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Motivation

Growing prevalence of sensors, continuously 
gathering observational data with high spatial 
and time granularity

Increased resource needs for storing, managing, 
analyzing and sharing

Investigate Streams as first-class entities in  
Workflow Systems over heterogeneous resources

What programming abstractions?

How to provide these in Cloud/heterogeneous 
environments?

What (new) application areas can benefit from them?
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Use-case: Reference Evapotranspiration

Reference Evapotranspiration (ETo)

Planning daily water use  (CA farmers, turf managers)

Defining water resource policies

improve irrigation scheduling and monitor water stress.

Current State

Single-machine, monolithic �‘workflow�’ orchestrated by make

Executed once a day to create ETo maps for CA

Computed from streaming observational data:

Geostationary Operational Environmental Satellite (GOES)   
(GOES-WEST)

California Irrigation Management Information System
(CIMIS) stations
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Use-case High-level Overview

GOES West imagery 

CIMIS weather 
station point data

Reference
ETo

Hourly cloud cover

Complex Makefile
Using GRASS GIS
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Use-case Overview
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App Domain Requirements
Need to scale existing applications for

Increased data quality [spatial and time]

Batch-processing of historic data with novel analysis algorithms

Need to share computation and data with a large community

Benefits from Scientific Workflow Technology and Streaming

Streaming as abstraction maps well to application domain

Better management of dataflow pipeline

Increased sharing of data and pipeline steps

Benefits of the Cloud as computational platform

Theoretic CPU scale-out limited only by $$$

Pay-as you go storage abstractions (BLOB/Tuple store)

Simple service abstractions (BLOB, table, worker, �…)

Relatively easy to access/maintain (vs. GRIDS, vs. owning cluster)
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Challenges for Cloud Usage

Application migration

Data movement slower / more complex

Data-source to cloud

Cloud to desktop

Desktop to cloud

Intra-cloud movement between workers and persistent 
storage

Unpredictability

Non-homogeneous data transfer rates

Non-homogeneous disk access rates

Non-homogeneous computation speeds
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Contributions

Migrating legacy script to a cloud-enabled 
workflow model

Investigating data movement strategies

BLOB storage as easy-accessible persistent cloud 
storage

Direct streaming from Client to Cloud via TCP socket

Streaming faster by a factor of 5

Investigating scale-out behavior

Ran 7 workflows in parallel

Almost linear speed-up for workflow steps and data 
movement
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Workflow Design

Workflow engine on client, that orchestrates 
workflow tasks

Here, we use Restflow workflow system

Light-weight, Java-based workflow engine with scripting 
capabilities and automated tracing of data flow and 
invocation timings

Workflow tasks run on the Cloud, implement 
application logics

Here, we use windows Azure cloud

We used the PaaS (.Net program) infrastructure

Access queues, tables, and BLOB via REST interface
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Client �– Cloud Communication

BLOBBLOB

DiskDisk

REST Storage
Service API

Workflow Engine
on desktop

Instructions via Message queues [Request/Response]

Input / Output data via BLOB-store

Workflow tasks are stateful, i.e. locally written files from earlier 
tasks are re-used by later tasks.

all tasks of a single ETo computation are run on the same   
cloud machine
achieved via reserving a cloud machine as first task and
switching to private request/response queue
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Cloud-Migrating of ETo computation

Stage Input

Reserve worker, data up+download via BLOB; 14 days (315MB)

Make Cloud-cover & Make ETo

Re-used legacy Make implementation that calls GRASS, Perl and 
bash scripts

Publish Output data

Upload output data to BLOB and return URL for user

Served by Azure Web-hosting worker

Make Clean and release worker VM

Stage Input
Data

Stage Input
Data

Make Cloud
Cover

Make Cloud
Cover Make ET0Make ET0 Publish Output

Data
Publish Output

Data Make CleanMake Clean
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Improved Data Movement using Streams

BLOBBLOB

DiskDisk

REST Storage
Service API

Workflow Engine
on desktop

Simple API

Fault tolerance

2 Data transfers

Slower bandwidth

DiskDisk

BLOBBLOB

Socket Load
Balancer

REST Storage
Service API

Workflow Engine
on desktop

Direct transfer

Application can 
work on incoming 
data incrementally

Fault tolerance
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Changes for Streaming

Stage Input
Data

Stage Input
Data

Make Cloud
Cover

Make Cloud
Cover Make ET0Make ET0 Publish Output

Data
Publish Output

Data Make CleanMake Clean

Stage Input

Reserve worker via �“Socket Load Balancer�”

Stream input data to CloudVM directly

Rest is unaltered. We still communicate over queues,

And store the final output in BLOB for persistency.

Make Cloud-cover & Make Et0

Publish Output data

Make Clean and release worker VM
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Evaluation

Investigate effectiveness of Cloud Implementation

Compare local vs. Cloud execution

Investigate Scale-out for 7 concurrent workflows

Compare BLOB vs. Streaming strategy

Experimental Setup

Local production machine: 2-core, 2.8GHz, 2GB RAM, NFS-
mounted home+data (20MB/s)

Client machine: gigabit to the internet

Azure worker machine: 1.6GHz, 1.7GB RAM, 250GB local disk 
space, running 64bit Windows Server 2008. Co-located with 
data storage account US North Central Data Center

Time measured by Restflow actor-invocation tracing capabilities

Experiments run 4 times, averages and std-dev reported
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Single Local and Cloud Executions

Cloud-cover 
comparable
ETo performed 
better on cloud 
than on local 
machine (NFS)
Local outperforms 
BLOB
Streaming beats 
local by 11%
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Speedup of Concurrent Cloud Workflows

Ran 7 workflows
in parallel (315MB 
input data each)
Linear speedup of 
computational 
tasks
25% overhead for 
data movement
(220s vs. 177s for streaming)

Overhead for 
zipping input data 
on client  

Summary:
BLOB:    speedup/#proc = 0.80
Stream: speedup/#proc = 0.92
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BLOB vs. Streaming Single WF

315 MB of data in 15 zip files 

BLOB

Client->BLOB: 1030s  13% stdev (300KB/s)

BLOB->VM:   32s  (10MB/s)

Stream

180s  6%stdev  (1.75MB/s)

Streaming 5x faster, and more stable
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BLOB vs. Streaming: Parallel WFs
BLOB

Client->BLOB: 800s�—1800s; avg:1172s; (270KB/s); stdev 44%
(1.8MB/s total)

BLOB->VM: 32s (10MB/s) stdev 35%    (70MB/s total)

Stream
Avg: 227s    1.35MB/s  stdev 6%     (9.7MB/s total)

Streaming faster by >5x   and more stable

Overall time: streaming 130% / 160% faster (single/parallel)
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Findings / Summary

Migrating ETo to cloud resources feasible from 
performance-point-of-view

Streaming paradigm fits application domain well

Streaming data transport beneficial for performance

Much faster than going through BLOB storage

More consistent performance

Streaming on average 5x faster than via BLOB;
total wall-clock time improvement 130% / 160%
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Related Work
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Ongoing / Future Work

Compare the impact of streaming on different 
cloud platforms

Investigate service abstraction for streams 

Easy to use such as BLOB, table, queues

Built-in fault-tolerance, persistence, and sharing

Investigating novel streaming apps

Energy management (incoming smart-meter streams)

Collaborative execution of workflows in the Cloud

Incorporate pay-as-you-go cost model
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