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ABSTRACT
Air quality models are important for studying the impact of air
pollutant on health conditions at a �ne spatiotemporal scale. Exist-
ing work typically relies on area-speci�c, expert-selected pollution
emissions, dispersion and transport features (e.g., meteorology) for
building the model for each combination of study areas, pollutant
types, and spatiotemporal scales. In this paper, we present a data
mining approach that utilizes publicly available OpenStreetMap
(OSM) data to automatically generate an air quality model for the
concentrations of �ne particulate ma�er less than 2.5 m in aerody-
namic diameter at various temporal scales. Our experiment shows
that our (domain-) expert-free model could generate accurate PM2.5
concentration estimates, which can be used to improve air qual-
ity models that traditionally rely on expert-selected input. Our
approach also quanti�es the impact on air quality from a vari-
ety of geographic features (i.e., how various types of geographic
features such as parking lots and commercial buildings a�ect air
quality and from what distance) representing mobile, stationary
and area natural and anthropogenic air pollution sources. �is
approach is particularly important for enabling the construction of
context-speci�c spatiotemporal models of air pollution, allowing
investigations of the impact of air pollution exposures on sensitive
populations such as children with asthma at scale.
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1 INTRODUCTION
Fine particulate ma�er (PM2.5) consists of particles less than 2.5
m in aerodynamic diameter that once inhaled can penetrate the
respirable region of the lungs and contribute to respiratory and
cardiovascular disease. Typical primary sources of contributions
to �ne particulate ma�er include stationary and moving vehicle
exhausts, burning sources (e.g., wood-burning stoves and wild�res),
re�neries, and power plants. Secondary PM2.5 is also formed as a
result of photochemical reactions in the atmosphere in the pres-
ence of precursor gases and solar radiation. Epidemiological studies
have shown associations between exposure to PM2.5 and various
health conditions, including lung and respiratory disease [21], such
as asthma [5, 6]. In the 1993 landmark air pollution “Harvard Six
Cities Study” [4] and other recent studies [16], researchers reported
associations between the levels of exposure to �ne particulate con-
centrations and the risk of mortality and morbidity for cities all
over the world. As a result of this scienti�c evidence and several
other similar studies, many countries have set national ambient
mass-based air quality standards for PM2.5. In the United States,
the Environmental Protection Agency (US EPA) set PM2.5 stan-
dards and established the air quality index (AQI) to communicate
relative health risk levels of current pollution levels compared to
the standard, which is converted by PM2.5 concentration. �e US
AQI ranges from 0 to 500 and consists of six categories: “Good”,
“Moderate”, “Unhealthy for Sensitive Groups”, “Unhealthy”, “Very
Unhealthy”, and “Hazardous”. From an ambient pollutant concen-
tration value, one can calculate the corresponding AQI and its
health risk category for each type of regulated air pollutant. For
example, a 20 g/m3 PM2.5 measurement corresponds to an AQI
of 68 and is in the “Moderate” category, which means that “Air
quality is acceptable; however, for some pollutants there may be a
moderate health concern for a very small number of people who are
unusually sensitive to air pollution.” A 60 g/m3 PM2.5 measurement
corresponds to an AQI of 153 and is in the “Unhealthy” category.



In the US, the EPA’s ambient air monitoring network provides
hourly PM2.5 measurements at its regulatory air monitoring sta-
tions through the “Air �ality System” (AQS). �ese monitoring
stations are established for regulatory purposes with strict siting
criteria to capture regional and urban scale contributions to air
pollution levels within an area. �ese air monitoring stations also
exist in many other countries. Scientists and government agen-
cies use measurement data from these stations to build and val-
idate air quality models (AQMs) to explain and predict the past
and future air pollution levels for unmonitored locations (e.g.,
[1, 3, 12, 14, 15, 18, 19, 23, 24, 27, 28]). Predictions from these models
can then be used to study the associations between long-term air
pollution exposure and health impact at �ner spatial scales (than
simply using the monitored data) [25, 26].

One popular approach to predicting long-term spatial variations
in air pollution levels is land-use regression (LUR) (e.g., [2, 9, 13])
while more recent work uses machine learning techniques (e.g.,
[3, 11, 18, 20, 22]) and big data (e.g., [27, 28]). Existing air quality
models typically consider expert-selected (unique) characteristics
in a neighborhood including various types of geographical fea-
tures (e.g., elevation), proximity to roadways and tra�c conditions,
population density, and meteorological data. �e idea is that air
pollutants in “nearby” locations could be spatially autocorrelated
or demonstrate comparable concentrations at a given time. �is
is because geographically proximate locations are surrounded by
similar human-made and natural features (emissions and disper-
sion pa�erns), including mountains, oceans, roads, factories, and
various land-use types. However, building an air quality model
that produces accurate air quality concentration predicts at a �ne
spatiotemporal scale to capture the intra-city air pollution surface
is challenging because there are no universal means to de�ne and
quantify location neighborhood of highest in�uence on local air qual-
ity, especially across various cities and regions. Speci�cally, separate
models require expert-selected location characteristics before the
model ��ing process to achieve the best regression or machine
learning results. (e.g., distance to the ocean has a high correlation
to air quality in San Diego but not in every coastal city). �e impact
of each neighboring location characteristic on air quality can vary
signi�cantly across di�erent types air pollutants, time, and space.
Moreover, some of the data used in previous studies can be di�cult
or expensive to obtain and are not frequently available, such as
�ne-scale, and real-time meteorological data and tra�c volumes.
(See Section 5 for a review on related work)

�is paper presents a novel data mining approach that builds
an accurate PM2.5 model from publicly available geospatial data,
OpenStreetMap (OSM), without using expert knowledge in select-
ing air quality predictors. Our approach utilizes the PRISMS-DSCIC
infrastructure [17] as the data integration and analytics platform
to investigate the AQS data of PM2.5 concentrations and OSM data.
�e PRISMS-DSCIC (Pediatric Research using Integrated Sensor
Monitoring Systems - Data and So�ware Coordination and Inte-
gration Center) is an NIH-NIBIB (National Institutes of Health
- National Institute of Biomedical Imaging and Bioengineering)
funded initiative to address pediatric asthma as a chronic disease
of childhood. PRISMS-DSCIC is responsible for collecting, storing,
integrating, and analyzing real-time environmental, physiological

and behavioral data obtained from heterogeneous sensors and tra-
ditional data sources to help researchers to predict and prevent
asthma a�acks e�ciently. Using publicly available data that have a
global coverage with �ne details (in many countries), such as the
OSM data, has the advantage that the same approach can apply
to many areas across the globe without manual tuning to accom-
modate available datasets for every study area. Similarly, a recent
project using OSM data to generate pa�erns of human activities in
Vienna, Austria demonstrated promising results [10].

Our approach uses the AQS data from twelve SCAQMD (South
Coast Air �ality Management District) monitoring stations in the
Los Angeles Metropolitan Area (LAMA) and geographic data from
OSM to automatically build an air quality model. �e model demon-
strates on how di�erent types of OSM features impact PM2.5 AQIs
and from what distance at a given time in LAMA. OSM contains mil-
lions of geographic features in LAMA, including points-of-interest,
land-use areas, water areas, and road networks (see Section 2). Our
algorithm �rst identi�es the air monitoring stations that have a sim-
ilar temporal pa�ern of PM2.5 AQIs on a temporal resolution. �en
using the temporal similarity, the algorithm trains a random forest
model to generate the “importance” of individual OSM features
(represented by points, lines, and polygons) together with their
geographic distances to the monitoring stations (from 100-meter to
3,000-meter radii). For example, suppose the stations that have a
similar temporal pa�ern of PM2.5 AQI all have a large factory within
1,000 meters but other stations do not, then the feature-distance
pair (factory, 1000-meter bu�er) could have a high importance on
predicting PM2.5 concentrations. We call the geographic character-
istics (e.g., factory within 1,000 meters) weighted by the importance
the “geo-context”. In short, the geo-context represents how each
type of OSM features impact PM2.5 AQIs in LAMA and from what
distance during the period when the AQI data are available.

To predict the PM2.5 concentration at a location, P, at a given
time, our algorithm �rst generates the geo-context of P and the
geo-context of all available monitor stations in the study area. �en
the algorithm trains a second random forest model using the geo-
context and the PM2.5 AQIs at available monitor stations to predict
the PM2.5 concentration at the location P. �is process works like a
recommendation system and helps reduce the prediction errors by
considering the temporal e�ect on the geo-context. For example,
a large university campus within 1,500 meters can have a high
impact on the PM2.5 concentration during rush hours but not at
night. �e result is an expert-free air quality model for intra-city
PM2.5 predictions. Our �ndings can be used to improve air quality
models that traditionally rely on geographically weighted interpo-
lations or regressions from (spatially) sparse monitoring stations
and can 1) highlight important features or nonlinear interactions
amongst them that might have been previously missed with more
traditional supervised approaches and 2) be incorporated into more
sophisticated prediction models to select and quantify important
geographic features related to air quality. �is �nding is partic-
ularly important in the study of air pollution and the impact on
relevant populations, such as children with asthma.

�e remainder of this paper is organized into four additional
sections. Section 2 presents an overview of the data source. Section
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3 describes our approach for modeling PM2.5 concentrations. Sec-
tion 4 presents an experiment and evaluation of the results. Finally,
Section 5 concludes the paper with a discussion of future work.

2 DATA SOURCES
AQS (Air �ality System) Data

We use the AQS data collected in PRISMS-DSCIC. PRISMS-DSCIC
queries the EPA�s AirNow web service every hour using multiple
zip codes to retrieve the AQS data. For every zip code, PRISMS-
DSCIC queries the AirNow service and stores the associated spa-
tiotemporal observations. �e observations contain two parts: the
environmental air quality indexes (AQI) and the pollution category
(Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very
Unhealthy, Hazardous) that each AQI measurement correspond. On
PRISMS-DSCIC, there are 12 monitoring stations provide observa-
tions of PM2.5 AQI in the Los Angeles Metropolitan Area (Figure 1).
In this paper, our approach uses the PM2.5 AQI observations from
2016-10-30 12:00:00 to 2017-06-10 12:00:00 with one-hour intervals.

Figure 1: Monitoring Station Locations

Geographic Data

OpenStreetMap (OSM) is an open source, crowdsourced map,
which allows people to edit and access global geographic data freely.
OSM provides a variety of geographic data types with detailed
datasets covering many areas in the world. PRISMS-DSCIC contains
a copy of OSM data from Metro Extracts1 that covers the entire Los
Angeles County, including the locations of all the available PM2.5
monitoring stations. Example OSM data types (map or geographic
features) include land uses, roads, water areas, buildings, aero ways,
ocean, etc.2 OSM land-use polygons describe the primary use of
land by the human, such as industrial, residential, and commercial
use. OSM road lines include many types of roads, streets, or paths
such as motorways, living streets, and footways. OSM water areas
are bodies of water, such as lakes or ponds. OSM building types,
like point locations of apartments, factories, commercial structures,
could re�ect the population density and tra�c volumes in a local
1h�ps://mapzen.com/data/metro-extracts/
2h�p://wiki.openstreetmap.org/wiki/Map Features

area. OSM aero ways are linear features that represent the physical
infrastructure used to support aircra�, air travels, spacecra�, and
space �ights, which is a large air pollution source.

3 MODELING PM2.5 CONCENTRATION
Figure 2 shows our overall approach for building a PM2.5 con-
centration model from OSM and AQS data automatically. A�er a
preprocessing step for data cleaning (Section 3.1), our approach
groups available monitoring stations to identify similar tempo-
ral pa�erns on PM2.5 AQIs for di�erent time resolutions (hourly,
daily, monthly) using the K-means clustering (i.e., each station is a
point in the multidimensional space where each dimension is an
hour/day/month) (Section 3.2). Our approach uses the clustering
result in the next step to quantify the impact of a geographic feature
type to PM2.5 AQIs. �en the approach generates a “geographic
abstraction” for each monitoring station automatically (Section 3.3).
�e geographic abstraction is a summary of various geographic
features for the location using neighborhoods of various sizes. For
example, the geographic abstraction can contain the length of dif-
ferent road types (e.g., primary and secondary roads), the counts
of various location types (e.g., commercial and residential build-
ings), the area size of open spaces (e.g., parks, golf courses), and
hydrography (e.g., rivers and ocean) within neighborhoods of 100-
meter to 3,000-meter radii. Next, the approach trains a random
forest model to quantify the importance of individual components
in the geographic abstraction based on their supports in grouping
monitoring stations of similar temporal pa�erns on PM2.5 AQIs
(Section 3.4). We call the geographic abstraction weighted using
the calculated importance the “geo-context”. Finally, the approach
uses the geo-context to compute the similarity of the surrounding
characteristics for producing the PM2.5 concentration prediction
for locations that do not have a monitoring station (Section 3.5).
�e following subsections explain each component in our approach
in details.

3.1 Data Preprocessing
In practice, data are generally incomplete (lacking values) and noisy
(containing outliers), especially for streaming data. �e AQS data
quality also su�ers from unknown measurement uncertainty and
exceptional events that might a�ect the measurement process. Miss-
ing values and errors can have a large impact on the performance
of analytic algorithms. �erefore, the �rst step of our approach
is data preprocessing including removing outliers and eliminating
missing values in the AQS data.

3.1.1 Removing Outliers. �ere are several ways to remove data
outliers such as computing a sliding window value, clustering to
detect and remove outliers, and applying regression analysis to
smooth the data. To handle streaming data with a temporal au-
tocorrelation, using a sliding window to �lter out noisy data is
e�ective. Our approach calculates the median of a six-hour sliding
window. For example, suppose we have a series of streaming PM2.5
AQIs with the interval of one hour, [� � � , 20, 30, 35, 3, 50, 60, 55,
� � � ], the sudden drop of AQI of 3 is considered as an outlier. By
applying a six-hour sliding window, we replace the sudden drop by
the median of the window [20, 30, 35, 3, 50, 60, 55], that is 35.
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Figure 2: Overall approach for automatically building a
PM2.5 concentration model from OSM and AQS data

3.1.2 Eliminating Missing Values. �e simplest way to eliminat-
ing missing values is just ignoring the data tuple when the value
is missing. Imputation methods such as using the a�ribute mean
to �ll in the missing value or predicting for the missing ones by
machine learning algorithms can also achieve satisfactory results,
especially in building a recommendation system where lots of the
dependent values are not available. Our approach eliminates the
missing values by removing the timestamp that does not have a
value of PM2.5 AQI because �lling missing values would require an
accurate prediction of the temporal autocorrelation, which might
not be robust if the input data are not representative. In our case,
the timespan of our AQS data is less than one year.

3.2 Grouping Stations on PM2.5 AQIs
In this section, our goal is to identify monitoring stations that
have “similar” time-series PM2.5 AQIs. We use this information to
generate the geo-context in a later step. We de�ne “similar” as in
similar temporal pa�ern on the PM2.5 AQIs. Our algorithm clusters
those monitoring stations with similar temporal pa�erns in the
same group. For example, urban areas would show a higher PM2.5
AQI during workdays than rural areas, so urban areas could be
grouped together in one cluster, and rural areas are together in
another.

Our approach uses K-means to cluster the available monitoring
stations based on the collected time-series PM2.5 AQIs. K-means
clustering is a common method to identify groups in the dataset,
with the number of groups represented by the input variable K. �e
algorithm works iteratively to assign each data point to one of the
K groups. �us, data points are clustered based on the similarity of
their feature vector in the Euclidean space.

We construct a feature vector for each monitoring station using
their time-series PM2.5 AQIs. Table 1 shows an example of the
PM2.5 AQIs for the monitoring station, Central LA CO for �ve hours.
From the example, our approach generates the feature vector as [50,
53, 55, 57, 61]. In our dataset, we have the AQS data covering 5,352
hours, so for clustering hourly PM2.5 AQIs, each feature vector has
a total of 5,352 components. In the 5,352-multidimensional space,
we have 12 points where each point corresponding to a monitor
station.

K-means is a type of unsupervised learning technique, and we
need to de�ne the number of groups, K, beforehand. However, the
correct choice of K is o�en unknown in advance. Increasing K
without a penalty will always reduce the amount of error in the
resulting clustering, to the extreme case of zero errors if each data
point is a cluster (i.e., when K equals the number of data points).
In our approach, we use the elbow method to determine the value
of K. �e idea of the elbow method is to run K-means clustering
on the dataset for a range of values of K (e.g., K from 1 to 12 in our
experiment). For each value of K, we calculate the within set sum of
squared errors (WSSSE), which is the sum of the distances between
each point and centroid in each K partition. �en we plot a line
chart of the WSSSE for each K value. �e line chart would look
like an arm, and the “elbow” of the arm is the best choice of K. For
example, Figure 3 shows that when K equals to 8, the trend becomes
slow. �erefore, we choose K equals to 8 as the number of clusters.
Figure 4 shows the clustering result of twelve locations using hourly
AQIs. We can �nd that all the coastal areas are grouping together
while Central LA is itself in group because it has a very di�erent
temporal pa�erns of the PM2.5 AQI. A�er determining the best K,
our approach uses the K-means results of the identi�ed best K to
label the monitoring stations. For example, two monitoring stations
that in the same cluster will have the same group label. In the next
step, our approach uses the group label of each monitoring station
to quantify how each OSM feature supports this station clustering
result.

Table 1: Example for 5-hour PM2.5 AQI in Central LA CO

Monitorinд Station Timestamp PM2.5 AQI
Central LA CO 2017 � 03 � 04 12 : 00 : 00 50
Central LA CO 2017 � 03 � 04 13 : 00 : 00 53
Central LA CO 2017 � 03 � 04 14 : 00 : 00 55
Central LA CO 2017 � 03 � 04 15 : 00 : 00 57
Central LA CO 2017 � 03 � 04 16 : 00 : 00 61

3.3 Generating Geographic Abstraction
PM2.5 concentrations are in�uenced by its surrounding geographic
features [2]. In this section, our approach computes a geographic
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