skin), and the presence of arrhythmias to suggest the use of a posi-
tive inotrope and an anti-arrhythmic agent. This abstract strategy is refined into
the concrete recommendation of dopamine and lidocaine (figure 5.2). I have already
discussed the transformation of point data to intervals in the TCS .

Great care is taken to separate the ideal strategy from the concrete actions. This
is important for allowing the process of hindsight to operate. It is a demonstration
of the need to use different forms of reasoning in the future and in the past.

As more information becomes available (at times 24 and 25), the assessment is
reconsidered. The arrhythmia remains a problem, but since it is improving, the pro-
gram concludes that the choice of lidocaine is correct and should be continued. This
is reflected in the retention of the anti-arrhythmic part of the ideal therapy strategy.
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Since the lack of blood-pressure response is not consistent with the expected effects
of dopamine, this part of the case analysis needs to be reexamined. The lack of re-
sponse, combined with the vasoconstriction, makes the cuff method of blood-pressure
measurement suspect; this is detected by a module monitoring the progress of ther-
apy. This rule compares the actual response with the expected response and detects
discrepancies. The discrepancies in turn lead to an examination of the assumptions
underlying the original treatment decision.

Without a reliable blood pressure, the justification for the positive inotrope is
missing, so it is removed from the ideal strategy.® The ideal treatment is modified so
that it no longer includes dopamine and so that it uses a different method to measure
the blood pressure. The concrete treatment, however, can only be changed in the
future, so dopamine remains on the treatment list for the first 24 hours (figure 5.3).
Once the arterial line is inserted and a reading obtained, a vasodilator is indicated to
reduce the central blood pressure from its very high level of 200/120. This is reflected
in the concrete suggestion that nitroglycerine be added.

In the implementation of this decision, the module used to evaluate the data in
order to arrive at a treatment strategy considers the current values of the blood
pressure, the arrhythmia state and the vascular status of the patient, as well as
any known problems with drugs or blood pressure. The module that determines
whether there are any drug or blood-pressure problems considers the treatment and
current (input) and past (history) values of the clinical parameters. It also uses the
history and oracle facility to make the conclusions about the blood-pressure difficulties
available to earlier and later time periods. The detection of the problem at time 24
is therefore available for use in reconsidering the treatment strategy at time 0.

In a complete system, there will need to be a large number of “default assump-
tions” along with rules to monitor their validity. Although TCS does not relieve
the programmer of the burden of identifying and implementing these assumption
monitors, the TCS provides a mechanism for revising the affected decisions when
assumptions are later determined to be violated.

5.2.3 Discussion

Hindsight is inherently a temporal process. It involves using data available at
one time to evaluate decisions made earlier. The temporal aspect of reasoning by
hindsight is illustrated in figure 5.4. The initial advice for Therapy; is based on
the evaluation of the first blood pressure reading BP;. After some time has passed,
another reading is considered (BP3). This second reading is used in two ways:

1. To evaluate the efficacy of the initial intervention Therapy; as well as the process
(Patient Evaluation) that led to the choice of that therapy. This review can

31t would also be possible to implement a less radical strategy by suggesting the use of an arterial
line before the therapy itself was changed. This is a change in the function used by the decision
module and does not affect the demonstration of the action of TCS.
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Figure 5.4: Temporal Aspect of Hindsight

confirm the correctness of the initial decision, suggest a modification of the
therapy, change it completely or be neutral (i.e., not express an opinion).

2. To plan future therapeutic interventions (Therapys). The future plans will
implement either the results of the review of therapy from 1 above or else involve
some other changes, perhaps the progression to a new state of the therapy.

In the following sections I examine conceptual issues raised by the use of feed-
back, as well as technical considerations needed for the proper implementation of this
reasoning.

Evaluation Feedback

Two different types of failure can be detected by the use of new information for
the evaluation of a treatment. One is the failure in the choice of therapy. This could
be due to an error in the reasoning which led to the choice of therapy, or it could
be due to inherent uncertainty. An example of the latter would be the presence of
arrhythmias that are resistant to lidocaine. In the above example, if the lidocaine
had proved incapable of improving the arrhythmia, the program would conclude that
the arrhythmia is resistant to lidocaine. However, since the anti-arrhythmic strategy
would still be correct, only the implementation of the strategy need be changed. An
appropriate alternate drug such as procainamide would be suggested.

A second form of failure that could be detected by hindsight could be an error
in the data collection process or in the interpretation of the data in a particular
patient’s context. In the example there is an error in the data evaluation due to a
violated assumption. For example, inappropriate data interpretation could occur if
a hypertensive patient presented with a blood pressure of 115/75. In most patients
this would be considered in the normal range. For an individual with high blood
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pressure, however, this should be considered abnormal and a cause for the lower-
than-usual blood pressure sought. If knowledge of a patient’s high blood pressure
only became available after the start of treatment, the reinterpretation of the blood
pressure readings would be an example of hindsight. Both types of feedback in the
reasoning are shown in figure 5.5.

Past—Future Distinction

When considering the way reasoning and actions interact in an advice-giving system,
one must maintain a separation between reasoning about future events and reason-
ing about past events. In the future, one can freely change both the advice and the
actions that follow from the advice. In the past one can, through hindsight, change
the advice—deciding “what should have been done”—but actions must remain un-
changed, reflecting what was actually done.

In a program, this can be accomplished by maintaining separate variables for the
advice (the ideal treatment and strategy) and the actual interventions (the concrete
treatment and strategy). This is combined with a system-maintained variable indi-
cating whether the reasoning is in the past or the future. If reasoning is in the past,
no changes are allowed to the concrete choices. One could accomplish the same end
by having the concrete actions be entered from outside the system. This would also
be a confirmation of what was actually done, since the clinical staff is not forced to
follow the advice of the computer.

In addition to being a logical nicety, the maintenance of this distinction is crucial
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to the performance of reasoning by hindsight. The importance lies in the interaction
between changing items in the past (through hindsight) and the dependency-directed
updating system. If this distinction is not carefully made, one can be led into a
circular argument of the following form:

. We have a default assumption A.

. We make evaluation £, based on assumption A.

1

2

3. & indicates that the proper therapy is 7.

4. Treatment T leads to response R, when £ (using assumption A) is believed.
5

. When we later discover that R did not occur following 7, we can conclude that
assumption A is invalid and should be retracted.

&

Since £ depends on A, £ is retracted.

7. Since & is retracted, we have no longer have a reason for doing 7, so it is
removed.

8. Without 7, the absence of the response R is not grounds for disbelieving A.

9. Therefore, we make default assumption A and the cycle begins again at Step 1.

Trouble occurs at step 7, where an attempt is made to undo a past action. If this
step is disallowed, then the circularity is broken and the reasoning chain remains
valid, without the infinite loop. 7 must be removed from the list of actions that we
wanted to perform (in the ideal world), while remaining on the list of actions that
were performed (in the real world).

This potential circularity requires that the user keep those items of the history
invariant which cannot be changed retroactively. Since real oracles do not exist, data
is only available at the current time or from past times. Hindsight cannot undo
physical actions. They must remain, not only for philosophical reasons, but also
because of their logical necessity in support of the hindsight argument.

5.2.4 Hindsight Summary

The Tcsis designed to support management of evolving situations that do not require
novel strategies. In medicine this is known as following standard protocols. The
steps of protocol-based care involve the identification of the appropriate protocol
(diagnosis), the evaluation of the patient’s state (assessment), and the decision about
the therapy to be tried (plan instantiation). Following plan instantiation, diagnosis
and assessment continue to determine whether the plan is being successful or not
(monitoring). Monitoring allows the plan to be adjusted for differences in individual
responses to a standard therapy. It uses feedback to adapt the plan to individual
patient characteristics. It is also needed to detect changes that can indicate a new
disease process, a fundamental change in an existing process, a flaw in the therapy
chosen, or the existence of errors in the initial therapy choice.
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As I demonstrate in the hindsight example above, some of the errors in patient
evaluation and plan choice only become apparent over the course of time. It is
therefore important to monitor the changes in a patient’s condition, consider the
effects of previous treatment in evaluating current patient data, and be able to change
flawed assumptions at the point that they influence decisions and have the effects
propagated forward in time.
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Chapter 6

Ketoacidosis Advisor

Experience in the cardiology domain influenced the initial development of TCS. To
further test the utility and demonstrate the generality of TCS, I used it as the basis
for a new, medically interesting therapy advisor for diabetic ketoacidosis (DKA). A
successful application in this domain must consider serial laboratory test data and
additional clinical information in order to arrive at advice for patient treatment and
management. The state of a patient with DKA must be tracked over time and the
therapy adjusted as the problem resolves.

Diabetic ketoacidosis is a condition which occurs when insufficient insulin is present
for the metabolic needs of the body. Since insulin enables the body to use sugar (glu-
cose) for its energy needs, a lack of insulin forces the body to fall back on an alternate
source of energy. This alternate metabolic pathway results in the production of ke-
toacids, hence the name of the condition. The presence of ketones and ketoacids
upsets the normal acid-base balance and makes patients very sick.

Diagnosis is straightforward. History of diabetes and changes in either insulin-
taking, diet or physical activity (such as illness or accident) strongly suggest the
condition. Evidence of ketones in the blood or urine along with glucose provide
a positive diagnosis. The medical challenge is not in the solution of a diagnostic
problem, but in the careful adjustment of treatment over the 24 to 72 hours it takes
to restore patients to normal.

Treatment is a combiniation of direct and supportive measures. The direct mea-
sure is the administration of insulin to allow the body to use glucose as a fuel and
thus obviate the production of ketones. This has the beneficial side effect of also
reducing the concentration of glucose in the blood. Supportive measures include
fluid and electrolyte replacement. When serum glucose concentration is high, the
kidneys begin eliminating the excess glucose from the blood. Unfortunately, glucose
is a large molecule and when excreted in the urine, it draws water with it (osmotic
diuresis), leaving patients volume-depleted (dehydrated). Patients in DKA can have
volume deficits of three or more liters. In addition to the water, potassium is also lost
through the kidneys. Both items must be replaced as part of the supportive therapy.

65
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6.1 Development of the Ketoacidosis Advisor

The goal of the Ketoacidosis Advisor project was to produce a computer system that
is able to generate advice that is similar in quality to actual human performance.
The Advisor project was a collaborative effort between myself and physicians at the
Tufts—New England Medical Center. I provided the computer-science expertise and
the physicians, Michael Hagen and Klemens Meyer, supplied the medical expertise.
The Advisor was able to achieve these goals, as demonstrated by a formal evaluation
reported in the next chapter.

Realism was guaranteed by the use of actual patient data. We randomly selected
sixteen cases from a pool of approximately 400 cases with a primary or secondary
diagnosis of DKA treated at the New England Medical Center between 1986 and
1989. Joni Beshansky, a nurse in the Medical Center’s Clinical Decision Making
Unit, performed the database search and located the cases. We used ten of the
sixteen cases for expert system development and reserved six for use in testing. The
test phase used four of the six reserved cases. Before extracting data, we removed all
patient indentifying information from the cases. The New England Medical Center
Institutional Review Board granted approval for the use of anonymous information
from the clinical records. We assigned the cases sequential numbers for identification
within the Ketoacidosis Advisor project. We did all development and testing of the
system using data collected retrospectively from the patient records. The Ketoacidosis
Advisor was not used for patient care.

We abstracted the data in the medical records into a machine-readable form and
used them for development. I did all of the record coding. The quality of the record-
keeping varied from case to case, as did the amount of information that was retained
in the permanent record. The information available generally included the emergency
room record, complete laboratory test reports, flowsheets used in treatment, input
and output records, medication record sheets, physician orders and the progress notes.
Serial blood-pressure measurements were also generally present. The fluid balance
sheets had the greatest variability and were in some cases not completely filled out.
The largest problem for evaluation was the poor identification of the times at which
fluids were added or urine output was recorded. Medication times and laboratory
tests typically had good time stamps.

I encoded full chemical blood labs, blood gas and relevant parts of the urinalysis,
but not laboratory studies that did not affect the insulin or fluid decisions. I encoded
information from the narrative portion (House Officer and Nursing progress notes, as
well as physical exam results) as it seemed relevant.

A major difficulty in data acquisition was determining when the patient was able
to tolerate oral fluids. Although obvious to the clinical staff treating a patient, this
fact is often not formally recorded. I have attempted to identify the point at which
oral intake is sufficient by examination of the nursing progress notes, the physician
orders for diet, and the appearance of other fluid input sources on the fluid balance
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flowsheets. Nevertheless, I consider this one of the weakest parts of the data acqui-
sition. A second difficulty is the measurement of urine output. This is sometimes
not recorded on the fluid balance sheet (urinalysis results occasionally appear from
the laboratory without corresponding urine output!). Furthermore, if the patient is
ambulatory, urine output is not entered into the record because the patient will just
walk to the toilet. (Although it complicates the task of development and evaluation
of an expert system, this gap in the data collection has no impact on actual patient
care. Any patient that is sufficiently well to be up and out of bed is not severely
dehydrated.)

Since the goal of the project was to do an in-depth analysis of each particular case,
a large set of cases was not required for development. The data abstraction involved
the reconstruction of the measurements, observations and events that occurred during
the hospital stay. Because the major emphasis of this work is on the temporal nature
of the decision-making, I made every effort to determine the times for all items in
the record. A typical case would span 48 to 72 hours. The development cases had
an average of 75 specific times when information became available or treatment was
changed, and slightly more than 300 individual observations spread over those 75
sessions. This formed the input to the Ketoacidosis Advisor.

The physicians and I developed the knowledge base over a period of three years
through a study of the literature, conferences with domain experts and the analysis of
the case data. Once the initial framework of the Advisor was complete, we could use
the cases to exercise the decision-making and to identify deficiencies in the reasoning.
We performed a formal evaluation once the Ketoacidosis Advisor was performing
satisfactorily on the set of development cases.

6.2 The Assessment Process

Monitoring and management problems characteristically have a recurring pattern of
assessment and action. Information is obtained in order to arrive at an initial view
of the problem encountered. Therapy (or more generally any action) is based on an
evaluation of the initial state. Time then elapses until more data become available
(i.e., more observations are made) and modifications of the actions can be made.

The amount of time that passes between the initiation of therapy and its evaluation
must be long enough so that the therapy has time to produce an effect. In the case
of fast-acting drugs like nitroprusside (which decreases blood pressure), this could be
a matter of minutes. For other drugs, such as diuretics, more time must pass before
an effect is discernible. Finally, a drug’s effects wear off over time as it is eliminated
from the body. This underscores the importance of the temporal component in the
reasoning.

In DKA , the assessment of the patient is based heavily on blood tests. Blood glu-
cose concentration is the main determinant of insulin therapy. Physical examination
and other laboratory data contribute to the assessment of fluid status. Potassium
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status is assessed based on laboratory test results.

The laboratory tests are point samples that measure an underlying process. The
therapies themselves are carried out over time. There is a fundamental difference
in the temporal extent of these two quantities. To reflect the persistence of states
even though they are observed only at single moments in time, the description of the
patient’s laboratory values is extended in time. This is appropriate because values
reported by the clinical laboratory cannot change instantly. Since the values do
respond over a longer time period, both to external therapy and internal evolution,
it is important to limit the extent of the persistence.

This extension over time can be handled by using the persistence operators of
the Tcs. In the Ketoacidosis Advisor, this persistence is a fixed length of time. It
is chosen so that the information will be remembered long enough to span the time
until the next likely point when information will be gathered. It would perhaps be
better to vary the time and have it depend not only on the value reported in the
laboratory data, but also on what was done in the meantime.

For example, the serum potassium concentration in the blood will not stay con-
stant if potassium supplements are given to the patient. When considering therapy
decisions, it is important to consider the impact of treatment on the measured quan-
tity when deciding how to use older laboratory data. Some of the therapy decisions
can be based on abstracted intervals of time; others must be based on the sample
itself.

For some parts of the therapy, trend information is also important. First, one
wishes to have the serum glucose levels fall rather than rise further. But the rate of fall
should be such that it produces no undue dislocations in the body. By using sequential
measurements, a rate of fall can be calculated and used as the control variable for
insulin therapy. This trend could be extrapolated to indicate when additional test
results are warranted. This is important because it is necessary to adjust the dose as
the glucose levels approach normal. Overshooting the goal causes hypoglycemia (low
blood sugar) and endangers the patient.

The assessment also includes monitoring what has been done to the patient in the
past. This is important for three reasons:

1. The actual clinical actions may not be what the Advisor has recommended. In
making further recommendations, it is important that the Advisor know what
the starting point of the actual therapy is. This is vital to the correct evaluation
of the effectiveness of the therapy.

2. The treatment can affect the assessment because the response to therapy can
itself yield diagnostic information. In particular, insulin resistence is identified
by observing the effects of a particular insulin dose on a patient.

3. Some of the assessment involves the cumulative impact of treatment over time.
The restoration of a volume deficit requires a certain amount of fluid excess to
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be infused. Judgement of progress toward this goal is determined by summing
the volume of fluids added and subtracting the measured and estimated losses.
This process is aided by the use of clinically observable features such as urine
flow, blood pressure, heart rate and weight changes.

6.3 The Therapy Decision

As I noted above, the three major components of DKA treatment are control of the
amount of insulin, restoration of a proper fluid balance, and replacement of missing
electrolytes.

6.3.1 Insulin

Insulin is used to arrest the further production of ketones and reduce the serum glucose
concentration. The amount of insulin given is determined primarily by measurement
of the glucose concentration. The zones for insulin therapy are high, moderate, nor-
mal, low and very low. If glucose is low, then no insulin is given. At very low levels
supplemental glucose is also given, since eliminating all glucose will result in a coma .
At normal glucose levels, insulin therapy is aimed at maintaining a steady state. At
moderate and high levels, the goal is to reduce the insulin level. The rate at which
this is done varies, because an overshoot can have swift negative consequences. As
the glucose levels approach normal the rate of decline should level off to provide a
“smooth landing.”

Depending on the degree of sickness, insulin can be adminstered either through an
intravenous (IV) infusion or via subcutaneous (SQ) injections. The therapy decision
regarding insulin involves choosing a route of administration as well as the amount
of insulin to give. These decisions are influenced by the patient’s normal schedule of
insulin needs as well as by his clinical state. A slightly simplified diagram of the rule
for initial insulin administration is shown in figure 6.1a. The parameters influencing
the control of an IV insulin infusion are shown in figure 6.1b. The infusion rate is
titrated to keep the patient inside the glucose decline envelope. Time influences this
decision through the calculation of a rate (change per unit time) and in the nature
of a feedback control system (treatment evolving over time).

Because insulin must be given until the ketoacids have been eliminated, it is still
necessary to continue therapy after normal glucose levels have returned. To maintain
a steady glucose level, the continued administration of insulin is combined with the
administration of additional glucose. Until the patient is well enough to eat, this
additional glucose is provided by changing the composition of the fluids.
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Figure 6.1: Insulin Treatment Strategy

6.3.2 Fluids

There are two components of fluid therapy: the type of fluid and the rate at which it
is infused. The patient’s initial condition typically includes high serum glucose levels
and a volume deficit. Normal saline (without additional glucose) at high flow rates is
used to remedy this condition.

As the treatment progresses the two problems resolve. The degree of fluid deficit
and the need to offset continuing urinary losses determine the rate of administra-
tion. Progress in controlling the hyperglycemia (high blood sugar) and the success
in overcoming the initial deficit affect the type of fluid used. These two controls are
independent. Normal glucose levels are often achieved before all of the ketoacids have
been eliminated. Insulin therapy must therefore continue. Since the serum glucose
levels have dropped, it is necessary to supply additional glucose through either the IV
fluids or oral (dietary) supplements to prevent dangerous hypoglycemia. Similarly,
restoration of normal cardiovascular function as the volume deficit is replaced shifts
the emphasis from pure volume replenishment toward maintenance of a steady state.
Once a patient is able to tolerate food and drink, the need for an infusion will decline.

The initial rate decision is based on a desire to restore a normal volume in a
controlled manner. The goal is to restore half of the deficit over the first eight hours
of treatment and the other half over the following sixteen hours. Typically this means
an infusion rate of 500 to 1000 ml/hour. After the initial volume deficit is made up,
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the replacement rate can be reduced to around 200 to 250 ml/hour. Once the patient
stabilizes and the glucose and ketone levels are normal, a maintenance rate can be
used. The factors which affect the fluid rate calculation are shown in figure 6.2. Some
of these, such as the ongoing urinary fluid loss, can only be measured retrospectively.
This means that therapy based on expected urine flow may need to be revised—a
situation the TCcS makes much easier to handle.

In a normal patient, there is little possibility of giving too much fluid, since the
kidneys are able to eliminate the excess. In the case of kidney or heart failure, the
body is not able to tolerate excess fluids. The Ketoacidosis Advisor’s knowledge base
does not contain rules for handling these special cases. This limits the clinical useful-
ness of the current prototype, and also imposed restrictions on the set of usable cases
for the evaluation. I included no cases with renal or heart failure in the development
or test set.

6.3.3 Electrolytes

The primary electrolytes that DKA treatment must handle are potassium and phos-
phate. Potassium management is complicated because the high urine flows from the
osmotic diuresis cause potassium loss. Furthermore, the management is complicated
by the lack of a clear assessment. The laboratory test results are skewed by a shift
in the location of potassium from the cells to the bloodstream that is caused by the
acidosis. This means that patients in the early stages of DKA treatment are low in
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potassium, but have laboratory test results that are in the normal range! Since the
total mass of potassium in the cells is much higher than in the blood stream, small
shifts in the amount in the cells can lead to large changes in blood concentration.
This is a problem because excessively high or low serum potassium levels can disturb
heart rhythms and lead to death.

Further complicating this is the fact that in advanced dehydration the body’s
mechanism for regulating potassium balance, the kidneys, may not be functioning. It
is therefore necessary to ensure kidney function before beginning aggressive potassium
therapy. If kidney function is ensured, then it is relatively difficult to overmedicate
with potassium supplements. The need for potassium therapy is related to the success
of the insulin therapy at correcting the acidosis. As the acidosis resolves, potassium
shifts back into the cells, necessitating replacement with external sources. The effec-
tiveness of one therapy therefore influences the effects of the other therapy.

6.4 The Bookkeeping Functions

Certain auxilliary functions proved useful for coordinating data arrival with the im-
plementation of therapy. Other functions calculate derived information about the
state of the patient to aid in the decision-making procedure.

6.5 Agendas, Urgent and Non-Urgent Changes

When continuous IV fluid therapy is in place, it is used as a means of administering
other forms of therapy continuously over a period of time. Potassium and insulin are
often given this way. Because the rate of insulin administration is closely regulated
to keep patients in the proper glucose decline envelope, it is generally administered
through a dedicated IV line.

Since potassium and phosphate administration rates are less critical, they are
piggy-backed on the fluid replacement. Since supplement administration is not urgent,
changes in treatment such as adding or deleting supplements wait until a new IV
bottle is started. This happens when the present bottle is exhausted or a change
to another type of fluid is indicated. The bookkeeping challenge is to coordinate
the desire to change the supplement, made in response to a laboratory test result,
with the independent event of an intravenous bottle being changed. The solution
I used in the Ketoacidosis Advisor was to implement a higher-level data structure
called an agenda, and use TCs modules to manage the addition and removal of items.
Non-urgent treatments are posted to an agenda whose items are taken care of as the
opportunities present themselves. For example, potassium supplements are added to
the agenda when indicated by laboratory tests, and they take effect at the next fluid
change.

A similar mechanism can be used for urgent changes. In this case, the agenda



6.5. AGENDAS, URGENT AND NON-URGENT CHANGES 73

is used to retain actions triggered by a point variable value until they are either
superceded by new advice, or until the clinical staff follows the advice. This provides
a coordination between recommendations of the Ketoacidosis Advisor in response to
newly received data action and the ability of the clinical staff to carry out the advice.

Agendas are implemented by using the history mechanism. The Tcs module that
maintains the state of the agenda uses lists of items to be added or deleted. The add
list comes from advice-generating modules. The delete list comes from monitoring
which actions have been carried out by the clinical staff. This data flow structure is
like producer-consumer co-routines, but with the additional feature that the producers
can retract items from the agenda before they are consumed. In other words, if an
action which has not already been carried out becomes unnecessary, it is retracted
from the agenda.

6.5.1 Assessing the Urine Flow

Replacing the fluid deficit requires a positive balance between the fluids that a patient
receives and the fluids that he loses. This balance is calculated by subtracting the
losses from the inputs. The sources of fluids are intravenous infusions, oral fluid intake,
and water produced by metabolism. Losses are via urine and stool output (which can
be easily measured) and so-called “insensible losses” that occur through breathing
and sweating. There is a minimal urine flow that is required to clear metabolic waste
products from the body. There is also a minimal amount that will be lost via the
insensible route. In order to have a positive balance, the intake must exceed this
amount.

IV and oral intake can be accurately monitored, and the metabolic sources esti-
mated. Similarly, the urine output can be measured, while insensible losses must be
estimated. Recall that the hydration control strategy that I used in the DKA advisor
called for the replacement of one half of the calculated fluid deficit in the first eight
hours and the replacement of the remaining half of the deficit over the next sixteen
hours. The adjustment of the IV infusion rate depends on a real time assessment of
the fluid balance. This requires that the losses be subtracted from the intake. Unfor-
tunately, urine output is buffered in the body via the bladder. This introduces some
problems into the continuous assessment of the fluid status.

Over the course of the project, I tried numerous techniques to handle this difficulty.
I describe them below:

Calculating Flow Rate

The simplest method is to calculate the flow rate based on the amount of urine
produced and the time since that last voiding. This is computationally simple and
is based on the assumption that urine production was constant during the interval
between voidings. The problem is that each trip to the bathroom does not necessarily
completely empty the bladder. Particularly when there was not much time between
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voidings, it was possible to get short stretches with greatly different flow rates. This
can be seen on the “Urine Flow, straight” line of the graph in figure 6.3.

I initially addressed this particular problem by consolidating all urine output that
occured within a period of 60 minutes into a single point and using that as the urine
output point. The effect was never to calculate a rate over a period of time that was
less than 60 minutes. This averages out the small variations and reduces the size
of the flow rate. This can be seen on the “Urine Flow, lagged” line of the graph in
figure 6.3. The lag solution combines the results from 12:00 and 12:45 into a single
value at time 12:45.

Previous Eight Hours—Shift Aligned

Unfortunately, the solution outlined above was not sufficiently robust for my needs.
The second solution that I attempted was to observe the previous eight-hour shift and
use that data. This method had the appeal that it closely followed the availability of
data to the clinician, since fluid balance was generally tabulated only at the end of
an eight-hour nursing shift.

Since shift balance data were already being calculated, it was easy to transform
the balance from the previous shift into an interval for use in decision making in
the following interval. The disadvantage of this method was that it did not provide
current information. All of the balance calculations were being made eight hours after
the fact. In other words, the effect of urine flow was not taken into account until one
shift later. This can be seen on the line “Urine Flow, 8hr Avg” in figure 6.3.

Previous Eight Hours—Dynamic

To maintain the advantage of a larger averaging period while still remaining responsive
to acute changes in the urine flow rate, I finally shifted to an eight-hour moving
average. Aside from special provisions for the beginning of the hospitalization period
when a full eight hours of data are not available, this was quite easy to implement.
All that was required was that the urine output be available (as part of an oracle
variable) for the eight hours before the output was measured. At any point in time,
then, the values of all of the urine output in the time window were available for
averaging. This is illustrated by the “Urine Flow, 8hr Back Avg” line of the graph
in figure 6.3. Note that the lag solution has fewer distinct values, because the lag
solutions’ intervals are bounded by the individual data values. The averaging method
also adds an eight-hour event horizon which can fall between existing data points and
introduce more time periods. The magnitude of the averaged values shows more
consistency, as one would expect with averaging. The averaging solution had more
intervals (as expected), but the magnitude of the change hetween adjacent values was
much smaller, producing smoother fluid rate recommendations. The size of the urine
flow estimates are also higher in the crucial early phase of the treatment, when most
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Figure 6.3: Various Urine Flow Measures

of the osmotic diuresis occurs. This leads to higher initial fluid rates, which is the

behavior we desire.

The code for this module is quite easy to program, as shown in figure 6.4.

6.6 Special Module Schemata

The implementation of the Ketoacidosis Advisor showed the need for a number of
other general-purpose modules. Although developed in response to specific reasoning
goals in the DKA domain, they are sufficiently generic to be useful in a wider range

of applications.

I implemented special modules to handle the following tasks:

1. Establishment of cyclic time patterns. The standard insulin dosage patterns
call for injections at various times of the day, typically morning, evening and
bedtime. One specific time would be too inflexible for a real world setting, so a
period of time each day needs to be designated for each of these dosage times.
The dosage rules used by Tcs will recommend the baseline insulin dosage for
patients who are well enough to be handled by SQ injections. If the dose is not
given within its “dosage window,” then it is deferred until the next day, and an
interim maintenance strategy takes over.

In the Ketoacidosis Advisor, I divided the timeline into a daily cycle with seg-
ments which include morning, evening and bedtime. I generalized the module
implementing this division to produce a macro which takes a description of the
cycle and a control variable that determines how far into the future to project
the cycles. The time line is then automatically segmented, with the projec-
tion into the future controlled by the separate TCS variable. This is the same
technique I used to run the pharmacokinetic model in chapter 3.

. Periodic output summaries. At the end of each eight-hour shift, the nurses
prepare a summary of the fluid input and output for each patient. This is a
generator-type function which requires a different type of period timer. Again,
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(defmodvar urine-out :point)
(defmodvar 8hr-out-fut :interval)
(defmodvar 8hr-out-back-av :interval)

;5 Make urine output available for reasoming for the eight hours
;; before the value was measured.
(deffuture 8hr-out-fut urine-out 8hr-out-fut :full-future t
:decay-time #.(x 8 60))

;5 Calculates the rate component of each value by dividing the value by the amount
;1 of time the value was observable. This means that urine output within eight hours of
;1 the start of treatment contributes more to the rate. This is needed so that the
;s integral of the rate from the start of treatment until any given input point equals
;5 the sum of the urine output recorded thus far.
(defun adjust-for-time (pv time)
(let ((diff (tcs:time-sub (tcs:time-part pv) time)))
(cond ((<= diff 0) 0)
((< diff #.(x 8 60)) (/ (tcs:value-part pv) diff))
(t (/ (tcs:value-part pv) #.(x 8 60))))))

(defmodule 8hr-out-back-av (8hr-out-fut starting-time)
(8hr-out-back-av)
O ; No internal process state. The oracle variable is
; handled separately by the module 8hr-out-fut.
: This separates the temporal component in one module
;and allows a simpler implementation in this module.

(cond ((unknown starting-time) (setq 8hr-out-back-av :unknown)) ; No session yet.
((tcs:time< begin_time starting-time) ; No calculation before session starts.
(setq 8hr-out-back-av :unknown
end_time (tcs:time-min starting-time end_time)))
((tcs:time>= end time (+ #.(* 8 60) starting-time))
(setq 8hr-out-back-av
(/ (loop for pv in 8hr-out-fut sum (tcs:value-part pv))
#.(x 8 60))))
;5 The following code adjusts the values so that the amounts are scaled for
5 the time to start. It should integrate to the same value as the sum of
;5 the urine output data.
(t (setq 8hr-out-back-av
(loop for pv in 8hr-out-fut
sum (adjust-for-time pv starting-time))))))

Figure 6.4: Eight-Hour Average Urine Flow Code
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I developed a general module which can generate period timing information to
trigger the collection and aggregation of data.

3. Reminders. Since some actions, such as changing the intravenous fluid bottles,
do not happen at set times, but rather in response to need (i.e., when the bottle
is empty), reminders of imminent chores can be helpful. Determination of the
emptying time of bottles is an example of the more general phenomenon of the
projection of the time a process will take to complete. This generalization can
be used in any such circumstances. A related task is calculating when a patient’s
fluid deficit will be eliminated. This triggers a change in the fluid management
strategy.

4. Coordination between advice and actual treatment. The ability to separate the
generation of advice from the monitoring of its execution introduces a problem
decomposition that simplifies the design of a reasoning program. A general
mechanism for accomplishing this is to use the agenda to keep track of pending
advice. The agenda can hold actions that should be performed immediately (like
giving glucose supplements for hypoglycemia) or they can be linked to external
triggering events (such as intravenous bottle emptying). A short discussion of
this is published in [72].

The routines I have developed to support the programming of the Ketoacidosis
Advisor provide tools that can be reused in other projects. Some of the tools are
sufficiently general that I will include them in future releases of the TCS program.

6.7 Summary

In the implementation of the Ketoacidosis Advisor, the TCS methodology and tools
proved adequate to handle all of the domain-specific reasoning. The existence of the
automatic updating made the solution of many of the problems simpler, since signifi-
cant measurements (e.g., urine flow) were often available only after a substantial delay.
This required a recalculation and reassessment of the situation. The variables that
were affected were automatically determined by the TCS system, which also scheduled
the execution intervals for the process instances needed to do the recalculation. That
alone provided a significant savings in development time.
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Chapter 7

Formal Evaluation of the
Ketoacidosis Advisor

In a formal evaluation, the decisions made by the Ketoacidosis Advisor were indis-
tiguishable in quality from the clinical decisions made by the residents and interns
treating the patients. There is evidence that the computer-generated advice was bet-
ter, although the advantage was not sufficiently high to reach the .05 level in all of
the statistical tests I applied to the data.

The Advisor’s performance was evaluated by experienced physicians specializing in
nephrology. The actual clinical treatment was given by the house staff at the Tufts—
New England Medical Center. The house staff is made up of residents (physicians in
the first three years after medical school).

7.1 Evaluation Design

An evaluation of an expert advice-giving system could take one of several forms. The
form is influenced by the questions one wishes to have answered, which are in turn
dictated by the purpose of conducting the evaluation. An evaluation designed to
measure the overall performance of a system is not necessarily suited to identifying
specific problems. An evaluation that concentrates on the rules which result in specific
recommendations can lead to difficulty in forming a global view of the performance
for comparison to actual clinical practice. Finally, one may wish to elucidate a “gold
standard” for comparison with both advice and actual treatment, as well as for a
guide for implementation of the reasoning.

The evaluation I report here is of the first type mentioned above. I present a
composite assessment of the performance of the Ketoacidosis Advisor as an integrated
unit. The goal of the experiment is to demonstrate that human-level performance can
be achieved by an expert system in a domain in which the data are changing rapidly.
Unlike a detailed evaluation of parts of the advice, such a global assessment is not
directly useful in refining the medical content of the rules. (It is indirectly useful,
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since attention can be focused on areas where the composite advice was judged to be
objectively poor.)

I did not evaluate the timing of the advice because of the fear of introducing bias
in favor of a dedicated system as well as because of the limited resources that were
available for evaluating the system’s performance. I address this concern below in the
discussion of the choice of decision points.

The formal evaluation was constrained by the amount of time that the expert
panel was able to dedicate to the evaluation process. The evaluation needed to be
completed in approximately one hour by each panel member.

A combination of time and personnel constraints made the development of a gold
standard impractical. First, time would need to be found to reach a consensus. As
I discuss at greater length below, there is no natural consensus on the evaluation of
particular decisions. This lack of consensus is an inherent property of the domain
of DKA treatment. Furthermore, to avoid biasing the evaluation process, separate
groups would be needed to create the gold standard and to assess the performance
of the Advisor on the case. This would have required more physicians than were
available to serve on the expert panel.

7.2 Methodology

As I noted in the previous chapter, I selected the four cases for the evaluation phase
of the project at random. To avoid any influence on the design and implementation
of the Ketoacidosis Advisor, I first froze the program design, then examined and
abstracted the cases in the evaluation set and presented them to a panel of experts.

7.2.1 Panel of Experts

I presented the set of cases chosen for the evaluation to a panel of five attending
physicians and five fellows in the Division of Nephrology. Although two medical
students also filled out evaluation forms, the statistical tests and the analysis below
use only evaluation forms provided by the attending physicians and the fellows. This
limits the panel to physicians recognized as experienced in the field of nephrology.!

None of the physicians on the expert panel was involved in the design or training
of the Ketoacidosis Advisor. They had not previously seen the cases used for the
evaluation.

I chose a panel of nephrologists for two reasons. First, since DKA is a disturbance
of acid-base physiology, nephrology is one of the two relevant specialties. Endocri-
nologists, experts in the other relevant specialty, served as a backup discussion group

!Fellows are physicians who have completed their initial training (three years beyond the M.D.
degree) and are beginning their specialty training, which typically lasts two years. Attending physi-
cians are certified specialists. In a teaching hospital, the attendings are responsible for training the
fellows.
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to perform a less formal analysis of the program’s output. The other reason for eval-
uation by nephrologists is that the domain expert who aided me in the design of the
program was a nephrologist by training. This should be a more realistic evaluation
of the effectiveness of the reasoning captured in the expert system, since the domain
expert and the expert panel should have roughly similar approaches to the problem.
Using a panel from another specialty, although interesting as an evaluation from the
medical perspective, would have been less useful from the point of view of assessing
the ability of this technique to capture a particular type of expertise. Thus, the
specialty of the source of the program’s expertise is the same as the specialty of the
evaluation panel.

7.2.2 Format of the Questionaire

I designed a questionaire to present the temporal course of a patient who was admitted
to the hospital for treatment of diabetic ketoacidosis. 1 coded each case by hand
into a machine-readable form. The evaluation sheets were generated automatically
from information in machine readable form. This included a textual overview which
provides background for the evaluation panel, but which was not considered by the
Ketoacidosis Advisor.

7.2.3 Choice of Decision Points

I used a mechanical procedure to choose the decision points to avoid bias introduced
by the researchers. A decision point was deemed to occur whenever there was a
significant change in the actual treatment. A significant change was:

e any change in the composition of the intravenous fluid (including changes to
supplements).

a change in the fluid infusion rate greater than 10%

a change in the form of insulin treatment (infusion or subcutaneous injection)

a change in the rate of insulin infusion greater than 10%

the administration of insulin by subcutaneous injection

the administration of an intravenous glucose bolus.

Each of the four evaluation cases was searched from the beginning of the record until
either twelve decision points were found, the case was three days old, or the patient
was discharged from the hospital.? The cases used in the evaluation varied in length

20One patient was sent home overnight and returned the next morning. This was treated as a
single admission.
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from 22 to 72 hours. The number of decision points varied from 9 to 12 per case. A
total of 42 points were available for evaluation by each panel member.

I chose to limit the decision points to those times when a change in the actual
therapy took place because that gave reasonable assurance that the clinical staff had
examined the patient and any relevant data that had arrived up to that time. In
particular, I did not feel that a fair evaluation of the content of the decision rules
would have been possible if treatment changes that would have been initiated by
the Ketoacidosis Advisor itself were chosen as decision points. Since the reaction
time of the Advisor would never be slower than the clinical staff, and would most
likely be faster, this would involve comparing the Advisor's recommendation using
the latest available information with the old decision made by the clinical staff, based
on information that was no longer current. I feel that this would have biased the
evaluation unfairly in favor of the performance of the expert system.

However, this consideration made it impossible to assess the timeliness of the
program’s advice or to assess its potential to respond to changing conditions more
rapidly than the human decision-makers.

7.2.4 Method of Evaluation

Each case was presented to the physicians in a summary form. Each decision point
was on a separate page of the evaluation form. For each decision point, the case up to
the time of that decision was presented to the panel of experts. Each case had between
nine and twelve evaluation points. The cases were printed on forms which provided
an initial narrative derived from the emergency room admission notes and the initial
physical examination. Other information relating to the results of laboratory tests,
vital signs and information about the treatment given up to the time of the decision
was provided. At each decision point, two treatment plans for the next action were
presented. One plan was generated by the Ketoacidosis Advisor and the other was the
treatment actually given to the patient. Treatment plans were listed in random order
and their source was not identified. As a safeguard against the order of presentation
affecting the evalation, I prepared two sets of forms, identical except for the order of
the treatments. Roughly equal numbers of each set of forms were used. Figure 7.1
shows the layout of an evaluation form. All of the information from the beginning of
the case was reprinted in chronological order on each page of the form with the newly
available information highlighted.

The panel assembled in a single room and worked through the evaluation forms
without consulting one another. Dr. Meyer and I were present to guard against the
evaluators’ looking ahead in the record to see either what was actually done in the
case (breaking the randomization), or seeing data that were only available in the
future (acquiring information that would not be physically possible in a real setting).
The panel used two methods to evaluate the therapy suggestions. First, each of the
two treatments was rated on a five-category scale: dangerous, poor, acceptable, good
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Sample Evaluation Case
Case description. This is a narrative summary of the presenting History of Present IlIness
illness, and the initial summary derived from the patient record. It sets Previous Medical History

the context and provides the rater with a concrete picture of the patient.
Includes history information that is not captured elsewhere.

Normal Insulin Dose

Time Vital Signs Urine Laboratory Tests Blood Gas Previous Actual Treatment | Time

v

Elc|alrP|D Better | Much

First Treatment Option

Second Treatment Option

No Preference

Figure 7.1: Sample of Evaluation Questionaire

or excellent. This provided an absolute measure of the quality of the advice. I refer to
this below as the five-category test. The second measure recorded the relative quality
of the two suggestions. The evaluator could express a preference for one treatment
over another even if both fell into the same qualitative category. The scale allowed
the rater to choose between no preference, one treatment was better or one treatment
was much better. I call this the preference test.

For subsequent data analysis I introduced a two-category scale, derived from the
five categories of the evaluation instrument. Dangerous and poor were combined into
a new category called “Bad,” and acceptable, good and excellent were combined into
a new category called “OK.” T call this the two-category test in the tables below.

My hypothesis before the evaluation was carried out was that the preference scale
would be more sensitive to subtle differences in the treatment, since two treatments
could fall within one of the absolute categories, but still not be considered equally
good. The ability to express a relative preference allows a finer comparison than
the rankings from the five-category scale. A sample evaluation question is shown in
figure 7.2.

After collecting the data I discovered that not enough information was provided at
two of the forty-two evaluation points. Laboratory test results which were available to
the clinic staff when the decisions were made were not presented to the panel or made
available to the program. Since the decisions involved the administration of insulin
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[10] At 6/25 2:30a, one of the following options was taken. Please rate them:

Choice | Treatment Excellent| Good | Acceptable| Poor | Dangerous Better| Much Better
NS with 30mEq Kcl/l at 200 ml/hr

1 No IV insulin drip
5ml Kphos

2 NS at 300ml/hr
No IV insulin drip

No Preference

Figure 7.2: Typical Treatment Evaluation Question

and the laboratory tests were the first measures of serum glucose concentration, the
omission of the test rendered those evaluation points invalid. I excluded the affected
points from the data analysis. This reduced the number of available decision points
by 4.5%.

7.3 Unanswered Questions

Because the amount of expert panel time was strictly limited, the choice of questions
to evaluate was circumscribed. This evaluation assesses both the absolute quality of
the advice generated by the Ketoacidosis Advisor and its relative merit compared
with actual hospital treatment. I discuss other questions that were not addressed by
the formal evaluation below.

7.3.1 Detailed Evaluation of Advice

The evaluation method indicates the performance of the Advisor program in the ag-
gregate. Comments from the evaluators indicated that at times they were in general
agreement with some (real or advisor) treatment plan but had reservations about
one particular part of the recommendation. The study design I used did not allow a
detailed breakdown of the areas of agreement or disagreement with particular treat-
ment options. An alternative would have been to separate the evaluation into distinct
components such as fluid therapy, insulin therapy and potassium therapy. While pro-
viding additional information about the detailed performance, such a study design
would create problems in assessing the overall performance of the system. How would
one combine an excellent fluid recommendation with a dangerous potassium plan? I
chose to have the evaluators integrate the different treatment components. One can
measure overall system performance without having to create an ad hoc rating scheme
to combine the individual parts.

As a prelude to further development of the expert system, though, such a de-
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tailed evaluation would be useful. System devlopment requires that the sources of
controversy be identified and deficiencies in parts of the decision-making process be
highlighted. This type of evaluation should be carried out before further development
of the system is done.

7.3.2 What Would be Optimal

A fundamental weakness of this approach to the evaluation is that there is no indi-
cation of what an optimal decision should be in any particular case. In effect, the
evaluators were constrained in the treatments they could vote for. Again, I chose this
format because I was interested in comparing the performance of the Ketoacidosis
Advisor to human clinical practice.

An alternate approach might have been to present the cases to a different panel
of experts, who would reach a consensus decision on the appropriate treatment. This
would provide three treatment options in place of the two that were offered to the
evaluators in this study. I was unable to do this because of a shortage of experts to
create all of the panels that would have been necessary.

Another method of getting information about a better treatment plan would be to
have the evaluators also indicate what they would do in the situation being evaluated.
This would then create the difficulty of merging conflicting treatment plans from each
of the evaluators in order to determine the optimal treatment. Below I discuss the
lack of agreement in individual recommendations. Since evaluations of particular
treatment options could cover the full scale of the evaluation range, it would not be
reasonable to assume that a consensus could be constructed from individual notes
written by the evaluators. A conference would be needed to resolve the differences in
the approaches of the individual evaluators.

7.3.3 Advantage of Faster Intervention

In order to avoid a temporal bias in favor of the Ketoacidosis Advisor, I selected
all of the decision points at times that the actual treatment changed. This limited
the choice of decision points, excluding times when only the Advisor recommended
a change in treatment. Including the times when the Ketoacidosis Advisor would
have changed treatment but the real treatment was unchanged, would have roughly
doubled the number of decision points over the time frame used for the evaluation of
the cases used in this evaluation.

To a certain extent, the decision not to look at the times when the Ketoacidosis
Advisor would have recommended change when the real treatment remained the same
reflects an assumption about the outcome of that examination. I assume that the
advice given at the selected evaluation points is an accurate sample of the quality
of the advice generated by the system. Furthermore, I assume (with much greater
confidence) that the Ketoacidosis Advisor would react more quickly to data, since it
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Table 7.1: Frequency Test Results for Rater Agreement.

Real Advice

Attending Fellow Both Attending Fellow Both
Dangerous 11% 2% 6% 4% 4% 4%
Poor 36% 37% | 36% 29% 26% | 27%
Acceptable 28% 26% | 27% 38% 32% | 35%
Good 21% 31% | 26% 14% 34% | 25%
Excellent 4% 4% 4% 14% 4% 9%
N 120 136 | 256 120 136 | 256

Frequency of score by rater group, for both real and advice. Percentages
may not sum to 100 because of rounding. The Pearson y? was used to
test the distributions for agreement. For the real treatment p = 0.037
(x* = 10.187, DF = 4) and for the advice p = 0.001 (y? = 17.724, DF
= 4). In both cases, the differences are significant.

will immediately process all data presented to it.

As a result of this inability to evaluate timing, the evaluation carried out was a
comparison of the advice from the system serving in a consultant role. The usefulness
of the expert system advice in a monitoring role remains somewhat speculative, al-
though there is no reason to believe that the performance would be any worse. Given
the greater demands on the expert panel, a full evaluation of the effects of timing
should wait until a system is designed that can be shown to be superior in the other
evaluation. The next implementation should be tested in this manner.

7.4 Results of the Evaluation

The overall evaluation is that the Ketoacidosis Advisor performs no worse than the
clinical staff that treated the patients. There is evidence that the computer-generated
advice was better, although the advantage was not sufficiently high to reach the .05
level in the statistical tests that I applied to the data.

The effects of the evaluators’ levels of training can be clearly demonstrated. The
grades given to the program by the attending physicians were significantly different
than the grades given by the fellows. (See table 7.1). The computer advice was
viewed more favorably by the attending physicians. Since all cases except number 16
had the same number of fellows and attendings evaluating them, the difference is not
likely to be the result of a skewed data mix.



7.4. RESULTS OF THE EVALUATION 87

150 100

> 80

S 100 - . T

o > 60 -

(on c

(O] ()

i 50 2 40 B Real

E 20 O Advice
0_
Real Neither Advice D P A G E
Preference Score

Figure 7.3: Preference and Evaluation Scores of All Cases

The preference graph shows the number of times real or advice was pre-
ferred. The score graph shows the number of times each score was given
to the real or advisor treatment plans. Score key: D = Dangerous,
P = Poor, A = Acceptable, G = Good and E = Excellent. Data is ag-
gregated from all raters (N = 256).

7.4.1 Statistical Tests

I performed statistical tests on the data gathered from the evaluation forms. Because
all of the data were paired and the evaluation categories were totally ordered, I chose
the sign test for the analysis. The sign test evaluates the sign of the difference of
paired observations. If the populations from which the samples are drawn are the
same, then one would expect the difference in the signs of the evaluation to be zero.
This hypothesis is tested using a binomial approximation. I carried out calculations
using the SYSTAT 5.0 program on an Apple Macintosh. The results are presented
below:

Table 7.2 summarizes the results of the sign test applied to the aggregate data
from the evaluation. The three tables report the results of the analysis using the full
five-category range of the test instrument, using the two-category collapsed scale, and
a direct comparison of the preference results. Of these choices, the most appropriate
is the preference results, because this question is posed in the same terms that the
sign test evaluates: Is option A better or worse than option B? The results suggest
a difference between the real and the advice. Significance results are consistent with
results of the McNemar Symmetry \? test.?

This claim is, however, rendered suspect, because not all evaluators looked at every

3The five-category evaluation uses a five-by-five table which had too many sparse cells to yield
accurate results. For the two-category evaluation p = 0.011 (x> = 6.519, DF = 2) and for the
preference evaluation p = 0.040 (y? = 4.206, DF = 2).
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Table 7.2: Sign Test Results

5 Category 2 Category Preferences

Real Better 84 50 92
Advice Better 104 79 122
Ties 68 127 42

p = 0.047 p =0.014 p = 0.047

Each row lists the number of times the particular treatment plan was
judged better in a paired comparison. P values are from the two-sided
probability of the sign test. Data aggregated from all raters (N = 256).

case. Because my hypothesis of great inter-rater variability was confirmed by the
data, this makes the combination of different cases questionable. I used two separate
methods to correct for this bias. One correction involves examining only the results
of the raters who evaluated every case. The second method involves aggregating
evaluations for each decision point so that each decision point is weighted equally.

If the analysis is restricted to those three raters who examined every case, no
statistically significant difference is apparent. With 120 data points, a difference of
opinion of 75-45 (5-3 or 62.5%-37.5%) would be significant at the p = 0.05 level.
This level of difference was not achieved. Applying the same three tests, there was
a difference of 5 to 6 choices, with the five-category and preference tests in favor of
the real therapy and the two-category test in favor of the Advisor. The case with the
fewest evaluators (case 15) was coincidentally the case in which the Advisor had the
worst relative performance. This taints the aggregate results from table 7.2 because
evaluations from the Advisor’s worst case are fewer than evaluations from the cases in
which it performed better. On the other hand, the absolute performance on case 15
was the best.

An aggregate evaluation measure at each decision point can be constructed by
subtracting the proportion of evaluators who preferred the real therapy from the pro-
portion who preferred the advice. This procedure will yield a value in the range
—1 to 1 representing the net preference fraction. A score of 1 would indicate unani-
mous preference for the advice, —1 unanimous preference for the real treatment, and
0 no net preference (the same number of votes for each). The results of this measure
are shown in figure 7.4. 19 decisions favored advice, 13 favored the real action and
8 were ties. No significance was demonstrated either by the Wilcoxon Signed Ranks
test or the paired samples t test*.

4The tests were applied to the underlying proportions before the subtraction used in the aggregate
measure. Each value ranged from 0 to 1. The Wilcoxon Signed Ranks test showed p = 0.441
(Z = —0.770). The paired samples t test had p = 0.423 (t = 0.810, DF = 39, mean difference =
0.064, standard deviation of difference = 0.501)
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Figure 7.4: Net Preference Fraction by Case

Preference fraction is calculated by subtracting the proportion of evalu-
ators who preferred the real therapy from the proportion who preferred
the advice. Values range from —1 to 1: 1 indicates unanimous prefer-
ence for the advice, —1 unanimous preference for the real treatment,
and 0 no net preference. Each decision point is calculated and plotted

separately.
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Figure 7.5: Two Category Evaluation by Case

Score calculated by assigning the value 1 to any evaluations in the top
three (“OK”) categories and —1 to any evaluations in the bottom two
(“Bad”) categories. The mean score is the sum of scores divided by
the number of raters for each decision point. It indicates the relative
proportion of OK and Bad evaluations: Unanimitiy results in a score of
1 (or —1) and equal numbers of OK and Bad evaluations gives a score
of zero. Real score is plotted in black; advice is shaded.

In light of these results it is clear that there was no discernable difference in
the quality of the decisions evaluated by the panel. The raw data do indicate that
particular decisions varied widely in their acceptance, both in absolute and relative
terms. In the next section I examine the differences in depth.

7.4.2 Breakdown by Cases

The cases showed differing success. The simplest summary involves aggregating the
two-category evaluations. I assigned the value 1 to any scores in the top three (“OK”)
categories and —1 to any scores in the bottom two (“Bad”) categories. The mean score
for each decision point is shown in figure 7.5. The mean score indicates the relative
proportion of OK and Bad evaluations. A score of zero indicates equal numbers of
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OK and Bad evaluations. Case 11 had the best Advisor performance and case 15
had the worst. The other two cases were roughly similar in the aggregate, although
a difference in opinion between the attendings and the fellows was evident. The
fellows scored case 13 higher than attendings, while attendings scored both case 11
and case 16 higher. Scores on case 15 showed no major difference.

Closer examination of the results in figure 7.5 reveals that the advice generally
remains in the upper half of the rating space. This means that the advice was rarely
judged to be poor or dangerous by a majority of the evaluators. In contrast to the
real treatment, there was never a unanimous evaluation of the advice as being bad.
(Compare with the real results in case 13, decision 6 and case 16, decision 5.) In the
case with the worst relative performance (case 15), the lowest scores were 0, meaning
an even split between the OK and bad evaluations.

In the following sections, I examine cases where the recommendations were markedly
inferior to the actual treatment. I will give a short summary of the issue in the deci-
sion. If the reader wishes more detail, the case data are included in appendix A, and
the evaluation details in appendix B.

For each case, the domain expert and I examined those decisions where the Advi-
sor’s performance was judged significantly worse than the actual treatment. In this
analysis we endeavored to identify likely elements of the decision that were responsible
for the poor performance. The explanation of the poor scores comes from our post hoc
analysis and does not have input from the evaluation panel. Because the evaluators
were identified only by level of training, the study design did not allow for followup
discussions about individual evaluations. We also did not have the evaluator time for
a general discussion of either the cases or particular decisions with the nephrology

group.

Case 11

The results for case 11 are shown in figure 7.6. The graph shows the average weight of
the absolute scale. I calculated this by assigning dangerous a value of 1, poor a value
of 2, ..., and excellent a value of 5. T then added the values together and divided
by the number of evaluations to provide a mean. The bars show the value of plus or
minus one standard deviation. From the graph it is apparent that a large amount
of variability in the evaluation was present. The transformation of an ordinal into a
cardinal scale is not without its pitfalls. The difference between excellent and good is
not necessarily the same as the difference between poor and dangerous. Nevertheless,
the use of a scale similar to scholastic grade point averages has some benefits. The
major advantage is that it allows the standard deviation to be used to quantify the
disagreement about the objective rankings. As figure 7.6 shows, there is a great deal
of variability in opinion.

The Ketoacidosis Advisor had the best performance on case 11, with a significantly

better performance as evaluated by eight of the raters—four attendings and four
fellows. (See table 7.3).
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Table 7.3: Case 11 Sign Test Results

5 Category 2 Category Preferences

Real Better 26 16 29
Advice Better 47 36 54
21 42 11

p = 0.008 p = 0.008 p = 0.008

Each row lists the number of times the particular treatment plan was
judged better in a paired comparison. P values are from the two-sided
probability of the sign test. Data aggregated from all raters (N = 94).
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Figure 7.6: Case 11 Average Scores
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Scores are calculated by assigning numerical values to the categories
analagous to grade point averages.
used: Dangerous = 1, Poor = 2, Acceptable = 3, Good = 4, and
Excellent = 5. The bars show + 1 standard deviation. The advice
graph has been offset horizontally to increase legibility.

The following assignments were
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Decision 9. The reason for this low evaluation was not completely clear. The chief
suspects are the decision to recommend stopping the IV fluid infusion, and the
decision not to recommend a subcutaneous injection. The former relies on an
assessment in the absence of strong evidence one way or the other about the
patient’s fluid status. Whether the patient is capable of eating or not is difficult
to assess from the records. The program was working on the assumption that
the patient was able to eat, and that fluid balance was therefore not a major
problem.

The issue of insulin injections is the other likely reason for the relatively poor
Advisor performance on this question. The actual treatment was to give the
patient his normal morning dose of 50U Lente insulin at 11:30am. This is
outside the time window that the Advisor uses for giving a morning dose of
insulin. Since it is too late to give this morning’s insulin, the Advisor would
want to continue a low level of insulin infusion and wait until the next morning to
start the patient on his regular course. In fact, the Advisor had recommended
giving the 50U Lente insulin from 7am until 9:45am, showing a more timely
recommendation.

Decision 11. The Advisor recommends potassium supplements; the real treatment
did not. This decisions runs into the domain controversy surrounding the ad-
ministration of potassium. The Advisor follows a more aggressive rule than the
panel seemed comfortable with. The problem could also be one of degree, in-
fluenced by the exact point where the threshold is set. The Advisor is following
its late-stage, less aggressive rule in making this particular decision, but it is
still perhaps more aggressive than the panel would like.

Case 13

Case 13 received the best evaluation from the fellows and the worst absolute rating
from the attendings. In terms of preferences, this case had the best results among
the fellows and was in third place among the attendings. The case was evaluated by
eight raters—four attendings and four fellows. (See table 7.4).

Decision 2. The most likely point of dispute was the inclusion of bicarbonate sup-
plements in the advice and not in the real therapy. The use of bicarbonate in
treating DKA is also controversial. The rationale in its favor is that patients
with very low serum bicarbonate are maintaining their pH by hyperventilation,
thus reducing the amount of carbon dioxide in the blood. If they tire, then they
may not be able to compensate anymore, with a resultant quick fall in the blood
pH. The argument against giving the bicarbonate is that it is unnecessary and
that too much could could cause harm by changing the acid-base balance too
quickly.® This decision was particularly difficult to analyze because the expert

5Bicarbonate needs time to diffuse across the blood-brain barrier.
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Table 7.4: Case 13 Sign Test Results

5 Category 2 Category Preferences

Real Better 21 14 23
Advice Better 25 19 30
Ties 18 31 11

p = 0.410 p = 0.486 p = 0.410

Each row lists the number of times the particular treatment plan was
judged better in a paired comparison. P values are from the two-sided
probability of the sign test. Data aggregated from all raters (N = 64).
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Figure 7.7: Case 13 Average Scores

Scores are calculated by assigning numerical values to the categories
analagous to grade point averages. The following assignments were
used: Dangerous = 1, Poor = 2, Acceptable = 3, Good = 4, and
Excellent = 5. The bars show + 1 standard deviation. The advice
graph has been offset horizontally to increase legibility.
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Table 7.5: Case 15 Sign Test Results

5 Category 2 Category Preferences

Real Better 25 12 25
Advice Better 8 6 9
Ties 11 26 10

p = 0.010 p = 0.238 p = 0.010
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Each row lists the number of times the particular treatment plan was
judged better in a paired comparison. P values are from the two-sided
probability of the sign test. Data aggregated from all raters (N = 44).

panel did not agree on the need to use bicarbonate. Some members would have
used aggressive bicarbonate therapy, while others thought it unnecessary.

Decision 4. This Advisor’'s decision was probably faulted for a combination of a

Decision 5. Same as above.

potassium recommendation and its recommendation of a higher infusion rate
for intravenous fluids. The potassium recommendation follows the aggressive
rule derived from Alberti and Hockaday [1]. The fluid rule can be attributed
to the deficit-estimation problem. The Advisor does not modify the deficit
estimate based on other clinical signs. Since three liters of fluid were infused,
blood pressure had risen, and pulse had dropped, the patient was most likely
no longer dehydrated. The inability to recognize this change of state is an error
in the knowledge base.

There is also the additional difference that the real
action was to reduce the insulin infusion. The Advisor would wait until the
serum glucose concentration dropped below 240mg/dl. The most recent labora-
tory measurement before this decision returned a value of 247. It is likely that
the threshold chosen in the Advisor’s rule was too low to satisfy the evaluation
panel.

Case 15

In case 15, the Advisor had the worst performance relative to the actual clinical
treatment (see table 7.5). It received the second highest absolute performance rating
from the fellows, and the lowest absolute rating from the attendings. Nevertheless,
examination of figure 7.5 reveals that the Advisor’s performance never drops below
the zero line—the line at which there are equal numbers of OK and Bad ratings—so
there was no consensus that the Advisor’s recommendations were unacceptable, even
on its worst case. The case was evaluated by two attendings and two fellows.
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Decision 5. The difference between the real treatment and the recommendation
concerns when to start adding glucose to the fluids. The Advisor waits for
a serum glucose below 240mg/dl before adding supplemental glucose to the
fluids. The most recent previous measurement was 261mg/dl. This is similar
to decision 5 in case 13.

Decision 7. The poor performance was due to a programming bug in a Ketoacidosis
Advisor rule. The Advisor was trying to switch from intravenous insulin to a
subcutaneous regimen. This involved continuing a low flow (1U/hr) of insulin
infusion while awaiting an appropriate opportunity to give an injection. Un-
fortunately, the wean strategy was not recognized as an insulin infusion by the
section of the Advisor which recommended fluid type. The consequence was
that the Advisor did not recommend adding glucose (D5) to the fluid infusion,
even though the patient’s serum glucose level was fairly low (129-195). This
was the result of a programming error in the rule for deciding fluid type.

Decision 8. Same as above, but with even lower serum glucose. A second factor
was the inability to identify the actual strategy as weaning the patient from
intravenous insulin. The infusion rate used for weaning in this case (2U/hr) is
higher than the 1U/hr weaning rate the program recognizes. Also, the weaning
continued after the subcutaneous insulin was given. Since this is a common
strategy, it should have been considered by the Advisor, but it was not.

Decision 9. Similar to decision 8. The Advisor did not suggest adding glucose to
the infusion fluids because it wanted to stop giving intravenous insulin and the
patient was able to eat. The panel may not have attached the same importance
to the patient being able to eat as the program did.

Decision 10. The real action was to end the 2U /hr insulin drip, whereas the Advisor
wanted to continue the infusion. This decision was the result of a different
knowledge-base error. In this case a mistake was made in the insulin strategy
determination rule. Because of this mistake, the program incorrectly thought
the patient was becoming much more acidotic, and therefore not stable enough
to be weaned from the insulin infusion. After discussion with Dr. Meyer, I
concluded that the rule responsible for this decision was incorrect.

Case 16

Case 16 was handled well by the Advisor, but there were insufficient evaluations to
show a statistically significant difference. This case was rated by two attendings
and four fellows. The attendings had a much stronger preference for the computer-
generated advice than the fellows in this case.

Decision 7. The only significant difference in the treatment suggestions was in in-
travenous fluid therapy. The Advisor recommended stopping fluids, whereas
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Table 7.6: Case 16 Sign Test Results

Real Better
Advice Better

5 Category 2 Category Preferences
12 8 15

24 18 29

18 28 10

p = 0.050 p =0.078 p = 0.050

Each row lists the number of times the particular treatment plan was
judged better in a paired comparison. P values are from the two-sided
probability of the sign test. Data aggregated from all raters (N = 54).
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the clinical staff elected to continue IV fluids at 175ml/hr. Because the patient
had a blood pressure of 142/92, had a pulse of 84, had already received almost
three liters of fluid, and was able to take fluids orally, the domain expert did
not feel the data supported a need for continued IV fluid therapy.

Summary

I have discussed the decisions for which the Ketoacidosis Advisor was judged to be
inferior to the actual treatment above. The problems in the advice can be summarized
in the following categories:

Data Problems There are fundamental problems in assessing hydration status when
one is unable to examine the patient physically. The medical record typically
does not contain enough information to make that determination on the basis of
the entries. The mental state of a patient is generally not recorded, but enters
into an assessment of whether they are dehydrated or not. Similarly, it is not
always possible to determine from the clinical records when a patient was eating
(although this is somewhat easier). In the absence of definitive data about these
conditions, the program can run into difficulty in making these judgements.

If the information were available, the knowledge base could be reprogrammed
to take advantage of the input. Some of this problem is the result of testing
the system in an off-line mode. Because there is no interaction between the
clinical staff and the Ketoacidosis Advisor, it is not possible for the computer
to request the types of information that are needed for its assessment. For
example, finding out if the patient were eating could be trivially accomplished
by simply asking the question. This is not invasive and would not require much
thought on the part of the person interacting with the system.

Other data problems, such as the problem of unrecorded urine output from
patients who are ambulatory, cannot be solved so easily. It is possible to make
the fluid decisions consider the context of the patient care, since any patient
who is well enough to be up and out of bed is not severely dehydrated. This
could be used as a surrogate measure which is sufficiently precise to allow one
to conclude that intravenous fluids are not needed (or are needed only under
much different circumstances) compared to a patient who is confined to bed.

Domain Controversy As noted in the chapter describing the design of the Ketoaci-
dosis Advisor, several aspects of the treatment of DKA remain controversial. In
particular, the use of bicarbonate to treat acidemia and the aggressive use of
potassium supplements early in DKA provoke differences of opinion. The choice
of any strategy regarding these aspects of the treatment will result in some
evaluators disagreeing not only with the specifics of the advice, but with the
entire premise underlying the advice itself. In areas of medicine where there
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is no consensus as to the “best” treatment, this problem is inevitable. The
controversy is addressed by Kassirer, et al. [41, p. 137]:

The use of exogenous alkali in treating diabetic ketoacidosis is contro-
versial. As with most medical controversies, the issue revolves around
an assessment of the risks and benefits.... When the acidosis is se-
vere (plasma bicarbonate concentration less than 8 to 10 mEq/L),
however, the benefits of administering sufficient alkali to partially re-
pair the deficit (i.e., raise plasma bicarbonate to approximately 12 to
14 mEq/L) far outweigh the risks.

Particularly in the case of potassium supplements, the nephrologists may be
influenced by the large number of patients that they treat who have kidney
disease. Since excessive potassium is also dangerous, there is a hesitation to
prescribe potassium supplements when patients present with laboratory values
in the upper part of the normal range. Normal healthy humans can easily
handle excess potassium by excreting the surplus in the urine. Patients with
kidney failure cannot. Giving too much potassium to a patient in kidney failure
can cause major problems, while the same is not true of patients in DKA. The
justification for using an aggressive treatment is that DKA patients have reduced
total body stores of potassium. The effect of the acidosis is to cause potassium to
shift out of the cells and into the blood stream, resulting in a normal laboratory
measurement even though the total supply of potassium in the body is reduced.
As the acidosis is corrected, the potassium will return to the cells, causing a
drop in the serum concentration. This migration of potassium is also aided by
the administration of insulin.

Advisor Deficiencies The one program bug identified as the likely cause of poor
performance was one that could be easily fixed: the failure to consider the
insulin weaning strategy (which includes intravenous insulin adminstration) as
a type of intravenous insulin. This is a trivial change. The general problem
of actual strategy identification is a more difficult, albeit artificially contrived,
problem. In an actual clinical setting, the Advisor could ask for the strategy,
a possibility not open to the program when working retrospectively with case
records.

Adjustment of thresholds for recommending potassium supplements falls into
the class of easily amended rules. There are currently two different strategies
used for recommending potassium corresponding to the early and late phases of
DKA. In the early phase, total body stores are depleted and imminent potassium
shifts into the cells are anticipated. In the late phase, the patient is more stable,
so a less aggressive approach is used. In each case, the program relies upon test
values to determine how much potassium to recommend. The threshold values
at which the supplements should be given can be easily modified. The experts at
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New England Medical Center may be more amenable to a slightly less aggressive
approach.

A more difficult problem is posed by the choice of thresholds for glucose tests.
The choice of values was influenced too heavily by the endpoints of ranges on
the less accurate finger-stick assessments. The discussion with the endocrinol-
ogists indicates that the finger stick is much less trusted as an assessment tool.
Since I sought to have a less complex way of combining the two test types,
I opted for compatible thresholds. Since one range of the finger stick covered
240-400mg/dl, T used 240 as the boundary below which glucose would be added
to the fluid recommendation. This value is a little lower than would have been
chosen in the absence of the desire to coordinate the two measuring systems,
but it is consistent with published guidelines [15, 20]. Although it would involve
more complicated programs, separate thresholds could be used, with appropri-
ate safeguards to prevent “thrashing” between recommendations in the event
that the two types of tests alternated. This type of safeguard could involve not
having the range 240-400 change the previous fluid type therapy at all.

Although there were certain decisions for which the Advisor’s decisions were con-
sidered to be inferior to the actual clinical practice, none of the problems can be traced
to a systematic flaw in the TCS design. Aside from programming or rule-encoding
problems, the difficulties that the Advisor encountered in the evaluation were re-
lated to properties of the domain which transcend the technology used to implement
the particular expert system. In no case was the problem an inablility properly to
integrate data that arrived over the course of time.

7.5 Discussion

The overall performance of the Ketoacidosis Advisor was sufficiently good to demon-
strate that practical clinical applications can be implemented in TCS. The ability to
give management advice comparable to actual treatment at a major medical center
shows that the system can perform credibly in a dynamic environment.

7.5.1 Acceptable Performance

The statistical analysis does not prove that the advice given by the program is better
than the actual clinical treatment. It does, however, give reason for confidence that
the performance was similar to what was actually done in the clinic. (Unfortunately,
the expert panel often did not really like what was actually done. Several of the
evaluatiors expressed horror at the thought that DKA patients were being cared for
in the manner that the medical records indicated.) In order to make the Ketoacidosis
Advisor function at the level of the review panel, a more complete knowledge base
would be needed. Alternate methods for determining hydration status, such as the
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analysis of blood pressure and pulse changes, would need to be added. Similarly, there
would be a need to include such common-sense rules as concluding that a patient is
in fairly good condition if he can leave his bed to void. Finally, special case features
for handling more complicated cases involving heart and kidney failure would be
necessary. Since the management of those cases relies on a careful monitoring of
the fluid balance, the ability of a computer-based system to do precise calculations
becomes more important.

The major question that the evalution as done here could not answer was whether
there was a significant time advantage from the effectively instant response of the
Ketoacidosis Advisor to incoming data. My own observations indicate that there is
often a lag between data becoming available and the clinical response to those data.
Since a dedicated monitoring system would not be distracted by other important
chores, it would react more quickly. Since the data processing time is sufficiently
rapid, the computer system would not react to new information any more slowly
than the actual clinical staff. This part of the evaluation was not done for the reasons
cited above, but one can safely assume that any effect from the increased speed of
the decision-making would be an advantage for the Ketoacidosis Advisor.

Since the statistical tests were close to achieving statistical significance, it may
be possible to show significance with a larger data set. One of the difficulties at the
design phase was that it was not clear what the magnitude of the difference would be.
This prevented the performance of an a priori power analysis before the evaluation
was carried out.

7.5.2 Lack of Clear Consensus

On the other hand, the lack of a clear consensus as to the appropriate treatment is
demonstrated by the number of cases with a very large spread of evaluations. For
some questions® the same treatment was evaluated using the full scale of the mea-
surement instrument. A single treatment suggestion in a concrete situation received
ratings from excellent to dangerous! There was only one case of unanimous choice
of evaluation.” The mean category spread for real treatment was 3.25 and for advice
3.5 categories. Such controversy makes it difficult to say anything with a high de-
gree of confidence. There is an apparent lack of an unambiguous gold standard for
measuring the treatment options. In spite of this lack of individual consensus, there
is no apparent difference between the quality of the treatment recommended by the
Advisor and that actually rendered in the hospital.

Matching human performance fulfills the performance goal of the Ketoacidosis
Advisor experiment. The expert system was able to monitor patients successfully over
a period of many hours and respond to changes in the patient state while coping with

6Advisor treatment case 11, question 11 and case 16, question 4; Real treatment in case 11,
questions 1, 4 and 10.
"Real treatment in case 16, question 5, with six reviewers.
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treatment decisions that did not match the advice generated by the program. The
ability to function in such a demanding environment is a validation of the basic design
premise of TCS. All of the necessary reasoning constructs could be implemented within
the Tcs framework. As indicated in the section on general-purpose modules designed
for the Ketacidosis Advisor, some of the techniques used in the implementation have
application beyond the specific area of expertise. These include the code used to keep
track of the state of a changing therapy, as well as the management of the interaction
between the time advice is generated as a result of the arrival of new data and the
time that the advice is carried out.
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Chapter 8

Related Work

The discussion of related work is divided into four parts. First, I dicuss work on
temporal reasoning. This line of research focuses more on reasoning about the rela-
tionships among events happening at different times rather than on the process of
updating conclusions in response to changing data. The TCS side-steps this issue by
requiring exact time points, rendering the question of the relationship between two
time points or two intervals a trivial computation. In return, TCS gives up the ability
to deal with ambiguous time information. Fortunately, in the monitoring domain,
this is not a major problem.

In the second section I discuss Truth Maintenance Systems, which share the TCS’s
emphasis on providing an efficient updating system based on the idea of data depen-
dencies. In the third section I discuss medical systems, concentrating on the Ven-
tilation Manager and TOPAZ, both patient management systems. Finally, T briefly
discuss blackboard architectures and real-time expert systems.

8.1 Temporal Reasoning

Research in temporal reasoning has concentrated on the development of the represen-
tation of time and on reasoning about the temporal relationships among individual
events or event clusters. Work on non-monotonic logics has focused on the problem of
revising beliefs when new data becomes available. The problem that has been largely
ignored in this line of research is the problem of characterizing data that is changing
over time. The nonmonotonic logics, for instance, assume that there is only one true
state of the world, but that this is revealed bit by bit, so that it becomes necessary
to retract certain conclusions about the world. While this is often true, it does not
provide support for histories.

105
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8.1.1 Temporal Representation and Relations

Most of the AT work on temporal reasoning has fallen into two categories: represen-
tations for describing temporal events, and systems for reasoning about the temporal
relations among events. Little work has been done on the interpretation of data
that change with time, or on the reasoning processes associated with this type of
interpretation.

The most extensive work on a temporal representation has been the development
of the temporal interval algebra of Allen [3, 4, 5], along with attempts to extend it
by Kandrashina [40] and Ladkin [50, 49]. These systems provide a strict definition of
temporal intervals and an algebra for manipulating them. This allows reasoning about
the relationships among distinct intervals, for example, the determination of whether
they overlap or not. An application of this that is being pursued by Allen is the use
of this algebra in planning [6]. It is interesting that there is a desire to avoid having
both points and intervals together because that would destroy mathematical purity
and introduce difficulties in interpretation. This sidesteps a major reasoning problem
at the system end by requiring the user to perform the hardest part of reasoning,
namely the structuring of raw sample data into abstract intervals.

Other researchers have been exploring the calculation of temporal relationships
among data points. Kohane [44] has investigated a method of propagating infor-
mation about the endpoints to restrict the relationships among events organized on
a timeline. An application of linear programming to the problem of calculating the
tightest bounds of a set of temporal constraints is reported by Malik and Binford [55].
By allowing uncertainty in the boundaries of intervals, these systems have a less re-
strictive temporal representation than the Tcs. The restriction to specific intervals
in TCS is dictated by computational convenience, since the specific intervals eliminate
the potential for combinatorial explosion. Unfortunately, these techniques cannot
guarantee unique endpoints, so they could not be used to add fuzzy endpoints to
TCS.

Mittal [59] has examined the relationship of information in medical records in
particular to certain key events, such as admission. He uses a disjoint decomposition
of the time-line to produce efficient reasoning about the course of a patient’s hospital
stay. There is also a component of natural language processing involved in this effort
(see Obermeier [65]).

8.1.2 Logic-Based Approaches

Attempts to specify temporal reasoning in classical logic run into several problems.
On a philosophical level one is faced with the problem of using a formalism designed
expressly for reasoning about the absolute truths of philosophy and mathematics.
Attempts to modify logic for temporal reasoning must overcome the inherent design
bias of logic as a language against representing changing concepts. The formalism
was created for eternal rather than temporary facts. As the TCS experiments show,
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there is great power in attaching a special interpretation to time. Unfortunately, this
can be difficult to do in the general case. The major practical difficulty is that useful
temporal logics are undecidable [31].

It is also often difficult to formalize certain types of common-sense reasoning that
people find quite easy to do. The circumscription approach [51, 58, 86] minimizes
logical predicates according to syntactic criteria. Similar minimization techniques can
be applied to nonmonotonic logics [79]. Hanks and McDermott [33] describe some of
the difficulties of dealing with the frame problem using current nonmonotonic logics.
The example which is used extensively in the literature is that of loading a gun,
waiting and then shooting someone with the gun. The intuitive conclusion that the
person who is shot will then be dead is not the only conclusion admissible under the
logic’s rules. As Hanks and McDermott show, it is possible to assume either that the
gun stayed loaded during the waiting period or that it became unloaded. This was
described by them as a very disturbing result, indicating that the approach being
taken by the non-monotonic logics was in need of some help.

What makes the example so intriguing is that both outcomes make sense. The
most likely intuitive result is that the person is dead because simply having a loaded
gun sitting around will not cause it to become unloaded. On the other hand, if
a sufficiently long period of time elapsed, say several years, then it would also be
plausible to believe that the gun had become unloaded in the waiting period. Because
there is no metric, it is difficult to express the dependence of the preferred conclusion
on the length of the waiting period. The existence of a time metric in TCS makes it
easy to encode this particular inference. Although this particular reasoning strategy
for this particular domain can be programmed in TCS, a general-purpose reasoner
without specific information about the domain and the particular inference to be
made is still out of reach.

The following is a summary of the shortcomings of logic-based schemes:

1. The Frame Problem. The duration of propositions in a logical formalism
must be explicitly stated. This means that every change of state must contain
the information necessary to describe the new state completely. An active area
of research focuses on the attempt to automate the process of limiting the effect
of state changes without explicitly mentioning the entire world. Unfortunately,
these schemes run into the next problem.

2. The Syntactic Solution. The circumscription approach creates an inference
method that allows all normal properties to endure (unless explicitly declared to
be abnormal). This provides a mechanism, but no guidance as to how it should
be used. What is being proposed is a syntactic solution to what is essentially
a semantic problem. Thus the circumscription approach is limited and has
difficulty formalizing reasoning that most people find easy. The attempt to find
a syntactic solution to a semantic problem is flawed. There is some recognition
of this problem, since recent work in circumscription and nonmonotonic logic is
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exploring ways of adding policies [52] or preferences [87] as a way of controlling
the reasoning. These represent attempts to introduce semantic content to the
default reasoning decisions.

3. Undecidability. In order to capture interesting temporal behavior, the logics
used must be so complex as to become undecidable. If undecidability is present,
then part of the appeal of using the language is lost. If decidability is already
forfeit, then I would argue for adding Turing completeness to the system to
allow the greatest flexibility in algorithms as well as to enable one to program
in a convenient computer language.

I have concluded that a general solution to this problem will be impractical due to
the complexity inherent in sufficiently powerful formal logical systems. It is also the
case that in many domains, the types of decisions that will need to be made by an
expert system are sufficiently constrained that they can be programmed without too
much difficulty. These heuristic approaches have the advantage of reasoning efficiently
in domains in which a strictly formal approach is too costly. By not restricting the
form of the reasoning in the modules of the TCs, the greatest flexibility is preserved.
The action that a programmer wishes a reasoning system to take is usually fairly
straightforward.

8.2 Truth Maintenance

The idea of a Truth Maintenance System (TMS) can trace its roots to the dependency-
directed backtracking and constraint-propagation work of Stallman and Sussman [83].
This work was extended by Doyle [23] and McAllester [57]. The central idea was that
a more efficient recovery from errors or false assumptions could be made by keeping
a record of the dependencies among conclusions. This introduced intelligence into
what had been a blind backtracking approach. All the conclusions of a system were
recorded in a dependency structure which provided the database for backtracking.
Although the details vary from system to system, the basic approach has data in
the form of facts (or propositions) in the database. They are connected by inference
rules or logical clauses. Since the system knows the meaning of the inference rule
or the logical combination rules, it can detect an inconsistent state. This triggers a
backtracking procedure focused on the data which contributed to the contradiction. A
TMS provides one level of Boolean inference (see [56] for a more detailed discussion).
A key feature of this strategy is the requirement that the system understand the
inference procedure. This means that programming inside the T™MS is limited to use
of the system-provided inference mechanisms. Other types of reasoning must take
place outside the system. A problem-solving system is then built on top of this to
handle the decision-making and manipulate the T™MS clauses. A TMS is a low-level
substrate upon which the larger reasoning program is built. The function of the T™MS
is to guarantee a consistent state of the database. This type of architecture is shown
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Figure 8.1: Architectural Differences Between T™MS and TCS.

in figure 8.1a. The user program’s decision units manipulate the TMS database. A
system based on this paradigm is described by Dhar [22], in which he builds his
domain-specific constraint satisfaction code on top of McAllester’'s TMS package. The
TMS system is the substrate that is manipulated by a constraint-satisfaction problem-
solver.

An alternate approach pursued by TCS is to allow arbitrary programmer-specified
types of reasoning to connect the variable values in a system. This causes the system
to lose the ability to analyze the reasoning units. To the system they appear as “black
boxes” which implement some decision-making procedure. All of the inputs to the
“black box” are known to the system. The only constraint is that the inference not
depend on any variable value that is not explicitly identified as an input to the “box.”
Because the main reasoning units are contained inside the TCS system, this yields a
qualitatively different architecture for a problem-solving system. (See figure 8.1b.)
The decision making chores of the problem-solver are embedded in the TCS system.
Rather than being a utility program that is manipulated by the problem solving
application, the TCS provides an environment in which the application itself is run.

Because the TCs system is not able to analyze the reasoning functions, the system
itself has no way to predict what the output of the inference mechanism will be. It
can, however, execute the black-box procedure to calculate the new output values.
Propagation of values continues until the system reaches a state of quiescence. A
comparison using equality (the simplest data comparison test) is used to control
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propagation of information. The data are only propagated in a forward direction. By
stopping the forward propagation when values don’t change, a limit is imposed on
the amount of processing needed to perform any update.

One major difference between the TCS and the TM™S is in the degree of knowledge
about the inference methods that are used. The TCS does not make any assumptions
about the nature of the inference method that is used, and is therefore able to accom-
modate a wider range of methods. A TMS constrains the types of inference used to
some specific method. Doyle’s original TMS system [23] used the presence or absence
of specific nodes to determine the validity or lack of validity of a given result. Other
organizational principles also exist in Doyle’s and de Kleer’s [16] systems, but the
basic framework and system architecture are the same.

The other major difference is that the TCS requires all of the variables and the
entire dependency structure of the decision process to be known in advance, since
the structure is compiled into the system via the declarations of dependencies. No
new variables can be introduced into the system while it is running. A TMS has a
more flexible structure than a TCS , because new nodes, new types of nodes, and new
constraints can be added at any time. Since the type of inference is limited in a TMS,
efficient algorithms for performing the updating can be implemented.

Although the standard T™MS does not have special provisions for time-related rea-
soning, Dressler and Freitag [24] have produced a variant on an assumption-based
TMS which propagates temporal labels as well as the traditional assumption sets.
This provides a second indexing method for database query answering. The propa-
gation method they use requires time to be a symbolic interval, so it is not able to
handle metric information.

Time Map Manager Dean and McDermott [19] have constructed a temporal ex-
tension of a TMS system called a Time Map Manager. This augments a conventional
TMS with special constructs for handling the temporal extent of propositions. Time
maps are designed to assist a reasoning program doing planning with time constraints.
It differs from the TCS in several ways:

1. Time maps use the predicate calculus as the basic knowledge representation. It
is thus awkward to implement specific algorithms, since predicate calculus does
not have the same rich supply of control constructs. Furthermore, the system
relies upon the user to specify which propositions are contradictory.

2. Time maps allow inexact endpoints and multiple competing viewpoints. This
makes the updating algorithms more complex and leads to the third difference:

3. States and persistences are handled asymmetrically. The beginning point may
be fixed by the user, but the ending point must “float” in order to guarantee
correctness of the algorithms used. This is not a fundamental requirement of
the approach, but it is needed to allow the use of an efficient algorithm for
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clipping the persistence of states. Time-limited persistence, such as that used
with laboratory data in the Ketoacidosis Advisor, cannot be implemented.

4. Some of the updating functions are not automatic, and must be explicitly pro-
grammed by the user. Although this is cited as a benefit because it allows
the user to control which inferences will be made as a result of changes to the
database, it introduces the possibility of incompleteness in the reasoning, by
not having all conclusions made, or inconsistency, by not having contradicted
conclusions removed from the system.

8.3 Medical Systems

8.3.1 Non-AI Management Systems

Several computer systems have been designed for the outpatient management of dia-
betics. These systems use data from several days of observations to adjust the regular
insulin dosage of the patients. The degree of modelling varies from the simple [21] to
the more complicated [9]. There are other data analysis systems that seek to identify
trends in the data and detect when changes in regimens have taken place [38].

The Ketoacidosis Advisor differs in having to assimilate more types of data in
a more dynamic environment. In all the modeling systems, there is an underlying
assumption that the basic lifestyle and meal pattern remained constant. (There are
some models that allow one to vary the food intake while holding other parameters
constant [74]) In DKA, however, the patients are not well-compensated insulin-taking
diabetics, so the underlying premises of those systems are violated. Also, in most
cases either the treatment is based on the analysis of more data than is available
in the acute phase of DKA , or the solution covers only a part of the treatment
regimen. Although I had to add other parts to the Ketoacidosis Advisor, the work
on dosage adjustment proved to be a good starting point for my own subcutaneous
insulin adjustment algorithms. Like [2, 77], T applied a computerized process to the
implemetation of what were originally “paper” algorithms based on Skyler’s work [81].

8.3.2 Ventilation Manager

The Ventilation Manager program vM [28] is the work most closely related to this
thesis. VM is a rule-based expert system designed to monitor the progress of patients
who are being weaned from respiratory support devices. This task requires the mon-
itoring of the patient’s physiological parameters, their evaluation, and a comparison
with expected values generated by the use of a standard weaning protocol. The ma-
jor effort in the design of the vM program went into the parameter monitoring and
evaluation functions. It is in this part of the work that the temporal aspects of the
domain exist.
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The monitored parameters change over time, thus requiring the program to be
able to interpret not just a single value for any result, but rather a sequence of values.
In addition, there is the need to consider the history of the parameter values in
making some decisions about whether a patient is doing well on a particular type of
ventilation support, or whether they are ready for the next stage of weaning. These
historical summaries are provided through the use of special purpose functions in the
rule clauses. For example, it is possible to have a rule clause that matches on the
basis of a stable parameter value in the last 20 minutes.

A further interesting feature of the vM data interpretation system is that the
mapping from measured numeric values to symbolic interpretations is made context-
dependent. This is done by setting up a mapping table that is initialized each time
the context changes. Each context represents a different type of ventilation support.
Thus, as a patient progresses from one type of support to another, the exact thresh-
olds used to establish ideal and acceptable monitor results change. This capability
is required by the temporal aspect of the domain, since the type of interpretation
required in any one patient will change with time.

Relation of Ventilation Manager to TCS

The types of reasoning described above can be explained as a combination of certain
types of more primitive reasoning activities using data that changes over time. In
this domain, the interpretation of data (i.e., the mapping from continuous numeric
values to discrete symbolic categories) is, in itself, an atemporal reasoning process.
In the simplest case, there exists a function F' which maps numbers to categories.
This function considers only the value of the number in deciding to which category
the parameter belongs.

Making this context-sensitive simply requires that rather than a single function,
there exist a set of functions, indexed by contexts: {F. : ¢ is a context}. The temporal
aspect is then controlled entirely by controlling the temporal extent of the contexts.
VM's establishment of context-sensitive evaluation functions for patient parameters
was a major innovation. These were defined as tables of thresholds that defined
symbolic ranges such as normal, low, very high, etc. These definitions were used
whenever the type of ventilation method changed. Fagan refers to the tables as
initialization rules which set up the context for data interpretation. This can be
simply modeled in the TCcs by having contexts be the values of interval variables
(since each context has a duration). The function to be applied for data evaluation
can then be selected based on the value of this interval variable’s value. There is
no need for the reasoning process itself to deal explicitly with the temporal aspects
of the reasoning at all. This is an example of what TCS terms a context-sensitive
transducer. The temporal dependency of the reasoning process is identical to that of
a temporal variable. In this case the control system itself can handle the temporal
dependency of the reasoning, simplifying the programming. The TCS approach to
this type of definition involves the use of a context variable ventilation-type which
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(defmodvar ventilation-change :point) ; Reports change in ventilation
(defmodvar ventilation-type :interval) ; Holds the current ventilation type
(defmodvar vital-signs-raw :point) ; Measured vital signs

(defmodvar vital-signs-eval  :point) ; Evaluated vital signs

(defpersistence ventilation-change ventilation-change ventilation-type)
; Just remember all changes in ventilation

(deftransducer evaluate-patient vital-signs-raw vital-signs-eval
#’ (lambda (raw type)
(evaluate-using-table raw (select-table-for type)))
:context (ventilation-type))

Figure 8.2: TCS Implementation of VM Parameter Evaluation

is an abstraction of the point variable ventilation-change. The latter reports a
change in the settings of the ventilator. Evaluation is done by using the appropriate
table from a list. Sample code is shown in figure 8.2

The evaluation of historical data (e.g., for stability or trend detection, as is done
in VM) can again be divided into two simpler processes, one atemporal and the other
temporal. For example, consider the clause “heart beat stable for 20 minutes.” This
consists of the evaluation of some decision procedure (“heart beat stable”) and a
restriction on the temporal extent of this decision (20 minutes). The stability criterion
can be modeled as a function which takes a list of input values and determines whether
they fulfill the definition of stability!, and another procedure that determines which
values should be in the list of input values. This concept is implicitly temporal since
it refers to the change (or rather the lack of change) in a dynamic variable.

The decomposition suggested above is used to isolate the temporal aspects of
the reasoning. The explicit temporal reasoning consists of a memory function (see
section 4.3.3) which constructs the list to be tested for the presence of the stability
property. This memory has the fairly simple task of remembering all of the values of
the heart beat parameter for the previous 20 minutes. This can again be modeled by
an interval variable which, in any given interval, retains the values of the heart beat
samples from the previous 20 minutes (it is assumed that the heart beat is provided as
a series of discrete samples, rather than as a continuous function.) Given this memory,
the stability function can be applied in each interval. The temporal dependence of
the stability criterion is reflected only in its use of a list of values rather than a single
value. The extent to which time enters into the picture is again handled implicitly
by the control structure for the stability evaluation per se, and explicitly in the use
of an auxiliary memory variable and associated reasoning machinery which maintain

!The exact stability definition is not important here, so long as there is an effective procedure
available for determining whether or not the property holds. In this case, one could imagine stability
meaning that the deviation from the mean heart beat over the given time period did not exceed
some threshold value, say 5%.
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the temporal aspects of the stability determination.

As these examples have shown, the TCS is capable of handling the temporal rea-
soning used in VM. It is further evident that there will be variety in the degree of time
dependence of the reasoning. One benefit of the TCS approach is the identification of
the degree of temporal dependence by allowing one to decompose the reasoning into
individual units, some of which are, as we have seen, atemporal forms of reasoning.
It is an advantage of the TCs that atemporal reasoning can be added without the
need to deal with time. More important, atemporal reasoning can be embedded in
a TCS in such a way that the atemporal reasoning description retains its simplic-
ity, but becomes time-dependent because of the supporting framework. By providing
some standard building blocks, the TCs facilitates the design of systems that interpret
time-varying data.

The ability of the TCS to accommodate these types of reasoning in a natural man-
ner will allow vM-style systems to gain the benefits of having a facility for updating
data as well. The vM architecture is a strictly forward-chaining decision-making sys-
tem without backtracking or belief revision. Data are assumed to arrive instantly
and in chronological order. If these expectations are violated, one of two courses of
action are open: either the data are treated as still reflecting the current state of the
patient (i.e., they are treated as if they were current, new data), or they are rejected
as being too old (i.e., no use is made of the information). In vM’s domain this is
not a problem because the program has the highly circumscribed task of monitoring
the progress of a patient following a prescribed path through a series of mechanical
ventilator settings. There is no need to explain what is happening with the patient
in terms of disease processes. The only information relevant to the program’s task
is the current information and a restricted view of the history. The rule premises
can refer to past data in a limited fashion. This access is implemented via certain
special functions that provide summary information about the value of parameters
over past time periods. What is missing is a mechanism that provides a framework for
defining more functions that can assimilate a series of data points and arrive at some
conclusion about their meaning (the data interpretation problem). Certain functions
are provided by the system, but one is not able to add more without leaving the
paradigm of the rule-based system. While this is certainly adequate in vM’s domain,
it is not general enough to serve as the basis for a more extensive temporal reasoning
support system.

Because past information could have an impact on the interpretation of events and
also on current therapy, any information that becomes available should be considered.
The TCs can support this type of updating by propagating changed (or late-arriving)
data along the dependency links in the reasoning structure so that the proper updates
are made. In particular, this can be done for a vM-type system. This will allow proper
utilization of all available data. It will also allow the correction of data later found
to be in error.
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8.3.3 Time Oriented Patient Analyzer

Michael Kahn implemented the Time Oriented Patient Analyzer (TOPAZ) [39], a
system which uses multiple models to evaluate information and track a patient over
time. The research domain was cancer therapy. Patients were seen at visits over a
period of months. Information about the course of the patients was used to adjust
the amount and type of drugs given to patients. This is an example of the patient-
management problem, since it involves tracking the effectiveness of treatment over
time.

Kahn uses three types of model in TOPAZ. The first is a multi-compartment phys-
iological model similar to the pharmacokinetic model described earlier. It is extended
by the ability to adapt its parameters to match the current patient. Kahn uses this
model to interpret laboratory measurements and translate them into clinically use-
ful concepts. He describes this as the data-interpretation part of the management
problem.

Once the data has been interpreted, it is abstracted into clinically useful “states,”
using a second (non-mathematical) model. For this, an interval-based temporal model
of time is used. The abstraction procedure is similar to the persistence abstractions
described in this thesis.

Finally, there is a model of explanation that is used to generate patient summaries.
It is used to structure the information in the temporal database and provide sum-
maries to be read by people. It uses augmented transition networks and a straight
chronological event order to translate the information about the patient’s case.

The organization and strengths of TCS and TOPAZ reflect the differences in their
domain features. TOPAZ was designed to operate in a world in which consultations
were discrete events and there was no overlap between the data-gathering functions
and the therapy decisions. Furthermore, the need to follow patients for a long period
of time requires the use of more permanent data storage than TCs’s variables. T'cs, on
the other hand, needs to be able to revise its decisions in response to data that arrives
in the middle of a consultation. It is this need for efficient updating at unpredictable
times that shaped the implementation of TCS. The major differences between TOPAZ’s
domain and the problems that are addressed in TCS are:

1. ToprAz has a consultation structure in which all the information arrives in
chronological order and is available at the next consultation. It is possible
to correct past errors. Because there is no updating, however, only future
invocations of the decision procedure will get the corrected information. TcCs
is designed to address the problems that occur when decisions are made in the
middle of the data gathering process.

2. ToprAz works with an external temporal database. The rules contain queries
that retrieve information from the database. The temporal aspects of the data
are handled by the rule predicates. Because the database is not active, changes
in information going into it do not affect rules once they have been executed. All
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future invocations will get the information. Tcs is integrated with its database
and takes an active role in scheduling the information that gets executed.

3. ToPAZ is consultation-driven. T'cs is data-driven.

4. Topraz focused on the types of models that are needed to make medical deci-
sions. Tcs focuses on the temporal attributes of decision procedures. In this
way the work is complementary. The model-based data interpretation could
be embedded inside a TCS module, which would schedule the interpreter to
run whenever new data became available. The difference in focus is that TCS
highlights the dependence of information-processing on temporal data, whereas
TOPAZ describes the conceptual tasks that must be accomplished in the decision-
making.

Kahn’s program uses three models of temporal reasoning. The first is a “process
model” of the physiology that underlies observations. In his implementation this
is a pharmacokinetic/pharmacodynamic model of bone-marrow effects of anti-cancer
agents. The second is an “interval model” which abstracts the interpreted information
from the process model. This provides a clinical context for the reasoning. The third
model is an explanation model which can justify the results from the other two models.

Time is handled differently in each of the three models. In the process model,
it is a continuous parameter. In the context model, intervals describing clinically
relevant parts of the patient data are used. In the explanation model, the same
database as in the context model is used. The conceptual view is that of a sequential
model, which determines the order in which findings are discussed in the summary.
The need to combine multiple models to handle a complex domain is a ratification
of TCS’s decision to allow maximum flexibility in specifying reasoning methods for
heterogeneous systems.

8.4 Other Relevant Work

In this section I describe other work that is related to Tcs. 1 discuss blackboard
architectures for decision-making and special languages and hardware architectures
for real-time expert systems.

8.4.1 Blackboard Systems

Blackboard systems [61, 62, 12] consist of a central database (the blackboard) that is
shared by several independent reasoning units (knowledge sources). Each knowledge
source (KS) is an independent unit which communicates with other units through
messages placed in a commonly understood format on the blackboard. The inde-
pendence of KS’s allows the easy combination of heterogeneous reasoning methods.
Since each KS is independent, there are fewer restrictions on the internal function
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calculated by an KS than is the case for TCS modules. On the other hand, the fact
that each KS reads information of interest from the bulletin board and then posts
its results means that there is no general method for retracting conclusions. Any KS
that can retract conclusions must be specifically programmed to do so. Even then,
there is no guarantee that another KS which used the retracted information will in
turn revise its conclusions.

For example, HASP /STAP uses a blackboard architecture to do sonar signal anal-
ysis. [63] The analysis takes place over time and the results of previous analyses are
combined in calculating the current situation description. Since ships cannot arbi-
trarily appear and disappear, it is possible to use previous situation analyses as a
source of guidance in identifying and classifying the current set of sonar signals. Two
similar signals could be from the same source if they appear close enough together
that the ship could have moved from one point to the other in the intervening time.

Unfortunately, since the system cannot backtrack, it cannot automatically retract
earlier conclusions and have the effects propagated through the system. This is true
of all blackboard systems. It may be easy to change the original data, but each
knowledge source that relied on that information would have to be programmed to
notice the change and deal with it appropriately.

It is also not clear to what extent the system can incorporate subsequent infor-
mation. For example, it is possible to use a priori intelligence reports about the
existence of enemy ships to identify signals, but apparently the reports must be avail-
able at the time the signal analysis is done. Such reports could therefore not be used
to disambiguate an uncertain past identification.

In summary, the blackboard architecture allows more freedom in the implemen-
tation and integration of different types of reasoning than Tcs, but it does not have
the same level of support for the retraction and revision of data and conclusions.

8.4.2 Real-Time Systems

Real-time systems are characterized by the need to guarantee a response within a
predefined period of time. If arbitrary calculations are permitted, this guarantee
cannot be enforced. Real-time expert systems such as G2 [29, 60] can guarantee
response time by limiting the language to rules which can be easily interpreted. By
restricting information storage to statically allocated data areas, G2 can also avoid the
need to garbage-collect. Given these constraints, it is not possible to have a general
dependency-directed updating system, since the retraction of information can take
arbitrarily long.

Researchers at Yale [26, 27] have explored the use of a parallel architecture called
a process trellis for processing real-time monitor data. The process trellis uses a
hierarchy of processors, each of which handles a small part of the interpretation. The
connections between processors form a directed, acyclic graph. Processor outputs are
coordinated by synchronization with a global clock. The synchronization simplifies
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the task of maintaining a coherent database, but it forces all processes to run at the
speed of the slowest processor. For carefully selected, matched tasks in the signal-
processing domain where the process trellis is used, these restrictions are acceptable.

The hindsight example presented earlier requires that previously-made decisions
be retained in memory and then revised. The ability to go back in time and revise
previous conclusions is incompatible with a real-time response deadline. The ma-
jor difference between TCS and real-time expert systems is that TCS can reason at
greater length about some of its problems. This ability makes it impossible for TCS
to provide real-time response time guarantees. Since the updating model of TCS calls
for completeness, real-time can be hard to achieve. Tcs’s ability to have reasoning
loops, both through the use of circular data-dependency structures as well as the
history-oracle mechanism, also prevents the guarantee of specific respnose times. In
summary, real-time systems respond to current information, without spending a lot
of time reasoning about the future, or analyzing past decisions. This allows them to
fulfill their mission of providing a guaranteed time response, but does not allow the
full sophistication of reasoning available in TCS.

There is potential for synergy between real-time systems and a TCs-based system.
The process trellis, for example, could process the raw sensor data and provide inputs
to a TCS system at an appropriate level of detail for further processing.
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Conclusion

Experience with the implementation of expert systems using TCS shows that it is
flexible enough to support projects in disparate parts of the medical domain. The
application of this methodology to the control of mathematical models, disease assess-
ment, reasoning with expectation failures and the management of patient treatment
over time shows breadth of coverage. On this basis, it is reasonable to assert that
this approach can also be applied outside the area of medicine.

The contributions of this thesis consist of a programming system for constructing
expert systems that use time dependent data as well as insight into the structure
of reasoning over time. In the first section I discuss the practical applications that
illustrate the usefulness of TCS as a programming tool. In the next section I discuss
the conceptual contributions.

9.1 Practical Application

This thesis presents an engineering approach to dealing with time in Al reasoning.
It is a language design that provides a basis on which to build temporally dependent
applications programs. Some common types of temporal reasoning are supported via
system utility routines, but there is no claim that the Tcs will have a complete set of
high-level reasoning routines. I do claim, however, that it will be possible to program
such high-level routines inside the Tcs framework.

Since this thesis project involves language design, it cannot be evaluated solely by
a rigorous test. Certain aspects, such as the correctness of the change propagation
algorithm, are amenable to such analysis. It cannot be rigorously proven that this
system makes the development of temporal applications simpler by taking over the
record-keeping functions that would otherwise need to be done by an applications
programmer. The evaluation of the usefulness of the program is necessarily subjec-
tive. The argument in favor of using this language is that it provides the benefits
of adding another layer to the programming system, making it a higher-level lan-
guage for programming temporal processes. The projects that have been successfully
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implemented demonstrate that clinically useful behavior can be recreated using the
system.

9.1.1 Projects Implemented

The practical utility of this approach has been demonstrated by the implementation
of the following projects:

1. Demonstration Examples. These examples show system capabilities. This in-
cludes the percent program used to illustrate the data propagation method and
the fever handler in the reference manual [70].

2. Reasoning by Hindsight. The use of hindsight shows a more sophisticated use
of the history and oracle mechanism to solve a reasoning problem that relies on
the observation of change over time and the inconsistencies between expected
and observed behavior. This shows how TCS can be used to build a system that
implements a difficult clinical reasoning task. I discussed this example at length
in section 5.2.

3. Pharmacokinetic Modeling System. This example can model the changing phar-
macokinetics of drugs and adjust model parameters in response to changes in
relevant clinical data. An argument for the importance of using models in treat-
ment programs can be found in the Oncocin project [80] and in TOPAZ [39]. The
TCS provides a control environment in which the model can be executed. This
demonstrates some of the control ideas and reasoning issues related to discrep-
ancies between system recommendations and actual user actions.

4. Disease Assessment Program. Using an earlier version of TCs, Steve Novick de-
veloped an expert system for assessment of the underlying causes of ventricular
arrhythmias as his Master’s thesis project. [64] This demonstrates the use of
TCS in a diagnostic tracking task.

5. Ketoacidosis. The major test project was the design of an advisor for acute
acid-base and electrolyte balance disorders found in diabetic ketoacidosis. This
collaborative work involved the Tufts-New England Medical Center, with two
physicians, Michael Hagan and Klemens Meyer, serving as domain experts.
In the formal evaluation reported in this thesis, the Ketoacidosis Advisor was
shown to perform at a level indistiguishable from actual clinical care. This
performance was in a domain in which the patient state changes over time and
which requires an ability to track these changes.
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9.2 Description of Temporal Reasoning

The division of temporal reasoning into a static and dynamic component creates a
formalism that can be used to describe different aspects of reasoning over time.

9.2.1 Types of Temporal Reasoning

Several types of temporal reasoning have already been identified. Each of the classes
below shares some characteristic that can be readily identified using the computa-
tional model of the TcCS.

1.

Atemporal rules and transducers. These are modules that use neither history
nor oracle variables. They are static mappings from inputs to outputs, and are
the simplest time-related reasoning methods. They can be handled automati-
cally by the TcCs.

Relationship between state change actions and states. Modules that embody
this change make a transformation between the types of variables in the inputs
and outputs. For example, going from points to intervals is a mapping from
(potential) state change actions to states. Similarly, the process of producing
points from intervals operates in the reverse direction. These modules generally
require a limited use of history information. Oracles are typically not needed
because of the unidirectional flow of time.

Forward temporal reasoning. Related to the previous point is the extension of
data over time. This is a subcase of the above, but is sufficiently common to
warrant separate discussion. In a changing domain such as medicine, data age
and become less reliable. This limits the usefulness of the information, so that
it is often convenient to limit the temporal extent of states induced from data
samples. On the other hand, some planning problems do not have to worry
about decay and can easily establish states that remain without change until
acted upon by an outside action. By appropriately using the metric information
from the timeline, either effect can be had. This includes the ability to make
predictions of future events.

Backward temporal reasoning. This involves the use of future information to
affect the past. Using hindsight is a complicated concept and is handled in its
own section below.

History and forgetting. By establishing a model of how information propagates
along the timeline (via the history variables) and providing a method for con-
trolling the propagation (the function in a module), it is possible to develop
applications that have differing degrees of dependence on the past or future.
The facilities for using histories and oracles introduce a variable amount of time
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dependence. It is possible to specify complete time dependence, in which case
the output of a module depends on the entire time history of the entering data.

The full range of temporal dependencies can be supported. At one extreme are the
rules and transducers that do not rely on information outside of their own execution
interval. At the other extreme is a module with complete time dependence. A trivial
example of such a module would be a module that calculated (internally) the average
(over time) of all of the input values and had as its output each input value’s percent-
age of that average. For each output datum, it is necessary to know something about
each of the other values in order to compute the average. Furthermore, any change or
addition to the data points would require the entire output over the complete timeline
to be recomputed. This example is shown in the reference manual. [70, p. 30f]

For efficiency reasons it is often desirable to put a temporal limit on the influence
of any particular piece of data. Vere [85] demonstrates the practical utility of this
concept in planning by using a temporal window to limit the time period that is
examined by his reasoning system. Although the mechanisms differ, the underlying
efficiency motive in both cases is supported by the fact that in most real systems there
is a limited interaction between different world entities and processes. Furthermore,
such interaction as occurs is often limited in scope, both physically and temporally.
It is the temporal limitation that is exploited by establishing a cutoff on the length
of time that a proposition can influence the decision making.

9.2.2 Explaining “Why I Changed My Mind”

One of the major goals of this system is to make it easy for new data to be incorporated
into the reasoning framework. This means that the program should be able to “change
its mind.” By keeping records of the processes that were run, and the state of the
data at that time, a history of the decision-making can be constructed. This history
will provide the basis for an ability to explain why conclusions were changed. Unlike
a standard updating system which can only give the current reasons for its beliefs,
an historical record could even explain why an earlier (and since revised) opinion was
held. For instance, the hindsight example from section 5.2 could then be explained
by saying that on the first day, only the cuff pressure was available, and using the
assumption that it was correct, a therapy to raise blood pressure was instituted.
Later, when the assumptions was shown to be violated, a revision in the conclusion
about the patient’s fundamental problem was the impetus for changing the therapy
to one which would reduce the blood pressure. It is important to remember that
only conclusions can be revised, whereas past actions cannot be undone. Different
database designs and the types of queries that they can answer are discussed by
Snodgrass in [82].

The ability to maintain a history makes the system capable of providing explana-
tions that involve changes in the belief structure about the world, by maintaining two
separate temporal markers with each piece of reasoning: The world time to which
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the reasoning applies, and the real-time at which various bits of information that
affect that reasoning process were available to the reasoner. The existence of such
multiple views allows one to generate not only a picture of a program’s belief about
the changing values of variables in its world, but also allows one to capture a history
of the changing beliefs of the program about the changing values of variables in its
world. This is a latent capability in TCS that has not yet been exploited.

9.3 Future Work

The Tcs functions as a programming system. There are a number of improvements
that could be made to the implementation and some extensions to the way TCS is
used.

9.3.1 Efficiency Improvements

The greatest efficiency loss in the present implementation involves the process queue.
Process instances are spawned as soon as values change and then must wait in the
queue until they can be executed. While waiting in the queue, the input values for the
process instance could change. Since a process instance accesses its variable values
at the start of execution, but has its duration determined when it is spawned, there
could be a mismatch between interval values at execution time and the time bounds
on the process instance. Since one of the guarantees that TCS makes is that interval
variables have a single value, each time a module is queued, the entire queue must be
checked to find processes for which this guarantee is violated. Such process instances
must be rescheduled to take the new variable value times into account. In a large
system with many items in the queue, the need to examine the entire queue every
time a process is added contributes greatly to the running time of the program. The
number of processes examined is proportional to the square of the length of the queue.

The most satisfactory solution would be to maintain a database of the intervals
for which a module is scheduled but to delay the actual creation of process instances
(and determination of their execution intervals) until the system is ready to run the
process. This will require a complete overhaul of the process queueing code in the
TCS. In the near term, processing time could be shortened by maintaining a separate
queue for each module. Since the only process instances that can be affected by
the new values are the ones for which a module is being queued, the queue scan
need only examine the process instances from that module. The search space can be
limited to the set of relevant process instances using the module (process type) as an
index. Either of these solutions would also contribute to the distributed nature of the
problem-solving model (see below). This redesign would be coupled with an efficient
mechanism for determining which modules had pending process instances.

Other areas for performance improvement are the internal representation of the
temporal database and the local execution strategy. The currently implemented rep-
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resentation uses a linked list of variable values ordered by time. They are stored in
reverse chronologic order, based on the assumption that most of the changes occur at
the “future” end of the timeline. Linked lists have the advantage that insertions and
deletions can be easily performed. They have the disadvantage that locating a par-
ticular time involves a linear search. An alternate representation based on balanced
trees should be investigated. The performance tradeoff between the searching time
and the time to insert and delete items will need to be examined.

It is possible to use a more efficient execution order for modules like that used in
the percent example in section 2.3.1. Since the TCS design treats reasoning modules
as black boxes, it is not possible to determine the history and oracle behavior. One
scheduling heuristic suggested by the percent module is to establish a direction of
execution and move first from past to future and then back again. Since this can
eliminate oscillations, the execution efficiency can be enhanced. Whether this speed
improvement will be worth the increased overhead in queueing complexity requires
further investigation.

9.3.2 Extension of Capabilities

The simplest extensions to TCS can be made within the framework that currently
exists. By using the Common Lisp macro facility, certain general-purpose routines
and abstractions can be provided. This is already the case for forms like the value
persistence modules defined by defpersistence. This process can be extended to
include those routines found useful in the Ketoacidosis Advisor, for example, the
generation of regular time points for periodic actions (eight-hour fluid summaries) and
the subdivision of the day into different dosage “windows” (the AM, PM and bedtime
periods for insulin administration). This extensibility allows TCs to be customized
for specific domain capabilities.

Other enhancements would require some changes to the implementation or the
underlying computational model. A priority queueing mechanism (with fixed priori-
ties) could be added with only minor changes. Executing process instances in priority
order (depending on the module they implement) could enhance efficiency by allow-
ing a programmer to specify the order of execution. This would allow tasks to be
deferred until all of their predecessor processes had been executed. For modules that
have multiple inputs, this could reduce the number of times they would need to be
evaluated. For example, if a module with three inputs were executed after the first
had changed, and then again as changes propagated to the second input, etc., it could
be run more often than necessary. If it had a lower priority, then all of its inputs
would have time to stabilize before it was invoked, yielding an increase in execu-
tion efficiency. A limited form of this prioritization could be performed following an
analysis of the data dependency structure.

A priority queue also has its uses in time critical applications. Because complete

IThere would, of course, have to be provisions for loops.
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updating is assured by the nature of the TCS design, it is not possible to guarantee
real-time responses, because the system must run to completion. If priority queues
were used, one could have all of the critical decisions run first, providing answers to the
most important questions before other less critical tasks were done. In the ketoacidosis
domain, this would mean handling low blood sugar (a very dangerous condition)
before calculating the eight-hour fluid balance (a less important bookkeeping task).
By displaying the results as they were produced, the important advice would be
available first, with refinements to the advice and less important reasoning occuring
later as time permitted.

A more ambitious extension would be to separate the determination of process in-
stance scheduling intervals from the TCS internals. By making the scheduling program
available as an option for individual modules, more flexibility in the determination of
endpoints could be achieved. There would still be a need for TCS surveillance of the
processes actually executed (to assure completeness of data propagation), but some of
the scheduling decisions made centrally could be made specific to individual modules.
For example, using the interval scheduling method, there are two options when an
interval value changes. One is to schedule the minimal length interval that needs to
be executed in order to handle the change. An alternate choice would be to schedule
the largest interval with single values. Either choice will provide correct program
results and complete updating. Depending on the domain, however, one choice may
be more efficient than the other. By allowing this choice to be made on a module-
by-module basis, the expert-system designer is given more control over the execution
behavior of his program. This change would be consistent with the design philosophy
of introducing the most flexible design space while preserving enough restrictions to
maintain the fundamental guarantees of the TCS.

The final extension would be to embed a TCs-based advisor inside a program that
could reason about the constraints on the temporal intervals. Since the TCS requires
exact bounds, these could be provided by a constraint reasoner. As more constraints
became available, it could change the exact bounds that were given to the embedded
TCS, which would then propagate the effects of those changes on its internal reasoning.
This division of labor would be a method of exploiting the strengths of both types
of reasoning. It does run the risk of forcing the exploration of a combinatorial set of
TCS models.

9.3.3 Distributed Model

The decomposition of the reasoning into modules with well-defined outputs provides
a modular representation of parts of the program. The data dependencies describe
the communications paths between individual parts of the entire system. Such a
definition provides a specification for a distributed architecture for problem-solving.
Since each module is complete and (except for its inputs) separate from all other
elements of the system, one could create a distributed processing environment using
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the TCS process structure.

Outwardly, the dependency network of a TCS system resembles the process trellis
architecture [26] developed at Yale. Tcs provides a more general architecture be-
cause there is no need for synchronization between individual modules, and because
loops are allowed in the data dependency structure. The existence of non-uniform
communication paths and the lack of uniformity in the amount of time needed for
individual modules to run are evidence for using a distributed architecture rather
than a fine-grained parallel implementation.

9.3.4 Open Problems

There is a fundamental problem that any temporal tracking system must face. The
amount of work that must be done in response to “clock ticks,” (i.e., the advance
of time without additional data becoming available) can be quite large. This is to a
certain extent unavoidable. A module that projects the effects of following the advice
in the future, given what has been done in the past, cannot avoid having to recompute
its state as the clock advances. Since the premise of the projection is that the user
will implement the advice right away, any time delay means that more of the other
(actual) therapy was carried out. This changes the state from which the projection
was made. There is no general answer to this problem, and the development of
solutions to this difficulty remains an open problem.

There are also inherent limits to how cleverly a scheduling job can be done without
knowledge of the workings of a module. Another open problem is whether general-
purpose heuristics or methods can be developed that will enhance the optimality of a
mechanical scheduler. An example of such a heuristic embedded in TCS is the desire
to complete the execution of a given module’s adjacent process instances before the
process instances of modules further along the dependency path. One such heuristic
would be to try to execute process instances in a single direction before moving infor-
mation back in the opposite direction. Support for this can be found in consideration
of the example of the percent program (section 2.3.1), where eight processes were
used to calculate four values. The minimum needed to propagate the values would
be seven—if all process instances were evaluated left to right and then right to left
(the rightmost process instance would only need to be executed once).

9.4 Summary

In this work I have developed a computational model for describing reasoning over
time. The key idea embodied in the model is that it is possible to decompose the
task of reasoning over time into static and dynamic components. The use of static
components simplifies the job of building expert systems by isolating the effects of
temporal change, and in some cases hiding it entirely in the abstractions of the Tem-
poral Control Structure.
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Furthermore, the conceptual model provides a means for examining the temporal
dependence of reasoning functions. This affects the efficiency of their execution and
determines the extent to which they are exposed to information changing over time.
Because both the temporal effects and the algorithms used in the implementation of
the reasoning are explicit, knowledge engineers are free to choose appropriate methods
for their domain. For design work, it is crucial that the person implementing a system
have enough freedom to make whatever tradeoffs between accuracy and performance
are suitable for the domain.

The computational model has a natural and efficient implementation that guar-
antees complete and carefully directed use of information. Except for conceptually
needed distinctions between reasoning in the past or the future, a system programmed
in the TCS is insensitive to the order of arrival of data. The bookkeeping chores needed
to achieve this insensitivity are provided by TCS.

Finally, T have substantiated these claims through the implementation of sev-
eral projects in real world domains. The Ketoacidosis Advisor clearly shows that
human-level performance can be achieved in a medical domain. The characteristics
of ketoacidosis required the system to track data which changed over time and which
were not immediately available. The success of the program in the formal evaluation
reported in this thesis validates the computational model used in its implementation.
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Appendix A

Cases Used for Evaluation

The cases used for the program evaluation are presented here. For each case the data
is arranged chronologically in three tables: vital signs, oral fluids and urine output;
blood chemistries and blood gas measurements; and the actual treatment given. This
is followed by a table identifying the decision points and presenting the competing
treatment plans. As in the evaluation results, an asterisk (*) identifies those decisions
which were eliminated from the analysis because of data coding errors.

A.1 Case Keto 11

Keto 11, a 15yo male: This is one of several admissions for this patient with a 2 year
history of IDDM. Since diagnosis, patient has been hospitalized 7-8 times for control
of his diabetes. Patient was in his usual state of health until 1 week prior to admission
when he developed upper respiratory tract infection syndrome with cough and runny
nose. “He felt warm” all week but he never took his temperature. Aspirin offered no
relief, and Contac simply made him drowsy. On the evening prior to admission he
ate a late dinner, but had not eaten all day. The morning of admission he took his
insulin, went to school without eating breakfast and started to feel extremely tired and
nauseated with dyspnea on his way to school. He vomited once and returned home
to fall asleep. Upon arrival at the hospital for his usual appointment an acetone-like
odor was noted on his breath and he was referred to the Pediatric Walk In Clinic.
HPI: INFECTIONx3 days, NAUSEAx1 day, VOMITINGx1, INSULIN-TAKEN
PMH: IDDMx2 years, DKAx8

Baseline Insulin: 50U Lente SQ qam‘
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138 APPENDIX A. CASES USED FOR EVALUATION
Vital Signs Urine
Time|Temp HR BP RR Weight PO-In| Vol Ket Gluc
10/6 11:00a| 34.8 96 110/60 24 49.0kg
1:00p| 35.8 88 18 2401|1500 ++++ ++++
1:30p +++ et
3:00p| 36.8 80 122/80 28 49.8kg
10:30p 1100 +4+++ ++++
10/7 12:00a 480
1:.00a| 36.5 86 120/80 20
8:00a| 37.0 90 20
11:00a| 36.8 86 120/80 24 49.0kg
11:30a 150
3:00p 1950
4:50p| 36.9 84 122/84 24
8:45p| 37.1 84 124/90 20
11:30p 950 44 444+
Laboratory (Serum) Blood Gas
Time| Na K Cl CO; Cr BUN Phos Ket Gluc pH pOs pCO; HCO3; FIO,
10/6 11:30a 240-400
11:35a(140 4.0 104 12 0.7 12 39 44 4371V 6.96 26 36 8 RA
12:55p[136 4.4 106 9 468|V 6.94 39 32 7 RA
1:00p 240-400
2:35p 240-400
2:50p|138 4.4 112 8 2.7 366|A 7.05 148 16 4
4:30p|136 4.3 111 11 05 9 27 347
4:45p 180-240
6:10p 120-180
7:30p 120-180
9:00p 120-180
11:00p 120-180
10/7 1:00a 120-180
3:00a 120-180
5:00a 80-120
7:00a(137 3.4 112 18 0.7 10 194|V 726 55 38 17
11:00a 180-240
12:30p 180-240
2:00p 240-400
3:00p 180-240
4:45p 180-240
7:00p 120-180
10:30p 240-400
11:30p 240-400




A.1. CASE KETO 11

IV Fluid Therapy

Insulin Therapy

Time| Type Rate Addition Type Rate Add. Total|IV-Drip IV-Bolus SQ
10/6 11:00a

11:30a| NS 857 0 0

12:40p| | 194 1000 0

1:30p| | 140 20KCl, 2.5KPhos 1162 0

2:00p| | 180 i) 1232 5U/hr

3:00p| | 400 40KCl, 5KPhos 1412{10U /hr

4:.00p| | 118 i) 1812 5U/hr

8:00p| | 133 ) 2284| 2U/hr

9:00p| | 123 J 2417 )
10/7 11:30a| | 110 J 4201 i) 50U Lente

1:30p| 4 | i) 4421 0

145p| — 0 — 4449 0

11:30p| — O — 4449 0
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# TimeReal Advice
1.10/6 |NS at 1500ml/hr NS at 80ml/hr
11:30a |No IV insulin drip No IV insulin drip
5U Reg insulin SQ
2.10/6 NS at 180ml/hr NS w/ 20mEq KCI/¢ at 125ml/hr
12:40p|No IV insulin drip Insulin at 5U/hr
5U Reg insulin IV bolus
3.10/6 |NS w/ 20mEq KCI, 2.5ml KPhos/¢ NS w/ 20mEq KCl, lamp Bicarb/¢
1:30p at 180ml/hr at 600ml/hr
No IV insulin drip Insulin at 5U/hr
5U Reg insulin IV bolus
4.10/6 NS w/ 20mEq KCl, 2.5m| KPhos/¢ NS w/ 20mEq KCI, 1lamp Bicarb//¢
2:00p at 180ml/hr at 600ml/hr
Insulin at 5U/hr Insulin at 5U/hr
5U Reg insulin IV bolus
5.10/6 NS w/ 40mEq KCI, 5ml KPhos//¢ NS w/ 20mEq KCI, 1lamp Bicarb//¢
3:00p at 180ml/hr at 600ml/hr
Insulin at 5U/hr Insulin at 2U/hr
6.10/6 NS w/ 40mEq KCI, 5ml KPhos//¢ NS w/ 20mEq KCI, 1lamp Bicarb/¢
4:00p at 130ml/hr at 500ml/hr
Insulin at 5U/hr Insulin at 5U/hr
7.10/6 |NS w/ 40mEq KCI, 5ml KPhos/¢ D5-NS w/ 20mEq KCI/¢ at 250ml/hr
8:00p at 130ml/hr Insulin at 5U/hr
No IV insulin drip
8.10/6 NS w/ 40mEq KCI, 5ml KPhos/¢ D5-NS w/ 20mEq KCl/¢ at 125ml/hr
9:00p at 130ml/hr Insulin at 2U/hr
Insulin at 2U/hr
9.10/7 |NS w/ 40mEq KCl, 5ml KPhos/¢ No IV fluids
11:30a at 130ml/hr Insulin at 1U/hr
Insulin at 2U/hr 40mEq KCl
50U Lente insulin SQ
10. 10/7 |NS w/ 40mEq KCI, 5ml KPhos/¢ No IV fluids
1:30p at 130ml/hr Insulin at 1U/hr
No IV insulin drip 40mEq KCI
11.10/7 |No IV fluids No IV fluids
1:45p |No IV insulin drip No IV insulin drip
40mEq KCI
12.10/7 |No IV fluids No IV fluids
11:30p |No 1V insulin drip No IV insulin drip

6U Reg insulin SQ

5U Reg insulin SQ
40mEq KCI




A.2. CASE KETO 13

A.2 Case Keto 13

Keto 13, a 21yo male: Patient has had IDDMx8yrs. Approximately 24hrs before
admission he was at a party and drank heavily such that he had a prolonged episode
of nausea and vomiting. He reported to ER feeling dehydrated, with complaints of left
flank pain. Patient presents afebrile and in moderate distress. Mucous membranes
dry, lungs clear. Patient complains of polydipsia, denies polyuria. Patient denies

infection of any sort, no diarrhea, cough, rhinitis, etc.

HPI: VOMITINGxMULTIPLE, NAUSEAx1 day, POLYDIPSIAx1 day, ETOH,

INSULIN-TAKEN
PMH: IDDMx9 years, DKAx1

‘Baseline Insulin: 40U LENTE SQ qam‘

Time

Temp HR

Vital Signs
BP

RR Weight PO-In

Urine

Vol Ket Gluc

6/23 11:35a
11:45a
2:55p
3:00p
6:45p
9:00p
6/24 12:00a

37.4 124
37.4 120
104

374 92
96
365 89

120/76
150,80
130/86

22
22
22

140/90
150,90
110/66

22
20
16

66.2kg

680

+H+ e+t

6/23 11:35a Pulse and BP: — 120 160/90, 1 124 120/76

Laboratory (Serum) Blood Gas
Time| Na K ClI COy Cr BUN Phos Ket Gluc pH pOs pCO; HCO3; FIO,
6/23 11:35a|140 6.0 98 712 26 8.2 +++ 572
1:05p A7.12 138 19 6 RA
2:30p|142 5.0 108 12 1.1 22 ++ 342
5:40p|138 4.7 108 17 1.0 20 ++ 247
6:45p 240-400
9:00p|138 4.9 108 21 19 165
6/24 12:00a 40-80
IV Fluid Therapy Insulin Therapy
Time| Type Rate Addition Type Rate Add. Total|[IV-Drip IV-Bolus  SQ
6/23 11:45a| NS 2667 0 0
12:30p| | 500 2000 0 10U Reg
1.00p| | | 2250| 3U/hr
1:30p| | 95 2500| 6U/hr
6:45p| | 185 2999 )
7:30p| | 186 3138| 3U/hr
10:20p| | 200 3665 2U/hr 15U Reg
11:30p| | 4 3898 0
6/24 12:00a| | 143  30KCI 3998 0
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# Time|Real Advice

1.6/23 |NS at 1500ml/hr NS at 1000ml/hr
11:45a |No IV insulin drip No IV insulin drip

*6/23 NS at 250ml/hr NS at 350ml/hr
12:30p [No IV insulin drip No IV insulin drip

10U Reg insulin IV bolus

2.6/23 NS at 250ml/hr NS w/ lamp Bicarb/¢ at 350ml/hr
1:00p |Insulin at 3U/hr Insulin at 3U/hr

3.6/23 NS at 250ml/hr NS w/ lamp Bicarb/¢ at 250ml/hr
1:30p |Insulin at 7U/hr Insulin at 3U/hr

4.6/23 |NS at 200ml/hr NS w/ 20mEq KCI/¢ at 500ml/hr
6:45p |Insulin at 7U/hr Insulin at 7U/hr

5.6/23 |NS at 200ml/hr NS w/ 20mEq KCI/C at 500ml/hr
7:30p |Insulin at 3U/hr Insulin at 6U/hr

6.6/23 |NS at 200ml/hr NS w/ 5ml KPhos/¢ at 250ml/hr
10:20p [Insulin at 3U/hr No IV insulin drip

15U Reg insulin SQ

7.6/23 |NS at 200ml/hr NS w/ 5ml KPhos/¢ at 250ml/hr
11:30p [No IV insulin drip No IV insulin drip

8.6/24 NS w/ 30mEq KClI/¢ at 200ml/hr NS w/ 5ml KPhos/¢ at 250ml/hr
12:00a [No IV insulin drip No IV insulin drip

A.3 Case Keto 15

Keto 15, a 25yo female: Patient with ¢/o nausea and vomiting since 5am (has
vomited 4-5x). Also c¢/o pleuritic mid-sternal CP x 2 days. Pain not related to
exertion and does not change with position. Patient was seen yesterday with negative
CXR and EKG. No cough or SOB. No fever or chills. Recent UGI was negative. Has
not been feeling well for about 4 weeks. Concerned about younger sister w/ cancer
and an upcoming move to California. Has taken her insulin as usual (last dose last
night). No dysuria.

HPI: NAUSEAx1 day, DIARRHEAx1 day, VOMITINGx6

PMH: IDDMx7 years, DKAxXMULTIPLE

‘Baseline Insulin: 7U Reg, 35U Lente SQ qam‘




A.3. CASE KETO 15

Vital Signs Urine
Time|Temp HR BP RR Weight PO-In|Vol Ket Gluc
6/3 7:23a 120 116/74
7:30a 96 118/70 28
8:30a 108 112/70 22
10:30a 98 116/70 20
11:15a| 37.1 102 20
1:00p| 37.0 90 114/60 20 56.1kg 250
2:00p 250
4:00p| 37.0 95 108/64 20 500 ++++ +++
6:30p 90 110/60 18
7:00p 180
8:00p| 37.4 101 108/64 18
9:00p 120
10:00p 89 104/68 16 1201|400
6/4 12:00a| 36.7 72 104/66 16
1:00a 180|600
2:00a 76 114/76 16
4:00a| 36.8 74 110/70 16
5:00a 180|575
6:00a 79 120/88 18
8:00a| 36.2 83 102/64 18
9:00a 180(800 0
10:00a 88 102/66 16 180
12:00p 98 106/64 16 180|700 0
6/3 7:23a  Pulse and BP: — 96 118/70, 1120 116/74
Laboratory (Serum) Blood Gas
Time| Na K Cl CO; Cr BUN Phos Ket Gluc pH pOs pCO; HCO3 FIO,
6/3 7:35a|138 5.0 107 11 0.8 15 35 562
7:57a A 7.15 128 21 7 RA
10:13a|146 45 118 14 0.7 14 261
2:45p|134 43 112 15 280
3:00p 314
4:00p 216
5:00p 164
7:00p|137 40 112 18 129
8:00p 195
9:00p 194
10:00p 120-180
11:00p 166
11:40p|136 4.2 111 21 161
6/4 1:35a 86
4:00a(138 4.2 112 22 0.8 8 23 0 123
8:00a 142
8:40a(138 4.3 113 18 0.7 5 18 0 149
10:00a 93
12:00p 03
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IV Fluid Therapy Insulin Therapy
Time Type Rate Addition Type Rate Add. Total|IV-Drip IV-Bolus SQ
6/3 7:23a
7:30a NS 750 0 0
8:30a 1o 750| 5U/hr 10U Reg
8:50a 1 414 1000 |
9:15a Loy 1172| 10U /hr
9:20a ! 1206| 4U/hr
11:15a| D5-NS 133 2000 1
3:00p|D5-2NS 200 40KCl, 3KPhos 2499 l
8:00p 1 169 10KPhos 3499 |
6/4 1:35a 1 19 1 4443| 2U/hr
8:30a 1 200 1l 5799 1 7U Reg, 35U NPH
10:30a 1 1 6199| 0
12:00p U 1l 6499 0
# TimeReal Advice
1.6/3  |NS at 1000ml/hr NS at 1000ml/hr
7:30a [No IV insulin drip No IV insulin drip
*6/3 NS at 1000ml/hr NS w/ lamp Bicarb/¢ at 250ml/hr
8:30a |Insulin at 5U/hr No IV insulin drip
10U Reg insulin 1V bolus
2.6/3 NS at 500ml/hr NS w/ lamp Bicarb/¢ at 250ml/hr
8:50a |Insulin at 5U/hr Insulin at 5U/hr
3.6/3 NS at 500ml/hr NS w/ lamp Bicarb/¢ at 150ml/hr
9:15a |Insulin at 10U /hr Insulin at 5U/hr
4.6/3 NS at 500ml/hr NS w/ lamp Bicarb/¢ at 150ml/hr
9:20a |Insulin at 5U/hr Insulin at 5U/hr
5.6/3 |D5-NS at 200ml/hr NS w/ 20mEq KCI/¢ at 150ml/hr
11:15a|Insulin at 5U/hr Insulin at 3U/hr
6.6/3 |D5-:NS w/ 40mEq KCI, 3ml KPhos/¢ |INS w/ 20mEq KCl/¢
3:00p at 200ml/hr at 90ml/hr
Insulin at 4U/hr Insulin at 4U/hr
7.6/3 |D5-NS w/ 10ml KPhos/( at 200ml/hr [NS w/ 20mEq KCI/¢ at 90ml/hr
8:00p |Insulin at 4U/hr Insulin at 1U/hr
8.6/4 |D5-iNS w/ 10ml KPhos/¢ at 200ml/hr |NS w/ 20mEq KCI/¢ at 175ml/hr
1:35a |Insulin at 2U/hr Insulin at 1U/hr
9.6/4 |D5-iNS w/ 10ml KPhos/¢ at 200ml/hr |No IV fluids
8:30a |Insulin at 2U/hr No IV insulin drip
7U Reg, 35U NPH insulin SQ 7U Reg, 35U Lente insulin SQ
10. 6/4  |D5-NS w/ 10ml KPhos/( at 200ml/hr |D5-NS w/ 5ml KPhos/( at 200ml/hr
10:30a|No IV insulin drip Insulin at 2U/hr
11.6/4 |D5-NS w/ 10ml KPhos/¢ at 200ml/hr |D5-NS w/ 5ml KPhos/¢ at 300ml/hr
12:30p|D10 at 75ml/hr
No IV insulin drip No IV insulin drip
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A.4 Case Keto 16

Keto 16, a 25yo female: Patient has “kidney infection” and c¢/o nausea. She came
in to have her BS checked. Is now being Rx for UTI from four days PTA. Three days
ago BS = 325, declined with 5U regular insulin. BS 304 this am, 469 in pm. Called
Endo-on-call who Rx’d 4U extra insulin. Rechecked in evening (> 400). Presented
at ER.

HPI: INFECTIONx5 days, NAUSEAx1 day

PMH: IDDMx17 years

Baseline Insulin: 10U Reg, 30U NPH SQ qgam; 8U Reg, 10U NPH SQ qpm‘

Vital Signs Urine
Time|Temp HR BP RR Weight PO-In|Vol Ket Gluc
8/14 7:02p| 36.6 76 130/80 18
10:30p + e+
8/15 12:30p| 37.2 120 120/90
6:15p| 36.8 84 142/92 20 74.9kg
8/16 7:00a 230 + ot
8:00a| 36.7 84 130/78 16

8/15 12:20a Patient Discharged to home.
8/15 11:25a Patient returned to emergency room.
8/15 6:15p Patient enters ward from emergency room.

Laboratory (Serum) Blood Gas
Time| Na K Cl CO; Cr BUN Phos Ket Gluc|pH pOs pCO; HCOs FIO,
8/14 10:00a 469
5:00p 400+
7:25p|133 47 94 26 09 19 514
10:45p 378
8/15 7:00a 421
12:30p|132 49 92 2311 21 675
2:29p ++
10:00p 245
8/16 2:00a 217
7:00a 308
8:30a|138 4.6 103 27 269
12:00p 135
4:30p 186
8/17 7:00a 109
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IV Fluid Therapy Insulin Therapy
Time|Type Rate Addition Type Rate Add. Total|IV-Drip IV-Bolus SQ
8/14 10:00a
2:00p| — 0 — 0| 0 4U Reg
5:00p| — O — 0 0 8U Reg, 10U NPH
8:45p| — O — 0 0 4U Reg
8/157:.00a| — O — 0 0 10U Reg, 30U NPH
1:00p| NS 95 o 0
210p| | L 11| 0 10U Reg
6:15p| | 171 499 0
945p| | 186  10KCI 1097| 0
8/16 7:00a| | 131 | 2817 0 10U Reg, 30U NPH
4:00p| | 78 3006| 0 8U Reg, 10U NPH
8/177:00a| | | 1 5166 0
# Time|Real Advice
1.8/14 |No IV fluids NS w/ 20mEq KCI/¢ at 90ml/hr
8:45p |No IV insulin drip Insulin at 6U/hr
4U Reg insulin SQ 6U Reg insulin IV bolus
2.8/15 |No IV fluids NS at 90ml/hr
7:00a |No IV insulin drip No IV insulin drip
10U Reg, 30U NPH insulin SQ 10U Reg, 15U NPH insulin SQ
3.8/15 |NS at 100ml/hr NS at 90ml/hr
1:00p |No IV insulin drip No IV insulin drip
4.8/15 |NS at 100ml/hr NS w/ 20mEq KCI/¢ at 90ml/hr
2:10p |No IV insulin drip Insulin at 6U/hr
10U Reg insulin SQ 6U Reg insulin IV bolus
5.8/15 |NS at 175ml/hr NS w/ 20mEq KCI/¢ at 100ml/hr
6:15p |No IV insulin drip Insulin at 7U/hr
7U Reg insulin IV bolus
6.8/15 |NS w/ 10mEq KCl/¢ at 175ml/hr NS at 100ml/hr
9:45p |No IV insulin drip No IV insulin drip
7.8/16 NS w/ 10mEq KCI/¢ at 175ml/hr No IV fluids
7:00a |No IV insulin drip No IV insulin drip
10U Reg, 30U NPH insulin SQ 15U Reg, 30U NPH insulin SQ
8.8/16 NS w/ 10mEq KClI/¢ at 175ml/hr No IV fluids
4:00p |No IV insulin drip No IV insulin drip
8U Reg, 10U NPH insulin SQ
9.8/17 |NS w/ 10mEq KCl/¢ at 175ml/hr No IV fluids
7:00a [No IV insulin drip No IV insulin drip
10U Reg, 30U NPH insulin SQ 10U Reg, 30U NPH insulin SQ




Appendix B

Evalution Results by Case

Tables B.1-B.4 show the raw data for the Ketoacidosis Advisor evaluation. Raters are
designated by a code which identifies their training: “S” for students, “F” for fellows,
and “A” for attending physicians. Student ratings were not used in the performance
evaluation. The scores for the “real” and the “advice” rows are encoded by the first
letter of the scale: Dangerous, Poor, Acceptable, Good, Excellent. The “prefer” row
uses “R” to designate the real treatment, “A” to identify the advice and a single plus
sign (+) to indicate that the given treatment choice was deemed better. Two plus
signs (++) denote much better. No preference is indicated by “None.” An asterisk (*)
in the “Decision Point” column indicates the value was not used in the data analysis
because the data collection was corrupted—Information was available in the clinic
that was not provided to the evaluators. The reader can confirm that eliminating
these evaluations improves the relative performance of the actual treatment.
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Table B.1: Evaluation of Case 11

Item Decision Point
Rater | Type 1 2 3 4 5 6 7 8 9 10 11 12
Real E G A P P P P A G P A A
F1 Advice P A G G G G G G P G A A
Prefer | +R| +R| +A| +A| +A| +A| +A| +A| +R| +A| +R| +A
Real P P P G P P P P P P A A
A3 Advice E E G A E G E E P P P G
Prefer | ++A|++A| +A| +R|{++A|++A|++A|++A|None|None| +R| +A
Real A D D P A A D P A P D D
S5 Advice P E G A D P P P D D D D
Prefer | +R| +A|++A| +A| +R| +R| +4+A|[None| +R|None|[None|None
Real P P P P P P A P E E G A
F6 Advice G G G G G G A P D P P D
Prefer | +A| +A| +A| +A| +A| +A|None|None|++R|++R|++R| +R
Real P P P A A G A A P P D P
A7 Advice G G A P P A P A P P D A
Prefer | +A| +A| +A| +R| +R| +R| +R|None| +R|None| +R| +A
Real D D A E G E G A G D A G
A9 Advice E E A A P P E E P E E A
Prefer |++A|++A|None| +R| +R|[++R|None| +A|++R|++A[++A|None
Real G P P G G A P P G A G A
F10 Advice G P G A A G G G P P P A
Prefer | +A| +A| +A| +R| +R| +A| +A| +A| +R| +R| +R| +A
Real P P D D A G A A G A G A
All Advice A G E E G A E G A A A G
Prefer | +A|4++A|++A|++A| +A| +R|++A|] +A| +R|None| +R| +A
Real P P P P P P P P A Al —| —
F13 Advice P A P A P P A A A Al —| —
Prefer | +A| +A| +R| +A| +A| +A| +A| +A| +A|None| —| —
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Table B.2: Evaluation of Case 13

Item Decision Point
Rater|Type 1 * 2 3 4 5 6 7 8
Real G P G A P G P A A
F1 Advice A G P P P P A A G
Prefer | +R| +A| +R| +R| +A| +R| +A| +A| +A
Real A P P A A G A A G
S2 Advice A A G G G G G G A
Prefer |None| +A| +A| +A| +A|None| +A| +A| +R
Real G P G G A G P G P
F4 Advice G G E E G G G G P
Prefer |None|++A|++A| —+A| +A|None|++A|None|None
Real P P A A A P P P D
S5 Advice A P P P P A P P D
Prefer [None|None|None| +R| +R| +A|None|None|None
Real G P P P G G P P P
F6 Advice A G G G P P A A P
Prefer | +R| +A| +A| +A| +R| +R| +A| +4+A{|None
Real A P A A A G D P P
A7 Advice A A A A A A G A P
Prefer INone| +A| +A| +R| +R| +R| +A| +A{|None
Real A P P P G G D A D
A8 Advice A A A A P P G A D
Prefer | +A| +A|++A|++A| +R|++R|++A| +R|None
Real D P G G G E P G P
A9 Advice D A P P P P E A G
Prefer [None| +A| +R| +R| +R|++R|++A|None| +A
Real A D G G P P P A A
F10 Advice A G P A G G G G G
Prefer | +A| +A| +R| +R| +A| +A| +A| +A| +A
Real P A G G A A P P A
All  |Advice A G A A P P A A A
Prefer | +A| +A| +R| +R| +R| +R| +A| +4+A{|None
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Table B.3: Evaluation of Case 15

Item Decision Point
Rater|Type 1 * 2 3 4 5 6 7 8 9| 10 11
Real G P P P P G A G G G G G
F6 Advice G G G G G P A P P P A A
Prefer |None| +A| +A| +A| +A| +R|None| +R|++R| +R| +R| +R
Real A P G A A A P A A P A A
A7 Advice A A A P P P P P D D P A
Prefer INone| +A| +R| +R| +R| +R| +A| +R| +R| +R| +R| +R
Real P D E G A P P G E G G G
A9 Advice P P P A A E G G A A P G
Prefer [None|None|++R|None|None|++A|++A|None| +R| +R| +R|None
Real G G G G G A E G G A A P
F10 Advice G A A A A G A A A A G A
Prefer INone| +R| +R| +R| +R| +A| +R| +R| +R| +A| +A|None




Table B.4: Evaluation of Case 16

Item Decision Point
Rater|Type 1 2 3 4 5 6 7 8 9
Real G A A A A A G P A
S2 Advice P G A G G G P A A
Prefer | +R| +A|None| +A| +A| +A| +R| 4A|None
Real A P E A P A G D D
Fa Advice G E G G E P P G D
Prefer | +A| +A|None| +A| +A|None| +R| +4+A|None
Real A G G G P A G G P
F6 Advice P A G D P G P P G
Prefer | +R| +R|None|++R|None| +A| +R|++R| +A
Real P P P P P P P D A
A7 Advice A P P A A A P P P
Prefer | +A| +A|None| +A| +A| +A| +R| +A| +R
Real P D G A P P P D P
A8 Advice A P G A A A G E A
Prefer | +A| +A|None| +A| +A| 4+A| +A[++A| +A
Real A A G P P D P G A
F10 Advice A A A E E D P A G
Prefer | +R| +A| +R| +A| +A|None|None| +R| +A
Real P A A A P A A A P
F13 Advice A A A A P A A P A
Prefer | +A|[None| +A| +A| +R| +R| +R| +R| +A
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