
Using Polymorphism to Improve Expert Systems

Maintainability

John Yen, MEMBER, IEEE

Hsiao-Lei Juang

Department of Computer Science

Texas A&M University

College Station, TX 77843

(409) 845-5466

Yen@CSSUN.TAMU.EDU

Robert MacGregor

USC / Information Sciences Institute

4676 Admiralty Way,

Marina del Rey, CA 90292

Appeared in IEEE Expert, Vol. 6, No. 2, pp. 48 - 55, April, 1991. The research described in this paper was supported
by EngineeringExcellence Fund at Texas A&M University. Part of the researchwas conductedat USC/InformationSciences
Institute and was supported by DARPA under Contract No. MDA903-87-C-0641. Views and conclusions contained in this

1

Abstract | One of the major problems in maintaining large rule-based expert sys-

tem is that the functions performed by rules usually are not well speci�ed, which

makes rules di�cult to comprehend and modify. Polymorphism in object-oriented pro-

gramming suggests a promising approach for separating the function of a rule from

its implementation details, which can be described by methods. However, there are

two major di�culties in integrating methods and rules. First, methods in conven-

tional object-oriented systems can not describe complex conditions regarding their

applicability in an expert system. Second, method dispatching does not provide the

exibility of control that is often desirable for an expert system. To alleviate these

di�culties, we have generalized methods in two ways. First, the situation about a

method's applicability is described by a conjunctive pattern. Second, each generic op-

eration could specify its own control strategy for the selection of methods. To enable

speci�city-based method dispatching, we have developed an algorithm for computing

a well-de�ned speci�city relation among the generalized methods. Based on these en-

abling technologies, we have developed a production system where the function of each

rule is merely invoking a generic function (i.e., sending a message). Furthermore, we

use an advanced knowledge representation language for de�ning classes. Our approach

improves the maintainability of expert systems in several important ways. First, it en-

hances the modularity of rule-based systems because rules and methods can be easily

grouped based on their functions. Second, the automatic classi�cation capability of the

knowledge representation language assists the user in maintaining a consistent class

taxonomy. Finally, it improves the predictability of rules because implicit, heuristic

con
ict resolution strategies are replaced by explicit control strategies and a principled

speci�city measure computed by the system.

paper are those of the authors, and should not be interpreted as representing the o�cial opinion or policy of the sponsoring
agencies.

2

I. Introduction

Even though expert system technology has found many successful applications in the industry, the

problem of maintaining them has become increasingly di�cult due to the increased size of their knowledge

bases. For example, Digital Equipment Corporation (DEC) has used a rule-based expert system, XCON,

for con�guring computer systems. Through the years, XCON has not only grown to a total of 6200 rules,

but also required frequent changes to a large portion of its rules. Even though the performance of XCON

is satisfactory, the maintenance problem has been such a nightmare that DEC decided to develop a new

rule-based language (RIME) for improving the maintainability of XCON[1]. One of the major di�culties

in maintaining large rule-based expert system is that the functions and roles performed by rules usually

are not well speci�ed, which makes rules di�cult to comprehend and modify[1].

Object-oriented programming has been a promising paradigm for the design, development, and the

maintenance of large scale software systems. Polymorphism, the ability for di�erent classes of objects

to respond to the same set of messages, is one of the key features of object-oriented programming [2].

Polymorphism enables object-oriented systems to separate a generic function from its implementation.

Hence, it suggests a promising approach for separating the function of a rule from its implementation

details. A rule has two major components: a condition and an action. A rule performs its action when

its condition is satis�ed by facts in the knowledge base. One way to introduce polymorphism into the

rule-based paradigm is to replace the right hand side action of a rule by a generic operation, which states

the function of the rule's action. Various ways to implement the generic operations in di�erent situations

can be described by a set of methods. However, there are two major di�culties in this integration of

conventional methods and rules. First, conventional object-oriented systems can not express complex

situations under which a method of an expert system is applicable. For instance, it may be desirable to

describe the following knowledge as one of the methods that an agent can use to climb up at a location.

For an agent to climb up at a location

If there exists a ladder at the location

Then 1. empty the agent's hands

2. ask the agent to climb on to the ladder

3

Since the applicability of methods in object-oriented programming is usually determined by the type of

a message's recipient (i.e., the type of the �rst argument of the method)1 the situation under which the

method above applies can not be described in conventional object-oriented systems. Second, method

dispatching does not provide the
exibility of control that is often desirable in an expert system. For

instance, the dispatching of methods in object-oriented programming usually selects only one method

for responding to a message. However, it may be desirable to select multiple methods in an AI system.

For example, to display the status of a car, we may write several methods, each one of them checks a

potential problem of the car:

To display the status of a car

If the pressure of a tire is low

Then display the low-tire-pressure warning

To display the status of a car

If the brake-fluid level is low

Then display the low-brake-fluid-level warning

It is thus desirable, in this case, to select multiple methods so that the user can be informed about all

warning situations.

In this paper, we �rst describe our approach to address these di�culties based on an implemented

production system, CLASP, that integrates methods, production rules, and terminological de�nitions for

classes [3]. Next, we discuss the bene�ts of our approach regarding the maintainability of expert systems

using a simple example. A comparison of our work with previous work in the area of integrating rule-

based programming and object-oriented programming follows. Finally, we summarize collateral research

issues raised by the work.

1CommonLoops and CLOS has an extended notion of methods, where the applicability of a method can be described
by the types of all its arguments. Our approach can be viewed as a further generalization of their works.

4

II. The CLASP Approach

CLASP is an implementation of a high-level AI programming paradigm that integrates an advanced

knowledge representation language with production rules and methods in object-oriented programming.

Our discussion here will be focused on three areas that are mostly related to the object-oriented pro-

gramming aspect of the system: (1) using a frame language with a well-de�ned semantics, which is called

term subsumption language, for de�ning classes, (2) methods and their relationships to productions, (3)

method dispatching based on a principled speci�city measure.

To alleviate the di�culties in introducing polymorphism into rule-based reasoning, we have general-

ized the notion of methods in two ways. First, the situation about a method's applicability is described

by a conjunctive pattern in CLASP. Second, to achieve the
exible control required by expert systems,

each generic operation could specify its own control strategy for the selection of methods. More impor-

tantly, we have developed an algorithm for computing a well-de�ned speci�city relation among CLASP's

methods for performing speci�city-based method dispatching.

A. Using a Term Subsumption Language for De�ning Classes

CLASP o�ers a term subsumption language (LOOM[4]) for de�ning characteristics of classes and various

relationships between them. Term subsumption languages refers to knowledge representation formalisms

that employ a formal language, with a formal semantics, for the de�nition of terms (more commonly

referred to as concept or classes), and that deduce whether one term subsumes (is more general than)

another [5]. These formalisms generally descend from the ideas presented in KL-ONE [6]. Term sub-

sumption languages are a generalization of both semantic networks and frames because the languages

have well-de�ned semantics, which is often missing from frames and semantic networks.

A term subsumption language enables a knowledge engineer to specify de�ning characteristics of

concepts and relations. Generally speaking, a concept represents a class of objects, and a relation

describes a relationship between two concepts. For instance, the class of male can be represented

by a concept Male and the relationship between parents and their children can be represented as a

5

Child relation. Because the notion of relation is closely related to the notion of slots in frame-based

systems, we will use the two terms interchangeably. A concept/relation whose de�nition can not be fully

described is called a primitive concept/relation, otherwise it is called a de�ned concpet/relation. Most

term subsumption languages allow a concept to be de�ned in several ways: (1) forming a conjunction of

several superconcepts using :and constructs, (2) restricting the types of a slot value using :all construct,

and (3) restricting the cardinality of a slot value using :atmost and :atleast constructs. This can be

illustrated by the following example. Suppose Successful-father is de�ned as a father whose children

are all college graduates. This can be expressed as follows using a term subsumption language.

(defconcept Successful-Father (:and Father (:all Child College-Graduate)))

<primitive-concept-de�nition> ::= (defconcept C :is (:and C1:::Cn :primitive))

<de�ned-concept-de�nition> ::= (defconcept C :is (:and <concept-forming-expr>+))

<concept-forming-expr> ::= C j (:all R C) j (:atleast k R) j (:atmost k R)

<primitive-relation-de�nition> ::= (defrelation R :primitive [(:domain C)] [(:range C)])

<de�ned-relation-de�nition> ::= (defrelation R :is (:and <relation-forming-expr>+))

<relation-forming-expr> ::= R j (:domain C) j (:range C)

Figure 1: A Partial Description of LOOM's Grammar

Since we use the syntax of LOOM knowledge representation system to de�ne concepts and relations in

this paper, we list the relevant part of LOOM's syntax in Figure 1 where k is a non-negative integer, C

and R denotes a concept name and a relation name respectively. A further discussion about the LOOM

system can be found in [4].

The major strength of term subsumption systems is their reasoning capabilities o�ered by a classi�er.

The classi�er is a special purpose reasoner that automatically infers and maintains a consistent and

accurate taxonomic lattice of logical subsumption relations between objects in the knowledge base. Two

major advantages of using a term subsumption language to de�ne classes are (1) the consistency of

the class taxonomy is improved by the classi�er, (2) the classi�er enables the system to automatically

6

infer the membership of objects that can be deduced from their descriptions. We will use the following

example to illustrate these bene�ts. For example, suppose we de�ne an empty-handed-monkey as a

monkey that is not holding any objects:

(defconcept empty-handed-monkey :is (:and monkey (:at-most 0 hold)))

(defrelation hold :is :primitive (:domain animal) (:range object))

Suppose we inform the system about a monkey whose hands are empty. The classi�er will successfully

infer that the monkey is an instance of empty-handed-monkey, even though the user did not mention

so explicitly. Moreover, suppose the following new concept empty-handed-animal has been introduced

into the system.

(defconcept empty-handed-animal :is (:and animal (:at-most 0 hold)))

The classi�er will now infer that empty-handed-monkey is a subclass of empty-handed-animal. Hence,

using a term subsumption language to de�ne classes enables the classi�er to help system builders in

developing and maintaining a consistent class taxonomy.

B. Operators, Methods, and Rules

An operator in CLASP is a generic function that can be invoked by procedure calls or by production

rules. In fact, the action of a production rule is always performing a speci�c operation. For instance, a

rule that causes the status of a car to be displayed whenever its driver's door is open can be described

using a Display-Status operator:

(defrule Trigger-Display-Status

:when (:and (Car ?c)

(Has-driver-door ?c ?d)

(Open ?d))

:perform (Display-Status ?c))

7

Hence, the function and the role of a rule is captured explicitly by the operator to which the rule's

action refers, and is separated from the implementation details of the operator, which are described

by methods. In addition to being invoked by rules, operators can be invoked procedurally through the

function perform. For instance, the function call (perform (Display-Status chevy-1)) displays the

status of the car instance chevy-1.

In addition to the associated operator, a CLASP's method has two additional components: a situation

part and an action part. The situation part describes a conjunctive condition under which the method

applies. In addition to testing types and relations of the method's arguments, the condition could also

introduce free variables. For instance, the situations of the methods for Display-Status operator may

include additional free variables that refer to the trake
uid level, the tire pressure, and other measures

related to the safety condition of an automobile. A method is applicable to an instantiation of its operator

if its situation condition is satis�ed. The action part is the procedural body of the method. Because

the action part of a method can invoke other operators, methods can be used to decompose a high-level

task into lower-level subtasks.

Each operator in CLASP speci�es its own control strategy for the selection of methods using a

sequence of �lters2. The set of applicable methods passes through each �lter in the sequence. Each �lter

removes some methods from the candidate set. The �nal set of methods generated by the last �lter is

executed. Some examples of �lters are :most-specific, :select-one, :select-all, :preferences,

and :last-one. The default �lter sequence is (:preferences :most-specific :last-one) . The

:preference �lter eliminates methods which have been declared (in explicit preference statements)

to be less preferable than some other candidate method. The :most-specific �lter eliminates any

method whose pattern is specialized by some other candidate method's pattern. The :last-one �lter

chooses the method which was most-recently de�ned. The :select-all �lter chooses all the remaining

candidate methods, and the :select-one �lter randomly chooses one method from the candidates. This

�lter mechanism o�ers the
exibility in method dispatching that is useful for many AI applications. For

instance, the operator Display-Status could use the �lter sequence (:most-specific :select-all)

for selecting all methods that display messages about warning situations such as low tire pressure, low

2The PRISM system, developed by Langley and Ohlsson at UC Irvine, employs a similar notion of �ltering within a
rule-based setting.

8

brake
uid, low power in battery, etc. The �lter sequence of an operator is speci�ed as part of the

operator's declaration, e.g.,

(defoperator Display-Status :filters (:most-specific :select-all)).

C. Retrieving Applicable Methods

Because the situation condition and the action of a method may consist of free variables that are not

in the argument list, applicable methods in CLASP are retrieved using a RETE-style pattern matcher

(CONCRETE). CONCRETE is integrated with LOOM's classi�er for performing pattern matching

based on the semantics of classes [3]. We will illustrate this using the method M1 in Figure 4. Suppose

the system has been told about the following facts:

John is a Successful-father

Angela is a child of John

Angela has a car named Corolla-1

These facts do not directly match the condition of the method; however, they do match M1 (with the vari-

able bindings ?x = John, ?y = Angela) if we also consider the semantics of classes Successful-father

and Car-owner. CONCRETE is able to match the facts with M1 because it is informed about the

following deduced facts by LOOM's classi�er:

John is a Person

Angela is a College-graduate and a Car-owner

To retrieve applicable methods, CLASP compiles the situation condition of a method as if the operator

and its arguments are part of the condition. For this purpose, a special RETE node (called the operator

node) is created for each operator. For instance, the method M1 is compiled into a RETE network

corresponding to the following pattern.

(:and (op ?x)

9

(Person ?x)

(College-graduage&Car-owner ?y)

(Child ?x ?y))

The RETE nodes corresponding to the situation pattern are updated, as usual, when the database

is changed. When an operator is invoked, CLASP sends a token, which includes the arguments of

the operator invocation, to the corresponding operator node. This causes other nodes to be updated.

Eventually, the terminal nodes of applicable methods will generate method instantiations, which are

collected into a list of method instantiations applicable to the operator invocation.

The major di�erence between retrieving methods and matching rules lie in the way instantiations are

generated. Methods retrieval is always initiated by invoking operators; while rule matching is initiated

by changes in the database. Even though changes in the database update RETE networks corresponding

to a method's situation, they will never generate method instantiations because operator nodes do not

have a memory (i.e., they do not store any previous operator instantiations).

D. Computing the Speci�city of Methods

Speci�city is one of the most important criteria for selecting methods in conventional object-oriented

systems. It provides a convenient way for a system to describe general methods that can be applied to

many situations (e.g., multiple subclasses of a class) as well as speci�c methods for handling exceptional

cases. A class taxonomy in an object-oriented system often serves as a speci�city lattice for methods.

Hence, computing the speci�city of methods was rarely an issue in object-oriented programming 3.

Computing the speci�city of CLASP's methods is complicated for two reasons. First, the situation part

of a CLASP method is a conjunctive pattern with extra free variables. Second, classes in CLASP capture

a semantics that is richer than that of object-oriented systems (see Section A). As a result, a situation

pattern may contain many implicit conditions that can be deduced from the semantics of classes. We will

�rst de�ne a principled speci�city relation among CLASP's methods. Then, we outline an implemented

algorithm for determining whether a method is more speci�c than another.

3Systems with an extended notion of methods (e.g., CommonLoops and CLOS) have a slightly more sophisticated way
for computing methods' speci�city

10

A method m2 is more speci�c than another method m1 if and only if (1) they are associated with the

same operator, and (2) for any invocation of the operator, if m2 is applicable then m1 is also applicable.

Our approach for testing the speci�city of methods is based on a theorem in [7] that states the su�cient

and necessary condition for a conjunctive pattern (i.e., a conjuction of non-negated literal) to be more

speci�c than another one:

Suppose p2 and p1 are two conjunctive patterns, p2 is more speci�c than p1 if and only if

there exists a substitution that replaces variables in p1 by variables or constants in p2 such

that p2 implies p1 under the substitution.

The substitution is equivalent to a mapping that maps each variable in p1's condition to a variable

or a constant in p2's condition. Based on the theorem, we have shown that an algorithm for testing

the speci�city of rules needs to search for a desired mapping between variables of two rules [7]. The

speci�city test between methods introduce one additional constraint to the mapping: the arguments of

one method has to map to corresponding arguments in another method. Intuitively, it is easy to see

that the existence of such a mapping is a su�cient condition that m2 is more speci�c than m1 because,

for any instantiation of m2, we can construct an instantiation of m1 from the mapping. Thus, m1 is

applicable for an invocation of its operator whenever m2 is applicable. For instance, consider methods

M1 and M2 in Figure 3. Suppose Successful-father is de�ned as a father whose children are college

graduates, and Car-owner is a person who owns at least one car (see Figure 2). CLASP will be able to

determine that M2 is actually more speci�c than M1 because M2's situation implies M1's situation by

replacing variables ?x and ?y by ?z and ?w respectively.

Since the number of all possible mappings between variables of two methods is an exponential function

of the number of free variables in the methods, an e�cient algorithm for the speci�city test has to reduce

the number of mappings it needs to consider using additional information. This is achieved in CLASP

through several steps. First, implicit conditions logically implied by the semantics of classes are made

explicit. We will refer to this process as the normalization of methods. Second, arguments of one method

is constrained to map to corresponding arguments of another method. Third, CLASP uses subsumption

links between classes and relations to establish further constraints on the mapping of a method's variables.

11

Finally, CLASP performs a dependency-directed backtracking to search for a mapping that satis�es all

the constraints. We brie
y describe each step below. A more detailed discussion about steps 1, 2 and 4,

which are also used for testing the speci�city of rules, can be found in [7].

(defconcept Person (:primitive))

(defconcept Male (:and Person :primitive))

(defconcept Female (:and Person :primitive))

(defconcept College-graduate (:and Person :primitive))

(defconcept Female-College-graduate (:and Female College-graduate))

(defrelation Child (:and :primitive (:domain Person) (:range Person)))

(defrelation Daughter (:and Child (:range Female)))

(defconcept Father (:and Male (:at-least 1 Child)))

(defconcept Successful-Father (:and Father (:all Child College-graduate)))

(defrelation Has-car (:and :primitive (:domain Person) (:range Vehicle)))

(defconcept Car-owner (:and Person (:at-least 1 Has-car)))

Figure 2: An Example of Class and Relation De�nitions

As mentioned earlier, the rationale behind normalizing methods is to reduce the search space of

possible mappings. Without the normalization process, the search for a mapping would have to con-

sider the possibility that a condition in a method's situation is implied by a conjunctive subpattern of

another method's situation. For example, consider methods M1 and M2 in Figure 3. The condition

(College-graduate ?y) in M1 is implied by the subpattern (Successful-Father ?z) ^ (Daughter

?z ?w) of M2's situation by replacing ?y in M1 by ?w in M2. Having deduced the conditions implied

by these conjunctive subpatterns during the normalization process, the speci�city test only needs to

consider pairs of conditions with the same number of arguments. Figure 4 shows the situation-sides

of M1 and M2 after they have been normalized where the class College-graduate&Car-owner is the

intersection of College-graduate and Car-owner. It is easier to see that M2 is actually more speci�c

than M1, which was not obvious prior to normalization.

The second step ensures that the arguments of a method are mapped to the corresponding arguments

12

(defmethod op(?x)

:title ``M1''

:situation (:and (College-graduate ?y)

(Child ?x ?y)

(Car-Owner ?y))

:action ...)

(defmethod op(?z)

:title ``M2''

:situation (:and (Successful-Father ?z)

(Daughter ?z ?w)

(Has-Car ?w ?c))

:action ...)

Figure 3: An example of two methods before normalization

of another method. For instance, the argument ?x in M1 is �rst mapped to the argument ?z in M2.

The third step attempts to reduce the search space of possible mapping by considering the subsumption

relationship between concepts and relations (i.e., unary and binary predicates). Normally, the situation

pattern of a method consists of several di�erent predicates, only a small percentage of which are subsumed

by a predicate in another method's situation. Using the subsumption relationships between predicates,

which are precomputed by LOOM's classi�er when classes and relations are de�ned, we can reduce the

candidates a variable in M1 can map to, which in turn prunes the search space for �nding a mapping.

For instance, Daughter is the only predicate in M2 that is subsumed by Child in M1. We can infer that

any mapping that proves M1 subsumes M2 has to map variable ?x to ?z, variable ?y to ?w because this

is the only way that condition (Child ?x ?y) can be implied by M2's situation condition. The last step

uses a dependency-directed backtrack to search a mapping that satis�es the constraints generated by

the second and the third step.

13

(defmethod op(?x)

:title ``M1''

:situation (:and (Person ?x)

(Child ?x ?y)

(College-graduate&Car-Owner ?y))

:action ...)

(defmethod op(?z)

:title ``M2''

:situation (:and (Successful-Father ?z)

(Daughter ?z ?w)

(Female-College-graduate&Car-Owner ?w)

(Has-Car ?w ?c))

:action ...)

Figure 4: Two methods after normalization

III. An Example

We will use a simple problem, the monkey-bananas problem in [8], to illustrate how the integration

of object-oriented programming and rule-based reasoning in CLASP improves the maintainability of

expert systems. The monkey-banana problem is to write a set of rules such that a monkey in a room

will follow a sequence of commands in order to grab a bunch of bananas on the ceiling. Objects in the

room include a ladder, a sofa, and other furnitures (e.g., a shelf). Figure 5 contains a partial listing of

rules for solving the problem. Figure 6 shows an OPS5 implementation of these rules. A major function

of these three rules is to help the monkey to climb up at the location where the bananas are hung from

the ceiling. However, this function is implicit in the rules, and is di�cult for the programmer to capture,

even for this simple application. One way to capture the functions of rules and to separate them from

various ways to implement the function is to de�ne climb-up as an operator. Various ways to climb up

in di�erent situations (e.g., whether there exists a ladder at the location or not) may be described by

14

several methods. This can be implemented in CLASP as shown in Figure 7. A partial LOOM knowledge

base for the monkey-banana problem is described in Figure 8. The following sections use this example

to illustrate three major bene�ts of our approach regarding the maintainability of expert systems: (1)

improving the modularity and the reusability of the rule base, (2) supporting the development of a more

consistent and homogeneous knowledge base, and (3) enhancing the predictability of rules.

Rule 1:

If the goal is to grab an object on ceiling then

create a goal to move a ladder to the location of the object.

Rule 2:

If the goal is to grab an object on ceiling and

the ladder is already at the location of the object then

create a goal to get on the ladder.

Rule 3:

If the goal is to grab an object on ceiling and

the ladder is already at the location of the object and

a monkey is already on the ladder then

create a goal for the monkey to empty its hands.

Figure 5: Several Rules for the Monkey-bananas Problem

A. Improving the Organization and the Reusability of Rules

It is very di�cult to locate relevant pieces of knowledge for modi�cation unless the knowledge base is

well-organized. In OPS5-like systems, users often use context elements to cluster rules[8]. CLASP's rule

base is more modular than that of conventional rule-based systems for two major reasons. First, the

function of a production rule is explicitly represented by an operator. Second, operator-triggering rules

are separated from operator-implementation rules. Hence, methods that are intended to achieve the

same function can be grouped together and form a natural \functional module". Using the monkey-

15

(p monkey-banana-1

(goal status active type holds object <w>)

(object ^name <w> ^at <p> ^on ceiling)

-->

(make goal ^status active ^type move ^object ^ladder ^to <p>))

(p monkey-banana-2

(goal ^status active ^type holds ^object <w>)

(object ^name <w> ^at <p> ^on ceiling)

(object ^name ladder ^at <p>)

-->

(make goal ^status active ^type on ^object ladder))

(p monkey-banana-3

(goal ^status active ^type holds ^object <w>)

(object ^name <w> ^at <p> ^on ceiling)

(object ^name ladder ^at <p>)

(monkey ^on ladder)

-->

(make goal ^status active ^type holds ^object nil))

Figure 6: A Partial OPS5 Implementation for the Monkey-bananas Problem

bananas example, suppose the programmer wants to extend the system to consider the case that there

is a shelf in the room and the bananas are on the shelf. The programmer can easily �nd out the relevant

operators (i.e., achieve-hold-goal) and its associated methods (i.e., hold-obj-on-ceiling-method).

All he/she has to do is to add the following method for the achieve-hold-goal operator:

(defmethod achieve-hold-goal (?g)

16

(defconcept Real-World-Object :is :p)

(defconcept Ladder :is (:and :p Real-World-Object))

(defrelation At :is (:and :p (:domain Real-World-Object) (:range Location)))

(defconcept Location :is :p)

(defrelation On :is (:and :p (:domain Real-World-Object)

(:range Real-World-Object)))

;;; Concept and Relations related to MONKEY

(defconcept Animal :is (:and :p Real-World-Object))

(defconcept Monkey :is (:and :p Animal))

(defrelation holds :is (:and :p (:domain Monkey)

(:range Real-World-Object)))

(defconcept Empty-handed-animal :is (:and Animal (:at-most 0 holds)))

;;; Goal-related concepts and relations

(defconcept goal-status :is (:the-set active achieved failed))

(defconcept goal-type :is (:the-set hold on))

(defconcept Goal :is (:and :p (:at-most 1 status) (:at-most 1 type)))

(defrelation status :domain goal :range goal-status)

(defrelation type :domain goal :range goal-type)

(defrelation agent :domain goal :range animal)

(defrelation object :domain goal :range real-world-object)

(defconcept Active-Hold-Goal :is (:and Goal

(:all status (:the-set active))

(:all type (:the-set hold))))

Figure 7: A Partial LOOM Knowledge Base for the Monkey-bananas Problem

17

(defrule mab-trigger

:when (:and (Active-Hold-Goal ?g))

:perform (achieve-hold-goal ?g))

(defmethod achieve-hold-goal (?g) :title "hold-obj-on-ceiling-method"

:situation (:and (agent ?g ?agent)

(object ?g ?o)

(on ?o ceiling)

(at ?o ?l))

:action ((perform (climb-up ?agent ?l))

(perform (grab ?agent ?o))

(perform (announce-goal-achieved ?g)))

(defmethod climb-up (?agent ?location) :title "climb up using an existing ladder"

:situation (:and (Ladder ?ladder)

(At ?ladder ?location))

:action ((perform (empty-hand ?agent))

(perform (climb-on-to ?agent ?ladder))))

(defmethod climb-up (?agent ?location)

:title "climb up by carrying a ladder to the location"

:situation (:and (Ladder ?obj)

(:NOT-TRUE (At ?obj ?location))

(At ?obj ?ladder-location))

:action ((perform (empty-hand ?agent))

(perform (move-self-to ?agent ?ladder-location))

(perform (carry-to ?agent ?obj ?location))

(perform (empty-hand ?agent))

(perform (climb-on-to ?agent ?obj))))

Figure 8: A Partial CLASP Implementation of the Monkey-bananas Problem

18

:title "hold-obj-on-shelf"

:situation (:and (agent ?g ?agent)

(object ?g ?o)

(on ?o shelf)

(at ?o ?l)

:action ((perform (move-self-to ?agent ?l))

(perform (empty-hand ?agent))

(perform (climb-on-to ?agent shelf))

(perform (grab ?agent ?o))

(perform (announce-goal-achieved ?g)))

For an OPS5 implementation, the programmer needs to manually search for relevant productions.

For example, the following two rules can be created by copying and editing rules monkey-banana-1 and

monkey-banana-3 in Figure 6.

(p monkey-banana-4

(goal ^status active ^type holds ^object <w>)

(object ^name <w> ^at <p> ^on shelf)

-->

(make goal ^status active ^type move ^object monkey ^to <p>))

(p monkey-banana-5

(goal ^status active ^type holds ^object <w>)

(object ^name <w> ^at <p> ^on shelf)

(monkey ^at <p>)

-->

(make goal ^status active ^type holds ^object nil))

The �rst rule moves the monkey to the location of the object, and the second rule empties the mon-

19

key's hands so that it can climb on to the shelf. In fact, more than these two rules need to be added

for handling the situation that the target object may be on a shelf, rather than on the ceiling. In

contrast, the CLASP implementation of the problem only needs to add one method to deal with this

extension (i.e., the hold-obj-on-shelf method in page A). Moreover, the method is able to reuse many

existing operators and methods without any further modi�cation (e.g., move-self-to, empty-hand,

climb-on-to, grab, and announce-goal-achieved). Actually, the newly added method does not need

to introduce any new operators or methods at all. The reusability of OPS rules is low because the

condition that triggers an operation is entirely mixed with the condition that determines the implemen-

tation of the operation. By separating these two kinds of conditions, CLASP is able to reuse many

of its operator-implementation knowledge when its operator-triggering situation has been extended or

modi�ed.

The example above demonstrates two important bene�ts of CLASP's approach to integrating object-

oriented programming and rule-based programming paradigms. Using operators to explicitly state the

function of rules, CLASP is able to organize the knowledge base such that related rules and methods

can be easily located and modi�ed. By separating the functions of rules from the implementation of

those functions, CLASP signi�cantly improves the reusability of its knowledge.

B. Supporting the Development of Consistent and Homogeneous Knowledge Bases

When a programmer wants to augment an existing body of code in a software maintenance task, the

problem that he/she sometimes encounters is in knowing how and where to add the augmentation so

as not to disturb the rest of the code[1]. Maintaining the consistency and homogeneity of knowledge

therefore is very important when modifying the system. As we have discussed in Section A, the automatic

classi�cation capability of CLASP's knowledge representation language (LOOM) assists the user in

maintaining a consistent class taxonomy. If the de�nition of a class is inconsistent, the system is able

to detect inconsistency and inform the knowledge engineer about possible causes of the inconsistency.

Furthermore, di�erent types of knowledge are represented by di�erent forms in CLASP. In particular,

methods are used exclusively for describing how-to knowledge, while rules are used merely for expressing

20

when to trigger operations. This improves the consistency and homogeneity of the knowledge base

because it facilitates similar representations for similar types of knowledge.

C. Enhancing the Predictability of Rules

One of the major di�culties in maintaining rule-based systems lies in the unpredictability of the rule

�rings. This is because the execution sequence of rules is implicitly controlled by a complicated con
ict

resolution strategy. Selection of rules and methods in CLASP is based on (1) a well-de�ned speci�city

measure and (2) control knowledge explicitly expressed using �lters of an operator. The former allows

the system programmer to verify the anticipated speci�city relationships and detect unexpected ones

during rule compilation time. The latter makes explicit the selection criteria used in method dispatching.

Together, they improve the predictability of the system's behavior. For example, suppose we want to

extend the monkey-bananas application for dealing with the case where the object to be grabbed is �xed

to the ceiling (e.g. a fan), and thus the monkey can not grab the object from the ceiling. To do this, we

can add the following method to CLASP's knowledge base:

(defmethod achieve-hold-goal (?g)

:title ``goal-cannot-be-achieved''

:situation (:and (agent ?g ?agent)

(object ?g ?o)

(fixed-on ?o ceiling)

(at ?o ?l))

:action (perform (announce-goal-failure ?g)))

where the relation �xed-on is de�ned as a specialization of on relation :

(defrelation Fixed-On :is (:and On :primitive))

CLASP will infer that the new method is more speci�c than the method \hold-obj-on-ceiling-method."

Since the operator achieve-hold-goal uses the default �lter sequence, which includes the :most-

speci�c �lter, the programmer can predict that the new method will be executed when the object

21

to be grabbed is �xed to the ceiling. In the case there are multiple most speci�c methods, the program-

mer can change the �lter sequence of achieve-hold-goal operator to (:most-specific :select-all)

to ensure the �ring of the newly added method. For the OPS5's implementation, the programmer may

add the following production for dealing with the situation that the object is �xed to the ceiling.

(p monkey-banana-1-fail

(goal status active type holds object <w>)

(object ^name <w> ^at <p> ^on ceiling ^fixed t)

-->

(make goal ^status fail ^type))

However, the system does not provide any feedback to help the programmer in predicting the �ring

sequence of rules. In fact, even though this newly added production is semantically more speci�c than

production monkey-banana-1, it will not be recognized as so because speci�city in OPS5 is determined

by syntactic information (i.e., the number of condition elements). As a result, it is very di�cult to predict

which one of the two rules will be �red when they both match. In CLASP, even if the programmer codes

the new method incorrectly such that it is not more speci�c than the original method hold-obj-on-

ceiling-method, he/she could detect the error during comiplation time by browsing the subsumption

lattice of methods. In summary, CLASP's approach improves the predictability of rules by using explicit

control knowledge and by providing feedback about the subsumption relationships between methods to

the programmers.

IV. Related Work

Loops[9] is one of the earliest e�orts in integrating rule-based paradigm and object-oriented program-

ming. Rules in Loops are grouped into RuleSets, which can be invoked by message sending. The

information for controlling the �ring of rules within a RuleSet is also explicitly speci�ed. Rules in KEE

can also be grouped into rule classes, which can be invoked by methods or demons [10]. Therefore, rules

in Loops and KEE could play a role similar to that of CLASP's methods. Our approach di�ers, however,

22

from their approaches in three important ways. First, the right hand side action of a rule is strictly

invoking a generic function. Second, classes are de�ned using a term subsumption language. Third,

method dispatching is based on a principled speci�city measure computed by the system during rule

compilation time. The priority of rules in Loops is determined by their ordering. Thus, it is the system

developer's responsibility to manually place speci�c rules before more general ones. CLASP's approach

relieves this burden from the system developer, and enhances the maintainability of expert systems.

V. Current Status and Future Work

CLASP has been implemented using CLOS and Common Lisp. Although it was originally developed in

Lisp Machines (i.e., TI Explorers and Symbolics machines), it can be easily ported to general purpose

workstations (e.g., SUN workstations). Based on our preliminary experiments using the monkey-banana

problem, the run time performance of CLASP seems acceptable. More speci�cally, for the monkey-

banana application, the system takes 20.6 seconds to compile and create 10 concepts, 10 relations,

2 rules, and 14 methods. However, it takes only 3.9 seconds (including the time spent for creating

instances) to solve the monkey banana problem. Thus, most of the performance overhead is introduced

during compile time rather than run time.

From object-oriented programming point of view, the major limitation of CLASP is a lact of support

for encapsulation. Properties about objects in CLASP are globally accessible and modi�able through

LOOM's retrieval and tell facilities. Thus, there is no way to hide information about an instance from

other objects. Our future research includes incorporating encapsulation into CLASP's framework, and

empirical evaluation of the maintainability of medium to large size expert systems developed using our

approach. We are currently reimplementing part of R1 (R1-Soar[11]) for a further assessment on the

maintainability of expert systems developed using CLASP.

23

VI. Summary

In this paper, we have described an approach to address the maintenance issue of large expert systems

by incorporating the notion of polymorphism in object-oriented programming into the rule-based pro-

gramming paradigm. To enable the knowledge engineer to describe a complex situation under which a

method applies, we have generalized a method's applicable situation to a conjunctive condition that may

contain free variables. To obtain
exibility of control that is often desirable in an expert system, we have

generalized method dispatching to allow each generic function to specify its method selection criteria

using a set of �lters. To enable speci�city-based method dispatching, we have developed an algorithm

for computing a principled speci�city relation among methods.

Based on a monkey-bananas example, we have demonstrated that our approach o�ers several im-

portant bene�ts regarding the maintainability of expert systems. First, it enhances the modularity

of rule-based systems because rules and methods can be easily grouped based on their functions. It

also increases the reusability of how-to knowledge because they are separated from rules. Second, the

automatic classi�cation capability of the term subsumption language assists the user in maintaining

a consistent class taxonomy. Finally, it improves the predictability of rules because implicit, heuristic

con
ict resolution strategies are replaced by explicit control strategy and a principled speci�city measure

computed by the system.

VII. Acknowledgements

We wish to thank the referees for their comments on an earlier draft of the paper.

References

[1] E. Soloway, J. Bachant, and K. Jensen, \Assessing the maintainability of xcon-in-rime: Coping

with the problems of a very large rule-base," In Proceedings of AAAI-87, pp. 824{829, Seattle,

Washington, August 1987.

24

[2] G. S. Blair, J. J. Gallagher, and J. Malik, \Genericity vs inheritance vs delegation vs conformance

vs ...," Journal of Object-Oriented Programming, vol. 2, no. 3, pp. 11{17, September/October 1989.

[3] J. Yen, R. Neches, and R. MacGregor, \CLASP: Integrating term subsumption systems and pro-

duction systems," IEEE Transactions on Knowledge and Data Engineering, vol. 3, no. 1, , March

1991.

[4] R. M. MacGregor, \A deductive pattern matcher," In Proceedings of AAAI-88, 1988.

[5] P. F. Patel-Schneider, B. Owsnicki-Klewe, A. Kobsa, N. Guarino, R. MacGregor, W. S. Mark,

D. McGuinness, B. Nebel, A. Schmiedel, and J. Yen, \Term subsumption languages in knowledge

representation," AI Magazine, vol. 11, no. 2, pp. 16{23, 1990.

[6] R. Brachman and J. Schmolze, \An overview of the KL-ONE knowledge representation system,"

Cognitive Science, vol. 9, no. 2, pp. 171{216, August 1985.

[7] J. Yen, \A principled approach to reasoning about the speci�city of rules," In Proc. National Conf.

on Arti�cial Intelligence, pp. 701{707, Boston, August 1990.

[8] L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming Expert Systems in OPS5: An

Introduction to Rule-Based Programming, Addison-Wesley, 1985.

[9] M. Ste�k and D. G. Bobrow, \Object-oriented programming: Themes and variations,"AI Magazine,

vol. 6, no. 4, pp. 40{62, 1986.

[10] R. Fikes and T. Kehler, \The role of frame-based representation in reasoning," Communication of

the ACM, vol. 28, no. 9, , September 1985.

[11] P. S. Rosenbloom, J. E. Laird, J. McDermott, A. Newell, and E. Orciuch, \R1-soar: An experiment

in knowledge-intensive programming in a problem-solving architecture," IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. PAMI-7, no. 5, pp. 561{569, September 1985.

25

