# Copyright (c) 1999 Regents of the University of Southern California. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. All advertising materials mentioning features or use of this software # must display the following acknowledgement: # This product includes software developed by the Computer Systems # Engineering Group at Lawrence Berkeley Laboratory. # 4. Neither the name of the University nor of the Laboratory may be used # to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. # wireless1.tcl # A simple example for wireless simulation # ====================================================================== # Define options # ====================================================================== set val(chan) Channel/WirelessChannel set val(prop) Propagation/TwoRayGround set val(netif) Phy/WirelessPhy set val(mac) Mac/802_11 set val(ifq) Queue/DropTail/PriQueue set val(ll) LL set val(ant) Antenna/OmniAntenna set val(x) 670 ;# X dimension of the topography set val(y) 670 ;# Y dimension of the topography set val(ifqlen) 50 ;# max packet in ifq set val(seed) 0.0 set val(adhocRouting) DSR set val(nn) 3 ;# how many nodes are simulated set val(cp) "../mobility/scene/cbr-3-test" set val(sc) "../mobility/scene/scen-3-test" set val(stop) 400.0 ;# simulation time # ===================================================================== # Main Program # ====================================================================== # # Initialize Global Variables # # create simulator instance set ns_ [new Simulator] # setup topography object set topo [new Topography] # create trace object for ns and nam set tracefd [open wireless1-out.tr w] set namtrace [open wireless1-out.nam w] $ns_ trace-all $tracefd $ns_ namtrace-all-wireless $namtrace $val(x) $val(y) # define topology $topo load_flatgrid $val(x) $val(y) # # Create God # set god_ [create-god $val(nn)] # # define how node should be created # #global node setting $ns_ node-config -adhocRouting $val(adhocRouting) \ -llType $val(ll) \ -macType $val(mac) \ -ifqType $val(ifq) \ -ifqLen $val(ifqlen) \ -antType $val(ant) \ -propType $val(prop) \ -phyType $val(netif) \ -channelType $val(chan) \ -topoInstance $topo \ -agentTrace ON \ -routerTrace OFF \ -macTrace OFF # # Create the specified number of nodes [$val(nn)] and "attach" them # to the channel. for {set i 0} {$i < $val(nn) } {incr i} { set node_($i) [$ns_ node] $node_($i) random-motion 0 ;# disable random motion } # # Define node movement model # puts "Loading connection pattern..." source $val(cp) # # Define traffic model # puts "Loading scenario file..." source $val(sc) # Define node initial position in nam for {set i 0} {$i < $val(nn)} {incr i} { # 20 defines the node size in nam, must adjust it according to your scenario # The function must be called after mobility model is defined $ns_ initial_node_pos $node_($i) 20 } # # Tell nodes when the simulation ends # for {set i 0} {$i < $val(nn) } {incr i} { $ns_ at $val(stop).0 "$node_($i) reset"; } $ns_ at $val(stop).0002 "puts \"NS EXITING...\" ; $ns_ halt" puts $tracefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp $val(adhocRouting)" puts $tracefd "M 0.0 sc $val(sc) cp $val(cp) seed $val(seed)" puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)" puts "Starting Simulation..." $ns_ run