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Abstract

The VEIL system is pioneering two thrusts within the
field of image understanding that until now have
received relatively little attention. First, VEIL reasons
at a semantic level about scene information, using a
knowledge base that augments an original image
understanding (IU) model (representing the output of a
lower level IU system) with structural and functional
information. VEIL can apply both spatial and temporal
reasoning to detect event sequences that span multiple
images. Second, VEIL provides users with an
intelligent interface that relies on a library of domain-
specific terms and queries to provide a domain-specific
browsing and query facility. The library, implemented
in Loom as an extensible ontology of domain specific
definitions and queries, can be easily customized by a
user to facilitate analysis activities.

1  Introduction

VEIL performs high level interpretation of scene
images using the deductive capabilities of the Loom
knowledge representation system [MacGregor and
Bates 1987, Brill 1993],, and provides users with
semantically-enriched browsing and editing
capabilities. The VEIL experiments use a database of
RADIUS Model Board 2 image site models stored in
SRI’s RCDE system. This database is augmented by a
knowledge base stored in Loom that includes
references to the underlying RCDE-object models,
representations of functional and structural knowledge
not contained in the RCDE model, and a library of
high-level spatial reasoning functions. The Loom
knowledge base also contains abstract definitions for
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objects and events.  Using this architecture as a base,
VEIL supports queries that search within an image to
retrieve concrete or abstract objects; or that search
across images to retrieve images that contain specific
objects or events. An event in VEIL is comprised of
entities and/or subevents that collectively satisfy a set
of temporal and spatial constraints.  VEIL can scan a
sequence of images and detect complex events.  In the
example presented in this paper, VEIL finds Field
Training Exercise events consisting of four subevents
occurring in distinct images.

VEIL is implemented as a modular architecture
wherein all communication between Loom and the
underlying IU system is mediated by RCDE protocols
and data structures [RADIUS Manual 1993],. In the
future, it would be practical for us to incorporate
multiple IU systems into the VEIL architecture. Also,
VEIL could be exported to other sites along with
RCDE, allowing other IU researchers to connect their
systems to VEIL. Thus, VEIL provides a generic means
for extending a RCDE-based IU system to include
semantic processing of image data. Use of VEIL also
promotes the use of explicit, declarative domain
models. We forecast that this approach will be a key
enabling technology when it becomes time to
interconnect image understanding systems with other
knowledge-intensive systems and applications.

2  Underlying Technology

We are extending the semantics of the information that
is captured by an image understanding program by
associating domain-level information with images.
We use the following terminology.  The image  means
the digital input data. For our examples these are
photographs.  The site model   is a geometric model of
objects found in a particular image. Such objects can
be roughly divided into objects representing terrain
features, structures and vehicles.  A domain model   is a



semantic model of items of interest in the domain.
This includes buildings and vehicles as well as abstract
notions such as the function of objects, groups of
objects, convoys and field training exercise events.

2.1  RADIUS

Our experiments use the forty RADIUS Model Board 2
images of a hypothetical armored brigade garrison and
exercise area.  A site model common to all forty
images was provided by the University of Maryland.
This RCDE-object site model was used with only
minor modifications in our work.1  We augmented the
common  site model with vehicle models for a subset
of ten images.  Vehicles were identified by a graduate
student and their location noted in a file.  Vehicle
model objects are needed for VEIL’s event processing,
but the source  of the models is irrelevant.  A suitable
automatic vehicle detector could be substituted for our
manual methods.

2.2  Loom

We use Loom, an AI knowledge representation
language in the KL-ONE family, to provide the
infrastructure for semantic reasoning.  Loom provides
the following benefits:

• Declarative language.  Information is encoded in
an easy-to-understand format.  This makes it easy
to comprehend and extend the model.

• Well-defined semantics.  The meaning of language
constructs is well-defined.  The meaning of the
terminology is well-established and validated by
over 15 years of AI research into description logics
[Brachman 1979, Brachman et al. 1983].

• Expressivity.  Loom is one of the most expressive
languages in its class.

• Contexts.  Assertions (facts) about multiple images
can be accessed at the same time.  This is a key
feature used in recognizing events.

2.2.1  Definitions

Loom reasons with definitions , which equate a term
with a system-understood description in terms of
necessary and sufficient conditions.  This allows useful
flexibility in reasoning for a recognition domain.
Combined with a hierarchy of concepts one is able to
make assertions that precisely capture the amount of
information available.  When details are not known,
one is not forced to overcommit in making entries to
the knowledge base.  As more information becomes

1The modifications were to ensure a consistent composite grouping
of buildings which were represented in the site model as multiple
cubes.  Several of such complex-structure buildings were already
present as composite objects.  We manually rounded out the site
model to assure consistency in the modeling.

available it can be added incrementally, improving the
picture of the world.  If enough additional information
is added, Loom’s classifier automatically recognizes
an instance as belonging to a more specific concept.

Fig. 1.  Vehicle Hierarchy of the Domain Model

We will illustrate how this works using the fragment of
the domain model for vehicles shown in Figure 1.
Suppose that the first pass of processing is able to
identify some group of pixels in the image as a vehicle.
Details about the type of vehicle are not yet known, so
the information is entered as a “vehicle V1 in location
X.”  With further processing, it may be determined that
the vehicle has tracks.  This information can be added,
to the knowledge base, allowing the classification of
the vehicle as a tracked vehicle.  The classifier is able
to perform this inference because the definition of a
“tracked-vehicle” is a vehicle with a drive type of
tracks.  Since V1 now satisfies the definition, Loom
automatically concludes that it is of type Tracked-
Vehicle.  If an appropriate type of gun is detected, V1
may finally be recognized as a tank.

By using definitions, Loom can make the inferences
licensed by the definitions automatically.  This service
frees applications built on top of Loom from needing
to implement their own inference mechanism.

Since Loom’s definitions are true equivalences, they
can be used to reason in both directions.  The example
above illustrated using the components of a definition
to perform a recognition task—synthetic reasoning.
One can also assert the presence of higher level objects
and then use the definitions to identify components
that should be present.

For example, a particular SAM unit may be known to
deploy with a radar vehicle and three launchers.  If
such a unit is asserted to exist in a scene, Loom
concludes that there are three launchers present, even
if they are not identified.  The definition can then be
used as a guide to what other objects should be
present.  It can be used to drive the reasoning.  This
type of reasoning was used in another part of the VEIL
project that identified runways [Price  et al.  1994].

2.2.2  Contexts

Loom has a context mechanism that allows one to
maintain distinct assertion sets.  Loom’s contexts are



organized hierarchically, which allows inheritance.
Siblings are separate, so this allows information about
different scenes to be kept separate, but in the same
lisp image.  The query language (see below) is able to
perform queries across contexts, so one can make
comparisons and look for particular patterns.

Augmenting this flexibility is the fact that Loom
contexts are themselves first-class objects.  That means
that assertions and annotations about the context
themselves can be represented in the Loom formalism
and be used to select appropriate contexts.  This
capability was added to Loom version 3.0 in response
to the needs of the VEIL project.  For example, if one
had a context associated with a particular image, one
could annotate the context with information such as
sun angle, time of day, camera location, etc.  This
information is available for image retrieval purposes.
At the end of this paper, we will discuss  the use of this
context mechanism in event detection..  Event
detection will involve searching for a sequence of
images (contexts) that fulfill the criteria for a given
event.  This uses the ability of Loom to have several
image descriptions in memory simultaneously as well
as the ability to formulate and execute queries that
cover several images.

2.2.3  Query Mechanism

Loom includes a general query facility that is able to
find objects based on their name, type or value of role
(relation) fillers.

Queries for Particular Objects:   Specific objects can
be queried for in images.  Examples include
looking for all buildings, all headquarters, all
tanks, etc.  These queries allow a seamless use of
collateral information in the RCDE system.

Queries for Relationships:   In addition to queries that
relate to single objects, one can also query about
relationships.  Examples include finding all
buildings with an area of more than 5000 square
feet, locating all tanks on roads, or finding
headquarters that are near barracks, etc.

Loom queries are not restricted to single images, but
can extend across images.  This type of query is used
in the event detection example below.

3  The Domain Model

A prototype knowledge base containing domain
concepts was created for use in VEIL.  The type of
knowledge encoded in this domain model ranged from
the concrete to the abstract.  Loom models for
concrete, visible objects such as roads, buildings and
vehicles (see Fig. 2) are linked to geometric objects in
the RCDE site model.  Collateral information about
objects in a scene, such as “building B44 is a  brigade
headquarters”, is associated with the Loom instance

representing the building.  Abstract concepts such as
groups, functional roles and events are used to
augment reasoning about the concrete objects.

The main example that we use in VEIL is the concept
of a group of vehicles.2   Abstract entities can be
specialized based on their characteristics.  VEIL
defines a convoy as a group of vehicles with at least
65% of them on a road. Additional constraints can be
added  such as requiring a minimum number of
vehicles (i.e., >4).  Loom’s flexible knowledge
representation easily supports specialization such as
defining a convoy of tanks.

The definition of a convoy combines information that
is present in the Loom level (such as group
membership) with information that is inherently
geographic (such as the location of vehicles on roads).
Loom’s forte is symbolic reasoning.  Determination of
geographic location is geometric reasoning that is best
handled  using RCDE model structures.  Accordingly,
we have developed several representative and
interesting geometric predicates and linked them to
Loom relations.  Reasoning is performed at the
appropriate level and the results integrated by Loom.

3.1  Linking the Domain and Site Models

At the domain model level, the geometric information
about the objects is not directly available.  Instead,
reasoning is focused on the function and wider role of
the objects.  At the geometric level, information about
the location and size of objects is either directly
available or computable from directly available
information.  For example, the location of a particular
cube object is readily available and its volume can be
easily computed using information stored about the
length of the sides of the cube.

We have implemented several functions at the
geometric level which are linked to Loom relations.
Table 1 summarizes the basic relations.  The  most
fundamental predicate is the one that returns locations.
Given the three-space location of objects we
implemented directional relations (north, northeast,
etc.),  We have also implemented computations for  the
area and volume of the most common geometric
objects used in the site models.

Loom relations were linked to these functions.  This
enables Loom queries to seamlessly exploit both the
semantic information contained in Loom’s domain
model as well as the geometric information from the
underlying site model.  An example of such a
composite query is to find “all vehicle storage sheds
with a floor area greater than 5,000 square feet.”:

2In the current implementation, groups are created by humans.
Future work extending our ideas would involve providing tools for
moving this into a semi-automated task.



Fig. 2  Domain Model for Visible Objects in VEIL

( retrieve  ?shed
   ( and  (vehicle-shed ?shed)
        (> (area ?shed) 5000)))

The concept vehicle-shed  and the relation >  are
domain level operators.  The relation area is a domain
level relation that is linked to a site model level
function.

3.2  Geometric Relations

Geometric relations can also be computed between
objects.  We implemented a containment test

(contains-point-p), which tests to see if a given three-
space point is contained in a 3 dimensional object (or
located over a 2 dimensional object).  This predicate is
used in queries and concept definitions to  locate
vehicles that are on roads.— for example in the
concepts of vehicles in a convoy.

One of  the more interesting relations that we have
investigated is the “is-near” relation.  This is a
subjective relation adopted from the nearness predicate
in Abella’s Ph.D. thesis [Abella 95].  Her studies
found that a psychologically valid implementation of
nearness was influenced by  the size of the objects in



RCDE Geometric Function
Object Type Location Contains-point-p Is-Near Area Volume
CUBE-OBJECT X X X X X
CYLINDER X X X X X
HOUSE-OBJECT X X X X X
3D-CLOSED-CURVE X X X X
3D-RIBBON-CURVE X X X X
COMPOSITE-OBJECT X X X X X
Others X

Table 1.  Geometric Functions and RCDE Objects

1 2

Road

Fig. 3. Extended Bounding Boxes for Computing Nearness

Site model objects have white boundaries.  Extended bounding boxes for selected objects are black.

question.  In other words, the larger the object, the
farther away one could be in absolute distance while
still being considered near.  She developed a function
that computes an “extended bounding box” for each
object, based on the object’s dimensions.  When two
bounding boxes intersect, the objects are “near”.

We extended her formula to three dimensions.  For
buildings or vehicles, this yields appropriate results.
The approach breaks down when the aspect ratio
becomes very large.  Extremely long, thin objects end
up with very large bounding boxes because of the
effect of their length on the size of the nearness
boundary.  Roads are a prime examples from the  site
model that we use.  The length of a road influences

how far away one can be from a road and still be
considered near.   This produces unintuitive results.

We therefore modified the algorithm for the case of
long, thin objects.  Objects with a large aspect ration
disregard the long dimension when computing the
nearness boundary.  This modification produces
appropriate results for our purposes.,  Figure 3 shows
an image and the associated extended bounding boxes
of a curved road and two buildings.  Building 2 (on the
right) satisfies the “near-to” relation with respect to the
curved road, but Building  1 (on the left) does not.3

3The road is shown divided into bounding boxes segment-wise.
The rectangular boxes are used for  a rough test of nearness.  A



(make-event
  :name 'field-training-exercise
  :case-roles '((armored-unit ?y))
  :components
    '((:scene ?s1 ?y (in-garrison ?y))
      (:scene ?s2 ?y (convoy ?y))
      (:scene ?s3 ?y (deployed-unit ?y))
      (:scene ?s4 ?y (convoy ?y)))

  :constraints '((before+ ?s1 ?s2)
                 (before+ ?s2 ?s3)
                 (before+ ?s3 ?s4))))

( retrieve  (?S1 ?S2 ?S3 ?S4 ?Y)
       ( and  ( within-context  ?S1
                 (In-Garrison ?Y))
            ( within-context  ?S2
                 (Convoy ?Y))
            ( within-context  ?S3
                 (Deployed-Unit ?Y))
            ( within-context  ?S4
                 (Convoy ?Y))
            (before+ ?S1 ?S2)
            (before+ ?S2 ?S3)
            (before+ ?S3 ?S4))

Fig. 4.  Event Definition and Corresponding Loom Query

4  Event Detection

In this section we describe how we define events —
objects that satisfy constraints both within and across
images.  We also outline how VEIL is able to locate
such events in its database.

4.1  A definition language

An event is a sequence of scenes  which satisfy certain
criteria.  Some of the criteria apply within scenes
whereas other criteria describe the relationship
between different scenes.  Accordingly, we defined a
language that allows these constraints to be specified
in a natural way.  The scenes in an event are described
separately, specifying any criteria that apply  within a
single scene.  A set of global constraints is then used to
specify the conditions that must hold between scenes.
The most common cross-scene constraint is that of
order.  A sequence of scenes implies that there is an
ordering to the scenes.

4.2  Sample event definitions

Figure 4 shows an event definition named “Field-
Training-Exercise” and its associated Loom query.
The event consists of four scenes involving an armored
unit “?y”.  The scenes must include one with ?y “in-
garrison”, two scenes with ?y in convoy and one with
?y deployed.  In addition, the scenes are constrained
temporally by the :constraints field.  Translating this
into English, we are looking for a sequence of scenes
showing an armored unit in a garrison, then moving in
convoy, then deployed in a training area and finally in
convoy again.  A set of images showing this evolution
is shown in the example below.

4.3  Example of Event Detection

Figure 5 shows a master view of the ten images we
used in our experiments.  An example of a field
training exercise event is highlighted.  Figure 6 shows

more sophisticated test which implements a smooth envelope is
used for the final comparison.

a close-up of the field training exercise with the
objects participating in the event highlighted.  A
colored box is drawn around the group of vehicles in
each image.  (In these figures, the box has been
enhanced for better black-and-white printing).

4.4  How it’s done

The Loom query in figure 4 is used to extract those
scenes which meet the event criteria.  This involves
satisfying the conditions for each individual scene
(such as finding a group that is in a garrison area in a
scene) and also satisfying the cross-scene constraints
(such as being in a particular temporal order).  The
Loom query for the event shown above is represented
as follows:

The result of this query will be a set of tuples.  Each
tuple consists of the four scenes (images) and the
group that satisfies the query.  The display in the
example was created automatically from one such
match.

Because of Loom’s named definitions, the query for
finding events is quite compact and reasonably
readable.  This shows the power of having a domain-
specific language:  even complex criteria can be
expressed in a concise and natural manner.

5  Current Status

The current VEIL model has been tested using ten
images from the RADIUS Model Board 2 image set.  It
is integrated with the RCDE code and uses the RCDE
graphics interface for user interaction and display
purposes.  The figures in this paper are screen shots.

6  Future Work

There are several directions for extending our research.
One major direction would be to improve the matching
algorithm used to find events.  The current match
relies on using Loom’s general query mechanism.
While this provides flexibility, the logic-based query
language does not take advantage of special features of



Fig. 5.  Field Training Exercise Event Found in an Image Sequence

Fig. 6.  Close-Up View of Field Training Exercise



the event matching that can be used to increase
efficiency.  For example, there is no direct exploitation
of the fact that a sequence is being looked for.
Additional enhancements would be to modify the
event matching language to allow inexact matches.
This can take the form of partial matches, matches to
key features but with missing elements, or a more
general probabilistic matching scheme.

A sub-problem of the general matching task is
associating groups from one image with those from a
different image.  (In the current work, such matching is
done by hand).  An interim position would be to use a
credulous matcher, although that would need to be
refined in order to scale well.  The preferred approach
would be to develop a compatibility score for matches
between groups in one image and groups in another
image.  This score would be based on factors such as
the size of the group, the composition of the group
(i.e., with or without tanks), as well as heuristic
reasoning based on other elements that are visible in an
image.  With a more sophisticated matcher, a list of
candidate image sequences can be identified and
ranked as to the closeness of the match.

Computer support for assigning individual vehicles to
groups is another area for further investigation.  The
group assignment problem involves identifying a
collection of vehicle that are related in some
interesting way.  Geometric proximity is one important
consideration, but it is not always he most important.
Consider a convoy driving by a parking lot.  Some
vehicles in the convoy will be closer to parked vehicles
than to other convoy vehicles, but the importance of
being on the road should be given more weight in the
group assignment process.  A semi-automated
grouping tool would be a useful addition to RCDE.

7  Conclusion

The bulk of work in IU research has been on
developing algorithms that operate at the pixel level
and are able to recognize geometric objects.  Common
examples are edge detectors, building detectors and
vehicle detectors.  In our work, we have been
investigating the next stage of image understanding.
In other words, we are concerned with the question of
what sort of processing would we like to have happen
once the low-level detectors have finished their work.

We feel that  the next step involves reasoning with the
aid of domain models—models of the world.  This
raises the level of abstraction of the interface between
the image analyst and the computer system.  Instead of
operating at the level of pixels or geometric shapes,

one would like to have the interface operate at a level
that has the appropriate semantic content for the task at
hand.  This level would allow interaction in terms of
headquarters rather than buildings, convoys rather than
isolated vehicles.  By raising the level of interaction,
better use of an image analyst’s time can be made.

By increasing the level of abstraction and allowing
queries at that level, it becomes easier to select
appropriate images for viewing out of a large library.
By raising the level of abstraction, we are also able to
describe events that cover multiple images naturally
and locate them efficiently.
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