
Information Extraction from Tree Documents by Learning Subtree Delimiters

Boris Chidlovskii
Xerox Research Centre Europe, France

6, chemin de Maupertuis, F–38240 Meylan, chidlovskii@xrce.xerox.com

Abstract
Information extraction from HTML pages has been
conventionally treated as plain text documents ex-
tended with HTML tags. However, the growing
maturity and correct usage of HTML/XHTML for-
mats open an opportunity to treat Web pages as
trees, to mine the rich structural context in the trees
and to learn accurate extraction rules. In this paper,
we generalize the notion ofdelimiterdeveloped for
the string information extraction to tree documents.
Similar to delimiters in strings, we define delim-
iters in tree documents as subtrees surrounding the
text leaves. We formalize the wrapper induction for
tree documents as learning the classification rules
based on the subtree delimiters. We analyze a re-
stricted case of subtree delimiters in the form of
simple paths. We design an efficient data structure
for storing candidate delimiters and an incremental
algorithm for finding most discriminative subtree
delimiters for the wrapper.

1 Introduction
The immensity of Web data valuable for various human needs
has led to research on information extraction from the Web,
with the wrapper learning from annotated samples being one
of major research trends. Since the first wrappers[10] crafted
for a specific structure of Web pages, wrapper classes have
grown in their expressive power and capacity to adopt struc-
tural variations. While the further empowering the wrapper
learning methods and their combinations remains crucial for
developing flexible IE systems, another important goal raises
in the controlled reduction of the sample annotation. The
learning from both labeled and unlabeled samples appears,
in the case of the wrapper learning, as the learning from par-
tially annotated Web pages, where the annotation of items in
a page is integrated with the learning in an interaction system
and driven by the learning bias and accuracy requirements.

Over last 10 years, the HTML format has seen several evo-
lutionary changes and has achieved a maturity level with a
wider use of XHTML/XML for publishing the Web content.
In November 2002, we have analyzed HTML pages from 32
sites we have being tracked since 1998 (360 to 420 pages per
year). The analysis has discovered a tendency toward cleaner

pages and richer tag context around content elements. First,
the nesting error ratio expressed as the percentage of miss-
ing and mismatching end tags in the HTML files has almost
halved, from 6.7% in 1998 to 3.9% in 2002. Second, the aver-
age number of HTML tags surrounding a content element has
increased by 31%, from 5.1 tags per content element in 1998,
to 6.7 tags in 2002. Additionally, the ratio of tag attributes
has increased by 26%, from 0.34 attribute per tag in 1998 to
0.43 in 2002.

Although it seems very natural considering Web pages
as trees, the majority of the wrapper learning methods treat
HTML pages as sequences of tokens where text tokens are
interleaved with tags. Information extraction from strings
often follows the finite-state methodology with two alter-
native approaches seen as the global and the local view
at the extraction problem. Thelocal view approach stems
from the information extraction from unstructured and semi-
structured text[5], when a wrapper is an enhancement of
a basic HTML parser with a set of extraction rules; an ex-
traction rule has often a form of delimiters (landmarks)[9;
11] that are sequences of tags preceding (or following) an
element to be extracted; for example, delimiter<td><a> re-
quires a text token to be preceded by tags<td> and<a>.

The global viewapproach assumes that HTML pages are
instances of an unknown language and attempts to identify
this language. In the case of deterministic automata, it de-
termine the automata structure by generalization from the
training examples; in the case of weighted automata/HMM, it
learns the transition probabilities. To accommodate the infor-
mation extraction, these methods either enhance finite-state
automata with extraction rules[4] or adopt the formalism of
finite-state transducers[2; 7].

The global view approach benefits from the grammatical
inference methods that can learn finite-state automata and
transducers from positive examples; however they often re-
quire many annotated samples to achieve a reasonable gener-
alization. On the other hand, in the local view, using local de-
limiters in a context-less manner limits the expressive power
of the delimiter-based wrappers. To combine the advantages
of the two approaches,[2] has extended the notion of delim-
iter to previously labeled text tokens. For example, delim-
iterPC(none)<td><a> requires that a current text token is
preceded by a text token labeled asnone (skipped) and tags
<a> and<td>. As result, the wrapper learning algorithm

produces a set of extraction rules equivalent to a minimal reg-
ular transducer that can be obtained following the global view
approach.

Information extraction from HTML trees consists of clas-
sifying the tree leaves with classification labels from a setC.
The shift from strings to trees considerably enlarges the num-
ber of tags “surrounding” a text token and enriches the notion
of tag proximity w.r.t. a similar proximity in strings which
are a specific traversal of HTML trees.

So far, little research addresses the information extrac-
tion from tree documents[3; 6; 8]. Some researchers study
languages for wrapping tree structures and their expressive
power[6]; other researchers develop learning algorithms for
extraction from tree structures[3; 8]. Interestingly, wrapper
“builders” in [3] fit the local view approach, while tree au-
tomata in[8] follow the global view approach. In the gram-
matical inference, certain results has been successfully ex-
tended from strings to trees[15], allowing to learn tree au-
tomata and context-free grammars from examples; however,
more research is needed to achieve the same level of robust-
ness and practical utility.

On the other hand, recent research in graph search and the
Web mining[13; 14] offers novel methods for the mining of
tree documents, in particular, finding the most frequent sub-
trees and tree patterns.

2 Information extraction from trees
We represent HTML/XML documents as unranked ordered
trees. For badly formatted HTML documents, structure
checker programs like HTML Tidy free utility from W3C1

can detect missing and mismatching end tags and map an
HTML source into a complete tree.

In an HTML/XML tree, inner nodes determine the struc-
ture of the document, and the leaf nodes and the tag attributes
provide the document content. We follow[12] in abstract-
ing HTML/XML documents as the class of unranked labeled
rooted trees. Treet is defined over an alphabetΣ of tag
names. The set of trees, denoted byTΣ, is inductively de-
fined as follows:

1. everyσ ∈ Σ is a tree (leaf),

2. if σ ∈ Σ and t1, t2, . . . , tn ∈ TΣ, n ≥ 1, then
σ(t1, t2, . . . , tn) is a tree inTΣ.

There is no a priori bound on the number of children of a
node in a tree; such tree are therefore unranked. For the sake
of convenience, we present our method for the binary trees.
Unranked trees can be encoded into binary tree in several
ways and we adopt an encoding from[12] as one preserving
the adjacency relationship between children of an inner node.
Intuitively, the first child of a node remains the first child of
that node; the other children become right descendants of the
first child in the encoding. Whenever there is a right child but
no left child, a leaf # is inserted. Also, when there is only a
left child, a leaf # is inserted for the right child.

Example 1 Consider the Database and Logic Programming
site2 (DBLP) and information extraction from its answers to

1Available at http://www.w3.org/People/Raggett/tidy/.
2www.informatik.uni-trier.de/∼ley/db/index.html.

title-relevant queries. An HTML fragment of an answer is
shown in Figure 1. Each answer item on the page contains
a title, one or more authors, conference and pages. The un-
ranked tree for the HTML source fragment with the text values
associated with the tree leaves is in Figure 2.a3. Figure 2.b
shows the binary tree encoding of the unranked tree, as well
as the annotation of leaves with classification labels. Binary
trees like one in Figure 2.b serve as the training set for the
wrapper learning system.

Search Results for ’tree automata’
...
• Leon S. Levy, Aravind K. Joshi: Some Results

in Tree Automata. STOC 1971: 78-85
...

Figure 1: HTML fragment from DBLP.

...

Results
in Tree

"L.S.Levy" "," "A.K.Joshi" "Some

Automata"

"STOC
1971"

"78:85"

b)

(author)

(title)

(none)

(author)

(conf)

(pages)

...
a)

<a> PC <a> PC <a> PC

<a>

PC

<a>

PC

<a>

PC

#

#

Figure 2: a) Unranked tree; b) its binary tree encoding and
annotation.

Set of encoded ranked trees is denotedT 2

Σ′ , whereΣ′ =
Σ∪{#}.To introduce the notion of subtree, we allow a wild-
card ’*’ to match any treet ∈ T 2

Σ′ . Trees is a subtreeof
binary treet ∈ T 2

Σ′ , denoted ass � t, if there exists a noden
in treet such that one of the following (inductive) conditions
is satisfied:

• s=’*’,

• s = σ, n = σ′ andσ = σ′,

• s = σ, n = σ′(t1, t2), andσ = σ′,

3Special symbolPC is used for text fragments in the mixed ele-
ments.

• s = σ(t1, t2), n = σ′(t′
1
, t′

2
), andσ = σ

′

and t1 �

t′
1
, t2 � t′

2
.

A tree leaf delimiteris a subtree associated with (at least)
one annotated leaf. For the binary tree in Figure 2.b, binary
subtreePC (<a>(*,PC(*,#)) is a tree leaf delimiter as-
sociated with theconf leaf.

The information extraction from treet ∈ T 2

Σ′ consists of
labeling the leaves oft with classes from the setC, including
none class for non-extracted leaves. Aleaf extraction ruleis
a triple(s, c, cf) wheres is a leaf delimiter,c is a classifica-
tion label andcf is the confidence level,0 < cf ≤ 1. A tree
wrapperis a set of leaf extraction rules that are learned from
a set of annotated documents. The tree wrapper works in the
same way as the string wrappers do. In an unlabeled treet, the
tree leaves are visited in some traversal order and are tested
with the delimiters of the extraction rules. If one or more
leaf delimiters match the leaf context, the rule with the higher
confidence is applied to label the leaf content. In Figure 2.b,
leaf delimiterPC(*,#) discriminates the leafpages with
the confidencecf=1.0. Instead, the delimiter<a>(*,PC) is
not discriminatory for theauthor leaf, as the same subtree
<a>(*,PC) surrounds theconf leaf.

2.1 Simple path delimiters
The learning of tree wrappers requires exploring a large space
of leaf delimiters and discovering such ones that provide the
most accurate classification. In order to control the exponen-
tially growing number of candidate delimiters in the trees,be-
low we study and test an important subclass of tree wrappers,
where leaf delimiters aresimple pathsin a binary tree.

A simple path delimiter is (topologically) equivalent to a
simple path in a tree, i.e., all its nodes except the root have
one child, and only the root may have one or two children. A
simple path has two extremes, one extreme is the associated
leaf and another extreme is an inner node or another leaf. The
length of a simple path is given by the number of nodes in the
path. One specific well-known case isroot-to-leaf pathsin
a tree, when each leaf in the tree is associated with the path
starting in the tree root and terminating in the leaf.

2.2 Candidate path index
To incrementally determine a good set of delimiters from an-
notated samples, we store the path candidates in a special data
structure calledcandidate index. The goal of the index gen-
eration is two-fold. On one side, the index stores all delimiter
candidates, as well as an additional information sufficientto
determine the most discriminative delimiters. On the other
side, the index allows to incrementally accommodate new an-
notated samples.

The candidate path index storesreverse paths, which are
special encodings of simple paths; a reverse path starts at the
annotated leaf and traverses tree arcs of three types; they are
denotedUp (↑), Left (←) and Right (→). For example,
reverse path↑ PC → # encodes the delimiterPC(*,#) of
thepages leaf in Figure 2.b.

The index is atrie data structurewhere all nodes except
the root are labeled with tags fromΣ′ and each transition is
typed with↑,← or→. A path in the index from the root to

any node corresponds to a reverse path and is a delimiter can-
didate. Additionally, each index node includes occurrences
for all classification labels surrounded by the corresponding
subtree in annotated documents.

author=1

#
page=1

title=1

title=1

none=1conf=1

author=1

...

...

...

conf=1
author=1

conf=1
author=2

conf=1
title=1

author=2
none=1

pages=1

page =1

none=1

...

Up Up

RightUp

RightRight Up Up

Right
Up

<a> PC

PC <a>

<a> # PC

title=1
none=1

Figure 3: Fragment of path index for the example tree.

Figure 3 shows a fragment of candidate path index of the
sample HTML fragment in Figure 2.b. In the index, node
for the reverse path↑ <a> indicates that the corresponding
subtree surrounds twoauthor leaves and oneconf leaf.
For the candidate index of the depthd=3, there exists a set of
perfect extraction rules as follows:

(↑ <a> ↑ , author,1),
(↑ <a>→ PC→ <a>,author,1),
(↑ <a>→ PC→ #, conf, 1),
(↑ PC← #, pages, 1),
(↑ PC ↑ <a>↑ , none, 1),
(↑ PC ↑ <a>↑ PC, title, 1),

Like delimiters in the string wrappers, path delimiters are
one-dimensional objects. However, unlike string wrappers,
the algorithm exploits a larger (two-dimensional) space of
simple paths in the tree in order to detect paths that are highly
discriminative for the leaf classification but are “invisible” in
the string presentation of HTML documents.

To manage the candidate index, we are currently using the
simplest criteria, when the index depth is limited by some
value d > 1. Figure 4 presents two routines for the in-
dex. ProcedureAddAnnotation() updates the index with
the path candidates surrounding a new annotated leaf. Func-
tion Classify(l) finds a classification label for a tree leaf. It
implements the wide-first traversal through the intersection of
the candidates in the index and simple paths starting in a leaf
to be labeled.

3 Preliminary Experiments
We have tested the method of information extraction from
tree documents using the experimental testbed developed for
wrappers created with the XRCE Iwrap toolkit[1]. First, we
have tested the tree wrappers on 14 “easy” sites (including

Let I be the candidate path index
defineAddAnnotation(leaf l, classc):
P (l, d) := set of reverse paths froml of max lengthd
for each pathp ∈ P (l, d) do

if p ∈ I then
occurrence(p,c) := occurrence(p,c) + 1

else
n := the minimal prefix ofp not inI
add noden in I
occurrence(n,c) := 1

endfor

defineClassify(leaf l):
candidateList :={}
for i in 1, ..., d do

P (l, i) := set of reverse paths froml of depthi
for each pathp in P (l, i) do

if p ∈ I then
s, c, cf := rule inp with the highest confidence
if cf = 1 then return c
elseadd (c, cf) to candidateList

endfor
endfor
return classc with the highestcf in candidateList

Figure 4: Two main routines for the candidate index.

Google, Altavista, Excite, CNN, ACM, Elsevier, DBLP Au-
thor, DBLP Title and some others) for which string wrap-
pers in the form of regular transducers have been success-
fully learned (that is, with theF -measure superior to 98%);
the wrappers manage to find out highly discriminative delim-
iters for all classification labels[2]. Second, we have tested
the method on 6 “complex” sites including IEEE, CSbiblio,
Medline and Cora from the Iwrap collection, and IAF and
Shakespeare from the Kushmerick collections, for which the
string wrappers obtain the average precision of 89.6% and re-
call of 84.3%.

For each site, 10 annotated documents were available for a
series of 5 experiments. In each experiment, both string and
tree wrappers have been trained from 3 randomly selected an-
notated pages and tested on other 7 pages. For each group of
sites, we measure the precision/recall and the time a wrapper
takes to parse a page and to classify the tree leaves. For the
moment, we have run experiments with the maximal depth
d=8 of the candidate index. The results of experiments are
summarized in Table 1; the TRatio measure is a ratio of time
a tree wrapper processes a page to the time the corresponding
string wrapper processes the same page.

For 140 annotated HTML pages in the group of easy sites,
an average page has 503.2 leaves to classify. Tree wrappers
for these sites are as accurate as the string wrappers (see Ta-
ble 1). However they are slower; on average, a tree wrap-
per spends 6.51 seconds to parse a page while a string wrap-
per spends 3.16 seconds only4. This happens because a tree

4Experiments have been run on Sun Ultra 30 station under So-
laris OS 8.

Sites String wrappers Trees wrappers
Prec Rec Prec Rec TRatio

Easy 100 98.8 99.8 99.1 2.06
Complex 89.6 84.3 96.3 92.6 3.21

Table 1: Comparison of string and tree wrappers.

wrapper verifies multiple paths surrounding a leaf against de-
limiters of the extraction rules.

For the group of complex sites, an average annotated page
has 478.9 leaves to classify. Tree wrappers are here more
efficient in finding accurate delimiters and obtain precision
of 96.3% and recall of 92.6%. Instead, on average, a tree
wrapper spends 3.21 more time to process a page than a string
parser.

4 Conclusion
We have addressed the problem of information extraction
from tree documents where inner nodes determine the docu-
ment structure and the leaf nodes provide the document con-
tent. We have presented a method that learns the classifica-
tion rules for the tree leaves in the form of subtrees. We have
studied a special subclass of classification subtrees that have
a form of simple trees and have adopted a trie data structure
to ease the incremental management of annotated samples.

Preliminary experiments show that the tree wrappers are
more efficient in finding discriminative tree delimiters that
string wrappers, though this high accuracy is achieved by the
cost of longer page processing. Further research may fol-
low several directions. First, we want to investigate if finding
more complex subtrees is beneficial for the leaf classification
and, importantly, is compatible with the incremental manage-
ment of annotated samples. Second, the current method does
not assume any specific traversal of the document tree; intro-
ducing a traversal order and extending subtrees to previously
annotated leaves may be as beneficial as with the string wrap-
pers. Finally, a more efficient structure for managing anno-
tated samples and delimiter candidates may reduce the page
processing cost.

References
[1] Denis Bredelet and Bruno Roustant. Java IWrap: Wrapper

Induction by Grammar Learning. Master’s thesis, ENSIMAG,
Grenoble, France, 2000.

[2] Boris Chidlovskii. Wrapping Web Information Providers
by Transducer Induction. InProc. Europ. Conf. Machine
Learning, Germany, Freiburg, volume 2167 ofLect. Notes
Comp.Sci., pages 61–72. Springer, 2001.

[3] William Cohen and Lee Jensen. A structured wrapper induc-
tion system for extracting information from semi-structured
documents. InIJCAI-2001 Workshop on Adaptive Text Extrac-
tion and Mining, 2001.

[4] H. Davulcu, G. Yang, M. Kifer, and I.V. Ramakrishnan. Com-
putational aspects of resilient data extraction from semistruc-
tured sources. InACM Symp. on Principles of Database Sys-
tems, pages 136–144, 2000.

[5] D. Freitag. Information extraction from html: Applicationof a
general machine learning approach. InProc. AAAI/IAAI, pages
517–523, 1998.

[6] Georg Gottlob and Christoph Koch. Monadic datalog and the
expressive power of languages for web information extraction.
In Proc. ACM PODS, pages 17–28, 2002.

[7] C.-N. Hsu and M.-T. Dung. Generating Finite-State Transduc-
ers for Semistructured Data Extraction from the Web.Infor-
mation Systems, 23(8), 1998.

[8] Raymond Kosala, Jan Van den Bussche, Maurice Bruynooghe,
and Hendrik Blockeel. Information extraction in structured
documents using tree automata induction. InPrinciples of
Data Mining and Knowledge Discovery, 6th European Con-
ference, Helsinki, Finland, LNAI 2431, pages 299–310, 2002.

[9] N. Kushmerick. Wrapper Induction: Efficiency and Expresive-
ness.Artificial Intelligence, 118:15–68, 2000.

[10] N. Kushmerick, D.S. Weld, and R. Doorenbos. Wrapper in-
duction for information extraction. InInternational Joint Con-
ference on Artificial Intelligence (IJCAI), 1997.

[11] I. Muslea, S. Minton, and C. Knoblock. A Hierarchical Ap-
proach to Wrapper Induction. InProc. the Third Intern. Conf.
on Autonomous Agents Conference, Seattle, WA, pages 190–
197, 1999.

[12] Frank Neven. Automata Theory for XML Researchers.SIG-
MOD Record, 31(3):39–46, 2002.

[13] D. Shasha, J. Tsong-Li Wang, and R. Giugno. Algorithmics
and applications of tree and graph searching. InACM Symp.
on Principles of Database Systems, pages 39–52, 2002.

[14] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web
usage mining: Discovery and applications of usage patterns
from web data.SIGKDD Explorations, 1(2):12–23, 2000.

[15] Y. Sakakibara. Recent Advances of Grammatical Inference.
Theoretical Computer Science, 185(1):15–45, October 1997.

