
CLASP: Integrating Term Subsumption Systems

and Production Systems

John Yen, MEMBER, IEEE

Department of Computer Science

Texas A&M University

College Station, TX 77843

(409) 845-5466

Yen@CSSUN.TAMU.EDU

Robert Neches and Robert MacGregor

USC / Information Sciences Institute

4676 Admiralty Way,

Marina del Rey, CA 90292

Appeared in IEEE Transactions on Knowledge and Data Engineering, Vol. 3, No. 1, pp. 25 - 32, 1991. The
research described in this paper was supported by Engineering Excellence Fund at Texas A&M University, by DARPA
under Contract No. MDA903-87-C-0641, and by the Air Force Logistics Command under Contract No. F33600-87-C-7047.
Views and conclusions contained in this paper are those of the authors, and should not be interpreted as representing the
o�cial opinion or policy of the sponsoring agencies.

1

Abstract| Rules and frames are two knowledge representation schemes whose strengths

and weakness are complementary to each other. Although several previous systems

have attempted to integrate the two, few e�orts have been made to incorporate the

terminological knowledge of the frame-based systems into the rule-based paradigm. To

achieve a deep integration of the two schemes, we have developed and implemented

a CLASsi�cation-based Production system (CLASP). This paper describes two major

processes of CLASP: a semantic pattern matcher and a pattern classi�er. The seman-

tic pattern matcher extends the pattern matching capabilities of rule-based systems

through the use of terminological knowledge. The pattern classi�er enables the system

to compute a rule's speci�city, which is useful for con
ict resolution, based on the se-

mantics of its left hand side. The paradigm not only enhances the reasoning capabilities

of rule-based systems, but also helps to reduce the cost of maintaining such systems

because de�nitional knowledge is explicitly represented in a form that facilitates shar-

ing and minimizes duplication of e�ort.

Index Terms: Rule-based Systems, Knowledge Representations, Expert Systems, AI

architectures, Software Engineering.

2

I. Introduction

This paper describes a uni�ed AI programming paradigm that tightly integrates rule-based and frame-

based paradigms, by providing the capability to use terminological reasoning within the pattern matching

and control components of a rule processing system architecture. CLASP, an implementation of such

a paradigm, integrates a term subsumption language (LOOM) [1], production rules, and methods in

object-oriented programming.

The term Term Subsumption Languages refers to knowledge representation formalisms that employ

a formal language, with a formal semantics, for the de�nition of terms (more commonly referred to

as concept or classes), and that deduce whether one term subsumes (is more general that) another

[2]. These formalisms generally descend from the ideas presented in KL-ONE [3]. Term subsumption

languages are more principled than both semantic networks and frames because the languages have well-

de�ned semantics, which is often missing from frames and semantic networks [4, 5]. In the last few years

many knowledge representation systems have been built using term subsumption languages, including

KRYPTON, KL-TWO, NIKL, BACK, SB-ONE, LOOM, and CLASSIC.

We will use the following example to illustrate de�nitional knowledge that can be expressed in term

subsumption languages. Suppose Successful-father is de�ned as a father all whose children are college

graduates. This can be expressed as1

(defconcept Successful-Father (:and Father (:all Child College-Graduate)))

with the following logic interpretation:

8 x Successful-father(x)() Father(x) ^ [8 y Child(x; y)) College-Graduate(y)]

The major strength of term subsumption systems is the reasoning capabilities o�ered by a classi�er.

The classi�er is a special purpose reasoner that automatically infers and maintains a consistent and ac-

curate taxonomic lattice of logical subsumption relations between concepts [7]. Based on such inferential

power, term subsumption systems tidily handle the pattern matching problem of recognizing John as a

successful-father, given facts such as \John is a male person", \John has two children", \Philip is John's

son", \Angela is John's daughter", \both Philip and Angela are college graduates".

The integration of terminological capabilities with rules is intended to address three problems with

1We use the syntax of LOOM knowledge representation system[6] to de�ne concepts and relations in this paper.

3

rule-based systems that critics have identi�ed as hindering system maintenance and limiting the ability to

generate high-quality explanations and justi�cations [8, 9]. First, rules fail to explicitly separate di�erent

kinds of knowledge; di�erent clauses in the same rule may implicitly serve to represent contexts, a�ect

control, or capture structural knowledge [10, 11]. Because the intent behind them is unclear, it is hard

to explain rules and di�cult to determine how to correctly add or revise them. Second, the meaning

of the terminology used by the rules is often ill-de�ned [12]. This makes it di�cult to determine when

rules are, or should be, relevant to some shared abstraction { which, in turn, makes it di�cult to �nd

and change abstractions. Third, it is di�cult to structure a large set of rules [13]. This makes it di�cult

to decompose the set into smaller, more comprehensible and maintainable subsets.

This paper will focus on two components of the CLASP architecture that serve to alleviate these

problems. The �rst is a semantic pattern matcher that combines LOOM's KL-ONE style automatic

classi�er with a RETE match algorithm. This allows relatively e�cient triggering of rules against

data items which do not match the rules' conditions symbol-for-symbol, but which can be determined

inferentially to satisfy terminology utilized in the rules' condition sides. The second component is

a pattern classi�er, which extends the concept classi�cation algorithm in term subsumption system

to enable computation of speci�city relations between arbitrary conjunctive patterns in the condition

sides of rules. In the sections following, we will brie
y review related work, describe the architecture of

CLASP with emphasis upon the pattern matching and pattern classi�cation components, and summarize

collateral research issues raised by the work.

II. Related Work

KEE, ART, and Knowledge Craft combine frames and rules, but do not support automatic classi�ers.

Thus, the frames provide a vocabulary that can be used within the rules, and a means for partitioning,

indexing, and organizing rules[13]. But the pattern matching process can not avail itself of terminological

inferences and the burden of correctly maintaining the frame hierarchy falls totally upon the user.

KL-TWO also provides a noticer mechanism for users to de�ne demons that get executed when their

conditions are met [14]. Although the noticer has improved the expressive power and control of demons,

it lacks a global control mechanism like the recognize-act cycle of production systems. Moreover, the

4

noticer does not fully support matching facility for conjunctive patterns.

CONSUL[15, 16] was the �rst attempt to integrate rules into a term subsumption system. Rules in

CONSUL demonstrated a new philosophy on the use of rules: they were used solely for mapping one

description (which was represented as a concept) to another until the system knew how to act on it (i.e.,

until the description was transformed to an \actionable" one). Similar transformation rules have also

been used to map linguistic structures to domain-speci�c knowledge in an natural language application

built using SB-ONE [17]. Built in NIKL[18], CONSUL used its classi�er to match data with rules.

It also used the taxonomic structure of its knowledge base to infer speci�city relations between rules.

However, its inference architecture and rule language were not as general as that of a production system.

Moreover, due to the limitations of NIKL, CONSUL could only operate upon class concepts and could

not match rules against data instances. An integration of rules and inheritance networks has also been

reported in [19].

III. A Classification-based Production System

CLASP extends the rule-based paradigm by taking advantage of terminological knowledge and classi�-

cation reasoning in term subsumption systems.

A. The Representation of Productions

A production rule has two major components: a condition side that describes its triggering condition and

an action side that contains the actions to be executed when the triggering condition is met. In CLASP,

the conditions of a production can refer to terms de�ned in the terminological knowledge base, and the

action-side explicitly describes the task that the rule intends to perform. Each task is associated with a

set of methods, which describe various ways to accomplish the task in di�erent situations. Examples of

rules and methods are shown in Figure 1

A condition-side pattern is a conjunction of conditions, each of which consists of a type, a predicate,

and a list of arguments. Possible types of a condition are :TRUE :NOT-TRUE and :FAIL. A :TRUE or

:NOT-TRUE condition checks that its parameters hold or do not hold for a given predicate. A single :FAIL

5

(defrule display-car-status-rule

:when (:and (Door-opened ?car))

:perform (display-status ?car))

(defmethod display-status (?x)

:situation (:and (Car ?x))

:action (print ``All systems go''))

(defmethod display-status (?x)

:situation (:and (Car ?x)

(Has-tire ?x ?tire)

(Has-pressure ?tire Low))

:action (print ``Low Tire Pressure''))

Figure 1: Examples of Productions and Methods

condition is allowed in a left-hand side and always appears last. A rule with a :FAIL condition will only

instantiate when the rest of the condition is true and the :FAIL condition has just changed from true

to not-true. For example, a rule with the condition (:and (Foreigner ?x) (:Fail (Student ?x)))

will trigger whenever a foreign student loses his/her student status. A condition's predicate is a concept

or a relation de�ned in the terminological knowledge base. A concept serves as a unary predicate, and

a relation serves as a binary predicate. Arguments can be either constants or variables 2.

B. An Overview of the CLASP Architecture

Figure 2 shows the general architecture of CLASP. Productions, methods, and facts are stored in a

rule base, a method knowledge base, and a facts database, respectively. The rule compiler translates

de�nitions of individual productions and methods into their internal representations, and uses the pattern

classi�er to compute the speci�city of rules. The facts manager updates the facts database whenever

the factual knowledge is modi�ed. An important component of the facts manager is a semantic pattern

2Variables are denoted by symbols starting with the question mark \?".

6

Figure 2: The architecture of the classi�cation-based production system

matcher that detects changes to the con
ict set arising from changes to the assertional data. The

production interpreter selects productions from the con
ict set and executes their actions, which invokes

tasks to be performed, retrieves applicable methods, selects methods from those retrieved, and, �nally,

executes the bodies of selected methods. The rule speci�city computed by the pattern classi�er is used

both for selecting productions and selecting methods. The semantic pattern matcher and the pattern

classi�er are the primary extensions of the conventional rule-based paradigm. Hence, we will focus the

remaining discussion on these two components.

C. The Semantic Pattern Matcher

The semantic pattern matcher uses terminological knowledge to match data with rule conditions. To

illustrate this, consider the example shown in Figure 4. The facts do not match the condition of rule at

the symbol level; however, they will match R1 (with the variable bindings ?x = Bob, ?y = Lina) if we

also consider the de�nitions of Daughter and Car-owner, which are shown in Figure 3.

A semantic pattern matcher augments conventional (symbolic) pattern matcher with a deductive

7

(defconcept Person (:primitive))

(defconcept Male (:and Person :primitive))

(defconcept Female (:and Person :primitive))

(defconcept College-graduate (:and Person :primitive))

(defconcept Female-College-graduate (:and Female College-graduate))

(defrelation Child (:and :primitive (:domain Person) (:range Person)))

(defrelation Daughter (:and Child (:range Female)))

(defconcept Father (:and Male (:at-least 1 Child)))

(defconcept Successful-Father (:and Father (:all Child College-graduate)))

(defrelation Has-car (:and :primitive (:domain Person) (:range Vehicle)))

(defconcept Car-owner (:and Person (:at-least 1 Has-car)))

Figure 3: An Example of Terminological Knowledge

(defrule R1

:when (:and (Daughter ?x ?y)

(Car-owner ?y))

...)

Facts: (Child Bob Lina)

(Female Lina)

(Has-car Lina Bob's-old-car)

Figure 4: An example of semantic pattern matching

reasoning component, which is based on the inference rules captured by the terminological knowledge.

The realizer in hybrid term subsumption systems o�ers this kind of deductive reasoning capability.

Therefore, an e�cient semantic pattern matcher can be implemented by integrating the realizer with an

e�cient pattern matching algorithm (e.g., RETE match algorithm).

8

C.1 The CONCRETE Matching Network

The semantic pattern matcher in CLASP is implemented by combiningForgy's Rete matching algorithm[20]

with the deductive matcher of LOOM [6], which is a counterpart of Vilain's KL-TWO's realizer[14]. The

rule compiler builds a CONcept Classi�cation RETE (CONCRETE) net as rules are loaded into the rule

base. As external changes are made to the facts database, the LOOM matcher computes assertional

changes that can be deduced from the terminological knowledge, and it informs the CONCRETE net

about relevant changes. For example, when the fact (Has-car Lina Bob's-old-car) is added to the

facts database, the LOOM matcher deduces, among other things, the proposition that Lina is a car

owner, i.e., (Car-owner Lina). This infered fact, together with the asserted facts (e.g., (Has-car

Lina Bob's-old-car), is sent to the relevant top level nodes in CONCRETE. The CONCRETE net

stores partial matching results, propagates assertional changes informed by the LOOM matcher down

the network, and generates addition or deletion of rule instantiations, which are used to update the

con
ict set. To achieve an e�cient net structure, we do a data dependency analysis on the patterns to

avoid long chains of CONCRETE nodes and early unnecessary joins.

D. The Pattern Classi�er

The pattern classi�er organizes patterns into a lattice where more speci�c patterns are below more

general ones, based on the de�nitions of terms referred to in the patterns. Using the pattern classi�er,

CLASP can compute a well-de�ned speci�city relation between rules during compile time [21]. Speci�city

is a classic con
ict resolution heuristic used by many production system languages (e.g., OPS5) [22].

In addition, common sense reasoning often relies on the speci�city of a rule's antecedents to override

conclusions drawn by more general rules when they contradict the more speci�c rule. Our approach gives

speci�city a de�nition based on semantics, where previously it was de�nable only in terms of structural

correlates like the number of condition clauses.

D.1 De�ning Pattern Subsumption Relations

Conceptually, a pattern p2 is more speci�c than (i.e., is subsumed by) a pattern p1 if, for all states of

the facts database, a match with p2 implies a match with p1. A state of the facts database in a term

9

subsumption systems is speci�ed by a set of assertions (i.e., tell operations), which we will call a world

description W . The expression pW (~x) denotes that ~x satis�es the condition of the pattern p in the

world described by W3.

De�nition 1 Suppose p1 and p2 are two patterns whose predicates are de�ned in a terminological knowl-

edge base T . The pattern p1 subsumes p2, denoted as p1�p2, i�

8 W
�
9 ~x pW

2
(~x)) 9 ~y pW

1
(~y)

�
(1)

where ~x and ~y denote vectors of variable bindings.

The de�nition allows patterns with di�erent number of variables to be compared with each other. This

is important for using the subsumption of patterns as a useful measure of the speci�city of rules, for the

condition of a speci�c rule often introduce extra variables to test a situation that is more complicated

than the condition of a general rule. Enforcing that two subsuming patterns have same number of

variables will render the pattern subsumption taxonomy useless for controlling the �ring of rules.

To determine whether a conjunctive pattern p1 (i.e., a conjunction of non-negated literal) subsumes

another conjunctive pattern p2, we need to �nd a substitution that replaces variables in p1 by arguments

in p2 such that the latter terminological implies the former under the substitution. Terminological

implication, denoted as
T
), is de�ned as follows: p2

T
) p1 i�

8W
h
8~x

�
pW
2
(~x)) pW

1
(~x0)

�i
(2)

where ~x0 is a subvector of ~x, and T denotes the terminological knowledge base where the predicates of

p1 and p2 are de�ned. More formally, we have the following Theorem.

Theorem 1 Suppose p1 and p2 are two conjunctive patterns. The pattern p1 subsumes p2 i� there exists

a subsumption substitution � that replaces variables of p1 by p2's variables or constants such that p2

terminologically implies p1� based on the terminological knowledge base T , i.e.,

p1�p2 i� 9� such that p2
T
) p1�: (3)

Proof of the theorem can be found in [23].

3A more formal de�nition of pattern instantiation can be found in [23].

10

P1: (:and (father ?x ?y) (father ?x ?z))

P2: (father ?u ?v)

Figure 5: An Example of Two Indi�erent Patterns

The subsumption substitution S can also be viewed as a mapping because it maps each of p1's

variables to a variable or a constant in pattern p2. We will use the terms \subsumption substitution"

and \subsumption mapping" interchangeably in our discussion. A subsumption mapping is a proof

that p2 is more speci�c than p1 because, for any instantiation of p2's variables, we can construct an

instantiation of p1's variables from the subsumption mapping. Thus, matching p2 implies matching p1

if a subsumption mapping exists.

We further de�ne the following relationships between patterns:

� Two patterns are indi�erent, denoted by �, if and only if they subsume each other, i.e.,

P1 � P2 , P1�P2 ^ P2�P1:

Indi�erent patterns are merged in the speci�city lattice. Conceptually, two patterns are indi�erent

if, for any states of the fact database, either both patterns match or neither of them matches the

fact database.

� Two patterns are equivalent, denoted by �, if they are indi�erent and the subsumption mapping is

a one-to-one mapping between variables of the two patterns. Two indi�erent patterns may not be

equivalent. For instance, the patterns P1 and P2 in Figure 5 are indi�erent because P1 subsumes

P2 under the substitution f ?u/?x, ?v/?y, ?v/?z g and P2 subsumes P1 under the substitution f

?x/?u, ?y/?v g or f ?x/?u, ?z/?v g. But the two patterns are not equivalent because the mapping

is not on-to-one, resulting in di�erent instantiations for a given facts database.

� Two patterns are equal, denoted by =, if they are equivalent without variable substitution.

The subsumption substitution di�ers from substitution in uni�cation in that it is unidirectional. It

substitutes variables/constants of a child pattern for variables of a parent pattern, but not the other

way. This distinction is due to the fact that a subsumption test is meant to test implications, which is

directional, while uni�cation is meant to test equality, which is bidirectional.

11

SubsumesP(p1, p2)

1. p1 Normalize(p1)

p2 Normalize(p2)

2. For each literal li
1
in p1 Do

For each literal lj
2
in p2 Do

If l
j
2
is a potential subsumee of li

1

If li
1
is unary

Then record the arguments in l
j
2
as a potential image of the variable in li

1

Else record the mapping constraint imposed by the pair of literals

3. Search for a mapping that satisfy the mapping constraints of all literals of p1

Figure 6: A General Subsumption Algorithm for Conjunctive Patterns

D.2 A General Approach to Classifying Conjunctive Patterns

Having de�ned the subsumption of patterns, this section describes a general approach for testing the

subsumption of conjunctive patterns. Our general pattern classi�cation algorithm, which is shown in

Figure 6, consists of three major steps. First, each pattern is normalized by making explicit in the

pattern any unstated conditions logically implied by the patterns and the terminological knowledge.

Second, the algorithmattempts to reduce the space of possible subsumption mappings using subsumption

relationships between predicates. Third, it performs a dependency-directed backtracking to search for

a subsumption mapping. If a subsumption mapping is found, the algorithm returns true, else it returns

false.

De�ning PatternNormalization The normalization step transforms each pattern into an equivalent

normalized pattern. Intuitively, a pattern is normalized if it contains no implicit conditions other than

those that can be deduced easily from the subsumption of concepts and subsumption of roles. For

instance, in normalizing a pattern, we do not need to transform a condition such as (Father ?x) into

a tedious subpattern like (Animal ?x)^(Person ?x)^(Male ?x)^(Father ?x). More formally, we

de�ne a normalized pattern as follows:

12

De�nition 2 A pattern p is said to be normalized i�

8l; if p
T
) l; then 9l0 in p such that l0

T
) l (4)

where l and l's are literals with the same number of arguments.

We say a pattern p is a normalized form of p if and only if p is normalized and p equals p (i.e., they

are equivalent without variable substitution). The de�nition of normalized patterns is illustrated using

the rules in Figure 8. The left-hand-side condition of R3 is not normalized because no unary condition

in the pattern implies (College-Graduate ?w) even though it is implied by the pattern based on the

de�nition of Successful-father. Examples of normalized rules can be found in Figure 9.

Normalizing a pattern is analogous to completing a concept de�nition in KL-ONE's classi�er[7].

Both of them attempt to compute the deductive closure of the objects to be classi�ed before actually

classifying them for the same reason: to gain e�ciency for the subsumption test. The actual algorithm

for normalizing patterns depends on the language used for de�ning terms.

The rationale behind normalizing patterns is to simplify the search step. Without the normalization

process, the search for a subsumption substitution would have to consider the possibility that a condition

in the parent pattern subsumes a conjunctive subpattern of the child pattern. For example, consider the

rules R2 and R3 in Figure 8. The condition (College-graduate ?y) in R2 subsumes the subpattern

(Successful-Father ?z) ^ (Child ?z ?w) of R3's condition under the substitution ?y/?w. Having

deduced the conditions implied by these conjunctive subpatterns during the normalization process, the

subsumption test only needs to consider pairs of conditions (one from the parent pattern, one from

the child pattern) with the same arity for testing subsumption possibility of the two patterns. Thus,

normalizing patterns signi�cantly reduces the complexity of the subsumption test. The following theorem

formally states the impact of pattern normalization to the pattern subsumption test.

Theorem 2 Suppose p1 and p2 are two normalized conjunctive patterns:

p1 = l1
1
^ l1

2
^ :::l1n (5)

p2 = l2
1
^ l2

2
^ :::l2m (6)

where l1i and l2j are literals without negations. The pattern p1 subsumes p2 if and only if there exists a

subsumption substitution S such that every literal l1i in p1 subsumes at least one literal in p2 with the

13

Expression Interpretation

e [[e]]

(:and C1 C2) �x: [[C1]](x)^ [[C2]](x)

(:and R1 R2) �xy: [[R1]](x;y) ^ [[R2]](x;y)

(:at-least 1 R) �x: 9y: [[R]](x;y)

(:all R C) �x: 8y: [[R]](x;y)! [[C]](y)

(:domain C) �xy: [[C]](x)

(:range C) �xy: [[C]](y)

Figure 7: Semantics of Some Term-Forming Expressions

same arity, i.e.,

p1�p2 , 9�
h
8l1i in p1; 9l

2

j in p2; such that l2j
T
) l1i �

i
(7)

where l1i and l2j have the same number of arguments.

We will call l2j the subsumee of l
1

i . Comparing Equations 3 and 7, we can see that we have signi�cantly

reduced the complexity of subsumption test by normalizing the patterns.

E. Types of Normalization Steps

Five types of normalization steps have been implemented in CLASP: (1) domain and range deduc-

tions, (2) normalizing unary conditions, (3) normalizing binary conditions, (4) value restriction deduc-

tions, and (5) at-least-one deductions. Each normalization step will be described and illustrated with

examples, based on Figures 3 and 8. These normalization steps are correct because each one transforms

a pattern into an equivalent one based on the semantics of LOOM's term-forming expressions in Figure

7.

1. Domain and Range Deduction: This step deduces unary conditions about variables that appear

in a binary condition using the domain and the range of the binary condition's predicate (i.e., a

relation). For instance, this step will infer an implicit condition for R2 (Female ?y) from the

range of Daughter relation.

14

(defrule R2

:when (:and (College-graduate ?y)

(Daughter ?x ?y)

(Car-Owner ?y))

...)

(defrule R3

:when (:and (Successful-Father ?z)

(Child ?z ?w)

(Female ?w)

(Has-Car ?w ?c))

...)

Figure 8: An example of two rules before normalization

2. Normalizing Unary Conditions: Unary conditions that involve the same variables are replaced

by one unary condition whose predicate is the conjunction of the unary predicates (i.e., con-

cepts) in the original pattern. This ensures that all patterns are transformed into a canoni-

cal form where each variable has at most one unary condition. The condition-side of R2 thus

is normalized to combine three unary conditions about the variable \?x" into one condition

(Female-College-graduate-Car-Owner ?y)where Female-College-graduate-Car-Owner is the

conjunct of Female, College-graduate, and Car-Owner.

3. Normalizing Binary Conditions: Binary conditions with the same arguments are collected, and

replaced by a new composite binary condition that takes into account the unary conditions of its

domain variable and its range variable. This ensures that all normalized patterns have at most two

binary conditions for each variable pair (the argument position of the variables can be switched).

For instance, the subpattern in R3 (Child ?z ?w) ^ (Female ?w) can be further transformed to

(Daughter ?z ?w) ^ (Female ?w) by this normalization step.

4. Value Restriction Deduction: Suppose a pattern contains conditions of the form

(:and (C1 ?x) (R ?x ?y) ...),

15

and the de�nition of C1 in the terminological space has a value restriction on R, say C2. Then the

pattern is equivalent to a pattern that has an additional unary condition (C2 ?y). For example, the

literal (College-graduate ?w) will be added to the condition of R3 by this normalization step

because successful-father has been de�ned as a father all whose children, which include daughters,

are college graduates as shown in Figure 3.

5. At-least-one Deduction: A pattern containing two conditions in the form of

(:and ... (C ?x) ... (R ?x �) ...),

where � is either a variable or a constant, is transformed to one that replaces C by the concept C'

de�ned below, which has an additional at-least-one number restriction on the relation R.

(defconcept C' (:and C (:at-least 1 R))).

This will cause the literal (Car-Owner ?w) to be added to R3's condition because Car-Owner has

been de�ned to be a person who has at least one car.

Figure 9 shows the condition-sides of R2 and R3 after they have been normalized. It is easier to see that

R3 is actually more speci�c than R2, which was not obvious prior to normalization.

F. Reducing the Search Space

Although an exhaustive search that considers all possible subsumption mappings can not be avoided

in the worst case, the search space can be signi�cantly reduced in most cases using information about

the subsumption of predicates. Normally, the condition pattern of a rule consists of several di�erent

predicates, only a small percentage of which are subsumed by a predicate in another pattern. Thus,

using the subsumption relationships between predicates, we can signi�cantly reduce the search space for

�nding a subsumption mapping.

In general, comparing unary conditions of two patterns generates a set of potential candidates (which

we call potential images) that a variable can map to under a subsumption mapping. Comparing binary

conditions of two patterns generates mapping constraints on how pairs of variables should be mapped.

Potential images are used to reduce the branching factor of the search space, and mapping constraints are

16

(defrule R2

:when (:and (Person ?x)

(Female-College-graduate-Car-Owner ?y)

(Daughter ?x ?y))

...)

(defrule R3

:when (:and (Successful-Father ?z)

(Female-College-graduate-Car-Owner ?w)

(Daughter ?z ?w)

(Has-Car ?w ?c))

...)

Figure 9: Two rules after normalization

used to prune the search tree. This is illustrated using the example in Figure 9. The condition (Person

?x) has two potential subsumee, (Successful-Father ?z) and (Female-College-graduate-Car-Owner

?w); therefore, the potential images of ?x are f ?z, ?w g . Similarly, the binary condition (Daughter

?x ?y) has only one potential subsumees (Daughter ?z ?w), which means that the subsumption map-

ping has to map ?x to ?z and ?y to ?w simultaneously.

The process of reducing the search space can also detect early failure of the subsumption test. The

test terminates and returns false whenever (1) it fails to �nd any potential images for a variable in p2;

or (2) a binary condition in p1 fails to �nd any binary condition in p2 as a potential subsumee.

G. Searching for a Subsumption Substitution

To search for a subsumption mapping that satis�es all the constraints generated from the previous step,

the pattern classi�er �rst sorts the parent variables in increasing order of the number of their potential

images, then it performs a dependency-directed backtracking. The position of a variable in the sorted

list corresponds to the level it's image is assigned in the search tree. At each node in the tree, the

17

variables' assigned images are checked to see if they satisfy the mapping constraints. If anyone of the

mapping constraints is not satis�ed, the algorithm backtracks to the closest node whose assignment

causes a constraint violation. If a mapping that satis�es all the constraints is found, the subsumption

test returns true. Otherwise, it returns false.

H. Discussion

We have shown elsewhere that CLASP's pattern classi�cation algorithm is sound [23]. It is also complete

for a simple term subsumption language whose expressiveness is equivalent to that of FL� in [24].

Further discussions on the issues regarding soundness and completeness of the subsumption algorithm

can be found in [23].

Determining the subsumption of normalized conjunctive patterns is NP-complete, for it can be re-

duced from the problem of determining subgraph isomorphism for directed graphs, which is known to be

NP-complete [25]. However, worst case rarely occur in practice. To analyze the behavior of an algorithm

in reality, we have de�ned normal cases 4 and have shown that the complexity of the algorithm for

normal cases is polynomial [23].

Brachman and Levesque have demonstrated that there is an important tradeo� between the expres-

siveness of a terminological language and the complexity of its reasoner [24]. A similarly tradeo� between

the computational complexity of the normalization process and the expressiveness of the terminological

language has also been investigated [23].

IV. Summary

We have presented the general architecture and an implementation of a CLASsi�cation-based Production

system (CLASP). Our main objective is to extend the bene�ts of classi�cation capabilities in frame

systems to the developers of rule-based systems. By structuring the condition-sides using predicates

de�ned in the terminological spaces, the paradigm improves conventional rule-based programming in

several respects. First, the pattern matching operation is based on the terminological de�nitions of the

4Using normal cases to analyze the complexity of intractable algorithm has been suggested by Bernard Nebel [26].

18

symbols, not just the symbols themselves. Second, con
ict resolution can be based on a well-de�ned

speci�city relationship between rules, which is computed by a pattern classi�er using terminological

knowledge and the subsumption lattice precomputed by its classi�er. Third, the paradigm encourages

the development of a rich and coherent terminological knowledge base, which is shared across rules.

Representing terminological knowledge explicitly can also help to reduce the maintenance costs of

rule-based systems because duplication of e�orts made to de�ne identical terms in di�erent rule systems

can be avoided if the same terminological de�nitions are used. Finally, the pattern classi�er described in

this paper can be used to extend other AI reasoning systems or programming paradigms (e.g., common-

sense reasoning, planning, and problem solving) where the speci�city of patterns plays an important

role.

Acknowledgements

We would like to thank Paul Rosenbloom, John Granacki, Leonard Friedman, Brian Harp, and Pedro

Szekely for their comments on earlier drafts of the paper. Many thanks also go to Bill Swartout and Peter

Patel-Schneider for their comments on the pattern classi�er, and David Benjamin for his contribution to

the design of the semantic pattern matcher and the coding of its parser, and to Pat Langley for giving

us access to the PRISIM code, which helps the design of CONCRETE signi�cantly.

References

[1] R. MacGregor and R. Bates, \The loom knowledge representation language," Technical Report

ISI/RS-87-188, USC/Information Sciences Institute, 1987.

[2] P. F. Patel-Schneider, B. Owsnicki-Klewe, A. Kobsa, N. Guarino, R. MacGregor, W. S. Mark,

D. McGuinness, B. Nebel, A. Schmiedel, and J. Yen, \Term subsumption languages in knowledge

representation," AI Magazine, vol. 11, no. 2, pp. 16{23, 1990.

[3] R. Brachman and J. Schmolze, \An overview of the KL-ONE knowledge representation system,"

Cognitive Science, vol. 9, no. 2, pp. 171{216, August 1985.

19

[4] W. A. Woods, \Whats's in a link: Foundations for semantic networks," In Representation and

Understanding: Studies in Cognitive Science, D. Bobrow and A. Collins, editors, Academic Press,

1975.

[5] R. J. Brachman, \What is-a is and isn't: An analysis of taxonomic links in semantic networks,"

Computer, vol. 16, no. 10, pp. 30{36, October 1983.

[6] R. M. MacGregor, \A deductive pattern matcher," In Proceedings of AAAI-88, 1988.

[7] J. Schmolze and T. Lipkis, \Classi�cation in the KL-ONE knowledge representation system," In

Proceedings of the Eighth International Joint Conference on Arti�cial Intelligence, pp. 330{332.

IJCAI, 1983.

[8] W. Swartout, \XPLAIN: A system for creating and explaining expert consulting systems," Arti�cial

Intelligence, vol. 21, no. 3, pp. 285{325, September 1983.

[9] R. Neches, W. Swartout, , and J. Moore, \Enhanced maintenance and explanation of expert systems

through explicit models of their development," Transactions On Software Engineering, vol. SE-11,

no. 11, pp. 1337{1351, November 1985.

[10] W. Clancey, \The epistemology of a rule-based expert system: A framework for explanation,"

Arti�cial Intelligence, vol. 20, no. 3, pp. 215{251, May 1983.

[11] J. S. Aikins, \Prototypes and production rules: A knowledge representation for computer consulta-

tions," Technical Report STAN-CS-80-814, Department of Computer Science, Stanford University,

1980.

[12] W. Swartout and R. Neches, \The shifting terminological space: An impediment to evolvability,"

In AAAI-86, Proceedings of the National Conference on Arti�cial Intelligence, Philadelphia, PA,

August 1986, AAAI.

[13] R. Fikes and T. Kehler, \The role of frame-based representation in reasoning," Communication of

the ACM, vol. 28, no. 9, , September 1985.

[14] M. Vilain, \Kl-two, a hybrid knowledge representation system," Technical Report 5694, Bolt Be-

ranak and Newman, September 1984.

20

[15] W. Mark, \Rule-based inference in large knowledge bases," In Proceedings of the National Confer-

ence on Arti�cial Intelligence. AAAI, August 1980.

[16] W. Mark, \Representation and inference in the consul system," In Proceedings of the Seventh

International Joint Conference on Arti�cial Intelligence, pp. 375{381. IJCAI, Morgan Kaufman,

1981.

[17] A. Kobsa, \The sb-one knowledge representation workbench," In Proceedings of the Workshop on

Formal Aspects of Semantic Networks, February 1989.

[18] M. Moser, \An overview of NIKL, the new implementation of KL-ONE," In Research in Natural

Language Understanding, Bolt, Beranek, and Newman, Inc., Cambridge, MA, 1983.

[19] T. Daly, J. Kastner, and E. Mays, \Integrating rules and inheritance networks in a knowledge based

�nancial marketing consultation system," In Hawaii Int. conf. on System Science, January 1988.

[20] C. L. Forgy, \Rete: A fast algorithm for the many pattern/many object pattern match problem,"

Arti�cial Intelligence, vol. 19, pp. 17{37, 1982.

[21] J. Yen, \A principled approach to reasoning about the speci�city of rules," In Proc. National Conf.

on Arti�cial Intelligence, pp. 701{707, Boston, August 1990.

[22] J. McDermott and C. Forgy, \Production system con
ict resolution strategies," In Pattern-Directed

Inference Systems, D. A. Waterman and F. Hayes-Roth, editors, Academic Press, New York, 1978.

[23] J. Yen, \Reasoning about the speci�city of patterns in term subsumption-based systems," Technical

Report TAMU 90-003, Department of Computer Science, Texas A&M University, February 1990.

[24] R. J. Brachman and H. J. Levesque, \The tractability of subsumption in frame-based description

languages," In Proceedings of AAAI-84, pp. 34{37, Austin, Texas, August 1984.

[25] M. R. Garey and D. S. Johnson, Computers and Intractability - A Guide to the Theory of NP-

Completeness, Freeman, San Francisco, Cal., 1979.

[26] B. Nebel, \Terminological reasoning is inherently intractable," Technical Report IWBS Report 82,

IWBS, IBM Deutschland, W. Germany, October 1989.

21

