1

Information Extraction from Tree Documents by Learning Subtree Delimiters

Boris Chidlovskii
Xerox Research Centre Europe, France
6, chemin de Maupertuis, F-38240 Meylan, chidlovskii@xrce.xerox.com

Abstract

Information extraction from HTML pages has been
conventionally treated as plain text documents ex-
tended with HTML tags. However, the growing
maturity and correct usage of HTML/XHTML for-
mats open an opportunity to treat Web pages as
trees, to mine the rich structural context in the trees
and to learn accurate extraction rules. In this paper,
we generalize the notion afelimiterdeveloped for
the string information extraction to tree documents.
Similar to delimiters in strings, we define delim-
iters in tree documents as subtrees surrounding the
text leaves. We formalize the wrapper induction for
tree documents as learning the classification rules
based on the subtree delimiters. We analyze a re-
stricted case of subtree delimiters in the form of
simple paths. We design an efficient data structure
for storing candidate delimiters and an incremental
algorithm for finding most discriminative subtree
delimiters for the wrapper.

Introduction

pages and richer tag context around content elements, First
the nesting error ratio expressed as the percentage of miss-
ing and mismatching end tags in the HTML files has almost
halved, from 6.7% in 1998 to 3.9% in 2002. Second, the aver-
age number of HTML tags surrounding a content element has
increased by 31%, from 5.1 tags per content element in 1998,
to 6.7 tags in 2002. Additionally, the ratio of tag attribaite
has increased by 26%, from 0.34 attribute per tag in 1998 to
0.43in 2002.

Although it seems very natural considering Web pages
as trees, the majority of the wrapper learning methods treat
HTML pages as sequences of tokens where text tokens are
interleaved with tags. Information extraction from stisng
often follows the finite-state methodology with two alter-
native approaches seen as the global and the local view
at the extraction problem. Thecal view approach stems
from the information extraction from unstructured and semi
structured text{5], when a wrapper is an enhancement of
a basic HTML parser with a set of extraction rules; an ex-
traction rule has often a form of delimiters (landmarkg)

11] that are sequences of tags preceding (or following) an
element to be extracted; for example, delimied><a> re-
quires a text token to be preceded by tagsl> and<a>.

The immensity of Web data valuable for various human needs The global viewapproach assumes that HTML pages are
has led to research on information extraction from the Webinstances of an unknown language and attempts to identify
with the wrapper learning from annotated samples being onthis language. In the case of deterministic automata, it de-
of major research trends. Since the first wrapp&ds crafted
for a specific structure of Web pages, wrapper classes havining examples; in the case of weighted automata/HMM, it
grown in their expressive power and capacity to adopt struclearns the transition probabilities. To accommodate tfarin

tural variations. While the further empowering the Wrappermation extraction, these methods either enhance finite-sta
learning methods and their combinations remains crucial foautomata with extraction ruldd] or adopt the formalism of
developing flexible IE systems, another important goaksais finite-state transducefg; 7].

in the controlled reduction of the sample annotation. The The global view approach benefits from the grammatical
learning from both labeled and unlabeled samples appeargference methods that can learn finite-state automata and
in the case of the wrapper learning, as the learning from partransducers from positive examples; however they often re-
tially annotated Web pages, where the annotation of items iguire many annotated samples to achieve a reasonable gener-
a page is integrated with the learning in an interactionesyst alization. On the other hand, in the local view, using loeal d

and driven by the learning bias and accuracy requirements. limiters in a context-less manner limits the expressive grow

termine the automata structure by generalization from the

Over last 10 years, the HTML format has seen several evoef the delimiter-based wrappers. To combine the advantages

lutionary changes and has achieved a maturity level with af the two approache$2] has extended the notion of delim-
wider use of XHTML/XML for publishing the Web content. iter to previously labeled text tokens. For example, delim-
In November 2002, we have analyzed HTML pages from 34ter PC(none) <t d><a> requires that a current text token is
sites we have being tracked since 1998 (360 to 420 pages ppreceded by a text token labeledremne (skipped) and tags
year). The analysis has discovered a tendency toward cleanga> and <t d>. As result, the wrapper learning algorithm

produces a set of extraction rules equivalent to a mininggl re title-relevant queries. An HTML fragment of an answer is
ular transducer that can be obtained following the globalwi shown in Figure 1. Each answer item on the page contains
approach. a title, one or more authors, conference and pages. The un-
Information extraction from HTML trees consists of clas- ranked tree for the HTML source fragment with the text values
sifying the tree leaves with classification labels from a(%et associated with the tree leaves is in Figure®2.&igure 2.b
The shift from strings to trees considerably enlarges tme-nu shows the binary tree encoding of the unranked tree, as well
ber of tags “surrounding” a text token and enriches the motio as the annotation of leaves with classification labels. Bina
of tag proximity w.r.t. a similar proximity in strings which trees like one in Figure 2.b serve as the training set for the
are a specific traversal of HTML trees. wrapper learning system.
So far, little research addresses the information extrac-
tion from tree documentk3; 6; §. Some researchers study
languages for wrapping tree structures and their expmessiy
power[6]; other researchers develop learning algorithms fo
extraction from tree structurd8; 8|. Interestingly, wrapper ! =))
“builders” in [3] fit the local view approach, while tree au- | ® Leon S. Levy Aravind K. Joshi Some Resullts
tomata in[8] follow the global view approach. In the gram- in Tree Automata. STOC 19778-85
matical inference, certain results has been successfdly e| ...
tended from strings to tred45], allowing to learn tree au-)
tomata and context-free grammars from examples; however, Figure 1: HTML fragment from DBLP.
more research is needed to achieve the same level of robust-
ness and practical utility.
On the other hand, recent research in graph search and the

Web mining[13; 14 offers novel methods for the mining of
tree documents, in particular, finding the most frequent sub / \\\
trees and tree patterns.

PC <a> PC

<a> PC <a>

Search Results for 'tree automata’

2 Information extraction from trees ‘ ‘ ‘ ‘ ‘ \

We represent HTML/XML documents as unranked ordered L.SLevy" *" "AK.Joshi Rsé%mtes 1?7-30 78:85
trees. For badly formatted HTML documents, structure inTree °
checker programs like HTML Tidy free utility from W3C a) Automata
can detect missing and mismatching end tags and map an
HTML source into a complete tree.
In an HTML/XML tree, inner nodes determine the struc- AN
ture of the document, and the leaf nodes and the tag attsibute _— <a>\ #
provide the document content. We folld@2] in abstract- (author) - PC
ing HTML/XML documents as the class of unranked labeled (none) <a>
rooted trees. Tree is defined over an alphabét of tag
names. The set of trees, denotedBy, is inductively de- (author) - PC\
fined as follows: (itle) <a>
1. everyo € Y is a tree (leaf), (cor{ \PC
2.iff o € T andty,ty,...,tn € T, n > 1, then 0 (page/s) \#
o(ti,te,. .., t,) IS atree inly.

There is no a priori bound on the number of children of arigure 2: a) Unranked tree; b) its binary tree encoding and
node in a tree; such tree are therefore unranked. For the sak@notation.

of convenience, we present our method for the binary trees.
Unranked trees can be encoded into binary tree in several Set of encoded ranked trees is dendl&d, wherey =
ways and we adopt an encoding fr¢@r?] as one preserving 5 U {#}.Tointroduce the notion of subtree, we allow a wild-
the adjacency relationship between children of an inneenod card **' to match any tre¢ < T2,. Trees is asubtreeof
Intuitively, the first child of a node remains the first chill 0 binary treet ¢ Tg/, denoted as <1 t, if there exists a node
that node; the other children become right descendantsof thn treet such that one of the following (inductive) conditions
first child in the encoding. Whenever there is a right chilt bu js satisfied:

no left child, a leaf # is inserted. Also, when there is only a
left child, a leaf # is inserted for the right child.

Example 1 Consider the Database and Logic Programming
site? (DBLP) and information extraction from its answersto e s =o0,n = o'(t,t2), ando = o’,

o 5=,

e s=0,n=o0c ando = o,

Available at http:/iwww.w3.org/People/Raggett/tidy/. 3Special symboPC is used for text fragments in the mixed ele-
2www.informatik.uni-trier.detley/db/index.html. ments.

o s = o(ty,t2), n = o'(t),t,), ande = ¢ andi; < any node corresponds to a reverse path and is a delimiter can-
th,te <t didate. Additionally, each index node includes occurrence
for all classification labels surrounded by the correspogdi

A tree leaf delimiteiis a subtree associated with (at least) ‘
)§ubtree in annotated documents.

one annotated leaf. For the binary tree in Figure 2.b, binar

subtreePC (<a>(*, PC(*, #)) is a tree leaf delimiter as- author=2 pages=1

sociated with theonf leaf. titte=1 none=1
The information extraction from tree € T2, consists of conf=1
labeling the leaves afwith classes from the sét, including B
none class for non-extracted leaves.ldaf extraction rulds author=2 Up Up page =1
a triple(s, ¢, cf) wheres is a leaf delimiter¢ is a classifica- conf=17> pC none=1
tion label and-f is the confidence level) < ¢f < 1. Atree
wrapperis a set of leaf extraction rules that are learned from U Right ~ \Up
a set of annotated documents. The tree wrapper works in the auth%rzll ight tlect
coni= ite=

same way as the string wrappers do. In an unlabeled,ttiee <i> - PC # <a> none=1
tree leaves are visited in some traversal order and aradteste 5,thor=1 page=1

with the delimiters of the extraction rules. If one or more _ _

leaf delimiters match the leaf context, the rule with thehiig /Agh\mght Up Up
confidence is applied to label the leaf content. In Figure 2.b 7 <a> # - PC
leaf delimiterPC(*, #) discriminates the legbages with author=1 conf=1 titte=1 none=1
the confidence f=1.0. Instead, the delimitera>(*, PC) is

not discriminatory for theut hor leaf, as the same subtree Figure 3: Fragment of path index for the example tree.
<a>(*, PC) surroundstheonf leaf.

; S Figure 3 shows a fragment of candidate path index of the
2.1 Slmple path delimiters)) sample HTML fragment in Figure 2.b. In the index, node
The learning of tree wrappers requires exploring a largeespa for the reverse path <a> indicates that the corresponding
of leaf delimiters and discovering such ones that proviée th syptree surrounds twaut hor leaves and oneonf leaf.
most accurate classification. In order to control the expene For the candidate index of the depth3, there exists a set of
tially growing number of candidate delimitersin the trées, perfect extraction rules as follows:
low we study and test an important subclass of tree wrappers, _
where leaf delimiters arsimple pathsn a binary tree. (T<a>71, aut hor 1),

A simple path delimiter is (topologically) equivalent to a (T <a@> — PC— <a>aut hor ,1),
simple path in a tree, i.e., all its nodes except the root havé | <a@>— PC—#, conf, 1),
one child, and only the root may have one or two children. A(TPC—#, _ pages, 1),
simple path has two extremes, one extreme is the associatéd PCT <a>T <l i >, none, 1),
leaf and another extreme is an inner node or another leaf. THel PCT <a>1 PC, title, 1),
length of a simple path is given by the number of nodes in the

path. One specific well-known casereot-to-leaf pathsn Like delimiters in the string wrappers, path delimiters are
a tree, when each leaf in the tree is associated with the paghe-dimensional objects. However, unlike string wrappers
starting in the tree root and terminating in the leaf. the algorithm exploits a larger (two-dimensional) space of

. . simple paths in the tree in order to detect paths that ardyhigh
2.2 Candidate path index discriminative for the leaf classification but are “invikibin

To incrementally determine a good set of delimiters from anthe string presentation of HTML documents.
notated samples, we store the path candidates in a spetzial da To manage the candidate index, we are currently using the
structure calleccandidate index The goal of the index gen- simplest criteria, when the index depth is limited by some
eration is two-fold. On one side, the index stores all débmi valued > 1. Figure 4 presents two routines for the in-
candidates, as well as an additional information sufficient dex. Procedureddd Annotation() updates the index with
determine the most discriminative delimiters. On the otheithe path candidates surrounding a new annotated leaf. Func-
side, the index allows to incrementally accommodate new antion Classi fy(l) finds a classification label for a tree leaf. It
notated samples. implements the wide-first traversal through the interseobif
The candidate path index storeverse pathswhich are the candidates in the index and simple paths starting infa lea
special encodings of simple paths; a reverse path statis at tto be labeled.
annotated leaf and traverses tree arcs of three types; teey a
denotedUp (1), Left («+) and Right (—). For example, i ;
reverse patlf PC — # encodes the delimitd?C(*, #) of 3 Preliminary Experiments
thepages leaf in Figure 2.b. We have tested the method of information extraction from
The index is arie data structurewhere all nodes except tree documents using the experimental testbed developed fo
the root are labeled with tags froRf and each transition is wrappers created with the XRCE Iwrap toolKii. First, we
typed withT, «— or —. A path in the index from the rootto have tested the tree wrappers on 14 “easy” sites (including

Let I be the candidate path index
define AddAnnotatior{leaf/, classc):
P(l,d) := set of reverse paths frofrof max lengthd
for each pattp € P(l,d) do
if p € I then
occurrencet,c) := occurrencef,c) + 1
else
n :=the minimal prefix op not in 1
add noden in I
occurrencef,c) :=1
endfor

define Classify(leafi):
candidateList :={}
foriinl,....,ddo
P(l,14) := set of reverse paths froirof depth:
for each patlp in P(l,4) do
if p € I then
s, ¢, cf :=rule inp with the highest confidence
if ¢f =1thenreturn c
elseadd ¢, cf) to candidateList
endfor
endfor
return classc with the highestf in candidateList

Figure 4: Two main routines for the candidate index.

Sites String wrappers Trees wrappers
Prec Rec| Prec| Rec| TRatio

Easy 100 98.8| 99.8| 99.1 2.06

Complex | 89.6 84.3| 96.3| 92.6 3.21

Table 1: Comparison of string and tree wrappers.

wrapper verifies multiple paths surrounding a leaf agaiast d
limiters of the extraction rules.

For the group of complex sites, an average annotated page
has 478.9 leaves to classify. Tree wrappers are here more
efficient in finding accurate delimiters and obtain precisio
of 96.3% and recall of 92.6%. Instead, on average, a tree
wrapper spends 3.21 more time to process a page than a string
parser.

4 Conclusion

We have addressed the problem of information extraction
from tree documents where inner nodes determine the docu-
ment structure and the leaf nodes provide the document con-
tent. We have presented a method that learns the classifica-
tion rules for the tree leaves in the form of subtrees. We have
studied a special subclass of classification subtrees #vat h
a form of simple trees and have adopted a trie data structure
to ease the incremental management of annotated samples.
Preliminary experiments show that the tree wrappers are

Google, Altavista, Excite, CNN, ACM, Elsevier, DBLP Au- More efficient in finding discriminative tree delimiters tha
thor, DBLP Title and some others) for which string wrap- String wrappers, though this high accuracy is achieved by th
pers in the form of regular transducers have been succes§0St Of longer page processing. Further research may fol-
fully learned (that is, with thé™-measure superior to 98%); low several directions. First, we want to investigate if firgl

the wrappers manage to find out highly discriminative delim-more complex subtrees is beneficial for the leaf classificati
iters for all classification label?]. Second, we have tested @nd, importantly, is compatible with the incremental manag
the method on 6 “complex” sites including IEEE, CShiblio, Ment of annotated samples. Second, the current method does
Medline and Cora from the Iwrap collection, and IAF and Notassume any specific traversal of the document tree;-intro
Shakespeare from the Kushmerick collections, for which thélucing a traversal order and extending subtrees to preyious
string wrappers obtain the average precision of 89.6% and rénnotated leaves may be as beneficial as with the string wrap-

call of 84.3%.

pers. Finally, a more efficient structure for managing anno-

For each site, 10 annotated documents were available for@ted samples and delimiter candidates may reduce the page
series of 5 experiments. In each experiment, both string anBr0cessing cost.

tree wrappers have been trained from 3 randomly selected an-

notated pages and tested on other 7 pages. For each groupRé&ferences

sites, we measure the precision/recall and the time a vvrappﬁJé
takes to parse a page and to classify the tree leaves. Fort
moment, we have run experiments with the maximal depth
d=8 of the candidate index. The results of experiments are
summarized in Table 1; the TRatio measure is a ratio of timé2]
a tree wrapper processes a page to the time the corresponding
string wrapper processes the same page.

For 140 annotated HTML pages in the group of easy sites,
an average page has 503.2 leaves to classify. Tree wrappd}
for these sites are as accurate as the string wrappers (see Ta
ble 1). However they are slower; on average, a tree wrap-
per spends 6.51 seconds to parse a page while a string wrap-
per spends 3.16 seconds ofilyThis happens because a tree [4]

4Experiments have been run on Sun Ultra 30 station under So-
laris OS 8.

Denis Bredelet and Bruno Roustant. Java IWrap: Wrapper
Induction by Grammar Learning. Master’s thesis, ENSIMAG,
Grenoble, France, 2000.

Boris Chidlovskii. Wrapping Web Information Providers
by Transducer Induction. IfProc. Europ. Conf. Machine
Learning, Germany, Freiburgvolume 2167 ofLect. Notes

Comp.Sci.pages 61-72. Springer, 2001.

William Cohen and Lee Jensen. A structured wrapper induc-
tion system for extracting information from semi-struetr
documents. InJCAI-2001 Workshop on Adaptive Text Extrac-
tion and Mining 2001.

H. Davulcu, G. Yang, M. Kifer, and I.V. Ramakrishnan. Com-
putational aspects of resilient data extraction from semis
tured sources. IMCM Symp. on Principles of Database Sys-
tems pages 136-144, 2000.

(5]

(el

(7]

(8]

(o]

[10]

[11]

[12]

[13

[14]

[15]

D. Freitag. Information extraction from html: Applicatiafia
general machine learning approachPhoc. AAAI/IAA| pages
517-523,1998.

Georg Gottlob and Christoph Koch. Monadic datalog and the
expressive power of languages for web information exwacti
In Proc. ACM PODSpages 17-28, 2002.

C.-N. Hsu and M.-T. Dung. Generating Finite-State Transduc
ers for Semistructured Data Extraction from the Weifor-
mation System23(8), 1998.

Raymond Kosala, Jan Van den Bussche, Maurice Bruynooghe,
and Hendrik Blockeel. Information extraction in structlire
documents using tree automata induction. Plrinciples of
Data Mining and Knowledge Discovery, 6th European Con-
ference, Helsinki, Finland, LNAI 243pages 299-310, 2002.

N. Kushmerick. Wrapper Induction: Efficiency and Expresive
ness Artificial Intelligence 118:15-68, 2000.

N. Kushmerick, D.S. Weld, and R. Doorenbos. Wrapper in-
duction for information extraction. Imternational Joint Con-
ference on Artificial Intelligence (IJCAIL997.

I. Muslea, S. Minton, and C. Knoblock. A Hierarchical Ap-
proach to Wrapper Induction. Rroc. the Third Intern. Conf.
on Autonomous Agents Conference, Seattle, pdfes 190—
197, 1999.

Frank Neven. Automata Theory for XML ResearcheB$G-
MOD Record31(3):39-46, 2002.

D. Shasha, J. Tsong-Li Wang, and R. Giugno. Algorithmics
and applications of tree and graph searchingAGM Symp.
on Principles of Database Systemages 39-52, 2002.

J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web
usage mining: Discovery and applications of usage patterns
from web dataSIGKDD Explorations1(2):12—-23, 2000.

Y. Sakakibara. Recent Advances of Grammatical Inference.
Theoretical Computer SciencE5(1):15—-45, October 1997.

