
1

TCP CONGESTION CONTROL IN SHARED SATELLITE ENVIRONMENTS

Keith Scott, Patrick Feighery, and Brian Crow
The MITRE Corporation

Reston, VA

and

Mark Jurik
U.S. Army Information Systems Engineering Command

Ft. Huachuca, AZ

ABSTRACT

This paper describes the use of a transparent TCP
gateway to improve the performance of applications
operating in a shared secure satellite environment.
Typically, a satellite gateway is installed at each end of the
satellite link, and the gateways process all traffic
traversing the link. With the proliferation of virtual
private network (VPN) technologies, multiple encrypted
tunnels can be established over a satellite link. If
transparent TCP gateways are used to optimize
application performance, a pair of gateways are required
at the egress points of each tunnel. Many TCP gateways
perform poorly in this situation because they do not
implement congestion control on their ‘satellite’ sides,
instead relying mainly on rate-control to send data at or
near the bandwidth capacity of the satellite link

Our approach is to use Space Communications Protocol
Standards (SCPS) transparent transport layer gateways,
which are capable of implementing a variety of congestion
control schemes on their terrestrial and satellite sides. By
using a variant of the TCP Vegas congestion control
algorithm, the gateways can communicate indirectly (by
detecting changes in packet round-trip times) to efficiently
share the satellite bandwidth. Results show that this
improves performance over end-to-end TCP without
congesting the network between the gateways and the
uplink as pure rate-control would do.

INTRODUCTION

A. TCP In Satellite Environments
Transmission Control Protocol (TCP) [1] is the Internet
transport protocol that supports many common
applications, including e-mail, ftp, http, and telnet. TCP
provides reliable, in-order delivery of data from sending to
receiving applications, without duplications. That is, TCP
guarantees that all data sent will arrive at the destination,
the data will be delivered to the destination application in
the order in which it was sent, and that no duplicate data
will be delivered to the receiver. TCP achieves reliability

by having TCP receivers acknowledge data sent to them.
If a TCP sender does not receive an acknowledgement for
a particular piece of data, it will retransmit it until the data
gets to the receiver.

In addition to the services described above, modern TCPs
are also required to implement congestion control
mechanisms [2, 3]. Congestion control prevents senders
from flooding the network with data to the point that
intermediate routers have no buffers left and have to
discard data, which TCP will then have to retransmit. For
example, when a TCP session begins, the sender first
sends one packet to the destination and waits for a
response. TCP then sends two packets before waiting for a
response, and so on. This exponential growth phase is
called slow-start, and its purpose is to allow TCP to
quickly determine the available bandwidth on the path to
the destination. At some point, the sending TCP reaches
the flow control limit imposed by the receiver or it causes
a router buffer to overflow, resulting in data loss. If the
flow control limit imposed by the receiver is reached,
transmission continues at that limit until a loss occurs.
When a loss occurs, the receiving TCP will indicate it to
the sender, who then retransmits the lost segment(s). In
addition to retransmitting the lost segments, the sending
TCP cuts its transmission rate in half, after which it
increases it again linearly, at the rate of one extra TCP
segment per round trip. Thus TCP's transmission rate
grows linearly in this congestion avoidance phase, as
opposed to exponentially as in the slow-start phase. It is
worth noting here that the description above is for the
Reno implementation of TCP/IP, which is the most widely
used and implemented version of TCP/IP. The congestion
control algorithm is known as Van Jacobson congestion
control.

Unfortunately, TCP Reno does not perform well on high-
delay, lossy satellite links. The default TCP window size
on most common operating systems varies between 8 and
32 kilobytes (KB). Ideally the window size should be set
to the bandwidth*delay product (BDP) of the channel,
where the delay is the round-trip time. For

2

geosynchronous satellite links, the round trip time
(including processing time) can exceed 600 milliseconds.
Depending on the bandwidth of the channel, it is common
for terminals to become window limited (BDP exceeds
configured TCP window size), resulting in a sending
terminal having to stop transmission until
acknowledgements (ACKs) are received so the sliding
window can be advanced. Thus the sending terminal
operates in a “stop and go” manner, which results in an
under utilized transmission link.

If a datagram is corrupt, TCP assumes the link is
congested, retransmits the lost datagram, and backs off its
transmission rate. Unfortunately, reducing the
transmission rate on an uncongested satellite link results in
degraded performance. The congestion avoidance
algorithm allows the sending terminal to grow linearly to
its pre-loss data rate. Unfortunately, the rate of growth is
paced by the ACK traffic, which must traverse a high
delay satellite link before reaching the sender. Thus the
recovery rate for satellite links is much slower than
terrestrial links, resulting in reduced throughput.

A number of TCP options have recently been developed
and widely deployed to increase performance over long fat
networks [4, 5], and research in the area of satellite
networks is ongoing [6].

B. Split-TCP Gateways
Transport layer gateways can improve TCP performance
across stressed environments by breaking the end-to-end
TCP connection into multiple transport layer connections.
Figure 1 shows an illustration of this concept, where the
transport connections are split into three pieces. In Figure
1, each gateway translates between two transport layer
protocols, using one to communicate with end hosts and
another to communicate with the peer gateway. To see
how this can improve performance, recall that the
receiver's receive window needs to be at least the BDP of
the network in order for the sender to fully utilize the
network resources. Since most end host TCPs have their
window sizes set for the BDP of terrestrial connections,
they can significantly under-utilize the communications
resources when communicating through a geosynchronous
satellite. A pair of TCP gateways at the ground stations
could terminate the terrestrial communications and
implement the large windows TCP option [4] to increase
the window size over the satellite hop.

TCP TCPInter-Gateway Protocol

Application
TCP
IP

Application
TCP
IP

TCP

IP

Transport

Network

TCP

IP

Transport

Network

Gateway Gateway

Figure 1. A Split-TCP Connection over a Satellite Channel

Most inter-gateway protocols are a modified TCP stack
running on top of IP at the network layer. Typical gateway
implementations use a pure rate-control strategy to keep
the satellite channel full. Pure rate-control introduces
traffic onto the satellite link at a specified rate (commonly
the rate of the satellite link). The BDP on the satellite side
of the gateways is tuned for the satellite link. It is also
assumed that a single pair of gateways at either end of the
satellite link will process all the traffic. Generally, all loss
is assumed due to corruption and not congestion, therefore
gateways will not back off their rate of transmission when
loss is encountered. Gateways are usually designed to be
transparent to the host systems. Normal default window
sizes, etc., on the host systems are sufficient for proper
gateway functioning. For networks where a single pair of
gateways can process all traffic at the egress points of the
satellite link, current gateway implementations will
provide significant TCP throughput enhancement over a
standard end-to-end TCP connection.

THE PROBLEM

Satellite gateways may not work well when they don’t
process all traffic entering and leaving a satellite link. One
example is when traffic is segregated using virtual private
networks (VPNs). VPNs are typically an incorporation of
tunneling, authentication, and encryption technologies.
TCP gateways will interoperate with VPN devices, but
they must be installed on the link prior to entering an
encrypted tunnel. There are two reasons for this:
• The gateways must see the original IP and transport

headers in order to terminate a TCP connection with a
local host.

• The devices installed on the tunnel-side of the VPN
device are normally prevented from communicating
with devices on the non-tunneled side of the VPN
device.

Satellite Internet service providers and very small aperture
terminal (VSAT) IP data service providers have developed
a number of gateway architectures and inter-gateway
protocols. Many of the inter-gateway protocols rely
heavily on pure rate control to send data across the satellite
hop; they do not implement congestion control on their
‘satellite’ sides. This can pose difficulties if multiple
independent gateways are connected to a single satellite

3

uplink ground station, say through a common router. In
these cases either:

1. The bandwidth of the satellite link can be
partitioned a priori between the various gateways
so that even if all of them are transmitting at their
full rates, they do not overrun the uplink

2. The various gateways need to communicate
amongst one another to coordinate their
transmission rates so as not to overrun the uplink

3. If each gateway pair is configured to rate-control
traffic onto the channel at the full bandwidth of the
satellite link, network congestion will likely occur
if more than one gateway pair is simultaneously
active.

The first option does not allow for the most efficient
sharing of the scarce satellite resource. Under this option,
a single source would be unable to use more bandwidth
than was allocated to its gateway, even if other users did
not need the bandwidth. The second option is often
infeasible from a policy standpoint, as it would require
coordination between gateways in different privacy areas.
The third option, where each gateway sets its maximum
transmission rate to that of the satellite link, allows a
single user to take the entire bandwidth when needed, but
makes no provision for effective sharing of that bandwidth
when there is contention. Specifically, if multiple users
transmit at the same time, data may be dropped at the
satellite uplink due to buffer overflows (see Figure 2).

Application
TCP

IP
TCP

IP

Transport
IP

Transport IPSec

IP

Application
TCP

IP
TCP

IP
Transport

IP
Transport IPSec

Application
TCP

IP
TCP

IP

Transport
IP

TransportIPSec

IP

TCP

Application
TCP

IP
TCP

IP
Transport

IP
TransportIPSec TCP

VPN DeviceSplit-TCP GW
WS

WS
Split-TCP GW VPN Device

Router Router

VPN Device Split-TCP GW
WS

VPN Device Split-TCP GW
WS

Congestion

IPSecTCP TCPIGP IGP

Resulting
In

Packet Loss

Figure 2. Congestion using Shared Gateways

SCPS-TP GATEWAYS

Our approach is to use split-TCP gateways based on the
SCPS Transport Protocol (SCPS-TP[7]) to reliably send
data across the satellite hop. The SCPS specification
includes sender-side rate control, as well as admitting a
number of congestion control strategies. Thus by using a
SCPS gateway the inter-gateway traffic in our system can
be subjected to congestion control. The main advantage of
this method is more efficient sharing of the satellite
resource. For example, with a SCPS gateway a single TCP

session can use the full satellite bandwidth if no other user
contends for it. If multiple users vie for the channel, the
congestion control scheme detects the contention and
backs each gateway’s transmission rate down so that the
channel is shared efficiently. The sender-side rate control
ensures that the congestion control algorithm does not
over-saturate the link, as could be the case if Van Jacobson
congestion control were used between the gateways.

The SCPS-TP protocol is completely interoperable with
TCP. SCPS includes a set of IANA registered options that
negotiate the various capabilities and extensions during the
connection establishment phase. These include: Selective
Negative ACKnowledgment (SNACK); a partial reliability
transport mechanism; a loss-tolerant header compression
algorithm; record boundaries markings; and corruption
experienced. SCPS-TP also implements other techniques
to perform "better" in various environments. These
include alternate congestion control strategies; rate control
mechanisms; ability to differentiate and respond
differently to loss caused by corruption, congestion, and
link outages; reduced acknowledgement modes for highly
asymmetric channels; and methods for dealing with
extremely lossy channels.

The following list contains the SCPS extensions that are
used within the SCPS-TP gateway. The SNACK option,
sent by the receiver when loss has been detected, provides
an immediate indication of a lost segment, which must be
retransmitted. SNACKs can be more bandwidth-efficient
than SACKs, as SNACKs do not have to appear on every
acknowledgement when there is an out-of-sequence queue
at the receiver. A combination of SNACK and SACK,
however, might provide the best performance, and this is
an area of ongoing work. In addition to using SNACK, the
following four congestion control strategies can be
applied: rate control, Van Jacobson congestion control,
TCP Vegas (assume congestion), and TCP Vegas (assume
corruption).

As noted above, the SCPS-TP gateways can implement a
variant of the TCP Vegas implementation. The Vegas
congestion control strategy can proactively detect
congestion by measuring network queueing delay. This is
accomplished by measuring the round-trip times using
return ACK packets. If the round-trip time starts to
increase, TCP Vegas assumes traffic is starting to queue in
network device buffers. TCP Vegas will then reduce its
rate of transmission until round-trip times decrease, at
which point more traffic is introduced onto the network.
By relying on queueing delays, gateway pairs operating on
independent VPNs do not need to be aware of other
gateways or traffic sources in the network that jointly vie
for the satellite link.

4

In our implementation, TCP Vegas is implemented jointly
with rate-control. Since the speed of the link is known by
the gateways, it can accurately set buffer sizes and the
TCP window size to ensure the satellite channel can be
fully utilized.

In addition to the queueing delay-based congestion control
of TCP Vegas, we can also make assumptions about traffic
loss. We can treat loss as congestion and reduce the
transmission rate, using the Van Jacobson implementation.
We can also make the assumption that loss is due to
corruption, which does not result in dropping the
transmission rate. When we assume loss is due to
corruption, we rely exclusively on queueing delay to signal
congestion. In our testing scenarios, we found that Vegas
assume corrupt works the best. One of the key advantages
of the SCPS-TP gateways is that they can be setup behind
independent VPNs and dynamically adjust their
transmission rates to keep the satellite channel full without
congesting network devices.

EXPERIMENT SETUP

We are concerned with improving performance of a
system such as that illustrated in Figure 3. Here data of
different privacy areas shares a single satellite channel.

Application
TCP
IP

TCP
IP

SCPS-TP

IP
IPSec

IP

Application
TCP
IP

TCP
IP IP

IPSec

Application
TCP
IP

TCP
IP IP

IPSec

IP

TCP

Application
TCP
IP

TCP
IP IP

IPSec TCP

VPN DeviceSCPS GW
WS

WS
SCPS GW VPN Device

Router Router

VPN Device SCPS GW
WS

VPN Device SCPS GW
WS

IPSecTCP TCPSCPS-TP SCPS-TP

SCPS-TP

SCPS-TP SCPS-TP

SCPS-TP SCPS-TP

SCPS-TP SCPS-TP

Figure 3. Emulated Test Configuration

Our lab setup emulates the configuration of Figure 3. To
simulate the satellite channel, we use a MITRE developed
data link simulator that is capable of delaying packets,
imposing random errors, and restricting the bandwidth
available to particular connections. We simulated a 512
kbps satellite link with 0.640 seconds of round-trip delay,
and a random bit error rate (BER) of 1x10-6. The purpose
of our testing is to observe the behavior of the channel
when multiple test flows are initiated across the simulated
satellite link. We implemented several different
congestion control schemes in the gateways, and observed
the behavior by monitoring the individual streams using
the Tele Traffic Tapper (ttt) application. The plots shown

in the next section are throughput plots from the ttt
application.

The experiments consist of sample runs of the follow
configurations:

• TCP running end-to-end without gateways.
• TCP flows gatewayed via the SCPS transport

gateway, using only pure rate control on the
satellite network.

• TCP flows gatewayed via the SCPS transport
gateway, using the Vegas congestion control
algorithm (with loss assumed to be corruption)
along with rate control on the satellite network.

RESULTS

The plots below show the throughput versus time for two
competing TCP traffic flows. The initial traffic flow is a
10 megabyte (MB) file, followed later by the initiation of a
5 MB file via a separate tunnel. The plots were obtained
using the ttt application, which promiscuously monitored
traffic on the sending side between the VPN devices and
the router.

A. TCP Running End-to-End (no gateways)

10.10.3.12

10.10.2.11

10.10.3.14

10.10.2.13

Host Breakdown

Time (sec)
0 10 20 30 40 50

T
ra

ff
ic

 (
K

bp
s)

0

500

1000

Figure 4. Standard TCP Reno Streams (no gateways)

10.10.3.12

10.10.2.11

10.10.3.14

10.10.2.13

Host Breakdown

Time (sec)
60 80 100 120 140

T
ra

ffi
c

(K
bp

s)

0

500

1000

Figure 5. Standard TCP Reno Streams (no gateways)

The plots in figures 4 and 5 illustrate standard end-to-end
TCP connections, showing the impact of the satellite
channel delay and packet errors on the throughput of the
streams. When only one stream is active (see figure 4),
less than half of the available bandwidth is used by the
active stream. This is common when the TCP windows
are not increased to compensate for the delay in the
channel (i.e., window limited). Due to the TCP window
limitations of both connections, neither connection impacts
the other from a performance standpoint. Additional
connections would start to impact the throughput
performance of the other connections. The jagged nature

5

of the curves is an indication that packet errors are
affecting the performance of each connection. TCP Reno
uses Van Jacobson congestion control, resulting in the
sending terminal scaling back its rate of transmission
following loss.

B. Gateways Using Rate Control
10.10.2.13

10.10.3.14

10.10.2.11

10.10.3.12

Host Breakdown

Time (sec)
20 40 60 80 100

T
ra

ff
ic

 (
K

bp
s)

0

500

1000

Figure 6. Gateways Using Rate Control

Figure 6 illustrates two TCP streams, each independently
gatewayed using pure rate control. The gateway pairs for
each stream push data onto the network at the full capacity
of the satellite channel. The traffic offered to the network
is twice the capacity of the satellite channel, resulting in
buffer overflow and lost traffic. With pure rate control, the
gateways do not backoff their transmission rate when loss
is encountered, which results in significant network
congestion and poor application throughput performance.

C. Gateways Using TCP Vegas Congestion Control
10.10.2.13

10.10.3.14

10.10.2.11

10.10.3.12

Host Breakdown

Time (sec)
0 20 40 60 80

T
ra

ff
ic

 (
K

bp
s)

0

500

1000

Figure 7. Gateways with TCP Vegas CC

10.10.2.13

10.10.3.14

10.10.3.12

10.10.2.11

Host Breakdown

Time (sec)
160 180 200 220 240

T
ra

ff
ic

 (
K

bp
s)

0

500

1000

Figure 8. Gateways with TCP Vegas CC

Figures 7 and 8 illustrate two independent TCP streams
gatewayed using a combination of rate control and TCP
Vegas congestion control. In our TCP Vegas variant, we
make the assumption that all loss is due to corruption.
Therefore the gateways only reduce their transmission rate
when queueing delay is experienced. Figure 7 shows a
TCP session that is already in progress. The session grabs
all available bandwidth of the satellite link. A second ftp
session is started using a separate gateway pair
approximately 35 seconds after the first session is started.
The two ftp sessions converge to equally share the satellite

bandwidth. Figure 8 shows the two ftp sessions later in
time. When one ftp session finishes, the other ramps back
up to fully utilize the channel.

CONCLUSIONS

TCP satellite gateways are proven to improve TCP
throughput across high delay, lossy, satellite links.
Satellite gateways typically use pure rate control to keep
the channel full. This is ideal when a single gateway pair
processes all traffic entering and leaving a satellite link.
However, when multiple gateway pairs share a satellite
link, congestion will likely occur.

When multiple gateway pairs are required or when a single
satellite gateway pair does not process all traffic traversing
the satellite link, we have shown that a SCPS-TP gateway
implementation using a combination of rate control and a
variant of the TCP Vegas congestion control scheme
works very well. Our gateways dynamically share the
available bandwidth and promote fairness across the
competing TCP streams.

REFERENCES

[1] W. R. Stevens, TCP/IP Illustrated, Volume 1,
Addison-Wesley, Reading, MA 1994.

[2] V. Jacobson, “Congestion Avoidance and Control,”
Proceedings of ACM SIGCOMM ’88, pp. 314-329,
Stanford, CA, August 1988.

[3] M. Allman, V. Paxson, and W. Stevens, “TCP
Congestion Control”, RFC 2581, April 1999.

[4] Jacobson, V., Braden, R. and D. Borman, "TCP
Extensions for High Performance", RFC 1323, May
1992.

[5] M. Allman, D. Glover, and L. Sanchez, “Enhancing
TCP Over Satellite Channels using Standard
Mechanisms”, BCP 28, RFC 2488, January 1999.

[6] M. Allman et. al., " Ongoing TCP Research Related
to Satellites", RFC 2760, February 2000.

[7] R. Durst, G. Miller, and E. Travis, “TCP Extensions
for Space Communications,” Wireless Networks,
vol. 3, no. 5, pp 389-403, 1997.

	ABSTRACT
	INTRODUCTION
	TCP In Satellite Environments
	Split-TCP Gateways
	
	
	THE PROBLEM
	SCPS-TP GATEWAYS
	EXPERIMENT SETUP
	RESULTS

	TCP Running End-to-End (no gateways)
	Gateways Using Rate Control
	Gateways Using TCP Vegas Congestion Control
	
	
	CONCLUSIONS
	REFERENCES

