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Abstract. Integrating data from heterogeneous data sources is a critical problem that has received a great deal of
attention in recent years. There are two competing approaches to address this problem. The traditional approach,
which first appeared in Multibase and more recently in HERMES and TSIMMIS, often called global-as-view,
defines the global model as a view on the sources. A more recent approach, sometimes referred to as local-as-view
or view rewriting, defines the sources as views on the global model. The disadvantage of the first approach is
that a person must re-engineer the definitions of the global model whenever any of the sources change or when
new sources are added. The view rewriting approach does not suffer from this drawback, but the problem of
rewriting queries into equivalent plans using views is computationally hard and must be performed for each query
at run-time.

In this paper we propose a hybrid approach that amortizes the cost of query processing over all queries by
pre-compiling the source descriptions into a minimal set of integration axioms. Using this approach, the sources
are defined in terms of the global model and then compiled into axioms that define the global model in terms of
the sources. These axioms can be efficiently instantiated at run-time to determine the most appropriate rewriting
to answer a query and facilitate traditional cost-based query optimization. Our approach combines the flexibility
of the local-as-view approach with the run-time efficiency of the query processing in global-as-view systems. We
have implemented this approach for the SIMS and Ariadne information mediators and provide empirical results
that demonstrate that in practice the approach scales to large numbers of sources and that the approach can compile
the axioms for a variety of real-world domains in a matter of seconds.
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1. Introduction

The problem of integrating data from heterogeneous collections of sources is ubiquitous.
With the rise of the Internet as well as intranets the number of available and relevant sources
to an organization continues to grow. One effective solution to this problem is the devel-
opment of information mediators (Wiederhold, 1992). An information mediator provides
seamless access to a collection of related, but possibly heterogeneous and distributed data
sources. There are a variety of approaches to building information mediators, illustrated
by different approaches used in systems such as TSIMMIS (Hammer et al., 1995), Garlic
(Haas et al., 1997; Roth and Schwarz, 1997), HERMES (Adali et al., 1996), Information
Manifold (Levy et al., 1995b), InfoSleuth (Bayardo et al., 1997), Infomaster (Duschka and
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Genesereth, 1997), SIMS (Arens et al., 1993; Arens et al., 1996), and Ariadne (Knoblock
et al., 1998; Knoblock et al., 2000) to name a few. However, one issue that is common
to all of these approaches is how to scale these systems to large numbers of information
sources in a way that is both computationally tractable and natural to the developers of new
applications.

In information mediators, a central problem is how to efficiently process queries. This
query optimization problem consists of both selecting a set of sources that can be used to
answer a query and generating a cost-effective query access plan that specifies the order
of retrieval and manipulations on the data. In this paper we focus on the first problem
(which has been referred to as both source selection and query planning in the literature)
for a mediator with an expressive language for describing the contents of sources. In a
separate paper (Ambite and Knoblock, 2000) we present our approach to generating query
plans using a cost-based optimizer that takes advantage of the source selection techniques
presented here. In this paper we focus on the problem of how to compactly represent and
efficiently use the alternative combinations of sources that can be used to answer queries
posed to a mediator.

Our approach to source selection is to build a global domain model (sometimes referred
to as a world model) for an application and describe the contents of each of the sources
in terms of the domain model. Based on this model, our system compiles the definitions
of each of the sources into a minimal set of axioms that describe the possible ways the
sources can be combined to produce any of the information that may be requested for each
class in the domain model. The compilation algorithm is incremental, which means that
when new sources are added, the system can efficiently update the axioms. Our approach
provides flexibility and source independence by describing sources in terms of the domain
model and it provides an efficient mechanism to incorporate source selection into the query
processing.

The solution presented in this paper can be viewed as a combination of two existing
approaches:

Sources modeled as views on the domain model: this approach, also known as local-as-view
or view rewriting (Levy et al., 1995b), has the advantage that each source is modeled
independently of all the other sources, so new sources can be added and existing sources
can be modified without changing the domain model. The disadvantage is that performing
the view rewritings is computationally hard (Levy et al., 1995a) and finding a complete
answer to a query requires computing query containment in both directions. Moreover,
this expensive computation would have to be done repeatedly at query planning time. In
contrast, our approach has the advantage of source independence without the computa-
tionally difficult problem of testing query containment during query planning.

The domain classes modeled as views on the source models: this approach, called global-
as-view, (Landers and Rosenberg, 1982; Hammer et al., 1995; Roth et al., 1996) has the
advantage that the sources required to provide the data for a specific class of information
can be determined by simply looking up the definition of the domain class. The disad-
vantage is that it is difficult to construct and maintain the required axioms. For example,
adding a new source to the system may require changes in many of these definitions.
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Moreover, in previous systems these changes are done manually, which represents a
time-consuming and error-prone process. In contrast, our approach provides the advan-
tage of being able to quickly determine the combination of sources for a domain class
since they are pre-compiled from the source definitions and avoids the disadvantage of
having to manually build and maintain the definitions.

A specific instantiation of this general approach to source selection has been developed
for the SIMS (Arens et al., 1993; Arens et al., 1996) and Ariadne (Knoblock et al., 1998)
information mediators. This paper describes the language used in SIMS and Ariadne for
defining sources, the algorithms for compiling the domain axioms from the source defini-
tions, the approach to instantiating these domain axioms at run-time, and the relationships
with previous work. We provide experimental results from a number of real-world applica-
tions to show that the axiom compilation runs in a matter of seconds in practice. We also
provide experimental results on a set of synthetic domains to show that the axiom compila-
tion algorithm scales to large domains that involve fifty or more interrelated sources, which
match or exceed the complexity of real-world domains. Overall, our approach provides a
simple, efficient, and elegant solution for integrating heterogeneous data sources.

2. Background

In the SIMS project we are addressing the problem of providing integrated access to hetero-
geneous distributed information sources. To build an application in SIMS, a user creates a
domain model using the Loom (MacGregor, 1990) knowledge representation language and
describes the source contents in terms of this model. The domain model establishes a fixed
vocabulary describing object classes, their attributes, and the relationships among them.
SIMS accepts queries in this domain-level language, processes these queries, and returns
the requested data. Thus, the queries to SIMS do not contain information describing which
sources are relevant to finding their answers or where they are located. Queries do not need
to state how information obtained from different sources should be joined or otherwise
combined or manipulated. It is the task of the system to determine how to efficiently and
transparently retrieve and integrate the data necessary to answer a query.

In the previous work on SIMS (Arens et al., 1996) the selection of the sources was
performed dynamically by searching the space of query reformulations given the domain
model and source descriptions. This approach provided the flexibility we wanted in terms of
dynamically selecting sources for answering queries; however, it did not scale well to large
numbers of sources since the search space becomes quite large as the number of sources
increases. The work described in the remainder of this paper extends our previous work
by pre-compiling the source definitions into a set of domain axioms. The domain axioms
compactly express the possible ways of obtaining the data for each class in the domain
model. This approach provides the same flexibility and extensibility of the previous one
and can perform the source selection much more efficiently.

In the remainder of this section, we review the language for describing an application
domain, describe how the sources are defined in terms of the domain model, and then present
a detailed motivating example that is used throughout the paper.
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2.1. Modeling the domain and the sources

An information mediator typically has a representation of its domain of expertise, called the
domain model, and descriptions of information sources in terms of the domain model. In
SIMS, the domain model is specified in a subset of Loom (MacGregor, 1990), which is a KL-
ONE style knowledge representation language (Brachman and Schmolze, 1985). KL-ONE
style languages, also known as description logics, contain unary relations (classes), which
represent the classes of the objects in the domain, and binary relations (attributes), which
describe relationships between objects. Classes are defined using a set of class constructors.
In the SIMS language, we support the following ways of constructing classes:

• Primitive: A primitive class is defined as a subclass without specifying the constraints
that differentiate it from the parent class.

• Defined: A class can be defined using the following class constructors:

– Attribute introduction: A class C can be defined as having an attribute R relating
class C to another class D.

– Conjunction: A class can be specified as a conjunction of other classes or constraints.
– Disjunction (Covering): A class can be specified as a disjunction of its subclasses.
– Equality and Order Constraints: A class can be specialized by conjoining it with

order constraints of the type: attribute θ constant, where θ ∈ {=, <, ≤, >, ≥}.

A set of attributes is associated with each class, and any subclass of a given class, C ,
inherits all of the attributes of C . For purposes of integration, we also require that every
class has at least one defined key, which represents one or more attributes that uniquely
identify the objects in a class. Since there may be more than one way to uniquely identify
a object, a class may also have multiple defined keys.

In our approach, the domain model is used to describe the available information sources.
The source description for source S with attributes S.a1, . . . , S.an is written:

S(S.a1, . . . , S.an) ≡ DS(a1, . . . , an).

The equation above specifies that the source S provides all instances of the domain class
DS with the corresponding attributes.1 In contrast to other approaches to information inte-
gration (e.g., Information Manifold (Levy et al., 1995b)), which use containment to express
the relationship between a class and its information sources, we assume that the source
description defines exactly the class of information provided by the sources. This can be
done without loss of generality because containment can be expressed by defining a sub-
class in the domain model. The use of exact descriptions has two major advantages: it
supports complete answers to queries, and, when complete answers are not possible, it al-
lows the system to determine when and in what way the answer is incomplete. A limitation
in our approach is that one cannot describe a source as a join over domain classes. The
reasons for this limitation and the applicability of our results are discussed in more detail in
Section 7.
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Figure 1. Example domain model and sources.

2.2. Motivating example

Consider a very simple application domain that contains a variety of information sources
about different types of seaports. Figure 1 depicts the domain model constructed for this
application domain. The domain classes are shown by ovals and are linked in an inheritance
hierarchy. In the diagram, inheritance links are specified with solid arrows. In the example
above we have two coverings: seaport is the union of large-seaport and small-seaport;
and large-seaport is the union of american-large-seaport and european-large-seaport.
The two subclasses in the first covering are created by specifying their exact relation-
ship with their superclass (i.e., the seaports with at most/more than seven cranes), while
american-large-seaport and european-large-seaport are introduced as primitive classes.

Every class has a corresponding set of attributes, shown by arrows, and classes also
inherit all of the attributes of their ancestors. In our example, seaport, large-seaport,
and small-seaport have four attributes: geographic location code (gc), port name (pn),
country name (cn), and number of cranes (cr). Besides the inherited attributes, the class of
european-large-seaport has an additional attribute, European code (ec), which is specific
only to this class.
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In addition to the domain model, the available sources are also shown in figure 1. They are
represented by the database symbols linked to the corresponding domain classes by dashed
lines. The link between the source and the domain class means that there is a one-to-one
mapping between the instances of the domain class and the instances in the source. In our
example, there are three sources for the class large-seaport: s2 provides the attribute pn, s3
provides gc, and s7 provides both pn and cn. For the sake of simplicity, each information
source described here will be assumed to contain a single table; both the source and the
table will be referred to by the same name. Since sources might provide only a subset of
the possible attributes of a class, the specific attributes for each source are also shown in
the figure.

There are a total of seven data sources, which provide different sets of attributes about
the five domain classes (note that no source provides all attributes for a class). In the next
section, we explain how the source definitions are compiled into a concise set of axioms
that specify the ways in which individual sources can be combined so that they provide the
data for all domain classes.

3. Compiling domain axioms from source definitions

A fundamental task of a mediator is to translate a query expressed in terms of the domain
model into queries to the underlying sources. This involves finding the relevant combinations
of sources that provide the attributes required by each class in a query. Instead of repeatedly
searching at run-time for the combinations of sources that are relevant for each query,
our system compiles in advance a set of domain axioms that compactly captures these
combinations. By pre-compiling the axioms, the efficiency of query planning is improved
dramatically because the mediator can use the readily available axioms as macro expansions
instead of searching the space of all possible combinations of sources for the domain classes.
Moreover, the compilation effort is amortized over all subsequent queries on the application
domain. This section describes the details of how the domain axioms are pre-compiled and
stored for efficient use at run-time.

A domain axiom specifies a particular way in which the available sources can be combined
to provide the data for a domain class. For example, the port-name for the class large-seaport
can be directly retrieved from the source s2, as can be seen in figure 1. This would be
expressed as the axiom:

large-seaport(pn) ≡ s2(s2.pn)

There may be several axioms for a given class and set of attributes. For example, an
alternative way of obtaining the same port names is to perform a union over sources s4 and
s5, which provide a covering for the class, resulting in the axiom:

large-seaport(pn) ≡ s4(s4.pn) ∨ s5(s5.pn)

By definition, the head of an axiom consists of the domain concept together with the set
of provided attributes. The body of the axiom represents the formula over the sources used
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in the axiom. For example, the head of the axiom above is large-seaport(pn), and its body
is s4(s4.pn) ∨ s5(s5.pn).

Since the number of possible combinations of attributes can be extremely large even for
a single class2 , the mediator does not compute all axioms for all possible combinations of
attributes. In a first phase, the system compiles off-line the minimal set of domain axioms.
Each axiom in the minimal set provides as much information and as many attributes as
possible for a particular combination of sources. For example, the previous axiom does not
belong to the minimal set because two more attributes, cr and gc, can be obtained from the
combination of s4 and s5. Instead, the following axiom is the one included in the minimal
set because it incorporates all the attributes for this particular combination of sources:

large-seaport(cr gc pn) ≡ s4(s4.cr s4.gc s4.pn) ∨ s5(s5.cr s5.gc s5.pn)

In the second phase, the system organizes the axioms for each domain class into a
lattice. Each lattice is a partial order, using set containment, over subsets of attributes for a
domain class.3 This data structure caches the axioms that have already been computed and
makes it possible to efficiently derive, at runtime, the axioms that are relevant for the set of
attributes in each particular query. For example, if a query requests large-seaport(gc pn),
the corresponding axiom(s) will be derived from the stored axiom(s) for large-seaport(cr
gc pn).

Section 3.1 describes the compilation of the minimal domain axioms. Section 3.2 de-
scribes some optimization to the compilation process and the axiom projection algorithm.
Section 3.3 describes how the lattice structure is constructed and subsequently used dur-
ing query processing. Appendix A presents some formal properties of the axioms and the
compilation algorithm.

3.1. Compiling the minimal set of domain axioms

The system compiles the minimal set of domain axioms by applying a set of five inference
rules. Each rule captures an orthogonal type of inference about how sources can be combined
based on the features of our representation language. The five rules are:

• Direct: Translates the user-provided source definitions into axioms;
• Covering: Exploits the covering relationships in the domain model;
• Definition: Exploits the constraints in the definition of a domain class;
• Inherit: Exploits the inheritance of superclass attributes via shared keys;
• Compose: Combines axioms on a given class to provide additional attributes.

Our compilation algorithm first applies the Direct rule, and then the remaining four rules
are applied in parallel until quiescence. Our algorithm is incremental, similar in spirit to the
semi-naive evaluation of logic programs. In the application of each rule, at least one of the
axioms involved must belong to the most recent generation. In order to avoid unnecessary
computation, redundant and subsumed axioms are eliminated at each generation. To facili-
tate this process, the axioms are stored in a normal form (see Section 3.2). The remainder of
this section explains each of the rules above based on the example presented in Section 2.2.
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Figure 2. Axiom state after application of the direct rule.

The direct rule. The Direct rule installs each source declaration into an axiom for the
appropriate class. For instance, the axiom:

seaport(cr gc pn) ≡ s1(s1.cr s1.gc s1.pn) ∧
cr = s1.cr ∧ gc = s1.gc ∧ pn = s1.pn (1.1)

specifies that one way to obtain the number of cranes (cr), geoloc-code (gc), and port-name
(pn) of seaport is by using the information source s1. Note that the axiom is expressed
in terms of equivalence (≡), not containment; that is, we are declaring that s1(s1.cr s1.gc
s1.pn) is co-extensional with seaport(cr gc pn). The series of equality constraints on the
right-hand side detail the exact mapping between the domain-level attributes {cr gc pn} and
the source attributes {s1.cr s1.gc s1.pn}. Hereafter in the presentation, we will elide these
binding equality constraints.

After the execution of the Direct rule, seven axioms are associated with the classes of our
sample domain (see figure 2). These axioms correspond precisely to the source definitions
depicted in figure 1.

The covering rule. When a class in the domain model is defined as being equivalent to a
covering of two or more of its subclasses, we use the covering rule to generate new axioms
for the parent class based on the axioms of its subclasses. The rule retrieves the axioms for
each subclass and forms the Cartesian product of these sets of axioms. For each tuple of
axioms in the Cartesian product, it computes the intersection of the attributes provided by
each axiom. If the intersection is not empty, the rule generates a new axiom that provides
the common attributes. Then, from each axiom in the tuple, it projects out any attributes not
included in the intersection. The body of the new axiom consists of the disjunction of these
projected axioms. For example, consider the following covering in the domain model:

large-seaport ≡ american-large-seaport ∨ european-large-seaport

The Covering rule retrieves axiom (1.6) for american-large-seaport, which provides cr,
gc, and pn, and axiom (1.7) for european-large-seaport, which provides cr, ec, gc, and pn.
The intersection of the attribute sets is {cr, gc, pn}. Both axioms are projected through this
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intersection and then combined by disjunction. In this case, the projection amounts simply
to removing the attribute ec from the axiom for european-large-seaport. The resulting
axiom is:

large-seaport(cr gc pn) ≡ s4(s4.cr s4.gc s4.pn) ∨ s5(s5.cr s5.gc s5.pn) (2.4)

The Covering rule is applied across the class hierarchy in a bottom-up fashion, which
ensures that a covering axiom produced at a lower level can participate in a later cover-
ing at a higher level. For example, a covering axiom for large-seaport, computed from
american-large-seaport and european-large-seaport, is subsequently used in the cover-
ing of seaport. The specification of the algorithm used to process the coverings is presented
in figure 3. In our example domain, after processing the coverings throughout the entire
hierarchy, four more axioms are added, for a total of 11, as shown in figure 4.

The definition rule. This rule exploits the constraints in the definitions of a domain class.
Essentially, when a class C is defined in terms of a parent class P and a set of constraints
R, the rule generates new axioms for C by conjoining the axioms of P with the constraints
R (note that only the axioms of P that provide all attributes used in the constraints R can
be used to generate axioms for C). To avoid generating non-minimal axioms, the rule does
not consider any parent axiom that includes a source for C.4 Such situations may occur if

Figure 3. Algorithm for the covering rule.
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Figure 4. Axiom state after application of the covering rule (new axioms in bold).

the axiom of P was generated by a covering that includes C; in this case, the attributes of
the axiom of P can only be a subset of those provided by the axioms of C. For example,
consider the following definition from the domain model:

small-seaport ≡ seaport ∧ cr ≤ 7

Then, the Definition rule considers axiom (1.1) for seaport that provides the attribute
cr needed for the constraint cr ≤ 7. Since (1.1) did not result from a covering over
small-seaport, the rules yields the following axiom:

small-seaport(cr gc pn) ≡ s1(s1.cr s1.gc s1.pn) ∧ s1.cr ≤ 7 (3.1)

Note that the other three axioms for seaport are built from coverings involving the source
s6 for small-seaport. Consequently, they cannot provide more attributes than those directly
provided by s6; thus, they are ignored by the definition rule.

The Definition rule is applied top-down across each class in the hierarchy of the domain
model. Processing in this order means that a given class may exploit definition axioms
created in terms of axioms from its ancestors as well as its direct parent. The specification
of the algorithm used to handle class definitions is shown in figure 5. In our example domain,
the application of the Definition rule generates two new axioms, for a total of 13, as shown
in figure 6.

The inherit rule. When a class C in the domain model shares a key with its ancestor A
that has sources for some attributes not available in C, the Inherit rule joins axioms from
each class over the shared key in order to provide the new attributes to the descendant.
Intuitively, the information about the class A can be transferred to its descendant C as long
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Figure 5. Algorithm for the Definition rule.

as the system has a way of identifying the objects that belong only to the subclass C. In
order to do so, the Inherit rule conjoins an ancestor axiom with an axiom of the subclass.
For example, as one can see in figure 6 , the class american-large-seaport has no axiom
that provides the attribute cn. However, as the axioms (1.6) (for american-large-seaport)
and (1.5) (for large-seaport) share the key {pn}, the Inherit rule can generate the following
axiom for the class american-large-seaport:

american-large-seaport(cn cr gc pn) ≡ s4(s4.cr s4.gc s4.pn) ∧ s7(s7.cn s7.pn)

(4.5)

The Inherit rule applies bottom-up across the class hierarchy and looks at all ancestors
of each class. In this way, it considers all possible class/superclass combinations with-
out ever encountering any axioms generated by previous applications of the same rule to
intervening classes. The algorithm for the Inherit rule is shown in figure 7. For our ex-
ample domain, this rule generates six additional axioms, for a total of 19, as shown in
figure 8.

The compose rule. The Compose rule ensures that the axioms for a domain class C contain
as many attributes as possible given the combinations of relevant sources. For each pair of
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Figure 6. Axiom state after application of the Definition rule (new axioms in bold).

Figure 7. Algorithm for the Inherit rule.

C axioms that share a key5 and provide at least an attribute that the other axiom does
not include in its head, the system creates an axiom which pools together the two sets of
attributes. For example, axioms (1.5) and (2.4) for large-seaport can be composed because
they share the key {pn}, and attributes {cn} and {gc, cr} appear only in (1.5) and (2.4),
respectively. The Compose rule conjoins these two axioms, resulting in the following new
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Figure 8. Axiom state after application of the Inherit rule (new axioms in bold).

axiom (shown in disjunctive normal form):

large-seaport(cn cr gc pn) ≡
[s4(s4.cr s4.gc s4.pn) ∧ s7(s7.cn s7.pn) ∧ s4.pn = s7.pn] ∨
[s5(s5.cr s5.gc s5.pn) ∧ s7(s7.cn s7.pn) ∧ s5.pn = s7.pn] (5.1)
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Figure 9. Algorithm for the compose rule.

The specification of the algorithm for Compose rule is presented in figure 9. Because this
rule processes only a single class at a time, it can be applied over the class hierarchy in an
arbitrary order. Figure 10 shows the axioms after the Compose rule is applied. In fact, these
axioms represent the minimal set for our example domain. As one can see, the compilation
process generated a total of 20 axioms from the seven initial source descriptions for the five
domain classes.

3.2. Normalization, projection, and optimizations

Normalization. As we already mentioned, our compilation algorithm first applies the
Direct rule, and then the remaining four rules are applied in parallel until quiescence.
Due to the incremental nature of this algorithm, various sequences of rule applications
may eventually lead to redundant and subsumed axioms (e.g., the Compose rule might
independently reconstruct an axiom that had already been computed by previous rules). To
avoid unnecessary computation, at each generation, we eliminate all these redundant and
subsumed axioms. In order to determine whether or not two computed axioms are equivalent,
we keep all axioms in a sorted disjunctive normal form, and we remove replicated predicates
and implied order predicates within conjunctions and across disjunctions.

Projection. An axiom provides a set of attributes for a class C . Obviously, it also provides
all subsets of these attributes. In practice, it is useful to find the simplified expression of an
axiom a(x̄) when the query requires only a subset ȳ of its attributes. We call the resulting
axiom a′(ȳ) the projection of a(x̄) on ȳ. We begin by presenting intuitively some projection
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Figure 10. Axiom state after application of the Compose rule (new axioms in bold). Minimal set of domain
axioms.



164 AMBITE ET AL.

examples. Then, we provide a formal definition. Consider the axiom:

large-seaport(cn cr gc pn) ≡
[s4(s4.cr s4.gc s4.pn) ∧ s7(s7.cn s7.pn) ∧ s4.pn=s7.pn] ∨
[s5(s5.cr s5.gc s5.pn) ∧ s7(s7.cn s7.pn) ∧ s5.pn=s7.pn] (5.1)

The result of the projection of axiom (5.1) on {cr, gc, pn} is:

large-seaport(cr gc pn) ≡ s4(s4.cr s4.gc s4.pn) ∨ s5(s5.cr s5.gc s5.pn) (5.1′)

Informally, the reasoning behind this projection is the following. Given our source descrip-
tions, either s7(s7.cn s7.pn) or [s4(s4.cr s4.gc s4.pn) ∨ s5(s5.cr s5.gc s5.pn)] is sufficient
to ensure that the set of objects retrieved by (5.1′) is co-extensional with the large-seaport
class. As we only need the attributes {cr, gc, pn}, which can be all obtained from the dis-
junction of s4 and s5, s7 is unnecessary and the projected axiom can be simplified. This
example shows that a predicate appears in an axiom essentially because either it contributes
some of the needed attributes, or it is a component of the formula that proves that the axiom
is equivalent to the given concept. Consider now the axiom (3.2):

large-seaport(cr gc pn) ≡ s1(s1.cr s1.gc s1.pn) ∧ s1.cr > 7 (3.2)

and its projection on {pn}:

large-seaport(pn) ≡ s1(s1.cr s1.pn) ∧ s1.cr > 7 (3.2′)

In this case, the constraint s1.cr > 7 is needed to ensure that the seaports provided by s1
are indeed large-seaports. In order to enforce this constraint, the attribute s1.cr has to be
retrieved from s1 even though it is not one of the requested attributes. Other examples of
projection appear in Section 3.3.

Formally, a subformula g of an axiom a = g ∧ r for C (a ≡ C) is called a grounding
of a if g ≡ C and no subformula of g is also a grounding. In other words, g is a minimal
subformula of a that entails equivalence to the class C . Our system efficiently computes
the groundings of an axiom by using the derivation proof of the axiom. Recursively, the
groundings of a compose are the groundings of its components, the groundings of a covering
are the disjunction of the groundings of components, the grounding of a definition is the set
of constraints, and the grounding of a direct is the direct source itself. For example, axiom
(5.1) is obtained by applying the Compose rule to a Covering axiom and a Direct axiom.
Therefore, the two groundings are s7(s7.cn s7.pn) (a direct grounding), and [s4(s4.cr
s4.gc s4.pn) ∨ s5(s5.cr s5.gc s5.pn)] (a disjunction of direct groundings for each of the
subclasses in the covering).

The projection of an axiom a(x̄) for a class C on the set of attributes ȳ, ȳ ⊆ x̄ , is an
axiom a′(ȳ) that satisfies:

1. All predicates of a′ appear in a
2. a′ contains at least one grounding of a
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3. All predicates in the conjunctions of a′ are connected. Note that connections only occur
either between predicates that share a common key, or between a predicate and an order
constraint on the attribute used in the order constraint.

4. The only attributes in the body of a′ are those needed to satisfy the previous condition
or are requested in ȳ.

5. Each non-grounding predicate in a′ must provide some attribute that is not provided by
any other predicate.

Optimizations. Some combinations of rule applications can generate axioms that are guar-
anteed to be redundant. Although these axioms could be removed after the normalization and
projection process, we have optimized the speed of the compilation algorithm by including
tests that prevent generating redundant axioms:

1. The Covering rule generates an axiom for a class C = C1 ∨ C2 ∨ · · · ∨ Cn only if none
of the proposed axioms for Ci contain a source for C or one of its superclasses.

2. The Definition rule generates an axiom for a class C = C1 ∧ Constraints from an axiom
a1 of its superclass C1 only if a1 does not contain a covering involving a source for C .

3. The Inherit rule generates an axiom for a class C based on an axiom a1 of its superclass
C1 only if a1 does not contain a covering involving a source for C .

4. The Inherit rule generates an axiom for a class C based on an axiom a1 of its superclass
C1 and another axiom a of C only if a was not obtained by applying the definition rule
to an axiom of C1.

3.3. Using the domain axioms efficiently

Each axiom in the minimal set provides as many attributes as possible for its particular
combination of sources. However, a user query may request any subset of the attributes
of a domain class. Therefore, new axioms for the desired attributes have to be efficiently
derived from the minimal set. Furthermore, the system needs an effective way to verify
whether or not a query is satisfiable (for instance, there might be no sources for the desired
attributes). To that effect, the axioms for each class in the domain model are organized in
a lattice. Each node in the lattice holds the axioms that represent all alternative ways of
obtaining a particular set of attributes. The edges of the lattice capture set containment on
attributes.6 An example of an axiom lattice that contains only the minimal axioms for the
class large-seaport appears in figure 11.

A lattice for a domain class is constructed in two phases. In the first phase, the minimal
set of axioms is transferred to the lattice and the nodes are completed with supplementary
axioms. This step is performed off-line, immediately after the compilation of the axioms.
In the second phase, the lattice is used as an axiom cache, and new axioms are generated
as demanded by user queries. If a node for the requested attributes is already present in
the lattice, the axioms of the node are returned. Otherwise, the system creates a new node,
populating it with the appropriate axioms. These new axioms are called interstitial since
they lie between previous axiom sets (both logically and in the lattice).
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Figure 11. Initial axiom lattice for large-seaport (with minimal axioms only).

Supplementary axioms. The minimal axioms in a node may not list all the possible ways
of combining the available sources to provide the attributes of the node. For example, in
figure 11, there is one additional way to obtain large-seaport(cr, gc, pn) by combining
sources s1 and s7. However, the minimal axiom that combines s1 and s7, (4.4), provides
more attributes, {cn, cr, gc, pn}, and it is found in another node of the lattice. Fortunately,
the desired axiom is easily computed from (4.4) by projection:

large-seaport(cr, gc, pn) ≡ s1(s1.cr s1.gc s1.pn) ∧ s7(s7.pn)

Supplementary axioms are computed when the lattice is first constructed. For a class C,
the axioms are introduced in its lattice in order of decreasing number of head attributes. This
corresponds to filling the diagram in figure 11 bottom up. As each node is added to the lattice,
the axioms in the superset (child) nodes are examined. Any projection of a superset axiom
into the attributes of the current node is added to the node (unless, of course, the projected
axiom is equivalent to any of the existing axioms). The specification of the algorithm for
computing the supplementary axioms is shown in figure 12. The supplementary axioms for
the example lattice are marked with an asterisk (∗) in figure 13.

Interstitial axioms. An axiom lattice of a domain class that includes only the minimal
and supplementary axioms is usually sparse. A user query may request attributes that are
not associated with any node in the lattice. Thus, a new node and axioms will have to be
generated. Since the total number of nodes that could be computed is the power set of the
attributes, the system does not pre-compile the interstitial axioms. Instead, it derives them
on demand from the axioms that already populate the lattice. Consequently, the growth of
the lattice results from user queries for unseen sets of attributes.
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Figure 12. Algorithm for determining supplementary axioms.

Figure 13. Axiom lattice for large-seaport after generation of all supplementary axioms and single interstitial
nodes for large-seaport(cn cr pn). Supplementary axioms are marked with an asterisk (*) and Interstitial axioms
are marked with a hash (#).

For example, suppose a query requesting large-seaport(cn cr pn) is received. If a node in
the lattice for large-seaport corresponding to the set {cn, cr, pn} exists, the axioms cached
in the node are returned. Otherwise, a new node for {cn, cr, pn} will be created and the
corresponding interstitial axioms generated. To do so, all nodes that minimally contain the
set {cn, cr, pn} become the child nodes of the new node. The axioms from these child nodes
are projected into {cn, cr, pn} and used to populate the interstitial node. If no nodes contain
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Figure 14. Algorithm for computing interstitial axioms.

the requested attribute set, there are no sources available for those attributes and the user
query is unsatisfiable. Figure 13 shows the axiom lattice for large-seaport after a request
for large-seaport(cn cr pn) has been satisfied, and the interstitial node and axioms (marked
with a hash - #) have been added. The algorithm for the synthesis of interstitial axioms is
shown in figure 14.

This section has presented an approach to source selection by pre-compiling a set of
domain axioms and efficiently using them during query processing. The axioms are used
to improve the efficiency of a query planner by having readily available all the alternative
ways of obtaining data for domain classes. Moreover, queries for which there are no sources
are detected immediately.

4. Binding pattern constraints

Axiom compilation is also applicable when the sources have binding patterns constraints
(Ullman, 1989; Kwok and Weld, 1996). A binding pattern constraint is a type of access
restriction on a source. More precisely, the constraint requires that some of the tuple’s
arguments must be bound to constants before producing the rest of the tuple. The role of
binding constraints is similar to input parameters of a function: in order to retrieve the
output values, one has to provide the input values. Binding constraints are pervasive in Web
sources, where, for example, a site that provides stock information may require as input the
ticker symbol of a company.

In the previous section, both the axiom generation and the lattice creation were based
only on reasoning about the attributes in the heads of the axioms. In the presence of binding
patterns, the reasoning process must also use the binding status of each attribute. Intuitively,
an attribute with a binding constraint is less general than its unbound version. For example,
an axiom with the head seaport(cr gc pn) is more general than seaport(cr gc $pn), where
a bound attribute is denoted by prepending the dollar symbol ($) to its name. Axioms
with identical heads except for the binding patterns may be incomparable: for example,
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seaport(cr gc $pn) and seaport(cr $gc pn) are incomparable, but both of them are more
general than seaport(cr $gc $pn).

The algorithms described so far remain essentially the same. Only minimal changes are
needed to ensure that binding patterns constraints are respected. In the remaining of the
section we highlight the changes and provide some illustrative examples.

4.1. Changes in the rules

Direct rule. We extend our notation for attributes to include binding constraints. For
example, if we replace the source s1 from figure 1 with a similar source, s1b, that requires
the port-name to be provided in order to return geoloc-code and cranes, we mark the port-
name with a dollar ($) symbol. The resulting direct axiom is (cf. axiom (1.1)):

seaport(cr gc $pn) ≡ s1b(s1b.cr s1b.gc s1b.$pn) (1.1′)

Covering rule. The intersection on the common attributes of the covering is reduced with
respect to the binding contraints. For example, if we have the sources s4b(s4b.cr s4b.$gc
s4.pn) and s5b(s5b.cr s5b.gc s5b.$pn) (for american-large-seaport and european-
large-seaport, respectively), the only union-compatible combination possible is to pro-
vide both port-name (pn) and geoloc-code (gc) to obtain cranes. The resulting covering
axiom is (cf. axiom (2.4)):

large-seaport(cr $gc $pn) ≡ s4b(s4b.cr s4b.$gc s4b.pn) ∨
s5b(s5b.cr s5b.gc s5b.$pn) (2.4′)

Definition rule. Definitions with equality constraints may satisfy a binding pattern. Thus
an axiom derived by definition may have a more general head than the superclass axiom.
For example, if we have the domain model definition:

american-seaport ≡ seaport ∧ cn = “USA”

and the axiom (cf. axiom (1.1)):

seaport($cn cr gc $pn) ≡ s1c($s1c.cn s1c.cr s1c.gc s1c.$pn) (1.1′′)

then the resulting axiom for american-seaport is (cf. axiom (3.1)):

american-seaport(cn cr gc $pn) ≡
s1c(s1c.cn s1c.cr s1c.gc s1c.$pn) ∧ s1c. cn = “USA” (3.1′)

Inherit and compose rules. The changes affect the conjunction of axioms. A predicate
may provide a binding for another predicate, and the resulting axiom may be more gen-
eral. For example, consider the combination of sources s4b(s4b.cr s4b.$gc s4b.pn) (for
american-large-seaport) and s7b(s7b.cn s7b.$pn) (for large-seaport) by the inherit rule.
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Once s4b receives a binding for s4b.$gc, it can generate a binding for s4b.pn and pass it
to s7b. Therefore, the binding constraint on s7b.$pn is always satisfied internally in the
axiom body and the axiom head of the combination is (cn cr $gc pn) as opposed to the
simple union of attributes (cn cr $gc $pn). The resulting axiom is (cf. axiom (4.5)):

american-large-seaport(cn cr $gc pn) ≡
s4b(s4b.cr s4b.$gc s4.pn) ∧ s7b(s7b.cn s7b.$pn) (4.5′)

4.2. Changes in axiom projection

The five conditions for axiom projection at the end of Section 3.2 have to be completed
with a sixth one:

6. There is an ordering of the predicates in the conjunctions of a′ that satisfy the binding
patterns. A binding constraint is satisfied by either a binding specified in the axiom head
or by the attributes of a previous predicate whose constraints are satisfied.

We can compute axioms with binding patterns from axioms without. For example, projecting
axiom (5.1) into (cr gc $pn) results in:

large-seaport(cr gc $pn) ≡ s4(s4.cr s4.gc s4.$pn) ∨ s5(s5.cr s5.gc s5.$pn)

(5.1′′)

However, attributes with binding patterns cannot be projected out. For example, we can-
not project axiom (4.5′) with head american-large-seaport(cn cr $gc pn) into american-
large-seaport(cn cr pn).

In order to illustrate how binding patterns affect the axiom compilation, let us consider the
domain model from figure 15, which was obtained from the one in figure 1 by replacing the
original source s4 with s4b. Note that the only difference between the original model and
the new one consists of the binding pattern on the attribute gc of s4b (i.e., s4b provides the
port name and number of cranes for a given geoloc-code). In figure 16 we show the lattice
that contains the minimal set of axioms for large-seaport. Compared with the original
lattice in figure 11, which displays the minimal set of axioms for large-seaport without
binding patterns, the new lattice includes four new axioms, two additional nodes, and four
new dominance relationships, which are all shown in bold.

The comparison between the lattices in figures 11 and 16 raises a few interesting points.
First of all, the nodes that do not contain s4-based axioms (i.e., {gc}, {pn}, and {cn pn})
remain unchanged. Furthermore, each axiom from figure 11 that does not use s4 also appears
in figure 16. Second, the two original axioms in the node {gc cr gc pn} have a different fate:
the first one remains unchaged because it does not use s4, while the second one is moved
to the newly created node {gc cr $gc pn}. This happens because one of its components,
s4b, requires the input paramenter $gc that can not be provided by the other sources in the
axiom, and, consequently, $gc becomes an input parameter for the whole axiom. Third, the
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Figure 15. Example domain model and sources with a binding pattern.

Figure 16. Minimal set of axioms for large-seaport with binding patterns.
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node {gc cr gc pn} receives a new axiom:

large-seaport(cn cr gc pn) ≡
s3(s3.gc) ∧ s7(s7.cn s7.pn) ∧
[s4b(s4b.cr s4b.$gc s4b.pn) ∨ s5(s5.cr s5.gc s5.pn)]

It is interesting to note the different roles played in the axiom above by s3 and s7: the former
is used only to satisfy the binding pattern of s4b, while the latter provides the attribute cn
that can not be obtained from the union of s4b and s5. Fourth, the four axioms from the
node {cr gc pn} end up in two different nodes. The first axiom, which uses s4, becomes
sb4(sb4.cr s4b.$gc s4b.pn) ∨ s5(s5.cr s5.gc s5.pn) and populates the new node {cr $gc
pn}. The other three axioms remain unchanged in the {cr gc pn} node. Finally, the same
node stores two new axioms:

large-seaport(cr gc pn) ≡
[s1(s1.cr s1.gc s1.pn) ∧ s4b(s4b.cr s4b.$gc s4b.pn)] ∨
[s1(s1.cr s1.gc s1.pn) ∧ s5(s5.cr s5.gc s5.pn)]

large-seaport(cr gc pn) ≡
[s3(s3.gc) ∧ s4b(s4b.cr s4b.$gc s4b.pn)] ∨
[s3(s3.gc) ∧ s5(s5.cr s5.gc s5.pn)]

Note that the axioms above have the head large-seaport(cr gc pn) even though s4b has a
binding pattern on gc. The explanation is straightforward: because of the source ordering
in the axiom, one can retrieve values of gc from s1 and s3, respectively, and use them as
input arguments for s4b.$gc. As s1 and s3 do not provide new attributes, but rather just
satisfy the binding patterns, the axioms above could not have appeared in figure 11 because
they would have contained the redundant sources s1 and s3, respectively.

5. Empirical results

This section presents empirical results on the axiom compilation algorithm. We first present
results for a number of fielded applications to demonstrate that the algorithm compiles the
axioms efficiently for practical real-world domains. We then present results on a set of
synthetic domains to evaluate the scaling properties of the algorithms, demonstrating their
continued utility as domains grow in size. Both sets of experiments were run on a Sun
Ultra 2.

5.1. Experiments in real-world applications

In our first set of experiments, we compiled all axioms in a series of real-world applica-
tions built with the SIMS and Ariadne mediators. These applications possess all of the
representational features discussed in the paper, generally distributed among several inde-
pendent hierarchies. However, the density of coverings is low. First, we describe each of the
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Table 1. Characteristics of several real-world domains.

Domain Binding
Domain Databases Sources classes Coverings constr. Total attr.

Virtual catalog N/A 6 6 1 6 52

Location finder N/A 9 7 1 5 46

Entertainment N/A 10 6 1 14 41

Transportation 8 32 154 0 0 235
logistics

Battlefield logistics 6 56 234 0 0 375

Data fusion 12 134 217 1 0 1113

Energy Time series 11 224 435 0 9 4470

Table 2. Axiom compilation in real-world domains.

Domain Axions Time (sec.) Generations

Virtual catalog 10 0.540 3

Location finder 17 0.420 3

Entertainment 17 0.720 4

Transportation logistics 276 34.5 3

Battlefield logistics 293 57.8 3

Data fusion 191 23.0 3

Energy Time series 654 301 5

characteristics of each application domain. Then we show the empirical evaluation of each
domain. Characteristic measurements of the complexity and expressiveness of the domains
is contained in Table 1. The axiom compilation results for each domain are summarized in
Table 2.

The Virtual Catalog application comes from a part supplier domain. The application
accesses online electronics part catalogs from Avnet (www.avnet.com), Arrow Electronics
(www.arrow.com), and Wyle Electronics (www.wyle.com) by means of Ariadne “wrappers”
(Knoblock et al., 2000) which provide a relational view of semi-structured web pages. The
application provides price, terms and availability information about parts from different
suppliers, given descriptions and/or part numbers. Virtual Catalog uses Ariadne axioms to
integrate across the different ways of navigating the individual sites, providing a unified
interface.

The Location Finder supports retrieval and integration of country-by-country geographic
and political information, based on online sources such as the CIA World Fact Book, the
NATO home page, and the United Nations home page. Because the yearly editions of World
Fact Book reflects geopolitical changes in the world, a “mapping table” information source
is used as well to correlate information from one year to the next.

The Entertainment application combines restaurant directories from online sources
CuisineNet (www.cuisinenet.com), Zagat Survey (www.zagat.com), and Fodor’s (www.
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fodors.com); movie information including theatre listings and movie showings from Yahoo
Movies (movies.yahoo.com) and movie trailers (www.hollywood.com); and mapping
information from the USGS Tiger map server (tiger.census.gov) and the Etak geocoder
(www.geocode .com). All these sources are accessed through Ariadne wrappers that extract
the data from the web pages. The application assists a user in browsing the dining and
entertainment options in a given city or neighborhood, assembling the results onto a map
where clickable icons provide more information. Ariadne axioms link the various informa-
tion sources (plus computational sources which convert data from one format to another)
into a chain which respects their binding patterns and allows the query planner to quickly
retrieve the requested information.

The Transportation Logistics application supports general logistical queries about vehi-
cles, their characteristics, capabilities, and requirements, and about geographic locations,
ports, passageways, etc., to and through which they might travel. It uses eight ORACLE
databases which comprise geography, vehicles and other assets, force readiness informa-
tion, and unit and apportioned force characteristics. Queries supported in this domain can
be quite complex in integrating information across multiple sources, such as “List all ship
classes, by ship class name, seaport name, and berth-type name which can handle containers
and can dock at Sousse or Tunis, Tunisia.”

The Battlefield Logistics application combines relational logistics information similar
to that used in the Transportation Logistics above, databases containing military stocked
supplied with their locations, and online (web) data sources representing simulations of
threat assessment resources and weather forecasts. This application thus integrates conven-
tional and online sources to support allow planning of resource-sensitive military
campaigns.

The Data Fusion application uses geographic information including maps and airfield
locations, stored both in conventional database and as wrapped web pages, and databases
and web pages simulating sensor fusion information, including overlaid weather and map
imagery. The application provided an integrated view of the disparate logistics and command
information used in a simulated military exercise.

The Energy Time Series application retrieves various measured and computed periodic
energy-related measurements, such as retail price, production volume, CPI, etc., from vari-
ous government agencies, including the Bureau of Labor Statistics, the Energy Information
Administration, and the California Energy Commission. These data are stored in over 200
different web pages and relational databases. The model parameterizes and relates each
time series, resulting in a large global domain model. This ongoing work also integrates
a relational view of SENSUS, a 90,000-concept natural language-derived ontology. This
largest Ariadne application to date allows the user to perform cross-agency comparisons
not supported by the individual sources.

We detail the parameters of the domains which most affect axiom compilation in Table 1.
The table columns detail the size of the domain model, the characteristics of the sources,
including the number of coverings and binding constraints between sources. We catalog the
axiom compilation results for these domains in Table 2. This table contains the compilation
time, resulting axiom counts, and number of generations required until quiescence for the
compilation algorithm.
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Table 1 shows that the axiom compilation is fast in practice. For example, in the Trans-
portation Logistics domain consisting of a domain model with 154 domain classes with
no coverings, and employing 32 sources with no binding constraints between sources dis-
tributed over 8 databases, the system compiled 276 axioms in 34.5 seconds, requiring three
rounds of rule application before quiescence. Energy Time Series, the largest domain to
date, is characterized by a domain model with 435 domain classes and uses 224 sources with
9 binding constraints; compilation time is around five minutes requiring five generations.

In comparison, the example domain we have used throughout the paper generates the
20 axioms from its 5 domain and 6 source classes in less than 0.1 seconds. Note that the
example domain, though small, combines all of representational features in one hierarchy.

These results suggest that compilation for domains of realistic size is efficient. Since the
algorithm is incremental, even if the domain changes frequently the updates to the axioms
can be performed efficiently. More precisely, if one adds a new source to the domain, we
do not have to recompute all the axioms. Instead, we can add the new source to the existing
axioms and let the algorithm run until quiescence (the only potential drawback of such
method is that it may not produce the minimal number of axioms). In case of deleting a
source, the current version of the algorithm must start from scratch. However, we believe
that it is possible to create an enhanced version of our algorithm that checks each axiom
and removes/re-writes the ones in which the deleted source appears.

5.2. Experiments on synthetic domains

We also present empirical results on the performance of our axiom compilation algorithm on
a set of synthetic domains. The purpose of these experiments is to show the scaling behavior
as domain size and complexity are varied. In a series of parameterized experiments in each
domain, we test the ability of the axiom compilation algorithm to scale as the number of
sources grow.

Each domain in our space of domain configurations consists of one or more hierarchies
of classes. The size of this hierarchy ranges from 1 to 5 domain classes. Each class in a
hierarchy possesses the same set of attributes, not all of which are provided in any one source.
In the single class configuration, only the root domain class is available. Subsequent larger
configurations grow the domain downward, providing more domain classes and a richer
set of class relationships. In the three-class configuration, two subclasses to the root are
added. Both subclasses are defined relative to the parent class and are declared to cover the
parent class. In this configuration we thus have two definitions and one covering. In the
five-class configuration, one of the subclasses from the three-class configuration above is
further extended in the same way. The net tally of this configuration is four definitions and
two coverings.

In all of the experiments on the synthetic domains, we randomly generated sources and
assigned them in a round-robin fashion to the domain classes. For each source, a set of five
attributes were randomly selected plus one shared attribute that serves as the primary key.
We ran the axiom compilation algorithm three times for each point and averaged the results.

The first experiment tests the algorithm on a single-hierarchy synthetic domain. The
graphs in figure 17 show the run time in CPU seconds and number of axioms graphed
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Figure 17. Experiment with a single hierarchy with coverings.

against the total number of sources. In the case of a single class in the hierarchy the number
of axioms is close to linear in the number of sources because only the compose rule is
applicable and the combination of sources quickly covers the set of attributes. In the case
of three and five classes in the hierarchy, the algorithm can easily handle up to 15 related
sources. Above that the number of axioms grows quite large. As shown later in this section,
the algorithm can scale to much larger numbers of sources if there are multiple hierarchies,
which is the typical situation. The reason for the growth in the number of axioms is due
to the interaction between the covering and compose rules, which interact to produce an
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Figure 18. Experiment with a single hierarchy without coverings.

exponential number of combinations. As shown in the next experiment, this can be addressed
by limiting the use of the covering rule. Also, we showed on the real-world applications of
Section 5.1 that this interaction does not seem to be a problem in practice.

We ran a second experiment, shown in figure 18, that was identical to the first except that
there were no coverings in the domain model. Without any coverings, the algorithm is able
to scale to 50 or more closely related sources.

Finally, we ran a third experiment, shown in figure 19, on the synthetic domain where in-
stead of a single hierarchy of classes, we started with 10 separate hierarchies and
assigned the sources in a round-robin fashion to each of the hierarchies. The purpose of
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Figure 19. Experiment with multiple hierarchies with coverings.

this experiment is to capture the more realistic situation where not all sources are related to
all other sources. Not surprisingly, the compilation algorithm is able to scale easily to 100
sources with a run time that is under 100 CPU seconds. This experiment includes the same
coverings that were used in the first experiment.

5.3. Discussion of experiments

The experiments on the real-world applications provide evidence that our approach to axiom
compilation does work well in practice. Many of these domains are large complicated
domains with axioms that would be difficult to construct manually. The representation
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language that we provide is sufficient to describe the sources and the results show that we
can then efficiently compile the axioms.

As shown in the experiments on the synthetic domains, the algorithm is clearly exponen-
tial. The number of classes in the experiments is small, but the density of sources is quite
high within these classes. The algorithm could scale to much larger number of classes if the
number of sources per class were not as large, which is the usual case. The experiments also
show that the algorithm scales much better without coverings or with minimal use of cov-
erings. In addition, the way in which the axiom compilation is typically used in practice (as
shown in the real-world application section) is where there are a number of sources spread
over multiple concept hierarchies, which we show makes it possible to scale to hundreds
of sources.

There are a number of simple improvements to the algorithms that would allow us to
scale to even larger number of sources. First, instead of compiling axioms at the source
level, we could compile the axioms in domain terms and then instantiate the domain-level
axioms at run-time. This would greatly reduce the number of axioms, which would allow
the system to scale to many more sources in the cases where there are many overlapping
and redundant sources. The reduction in axioms comes from the fact that some distinctions
between the axioms are not relevant at the domain level. Second, a natural extension of this
work is to build an incremental version of the algorithm. This would allow the system to
build the axioms over time and incrementally add and delete new sources.

6. Related work

Heterogeneous multidatabase systems typically use a global domain model to provide the
“glue” to integrate multiple data sources. The global domain model can be seen as providing
common semantics to the information sources by means of views that relate terms in the
sources with terms in the domain model. There are two ways of specifying these views,
which have complementary properties (Ullman, 1997). The first approach, which has been
widely used, is to integrate the sources by defining the global schema as a collection
of views (queries) over the sources. This general approach has been used in a variety of
systems, including Multibase (Landers and Rosenberg, 1982), Pegasus (Ahmed et al., 1991),
TSIMMIS (Hammer et al., 1995), and HERMES (Adali et al., 1996). An advantage is that
the query rewriting algorithms are very efficient. The rewriting consists of substituting
domain terms by their definitions, and simplifying the resulting source-level queries. A
disadvantage is that adding or modifying a source can be quite difficult: all definitions in
which that source appears have to be manually reconsidered.

The second approach, exemplified by the Information Manifold (Levy et al., 1996b), is
to define each data source as a view of the global domain model. Specifically, each source
predicate is defined as a view over domain predicates. An advantage of this method is that
modifying the definitions or adding new sources is quite straightforward because sources
are defined independently from each other. A disadvantage is that the algorithms to rewrite a
domain-level query into a source-level query involves testing containment of views, which
is computationally expensive (Levy et al., 1996a, 1996b). The work presented in this paper
combines the best of both approaches. Initially, sources are conveniently defined in domain
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terms, so that new sources can be easily incorporated or updated. Then, axioms defining
domain terms as views over source terms are compiled, so that query processing can be
performed more efficiently.

Duschka (Duschka, 1997; Duschka and Genesereth, 1997; Duschka and Levy, 1997;
Abiteboul and Duschka, 1998) developed an elegant approach to efficiently process queries
on views by inverting the axioms that describe the sources and provided an analysis of
the data complexity of computing the certain answers given a query, view definitions, and
view instances. He shows that the certain answers can be computed in polynomial time
for several source and query languages. Unfortunately, he shows that for more complex
languages (for example, that include disjunction in the view definitions, such as the one
presented in this paper), the complexity of computing the certain answers is co-NP hard
or worse, depending on the details of the language. In the work presented here, we make
a closed-world assumption on the content of the data sources, and our source and query
languages correspond to Duschka’s class of positive queries and positive views with order
constraints. As opposed to Duschka, we precompile the axioms to avoid the expensive search
performed at run-time. In addition, we have a hierarchical domain model, which allows us
to state relationships between classes, such as inheritance and definitions of classes in terms
of other classes. Further analysis of the complexity of certain and possible answers appears
in Grahne and Mendelzon (1999).

Another approach that attempts to combine some of the features of both approaches
is illustrated by the Garlic system (Haas et al., 1997; Roth and Schwarz, 1997). Instead
of defining views of the sources or of the domain model, Garlic maintains a list of the
sources that can provide a portion of the data for each class; when Garlic receives a query,
it queries in turn each of the possibly relevant sources to determine which portion of the
required data the sources can provide. An advantage of this approach is that individual
sources can provide accurate estimates of the cost of retrieving the data, so Garlic can
put together efficient plans. The work on Garlic addresses a different problem than the
one addressed in this paper and could be usefully combined with our approach. Our work
focuses on providing a rich representation language for describing the contents of sources
and efficiently determining how those sources can be combined to answer a query. In
contrast, Garlic focuses on finding the most efficient combination of possible sources,
assuming a simple representation language. The two approaches could be combined by first
using our work to represent the sources and determine how to combine the relevant sources
and then using the Garlic approach to estimate the cost of the different plans and select the
most efficient one.

The Information Manifold (IM) (Levy et al., 1996a, 1996b) provides a rich representation
language that is combination of datalog and description logic. However, view rewriting in its
language is intractable and can become undecidable in the presence of recursion (Levy and
Rousset, 1996a, 1996b). Nevertheless, Levy argues that his algorithm focuses on the relevant
information sources, which in practice is usually small; consequently, the size of typical
queries will also be small, so the theoretical intractability does not represent a major problem.
An analysis of some tractable cases in the computation of query containment is given by
Saraiya (1991) and Chekuri and Rajaraman (1997). Views in IM express containment
relationships, and IM produces query plans that are maximally contained rewritings. This
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implies that the system may return an incomplete answer without being able to signal it.
By contrast, our view definitions express equality and our query plans provide complete
answers. We can straightforwardly determine when a user query cannot be answered. More
importantly, we can easily identify the classes with missing information, and, consequently,
we can guide the query relaxation.

Recently, in the context of the Esprit project Foundations of Data Warehouse Quality
(DWQ), there has been a renewed interest in the theoretical analysis and application of
description logics to information integration. A complexity analysis of answering queries
using views in description logics appears in Calvanese et al. (1999). An early study of
description logics in information integration is (Catarci and Lenzerini, 1993). The DWQ
project has also produced analyses of query rewriting in languages with regular expressions
(Calvanese et al., 2000) and aggregates (Nutt et al., 1998).

Perhaps the most general approach to information integration is given by context logic
(Buvac̆, 1996; Guha, 1991), which extends the predicate calculus with a new modality,
(ist c φ), meaning that a logical sentence φ is true in a context c. The logic is sound and
complete, but undecidable. Lifting axioms relate formulas in different contexts, similarly
to the view definitions above. The Carnot system (Collet et al., 1991) and its successor
InfoSleuth (Bayardo et al., 1997) use restricted forms of lifting axioms, similar to those of
the Multibase approach, which are expressed in a frame-based common language. A system
using full context logic is described in Farquhar et al. (1995). Rather than focusing solely on
generality, our work also considers efficient query planning techniques, such as the domain
precompilation presented in this paper, while at the same being able to represent a great
variety of sources in practice.

7. Discussion

We have presented an approach to integrating information from heterogeneous data sources
that combines the flexibility of view rewriting with the efficiency of query processing typical
of systems such as Multibase and TSIMMIS. In order to do so, our system allows the user to
conveniently define the information sources in terms of the domain model, and it compiles
these source descriptions into a set of axioms that specify the domain model classes as
formulas in source terms. Based on the axioms compiled off-line, the system computes at
run-time the most appropriate rewriting for answering a query by simply instantiating the
corresponding axioms. Our central idea is to shift the complexity of view rewriting to a
preprocessing step that is performed off-line and is amortized as the mediator processes all
the user queries.

A limitation of our approach is the fact that our representation language does not allow
specifying a source as an arbitrary join over the domain classes. The difficulty in supporting
this capability is that the domain designer would need to know all possible queries in
advance in order to compile a set of axioms that do not lose completeness. Consider a source
S(y, z) that is described as D1(x, y) ∧ D2(x, z). Even if this source cannot be included in
the axioms for D1 or D2 it could still be used in a query for D1 ∧ D2. Therefore, without
compiling all possible combinations of domain classes, the axiom compilation would not be
complete.
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Despite this limitation, there are many applications where our approach is quite useful.
Consider the case of building an integrated catalog of electronic parts where the data comes
from individual supplier catalogs. In an application like this each supplier is providing
different classes of parts, where the top level concept is the class of parts and there are
a number of related classes that all restrict the class of parts in various ways. Our axiom
compilation approach is ideally suited to applications such as these since the algorithm
can compile the complete set of axioms in advance and quickly answer requests using the
relevant catalogs.

Our compiled axioms facilitate query processing in the presence of partial information.
The modeling language allows the user to specify when a source has complete information
for a class. However, in many real-world domains complete information will not be available,
and the queries will have to be answered based on the available partial information. Having
axioms compiled for each domain class allows us to immediately recognize unsatisfiable
queries, to identify exactly what class of information is missing, and to inform the user
about the information that can be provided.

The compiled axioms also facilitate replanning after failure: as information sources in a
distributed heterogeneous environment may become unavailable during the execution of a
query, it is desirable to provide an alternative way to answer that query, reusing parts of the
executed plan if possible. These alternative ways of obtaining the required data are already
available in the compiled axioms.

Appendix: Valid axioms

In this section we give a formal description of the kinds of integration axioms that are valid
according to the given source and domain models that the SIMS mediator accepts.

Intuitively, the valid integration axioms are those that involve sources that can be arranged
in a definitional hierarchy. So the type of source classes that our language accepts have to be
related among each other by either being co-extensional or one being contained in another.

Definition 1 (Integration Axiom). An integration axiom has the form D(x̄) ≡ φ(ȳ), where
D is a domain class, x̄ and ȳ are sets of attributes (x̄ ⊆ ȳ), φ is a formula over source classes
with conjunction, disjunction, and order constraints (of the type: attribute θ constant, where
θ ∈ {=, <, ≤, >, ≥}). The head of the axiom is D(x̄) and the body is φ(ȳ). Without loss
of generality assume the axiom body is written in Disjunctive Normal Form (DNF).

Definition 2 (Hierarchy-Supported). Consider a domain hierarchy H and the macro-expan-
sion operator M that takes a definition Dk ≡ φk({Di }) in H and substitutes one of the
domain classes Di of φk({Di }) by its respective definition Di ≡ φi ({D j })); that is, Dk ≡
φk({. . . , Di−1, φ

i ({D j }), Di+1, . . .}).
A domain formula is hierarchy-supported iff it belongs to the fixpoint of M(H) (definition,

covering).
A source formula is hierarchy-supported iff it is obtained from a hierarchy-supported

domain formula where each domain class D has been substituted by either:
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• a source class S, if source description S(x̄) ≡ D(x̄) exists (direct).
• a conjunction of source classes Si ∧S j , if source descriptions Si (x̄) ≡ D(x̄) and S j (ȳ) ≡

D(ȳ) exist and x̄ ∩ ȳ �= ∅ and x̄ �⊂ ȳ and ȳ �⊂ x̄ (compose).
• a conjunction of source classes Si ∧S j , if source descriptions Si (x̄) ≡ Di (x̄) and S j (ȳ) ≡

D j (ȳ) exist and Di ❁ D j and x̄ ∩ ȳ �= ∅ and x̄ �⊂ ȳ and ȳ �⊂ x̄ (inherit).

Definition 3 (Grounding). A subformula g of an axiom D(x̄) ≡ φ(ȳ) is called grounding
iff g ≡ D and no subformula of g is also a grounding. In other words, g is a minimal
subformula of the axiom body that is equivalent to the concept in the axiom head according
to the source descriptions and the hierarchy definitions.

Definition 4 (Key-connected). A conjunctive formula is key-connected iff all the classes
in the formula can be joined on their respective keys. That is, the graph whose nodes are
the class names and whose edges represent joins on keys of two classes in the formula is
connected.

Definition 5 (Constraint-Safe). A conjunctive formula is constraint-safe iff all the attributes
in the constraints are also present in classes of the axiom body, i.e., all constraints in the
formula can be evaluated.

Definition 6 (Binding-Safe). A conjunctive formula is binding-safe iff there exists an
ordering of the classes such that the binding patterns of each class are satisfied by previous
classes.

Definition 7 (Union-Compatible Axiom). An axiom (whose body is in DNF) is union-
compatible iff the intersection of the attribute sets of each disjunct is equal to the set of
attributes in the axiom head. (If the axiom body is conjunctive then the axiom is trivially
union-compatible.)

Definition 8 (Source-Minimal). An axiom is source-minimal iff each predicate in the
axiom body satisfies:

• the predicate is a source class and it uniquely provides an attribute (i.e., the attribute does
not appear anywhere else in the axiom body and the attribute is present in the axiom
head).

• if the predicate is a source class and it does not uniquely provide some attribute or if
the predicate is a constraint, then the predicate must participate in any grounding for the
axiom (i.e., there must not exist an alternative grounding that does not use this predicate).

Definition 9 (Valid Axiom). An integration axiom is valid iff all of the following conditions
are satisfied:

• The axiom body is hierarchy-supported.
• The axiom body contains a grounding.
• Each conjunction in the axiom body is constraint-safe.
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• Each conjunction in the axiom body is key-connected.
• Each conjunction in the axiom body is binding-safe (when considering the set of attributes

bound in the axiom head as the first element of the binding pattern ordering).
• The axiom is union-compatible.
• The axiom is source-minimal.

Definition 10 (Attribute-Maximal). A valid axiom is attribute-maximal iff each source
class in the axiom body provides as many attributes as possible and the axiom still remains
valid.

Note that axioms resulting from the axiom projection algorithm described in Section 3.2
are not attribute-maximal but are valid.

Theorem 1 (Attribute-Maximal Valid Axioms). The axiom compilation algorithm of Sec-
tion 3.1 is sound and complete with respect to the computation of attribute-maximal valid
axioms for a given domain hierarchy H and source descriptions Si (x̄) ≡ D j (x̄).

Proof sketch. By construction, the axiom compilation rules compute the hierarchy-
supported source formulas (definition 2). The macro-expansion of the hierarchy defini-
tions is achieved by the definition and covering rules, the substitution of all possible source
combinations into the domain-level definitions is accomplished by the direct, inherit, and
compose rules. The fixpoint is achieved as all rules are run in parallel until quiescence. Each
axiom proposed in each iteration of the rules is checked to be valid and attribute-maximal
using the conditions in definitions 9 and 10. ✷

Definition 11 (Minimal Axiom Set). We are interested primarily in the attribute-maximal
valid axioms, since the rest of valid axioms can be derived by axiom projection from them.
We define the minimal axiom set to be the set of attribute-maximal valid axioms for a given
domain hierarchy H and source descriptions Si (x̄) ≡ D j (x̄).

Corollary 1 (Minimal Axiom Set). The axiom compilation algorithm of Section 3.1 com-
putes the minimal axiom set for a given domain hierarchy H and source descriptions
Si (x̄) ≡ D j (x̄).

Proof: By construction, our algorithm computes the attribute-maximal valid axioms. The
same axiom could be obtained by different derivations, but our algorithm filters the axioms
using axiom equivalence (cf. Section 3.2), so that only one copy of the axiom is stored.
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Notes

1. For clarity of exposition, a source attribute will be named s.a when it maps to a domain attribute a. However,
in our system source and domain attributes may have arbitrary names.

2. The number of possible axiom heads is the power set of the set of attributes of a domain concept (i.e., 2n for n
attributes). If we also take into account binding patterns (see Section 4) the number of possible heads becomes
3n .

3. In the presence of binding patterns set containment is not enough; see Section 4.
4. In our system this type of reasoning is efficient. As axioms are generated from particular rules, it is a simple

matter to record the proof tree for each generated axiom. This proof tree can be examined to answer such
questions. The details of this proof tree representation have been omitted for brevity.

5. More precisely, for which a path of keys can be constructed. A domain concept may have several alternative
keys and sources may provide different keys. Nevertheless, the compose rule ensures that all the sources
involved in an axiom can be joined together. For example, s1(k1 a) ∧ s2(k1 k2 b) ∧ s3(k2 c) is a valid axiom,
but s1(k1 a) ∧ s2(k1 b) ∧ s3(k2 c) is not, because objects from s3 cannot be related to the corresponding objects
of s1 or s2.

6. See the extensions for binding patterns in Section 4.
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