
1

To: IANA
From: The MITRE Corporation
Subject: Request for TCP Option number assignments

I Introduction
This is to request that IANA assign TCP option numbers in support of research that we are conducting. We are
experimenting with extensions to TCP to support its operation in stressed environments that may be characterized by
one or more of the following:

• Highly asymmetric bandwidth allocation
• Large delays
• Link outages
• A high degree of corruption-related loss

This research began as part of the Space Communications Protocol Specification (SCPS) work, however we believe
that the options developed have wider, more general-purpose applicability.

The four TCP options for which we are requesting assignment of option numbers are:
1. SCPS-capabilities option. This option allows endpoints to agree/decline to use the following TCP

extensions: Best Effort Transport Service (BETS, a set of partial-reliability extensions for TCP), Selective
Negative Acknowledgments (SNACK), loss-tolerant header compression, and network-layer timestamps.

2. Selective Negative Acknowledgments (SNACK) option. This option is set on ACK segments to indicate
the presence and location(s) of holes in the receiver's out-of-sequence queue.

3. Record boundaries option. This option is set on data packets containing bytes that have been logically
marked as being record boundaries.

4. Corruption experienced option. This option can exist on both data and ACK packets to indicate that a link
in a path is experiencing corruption.

Section II describes the options for which we are requesting assignment of option numbers. Section III contains
descriptions of those options that can be invoked via the SCPS-capabilities option but which do not themselves
require separate option number assignment.

2

II TCP Options for which we are requesting option number assignment.

1. SCPS-Capabilities Option
The SCPS-capabilities option provides an efficient and convenient way for endpoints to agree on which of a set of
TCP extensions they want to use during a connection, and allows specification of a connection ID for use when our
loss-tolerant header compression scheme is enabled. The SCPS-Capabilities Option shall be located in the options
area of the TCP SYN segment and shall contain the following fields, all of which are mandatory.

SCPS-Capabilities Option Type 1 Octet containing the value to be assigned as the
SCPS-capabilities option number

SCPS-Capabilities Option Length 1 Octet containing the value 4.

SCPS-Capabilities Bit Vector 1 Octet containing a bit vector of “can-do” options.
The format of this field is described below

Connection ID 1 Octet containing a 1-byte connection identifier; a
non-zero value indicates the sender's desire to send
compressed headers, while a zero value indicates
that the sender will not compress outgoing headers.

3

The SCPS capabilities bit vector is 1 octet long; its bits have the following interpretation:

Bit Meaning if 0 “Not OK” Meaning if 1 “OK”
BETS 0x80 Connection may not

operate in BETS mode.
Sender is willing to operate in BETS mode1.

SNACK1 0x40 Do not send short form
(length=4) SNACK option.

OK to send short form of SNACK option.
This bit must be set to 1 if the SNACK2 bit
is set to 1.

SNACK2 0x20 Do not send long form
(length>4) SNACK option.

OK to send long form of SNACK option. If
the SNACK2 bit is set to 1 then the
SNACK1 bit must also be set to 1.

Com 0x10 Do not compress TCP
headers.

Sender is willing to accept compressed
headers2.

NL TS 0x08 Network layer timestamps
are unavailable or are
unsuitable for compressing
timestamps.

Network layer timestamps are available and
a timestamp accompanies this segment. If
received, suitable, and available at both
ends, use to compress the TCP timestamp
option3.

Reserved 0x04
0x02
0x01

Reserved for future use.

Notes
• If both TCP endpoints send the BETS bit set to "OK," the connection will operate in BETS

mode.
• The semantics for the combination of the "Com" bit and the connection identifier are as

follows:
Com ConnectionID Meaning
0 0 Will not send or accept compressed headers.
0 X≠0 Will not accept compressed headers. Would like to send

compressed headers and, if peer will accept them, will do so using
connection id X.

1 0 Willing to accept compressed headers; will not send compressed
headers.

1 X≠0 Willing to accept compressed headers; would like to send
compressed headers and, if peer will accept them, will use
connection id X.

• If compressed headers are in use and both TCP endpoints indicate that use of Network Layer
Timestamps (NL TS) is acceptable, then outbound timestamps shall be carried in the
timestamps field of the network-layer header. If there is no timestamp field in the network
layer header, the use of network layer timestamps shall be deemed unsuitable.

1 Best Effort Transport Service (BETS) mode provides a means for applications to allow the transport layer to declare a particular
sequence number range undeliverable after some period of time and to move on with the transmission. BETS can only be
activated via the SCPS capabilities option and, unlike SNACK, no "BETS" option accompanies data segments. Thus BETS does
not require option number assignment from IANA. The operation of BETS mode is outlined in section III; for more information
on BETS mode, see section III of this document and [2].
2 Our header compression scheme provides loss-tolerant (i.e. not differentially encoded) compression of TCP headers and can
only be invoked via the SCPS-capabilities option. The transport protocol number for the compressed header protocol, as
previously assigned by IANA, is 105 decimal. For more information on the compression scheme and the format of the
compressed headers, see section III of this document and [2].
3 Network layer timestamps are only used when our compressed headers are implemented and running over a suitable network
layer protocol. In such cases, the presence/absence of network layer timestamps is indicated in the compressed header; we thus
are not requesting assignment of an option number for network layer timestamps. Network layer timestamps were developed as
part of the SCPS project for use in extremely bandwidth-constrained environments.

4

From the above, the full SCPS-Capabilities Option format is:

0 1 2 3 4 5 6 7
Option Type = "SCPS-Capabilities" (number to be assigned) Octet 1

Option Length = 4 Octet 2
BETS SN1 SN2 Com NL TS Reserved Octet 3

Connection ID Octet 4

2. Selective Negative Acknowledgment Option
We are experimenting with the use selective negative acknowledgments, or SNACKs. The receiving endpoint may
invoke the SNACK Option by sending an appropriately formed SNACK Option on an ACK segment whenever an
out-of-sequence queue forms or a new hole in the out-of-sequence queue forms, provided that the sender advertised
its ability to receive by setting the SNACK1 or SNACK2 bits in the SCPS-Capabilities option during the SYN
exchange. The format for a SNACK option is:

SNACK Option Type 1 Octet containing the value to be assigned
as the SNACK option number.

SNACK Option Length 1 Octet containing the length of this
option. There are two forms of the
SNACK option; the short form occupies
exactly 6 bytes; the long form is variable
length, occupying at least 7 bytes.

Hole1 Offset 2 Octets containing an offset from the
current acknowledgment number of the
first hole being reported for this Option.

Hole1 Size 2 Octets
SNACK Bit-Vector (used only in the
long form)

Variable-Length of at least one octet

The hole1 offset is calculated by subtracting the acknowledgment number from the offset sequence number,
dividing the difference by the amount of user data carried in a maximum-sized segment, and rounding the result
down. The Hole1 Size value is calculated by dividing the hole size (including any remainder from the division used
to calculate the hole offset) by the amount of user data in a maximum-sized segment and rounding up.

The SNACK bit-vector field is used only when the long form of the SNACK option has been authorized during the
SYN exchange and, if present, shall occupy contiguous octets immediately after the Hole1 Size field. The SNACK
bit-vector field maps the sequence space of the receiver’s buffer into MSS-sized blocks beginning one octet beyond
the end of the block specified by the Hole1 Offset and Size fields. Each “0” in the SNACK bit-vector signifies
missing data in the corresponding MSS-sized block in the receiver’s resequencing queue. The SNACK bit-vector is
right-padded with zeros as necessary to ensure that it ends on a byte boundary. Zeros to the right of the last “1” in
the SNACK bit-vector are NOT interpreted as indicating missing data at the receiver.

Upon receipt of a SNACK Option, the data-sender shall retransmit all segments necessary to fill the signaled holes.
It is strongly recommended that these retransmissions occur in the order of ascending sequence numbers.

5

3. Record Boundary Option
The Record Boundary Option provides a way for applications to send and receive record boundary indicators that
are preserved across transmission (and possible retransmission).

The Record Boundary Option shall be located in the options area of the TCP header and shall contain the following
fields, both of which are mandatory:

Record Boundary Option Type 1 Octet containing the value to be assigned as the
Record Boundary option number

Record Boundary Option Length 1 Octet containing the value 2.

When using record boundaries, the sending application indicates, via an Application Programming Interface (API)
specific method to the transport layer, that the final octet of data in a particular request represents the end of a
record. The final octet of the request is then logically marked by the transport layer with the end-of-record mark,
and this logical marking is preserved across transmission and possible retransmission of the marked byte. Further,
the sequence number of the byte associated with the record marker shall always be the highest sequence number in
the segment carrying the Record Boundary Option (i.e. the byte marked as a record boundary shall be the final octet
in the segment). A read operation at the receiver will associate the end of record marker with the marked octet. The
requirement that bytes associated with record boundaries always appear as the last bytes of segments interacts with
the Nagle algorithm and constrains the transport protocol in performing repacketization during retransmission.

The octet associated with the Record Boundary Option shall not be changed by the Transport Service Provider
(TSP); applications at both ends of a prospective connection must determine that a Transport service provides record
boundary capability before connection establishment (e.g., by requesting a particular socket option – beyond the
scope of this document).

Note that there is a potential interaction between the record boundary option and connections using the BETS
partial-reliability capabilities. Specifically, if an application requests both record boundaries and best effort service
(BETS), bytes marked as record boundaries may not be delivered to the receiving application. It is the application
developer's responsibility to ensure that the application is robust against the possibility of such losses.

4. Corruption Experienced Option
The Corruption Experienced Option provides a means for a TCP connection to react to data loss caused by
corruption differently than to loss caused by congestion. Currently, TCP assumes that all loss is a result of
congestion. When losses are due to corruption, TCP’s congestion response is inappropriate, and has a negative
effect on throughput. Use of this option is only appropriate in networks where congestion is explicitly signaled. In
the absence of an explicit corruption signal, loss is assumed to be due to congestion, and congestion recovery
mechanisms are invoked. There remains a further issue that is the subject of ongoing research, which is the
coincidence of corruption in one portion of the network and severe congestion in another. The case in which (all)
congestion signals fail either due to congestion collapse or corruption of the congestion signals is under study.

Corruption signaling is accomplished at both the network control (ICMP) layer and within TCP. A router declares
one of its inbound interfaces to be corrupted in response to a signal from the link layer entity, by polling inbound
error counts, or by other means. The router uses a least-recently-used queue approach to inform recent near-side
users of that link that it is corrupted, and of the source-destination address pairs traversing the corrupted link. This
information is carried to the near-side users via a network layer control message (e.g. a new ICMP message type).
The receiving host responds to this message by sending the “corruption experienced” option to its peer.

The rationale for using a combination of network layer signaling and a TCP option is as follows. We need to inform
both endpoints of the connection that the link is corrupted, but it is a router on the receiving side of the link that has
this information. If the link is corrupted in both directions and the data and acknowledgment streams both traverse
the link, fine; the routers on either side of the corrupted link will inform their respective endpoints via network-layer

6

signaling. Note that in this case, neither router has much hope of sending an ICMP-type message across the
corrupted link to inform the endpoint on the other side of the corruption. If only one of the [data, acknowledgment]
streams traverses the corrupted link, then the most reliable means of notifying the endpoint on the sending side of
that link is by having the endpoint on the receiving side of the link set an option in the TCP header of an outbound
packet, and allowing the packet to traverse the non-corrupted path back to the sending side.

 In response to the corruption experienced option and in the absence of any direct or indirect indication of
congestion, the sending TCP may choose not to cut its transmission rate in response to loss. The format of a
"Corruption Experienced" option is:

Corruption Experienced Option Type 1 Octet containing the value to be assigned as the
Corruption Experienced option number

Corruption Experienced Option
Length

1 Octet containing the value 2.

When a connection receives an indication that corruption has been experienced:
a) the sending TCP shall send the Corruption Experienced Option to the receiving TCP at an implementation-

defined rate not to exceed once per round-trip time;
b) the sending TCP shall continuing sending the Corruption Experienced Option for no more than two round-

trip times after the previous indication of corruption was received;
c) upon receipt of the Corruption Experienced Option from a sending TCP, the receiving TCP shall not send a

corresponding Corruption Experienced Option to its peer.

When a sending TCP receives evidence that packets need to be retransmitted (via duplicate acknowledgments, a
SNACK, or a retransmission timeout) it checks to see if the path is marked as corrupted. If the path is not marked as
corrupted, the sending TCP updates its transmission policy according to the rules of the congestion control algorithm
in use. If the path is marked as corrupted, the sending TCP may choose to not modify its cwnd and ssthresh
variables (i.e. it may choose not to cut its transmission rate). Additionally, when there is evidence that data loss is
due to corruption rather than congestion, the sending TCP may choose not to use the “exponential backoff”
algorithm to increase the time between successive retransmissions.

Any indication of congestion, explicitly signaled or implicit via other information overrides the corruption
experienced option and invokes the congestion response.

III Options That Can Be Invoked Via the SCPS-Capabilities Option Which
Do Not Themselves Require Option Number Assignment

Best Effort Transport Service (BETS) Option
The Best Effort Transport Service (BETS) Option provides a means for applications to allow the transport layer to
declare a particular segment undeliverable after some period of time and to move on with transmission. BETS uses
the R1 and R2 thresholds of RFC 1122, interpreting them as counts of transmissions (not time nor retransmissions).

The value of R1 shall be set by the sending TCP, and the value of R2 shall set by the sending application via a
Transport-interface option. The value of R2 shall be interpreted by the sending TCP as the threshold at which
attempted retransmission of a segment is discontinued. If the value of R2 is set to a non-zero positive number
greater than one, then the value of R1 shall be set to a value less than that of R2.

7

For this section, the following definitions apply:
• SND.UNA is the sequence number of the first unacknowledged octet.
• SND.NXT is the sequence number of the next octet to be sent.
• SEG.SEQ is the sequence number of the first octet in a segment.
• SND.WND is the number of octets of unacknowledged data that the sender is authorized by the receiver to

have outstanding.

When the number of transmissions of the same segment reaches or exceeds the value of R1, the sending TCP shall
operate as it would in fully reliable mode. If the value of R1 is forced to zero because R2 is set to one,

– no action shall be taken in response to the R1 threshold’s being exceeded;
– segments shall be discarded after being initially transmitted (rather than being queued for retransmission).

When either the R2 limit is reached (or exceeded) for a segment, or SND.NXT = SND.UNA + SND.WND, the
sending TCP shall behave exactly as if it had received a positive acknowledgment that advances SND.UNA to
SEG.SEQ of the next segment in the retransmission queue and that makes no change to SND.WND (refer to 3.9 of
RFC 793 and 4.2.2.20 of RFC 1122). That is

1) R2 Reached or Exceeded

Or

2) SND.NXT = SND.UNA +
SND.WND

⇒
Sender behaves as if it had received a
positive acknowledgment that
advances SND.UNA to SEG.SEQ of
the next segment in the retransmission
queue. No changes are made to
SND.WND

The use of BETS over a shared network is highly experimental. It is possible to violate congestion control using
BETS, and certain settings can be particularly dangerous. For example, if R2 is set to 1, the sending TCP will
attempt to send each packet once, will immediately treat the packet as acknowledged, and will move on to the next
packet (without waiting for feedback from the receiving TCP). This case is applicable to the original SCPS
research, but requires other means to ensure that the sending TCP does not congest the network. One example of
such means is a combination of rate control and a simple network where congestion is not an issue, such as a
spacecraft and a groundstation connected via a single, low-rate link. Setting R2 to 1 is almost surely inappropriate
when running over a shared network.

If R2 is greater than 1, the sender expects a stream of acknowledgments (else it will continually time out). For R2
greater than 1, the acknowledgments (or lack thereof) will trigger normal congestion control responses from the
sender.

If R2 is set to zero by an application, it is an escape value that indicates that the TCP should not break a connection
due to excessive retransmissions, nor should it invoke the Best Effort Transport Service. Rather, it is a request to
retransmit an “infinite” number of Times. In this case the value of R1 shall be determined by the implementor.

For SYN segments:
1. an R2-SYN shall be defined and shall be able to be set independently of R2 (in an implementation-

dependent manner, a socket option with the Reference Implementation);
2. R2-SYN shall be greater than or equal to R2;
3. if R2 is increased to a value greater than R2-SYN, then R2-SYN shall be increased to match the value of

R2 (independent of user input).

8

Missing ACK Segments
The sending application may query the sending TCP in an API-specific manner to determine the location and length
of segments that were not acknowledged by the receiver. The sending TCP shall provide the sending application
with a means to determine which data elements may not have been acknowledged by the receiver. The sending TCP
shall specify the missing data elements by reporting a pair of numbers for each missing data element:

– the first number in the pair shall be the octet offset from the start of the connection to the first octet of
unacknowledged data;

– the second number in the pair shall be the octet offset from the start of the connection to the last octet of
unacknowledged data.

Once read by the sending application, the missing-data-element specification pair shall be removed from the list.
System-dependent limits on the amount of information that can be retained by the sending TCP shall be documented
for the implementation.

NOTE – The TCP implementation may restrict the amount of memory that is available for storing these pairs of
numbers and, if so, may treat the available memory as a circular buffer. If an application does not request a report of
missing data elements before the available memory fills, information could be lost.

For TCP implementations that support the Record Boundary Option, the implementation may specify missing data
elements by reporting an additional pair of numbers for each missing data element:

a) the first number of the additional pair shall be the record offset from the start of the connection to the
beginning of the unacknowledged data;

b) the second number of the additional pair shall be the record offset from the start of the connection to the
end of the unacknowledged data.

Missing Data Segments
In Best Effort mode, the receiving TCP shall operate in the same manner as in fully reliable mode until an out-of-
sequence segment (i.e., a segment having a higher-than-expected sequence number) arrives. The receiving TCP
shall store out-of-sequence segments in an out-of-sequence queue. When an out-of-sequence queue is formed, the
receiving TCP shall start an interval timer. The receiving TCP shall use two thresholds:

a) a size-based threshold, BE1, defined as a value in octets that corresponds to a locally administered
percentage of the receiver’s buffer space;

b) a time-based threshold, BE2, defined as the interval in locally sized clock ticks after which out-of-sequence
data will be delivered to the user.

The receiving TCP shall provide the receiving application with a means to set BE1 and BE2.

When the size of the out-of-sequence queue reaches or exceeds BE1 or the interval BE2 elapses, the receiving TCP
shall

a) issue an acknowledgment that acknowledges the data in the missing segment plus any data in the out-of-
sequence queue that would be acknowledgeable were the missing segment received;

b) issue an error, warning or advisory to the receiving application identifying the size of the missing
segment(s) in octets;

c) deliver the subsequent in-sequence data to the receiving application.

NOTE – If missing and acknowledged segments arrive after RCV.NXT has advanced, the receiving TCP may
discard them. Alternatively, the receiving TCP may store them via some out-of-band storage means for off-line
merging with the rest of the data. However, this requires the receiving TCP to maintain the sequence number and
size of each area of missing data.

The BE2 timer shall be used as follows:
a) the receiving TCP shall start the BE2 timer when all in-sequence data have been read by the application

and out of sequence data exist in the receive queue;
b) when the hole at SND.UNA is closed (either by receipt of the missing data, exceeding the BE1 threshold,

or expiration of the BE2 timer), the receiving TCP shall cancel the BE2 timer;
c) if additional holes in the out of sequence queue exist, the receiving TCP shall restart the BE2 timer as

described above.

9

Loss-Tolerant Header Compression4

Standard Van-Jacobson header compression[4] is extremely efficient in reducing the size of a TCP/IP header. Part
of its efficiency comes from delta-encoding, whereby values in the fields of the N+1st TCP header are sent not as
absolutes, but are sent in the compressed header as their difference from their values in the Nth header. A drawback
of this approach is that the loss of a single packet generally incurs a retransmission timeout in order to resynchonize
transmitter and receiver. Some studies have been done[4] where, when a packet with a delta-encoded compressed
header cannot be decompressed at the receiver, the receiver guesses that a packet has been lost, assumes values for
the fields in the lost packet based on the history of the data stream, and tries to uncompress the received packet,
using these guesses. This works well when the data stream is sufficiently predictable that adequate guesses can be
made about missed packets (specifically the size of the data portion of the packet).

We are experimenting with a different form of header compression that is loss-tolerant. That is, the receiver can
decompress any correctly received packet without having received the previous packet in the sequence. We call this
compression scheme Loss-Tolerant TCP header compression. Though not as efficient as Van Jacobson header
compression, it does not use delta-encoding and hence is robust against the loss of a single packet. (Of course, the
lost packet will still have to be retransmitted. The issue here is that packets received out-of-sequence after the lost
packet can be decompressed and stored in an out-of-sequence buffer).

The loss-tolerant TCP compressed header shall contain some or all of the following fields (the numbers after the
fields give their length in octets). Fields designated “mandatory” are required for all compressed headers; the
presence of other fields depends on the contents of the uncompressed TCP header.

– Connection Identifier (mandatory) 1
– Compressed Header Bit-Vector (mandatory) 1-2
– Urgent Pointer 2
– Window 2
– ACK Number 4
– Sequence Number 4
– Outbound Timestamp format dependent
– Echo Reply Timestamp format dependent
– Options Length 1
– Options data dependent
– Pad Field 1
– Checksum (mandatory) 2

COMPRESSED HEADER FIELDS
Connection Identifier
The Connection Identifier field is mandatory for all loss-tolerant compressed headers and shall occupy the first octet
of the compressed header. The Connection Identifier field shall contain the Connection Identifier established during
the SYN-segment exchange of the SCPS-capabilities Option.

4 This is the header compression scheme for which we applied and were granted protocol number 105 decimal.

10

Compressed Header Bit-Vector
The Compressed Header Bit-Vector field is mandatory for all loss-tolerant compressed headers and shall occupy at
least one and no more than two octets beginning with the first octet following the Connection Identifier field. The
Compressed Header Bit-Vector field shall contain information necessary for decompressing the compressed header,
as detailed below.

Bit Name Meaning when set to “1”
More Compressed Header Bit-Vector is 16 bits long rather than 8 bits long.
TS1 TCP Timestamp Option is present.
TS2 A timestamp reply (TS Echo Reply) appears in the compressed header.
RB The last octet of data accompanying this segment is the end of a user-

defined record.
P The Push bit from the uncompressed TCP header is set.
S The compressed header contains a 4-octet sequence number.
A The compressed header contains a 2-octet window specification and a 4-

octet acknowledgment number.
Opts The compressed header contains uncompressed options.
Pad The compressed header contains one octet of padding.
URG The URG bit from the uncompressed TCP header is set.
AckR The ACK bit from the uncompressed TCP header is set (this field is only

valid when the RST bit is set).
RST The RST bit from the uncompressed TCP header is set.
FIN The FIN bit from the uncompressed TCP header is set.

Urgent Pointer
The Urgent Pointer field shall be included if the URG flag is set in the TCP header and shall occupy two octets
immediately following the Compressed Header Bit-Vector field. The Urgent Pointer field shall contain the
unmodified urgent pointer value from the TCP header.

Window
The Window field shall be included if either the window value of the acknowledgment number has changed from
the last segment sent on the connection, or if nothing has changed from the last segment sent on the connection, and
shall occupy two octets immediately following the location for the Urgent Pointer field. The Window field shall
contain the unmodified window value from the TCP header.

ACK Number
The ACK Number field shall be included if either the window value of the acknowledgment number has changed
from the last segment sent on the connection, or if nothing has changed from the last segment sent on the
connection, and shall occupy four octets immediately following the Window field. The ACK Number field shall
contain the unmodified ACK number from the TCP
header.

Sequence Number
The Sequence Number field shall be included if the segment is retransmittable (i.e., user data is included or the FIN
flag is set), and shall occupy four octets immediately following the location for the ACK Number field. The
Sequence Number field shall contain the unmodified sequence number from the TCP header.

Outbound Timestamp
The Outbound Timestamp (TS1) field shall be included if

– a TCP Timestamps Option is present; and
– the SCPS Capabilities Option negotiation indicated that NL Ts were not available;

and shall occupy one or more octets immediately following the location for the Sequence Number field. The TS1
field shall contain the timestamp value to be echoed.

11

Echo Reply Timestamp
The Echo Reply Timestamp (TS2) field shall be included if a TCP Timestamps Option is present and shall occupy
one or more octets immediately following the location for the TS1 field. The TS2 field shall contain the echo reply
timestamp value. Because separate “TS1” and “TS2” bits are used in the Compressed Header Bit-Vector, the
equivalent of RFC 1072 timestamps may be compressed, if desired.

TCP Options Length
The TCP Options Length field shall be included if any TCP options remain after header compression and shall
occupy one octet immediately following the location for the TS2 field. The TCP Options Length field shall contain
the length in octets of the remaining TCP options. Note that the Record Boundary flag, the TS1 and TS2 flags, and
the SNACK flag in the Compressed Header Bit-Vector field exist for the purpose of compressing TCP options.

TCP Options
The TCP Options field shall be included if any TCP options remain after header compression and shall occupy one
or more octets immediately following the TCP Options Length field. The TCP Options field shall contain any TCP
options that have not been compressed.

Pad
The Pad field may be included to ensure the compressed header ends on an even octet boundary and shall occupy
one octet immediately following the location for the TCP Options field. If included, the Pad field shall have a value
of zero. A Pad field shall not be included if its inclusion necessitates adding a second octet to a single-octet
Compressed Header Bit-Vector field. Note that a zero-value second octet of the Compressed Header Bit-Vector
field may also be used for padding a compressed header to an even octet boundary.

Checksum
The Checksum field is mandatory for all loss-tolerant compressed headers and shall occupy the two final octets of
the compressed header. The Checksum field shall contain the value obtained using the standard TCP checksum
algorithm for the contents of the compressed header, the user data, and the TCP pseudo-header.

12

The loss-tolerant compressed segment format is illustrated below. The fields shown with dashed outlines (after the
first octet of the Compressed Header Bit- Vector but before the checksum) are only included when necessary. Their
presence or absence is indicated by the corresponding bits in the Compressed Header Bit-Vector. In the figure, each
optional field shows three elements of information: the bit of the Compressed Header Bit-Vector that signals its
presence, the name of the field, and the length of the field in octets. These are shown in the format “Bit: Name
(Length)”.

0 1 2 3 4 5 6 7
Connection ID Octet 1

More TS1 TS2 RB SNACK Push S A Octet 2
Opts Pad URG ACKR Res RST Res FIN Octet 3

Octet 4

A: Ack Number (4 octets)
S: Sequence Number (4 octets)

TS1: Outbound timestamp (format-dependent)
TS2: Echo reply timestamp (format-dependent)

Opts: Uncompressed TCP Options Length (1 octet)
Opts: Uncompressed TCP Options (data-dependent)

Pad: Optional Pad (1 octet)
Checksum Octet 1
Checksum Octet 2

Data

First Octet
of data
begins at
offset

≤ n ≤ 64

The Loss-Tolerant Header Compression algorithm supports “piggy-backing” of acknowledgments on data-carrying
segments (as in uncompressed TCP), but it is an implementation option whether to exercise this ability. The
compressor for a particular implementation may send acknowledgments (and other information not directly related
to the data being transferred) separately from the data in order to ensure a constant header size for data-carrying
segments. (This can aid in packing fixed-length lower-layer frames when bulk data is to be transferred.) In
accordance with the robustness principle stated in RFC 1122 and in TCP, a decompressor must be prepared to accept
piggy-backed acknowledgments even if the compressor in that implementation does not generate them. (The
robustness principle roughly states “be generous in what you accept and conservative in what you send,” and is
intended to promote interoperability.)

13

DECOMPRESSOR PROCESSING
Upon receipt of a segment of type “Loss-Tolerantly Compressed TCP” from the Network Layer, along with relevant
Network-layer information, such as the length of the packet, incoming source timestamp, and the source and
destination addresses:

a) the decompressor shall use the Connection Identifier and network addresses to find the TCP endpoint with
which this packet should be associated;

b) if the endpoint is not located, the decompressor shall discard the segment and log an error;
c) if the endpoint is located, the decompressor shall use the information from the TCP pseudo header to verify

the checksum in the compressed segment;
d) if the checksum fails, the decompressor shall discard the segment and log an error;
e) the decompressor shall reconstruct the TCP header using a template created from the uncompressed header

of the previous segment received on the connection with all fields except the port information initialized to
zero;

f) the decompressor shall save the reconstructed header for use in decompressing subsequent compressed
packets;

g) the decompressor shall output the decompressed segment for immediate processing by TCP or insertion
into an out-of-sequence queue.

IV References:
[1] J. Postel. Transmission Control Protocol. IAB STD 7. RFC 793, September 1, 1981.

<URL: http://ds.internic.net/rfc/rfc793.txt>.

[2] Space Communications Protocol Specification (SCPS)—Transport Protocol (SCPS-TP). Draft
Recommendation for Space Data System Standards, CCSDS 714.0-R-3. Washington, D.C.: CCSDS,
September 1997. <URL: ftp://ftp.ccsds.org/pub/ccsds/pdf/CCSDS-714.0-R-3.pdf>

[3] The SCPS web page, <URL: http://www.scps.org>

[4] V. Jacobson, Compressing TCP/IP Headers for Low-Speed Serial Links, RFC 1144, February 1990.

[5] Mikael Degermark, Bjorn Nordgren, and Stephen Pink. IP Header Compression, December 1997. Internet-
Draft draft-degermark-ipv6-hc-08.txt (work in progress).

Filename: IANA TP Option Request1.doc
Directory: C:\EUDORA\Attach
Template: C:\Program Files\Microsoft Office 97\Templates\NORMAL.DOT
Title: To:
Subject:
Author: Keith Scott
Keywords:
Comments:
Creation Date: 12/21/98 5:31 PM
Change Number: 137
Last Saved On: 12/22/98 3:29 PM
Last Saved By: Keith Scott
Total Editing Time: 1,062 Minutes
Last Printed On: 12/22/98 4:26 PM
As of Last Complete Printing

Number of Pages: 13
Number of Words: 4,984 (approx.)
Number of Characters: 28,410 (approx.)

