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Abstract

The availability of massive datasets in genetics, neuroimag-
ing, mobile health, and other subfields of biology and
medicine promises new insights but also poses significant
challenges. To realize the potential of big data in biomedicine,
the National Institutes of Health launched the Big Data to
Knowledge (BD2K) initiative, funding several centers of ex-
cellence in biomedical data analysis and a Training Coordi-
nating Center (TCC) tasked with facilitating online and in-
person training of biomedical researchers in data science. A
major initiative of the BD2K TCC is to automatically identify,
describe, and organize data science training resources avail-
able on the Web and provide personalized training paths for
users. In this paper, we describe the construction of ERuDIte,
the Educational Resource Discovery Index for Data Science,
and its release as linked data. ERuDIte contains over 11,000
training resources including courses, video tutorials, confer-
ence talks, and other materials. The metadata for these re-
sources is described uniformly using Schema.org. We use ma-
chine learning techniques to tag each resource with concepts
from the Data Science Education Ontology, which we devel-
oped to further describe resource content. Finally, we map
references to people and organizations in learning resources
to entities in DBpedia, DBLP, and ORCID, embedding our
collection in the web of linked data. We hope that ERuDIte
will provide a framework to foster open linked educational
resources on the Web.

1 Introduction
We have embarked on an ambitious program to iden-
tify, describe, and organize web-based learning resources
on data science. Our current collection contains over
11,000 resources, described under a uniform schema (using
Schema.org terminology) and an openly available topic on-
tology (DSEO, cf. Sect. 3). To create this collection, known
as the Educational Resource Discovery Index for Data Sci-
ence (ERuDIte), we have developed and applied methods
from machine learning, knowledge representation, informa-
tion retrieval, and natural language processing. To make
our collection available, reusable, and human- and machine-
readable, we have released our collection of resources as
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linked data (Heath and Bizer 2011) with references to well-
known entities in DBpedia (Auer et al. 2007), DBLP (Ley
2002), and ORCID (orcid.org). Here, we detail the meth-
ods applied to specific problems in building ERuDIte. First,
we provide an overview of our project. In later sections, we
describe our resource collection effort, the resource schema,
the topic ontology, our linkage approach, and the linked data
resource provided.

The National Institutes of Health (NIH) launched the Big
Data to Knowledge (BD2K) initiative to fulfill the promise
of biomedical “big data” (Ohno-Machado 2014). The NIH
BD2K program funded 15 major centers to investigate how
data science can benefit diverse fields of biomedical research
including genetics, neuroimaging, mobile health, and preci-
sion medicine. Ensuring that the advances produced by these
centers and other research efforts yield the expected bene-
fits for human health requires a significant increase in the
number of biomedical researchers trained in data science.
To address this need, the NIH has funded the BD2K Train-
ing Coordinating Center (TCC).

Data science is a rapidly evolving, interdisciplinary
field that draws from statistics, machine learning, high-
performance computing, databases, and knowledge from
specific scientific domains. Given the growing popularity of
data science, many open learning resources have been pub-
lished on the Web. However, these resources vary greatly
in quality, topic coverage, difficulty, and presentation for-
mats, which may be confusing and daunting for learners.
To address these challenges, the BD2K TCC is develop-
ing a web portal, BigDataU.org, powered by ERuDIte, to
provide a dynamic, personalized educational experience for
biomedical researchers interested in learning about data sci-
ence. To build ERuDIte, we are developing novel, automated
methods to identify, collect, integrate, describe, and organize
learning resources (Ambite et al. 2017). Automated methods
are critical for scalability and to track new developments in
this rapidly changing field. Essentially, we are using data
science to build our index of data science resources.

2 Identifying/Collecting Learning Resources
For our purposes, we define a learning resource as any
online material useful in learning about data science. Our
core criteria for resource selection are relevance to data sci-
ence, quality, and pedagogical value. Initially, we focused



Provider/Source Types Total With Descriptions With Transcripts With Slides or Documents

BD2K Video, Written 681 602 277 72
edX Course, Video 89 88 69 53
Coursera Course, Video 256 256 81 83
Udacity Course, Video 17 17 17 0
Videolectures.net Video 8,577 6,166 7,994 4,699
YouTube Video 988 873 749 0
ELIXIR Course, Written 237 48 0 0
Bioconductor Course, Written 5 2 0 0
Cornell Virtual Workshop Course, Written 38 19 0 0
OHBM Video 78 6 0 51
NIH Video 1 1 0 0
Bioinformatics.ca Course, Video 86 63 0 0
Google Books Written 267 213 0 0

Total 11,320 8,354 9,187 4,958

Table 1: Currently Indexed Learning Resources

on known high-quality sources, including massive open on-
line courses (MOOCs), such as Coursera, Udacity, and EdX,
scientific conference talks and seminars from aggregators
such as videolectures.net, and materials generated by BD2K
Centers. We extract the metadata for these resources, in-
cluding titles, descriptions, instructors and their affiliations,
and related materials such as syllabi, slides, and videos (cf.
Sect. 3). Some sources provide such data through public
APIs (e.g., coursera.org and udacity.com). However, most
sources require web scraping, for which we developed a
modular framework, using the popular Python packages
BeautifulSoup and Dryscrape, to handle both static and dy-
namic, JavaScript-based webpages. To date, we have col-
lected a total of 11,320 learning resources, which vary in
granularity from individual videos to online courses that in-
clude multiple video lectures and associated materials. Ta-
ble 1 describes the current sources, the number of learning
resources per source, and the types of information extracted,
such as resource descriptions, video transcripts, and support-
ing slides or other written materials.1

YouTube videos. Recently, we have used machine learn-
ing techniques to identify high-quality learning resources
from large open collections such as YouTube. To find rel-
evant YouTube videos, we search for terms related to data
science, drawn from mainly the Domain dimension of the
DSEO (Sect. 3), for example: “bioinformatics” or (“regres-
sion” AND (“data science” OR “machine learning”)). We
executed 98 such queries and collected metadata from the
videos and playlists appearing in the first 20 pages of results
for each query, yielding a dataset of 122,557 unique videos.
We manually annotated 2,298 videos, sampled from across
the different pages of results for different queries, yielding
1,217 high-quality videos and 1,081 low-quality ones. We
trained a random forest classifier using the extracted meta-
data, including titles, descriptions, video transcripts, num-
ber of views, and ratings, which achieved a F1 score of 0.82,
which is comparable to human inter-annotator agreement.

1The YouTube and Google Books collections described below
are under curatorial review and are not fully included in Table 1.

Google Books. For pedagogical reasons, we initially fo-
cused on video materials, but have started to extend our col-
lection to scientific books. We issued a set of 54 queries
(similar to those for YouTube) on the open Google Books
API, which yielded 19,612 books. We collected both the
metadata for each book (title, authors, description, publisher,
URL) and snippets of text from within the book that sur-
rounded hits of the search terms. To remove off-topic books,
we generated a 200-topic latent Dirichlet allocation (LDA)
topic model using the MALLET toolkit (McCallum 2002)
and manually examined the word distributions of each topic
to determine whether it was relevant to data science. We then
removed documents with an “irrelevant topic” in any of its
top three topics. We manually assessed the documents gen-
erated and found the relevance acceptable. This procedure
yielded 12,379 book records available for human curation.

3 Describing Learning Resources
Learning Resources Metadata Schema. We have designed
a common schema to represent the metadata of the learning
resources in ERuDIte. We first reviewed existing standards,
such as Dublin Core, Learning Resource Metadata Initia-
tive (LRMI), IEEE’s Learning Object Metadata (LOM), eX-
changing Course Related Information (XCRI), Metadata for
Learning Opportunities (MLO), and Schema.org vocabular-
ies. Later, based on our collaboration with the ELIXIR con-
sortium2 and participation in the W3C Schema Course Ex-
tension Group, we mapped our schema to the Schema.org
vocabulary defined by BioSchemas.org, preserving custom
properties only when critically needed. Schema.org has the
support of major search engines, which facilitates the dis-
covery and dissemination of resources indexed in ERuDIte.

The key classes of our standard are CreativeWork (for
learning resources), Person (for instructors or material
creators), and Organization (for affiliations and resource
providers). Ontology definition files and a graphical visu-

2ELIXIR is a large effort that seeks to provide a distributed in-
frastructure for life-science data across Europe. ELIXIR’s Training
e-Support System (TeSS) plays a role analogous to the BD2K TCC.



alization of our standard appear at https://bioint.github.io/
erudite-training-resource-standard. Listing 1 shows sample
JSON-LD markup for an educational resource.

{"@context": { "@vocab": "https://schema.org/",

"bdu": "http://bigdatau.org/",

"dseo": "http://bigdatau.org/dseo#" },

"@id": "bdu:resource/12379054539352678334",

"@type": "CreativeWork",

"author": [ { "@type": ["Person"],

"@id": "bdu:person/Brian_Caffo" },

{ "@type": ["Person"],

"@id": "bdu:person/Jeff_Leek" },

{ "@type": ["Person"],

"@id": "bdu:person/Roger_D._Peng" } ],

"description": "Linear models, as their name...",

"genre": [ "dseo:advanced" , "dseo:regression",

"dseo:video", "dseo:written_documents" ],

"provider": [ { "@type": ["Organization"],

"@id": "bdu:organization/Coursera"},

{ "@type": ["Organization"],

"@id": "bdu:organization/

Johns_Hopkins_University"} ],

"name": "Regression Models",

"url": "https://www.coursera.org/learn/

regression-models"}

Listing 1: Example JSON-LD for a learning resource

Data Science Educational Ontology. To design the DSEO,
we combined top-down and bottom-up approaches. We first
identified relevant concepts based on our knowledge of the
data science domain and existing categorizations, such as
those of videolectures.net, and organized them hierarchi-
cally along six dimensions. Then we applied two bottom-
up, semi-automated methods to refine and extend the ontol-
ogy. First, we extracted noun phrases (from parse trees con-
structed by the Stanford Parser (Chen and Manning 2014))
and common bigrams and trigrams from the text associated
with the resources (titles, descriptions, syllabi, transcripts,
slides, etc.). We manually reviewed 8,160 such extractions
and selected a total of 861 candidate concepts. Second, we
used non-negative matrix factorization (Shahnaz et al. 2006)
to discover topics in our resources. We analyzed the most
significant words associated with each topic to define a con-
cept for each of the topics. Much of this analysis confirmed
the concepts identified earlier, but it also yielded ten addi-
tional concepts. We defined the following criteria for a con-
cept to be included in DSEO:

1. Is the concept relevant for at least five resources?
2. Does the concept capture an abstracted phrase or idea that

cannot be easily found by an information retrieval search
over resource text?

3. Would the concept help a user find a resource?
4. Does a clear definition for the concept exist?
5. Can the concept be automatically predicted/learned?
Using these criteria, we reduced the ontology to a total of
126 concepts, which we organized hierarchically along the
following six dimensions, which address specific questions:

Data Science Process (7) What stage of the data science
process will this resource help me with?

Domain (83) What is the topic/field of this resource?

Datatype (18) What types of data are addressed?

Programming Tool (14) What programming tool is used?

Resource Format (2) How is this resource presented?

Resource Depth (2) How advanced is this resource?

Visualizations of all concepts for the six dimensions are
available at bigdatau.org/explore erudite.

DSEO is formally a Simple Knowledge Organization Sys-
tem (SKOS) vocabulary, with the hierarchical relationships
encoded by the skos:broaderTransitive property. DSEO is
publicly available at bioint.github.io/DSEO and bioportal.
bioontology.org/ontologies/DSEO. (For ease of exploration
on BioPortal, we defined a version using rdfs:subClassOf ).
DSEO needs to adapt to innovations in data science; as we
index more resources, we will add more concepts.

Dimension Training/CV
Set Size

Testing
Set Size

Domain 7,904 1,885
Resource Depth 1,241 299
Resource Format 7,870 1,989
Data Science Process 1,725 447
Programming Tool 429 109
Datatype 1,866 466

Table 2: Assigning DSEO concepts to learning resources

Tagging Learning Resources with DSEO concepts. For
scalability, we use machine learning to automatically assign
candidate concepts from DSEO to learning resources. These
proposed assignments are later curated by human experts be-
fore adding them to resources’ descriptions. We trained sev-
eral classifiers over a manually curated gold-standard set of
DSEO concept assignments. Table 2 shows the total num-
ber of learning resources used for training, cross-validation,
and testing for each DSEO dimension. We only include tags
that have a minimum of five examples of support. We han-
dle the hierarchy of DSEO by assigning all ancestor tags
to a resource. Thus, if a resource is tagged with “machine
learning,” we also tag it with its ancestors: “artificial in-
telligence,” “probability statistics,” “computer science,” and
“mathematics.” Our approach is based on text classification.
For each resource, we combine the title, subtitle, description,
syllabus, transcript, and text from slides or other written doc-
uments into a single document. The input features for ma-
chine learning consist of a bag-of-words TF–IDF vector rep-
resentation of these documents. The most successful classi-
fiers were one-vs-all logistic regression with L1 regulariza-
tion and one-vs-all random forest. We used scikit-learn (Pe-
dregosa et al. 2011) for training and cross-validating with a
multi-label stratified five-fold approach.

Table 3 shows the performance of the best classifier for
each dimension on the test set for concepts with more than
5 resources of support. Our performance measure is the F1



score, which is the harmonic mean of precision (positive pre-
dictive value) and recall (sensitivity). We report a weighted
average F1 score, with the weights equal to the number of
true positives of each tag in the test set. This performance is
sufficient to send the DSEO concept assignment for human
curation. We have developed a web-based curation interface,
which is used internally in the project. However, we envision
opening it to users of the web portal or crowdsourced work-
ers, allowing us to re-train and validate our automated tag-
ging algorithms at greater scale. As more resources are cu-
rated, we expect the classification performance to improve.

Dimension Classifier Type P R F1

Domain Logistic Regression 0.74 0.88 0.80
Resource Depth Random Forest 0.66 0.91 0.76
Resource Format Logistic Regression 1.00 1.00 1.00
Data Science Proc. Logistic Regression 0.69 0.77 0.73
Programming Tool Logistic Regression 0.80 0.71 0.74
Datatype Logistic Regression 0.75 0.86 0.79

Table 3: Precision, recall, and F1 scores for the best classifier
for each DSEO dimension.

4 ERuDIte as Linked Data
To make our ERuDIte index more useful, we have em-
bedded it into the web of linked data. We matched (tex-
tual) mentions of people and organizations to DBpedia
and DBLP, using entity linkage techniques (Winkler 1999;
Naumann and Herschel 2010). These sources are central
in the world of linked data and provide good coverage of
entities of interest. DBpedia covers most of the organiza-
tions (often universities or large companies with research
departments) and also contains famous researchers. How-
ever, the standard of notability for inclusion on Wikipedia
and, therefore, DBpedia means that there is low coverage for
the instructors and authors of online learning resources for
data science. Therefore, we also matched people to DBLP, a
comprehensive database of published computer science re-
search. Through these two sources we also get mappings
from people to their ORCIDs, which enables further linkage
to scientific literature. We essentially solve four entity link-
age problems, BigDataU–BigDataU, BigDataU–DBpedia,
BigDataU–DBLP, and DBpedia–DBLP, simultaneously.
Finding entity references in BigDataU resources. We first
identify distinct mentions of persons and organizations in
ERuDIte’s learning resources. For Person instances, we con-
sider their name and affiliation, e.g., (“Andrew Ng,” “Stan-
ford University”). For Organization instances, we consider
their name and web address, e.g., (“University of Southern
California,” “https://www.usc.edu”). We could have consid-
ered additional information such as resource text (e.g., title,
description, etc.) to be compared with a person’s research
areas (e.g., from their papers in DBLP), but simpler tech-
niques worked adequately. In our current dataset, we identi-
fied 1,190 organization and 6,876 person references.
Finding candidate entities in DBpedia and DBLP. For
each reference to a person or organization, we search ex-
isting entity linkage services for DBpedia and DBLP for

candidate entities. In addition to the name as it occurs in
the original reference, we also search for simplified versions
that remove common elements such as academic titles, e.g.,
“Prof.” or “Ph.D.”, or organizational types, e.g., “Inc.” or
“GmbH.” For organization names, we attempt to remove ad-
ditional location information or subdivision names. When a
reference includes both a spelled-out name and its acronym,
e.g., “University of Southern California (USC),” we consider
them both together and independently. To ensure high recall
of relevant entities from DBpedia, we search it in three ways:

1. We query the DBpedia spotlight (Daiber et al. 2013) entity
linking service. This service tends to match substrings of
longer names, e.g., given “University of Southern Califor-
nia,” it will annotate it only with the Southern California
entity. We use a relevance threshold of 0.3 and a Person
type restriction when querying for a reference to a person
and no restriction for organization queries.

2. We query DBpedia’s lookup service (github.com/dbpedia/
lookup). We restrict searches on person references to sub-
classes of Person in DBpedia’s ontology. For organiza-
tions, we find the application of types on DBpedia to be
inconsistent (e.g., the Big Data to Knowledge project is la-
beled as a Band), therefore, we query both with and with-
out the Organisation type restriction.

3. We construct a DBpedia URL based on the exact name
and dereference it. Surprisingly, this identified some enti-
ties not found by the other methods.
When a DBpedia result redirects to another entity, we fol-

low that redirect. We currently ignore disambiguation pages.
We use type constraints in DBpedia to filter the results. We
keep a list of good types (e.g., University, Scientist), and bad
types (i.e., unlikely to be an instructor in data science; e.g.
SportsTeamMember). We remove instances of bad types, un-
less they are also instances of a good type. As an additional
practical restriction, we remove matches of people deceased
before 1980 as they are unlikely to be the authors of online
learning resources.

For DBLP, we similarly combine two methods of match-
ing entities: (1) we construct and dereference DBLP author
URLs to find exact matches, and (2) we use DBLP’s author
search API which provides fuzzy name matches. From these
candidate entities, we retrieve their canonical name, known
aliases (e.g., Wikipedia redirects), description, canonical
homepage, associated URLs, and, for persons, known affil-
iations. We also retrieve ORCIDs directly from DBLP, and
from DBpedia through mappings via Wikidata.
Linking external entities. If a BigDataU entity maps to
multiple external entities (DBpedia, DBLP), we check if
they can be consistently linked. This is trivially done for
persons that have ORCID mappings. If both entities map to
the same ORCID, the mappings are confirmed. If such ad-
ditional mappings are not present, we compare the informa-
tion about the external entities based on the Monge–Elkan
(Monge and Elkan 1997) hybrid similarity measure, which
computes a set-based similarity score over the sequence-
based similarity scores computed by a secondary similar-
ity measure, in our case Jaro–Winkler similarity (Winkler
1990). For persons, we compute the similarity of their names



and affiliations (with a weighting of 0.7 and 0.3 respec-
tively). We select the strongest match by computing the sim-
ilarity for the Cartesian product of the names and aliases for
the entities and for all affiliation and homepage strings, in-
cluding the same simplifications we used when searching for
the entities. If the resulting score is greater than 0.9, then the
entities are linked.
Linking BigDataU references to external entities. Finally,
we link each of the BigDataU references to a person or
organization to the DBpedia and DBLP entities, using the
Monge–Elkan similarity metric. For a person, we compute
the similarity of the name and affiliations to those of the ex-
ternal entities that were found when searching for this ref-
erence. If the reference does not include an affiliation, the
comparison is done only for the reference name and the en-
tity’s name and aliases. Otherwise, 70% of the score is from
the best name similarity and 30% from the best affiliation
similarity. For organizations, it is 70% name similarity and
30% URL similarity. If the best aggregate Monge–Elkan
similarity score is greater than 0.7, the reference is linked
to the entity. Otherwise, it is considered ambiguous and is
left as an unlinked text string. The descriptions of learning
resources, persons, and organizations are updated to link to
the relevant external entities using schema:sameAs proper-
ties, and exported as JSON-LD documents.
Evaluation. For a random sample of 100 unique references
to organizations (out of 1,190) and 200 unique references to
persons (out of 6,876), the authors manually verified the au-
tomatically derived mappings to DBpedia and DBLP, with 3
annotators for each organization reference and 2–3 annota-
tors per person reference. The average inter-annotator agree-
ment and the agreement between the record linkage predic-
tions and the annotators is shown in Table 4.

Organization Person
DBpedia DBpedia DBLP

System to Human 0.803 0.963 0.911
Human to Human 0.887 0.983 0.943

Table 4: Average pairwise agreement for linking entities.

To compute the accuracy of our automatic linking, we cre-
ated a gold standard where at least 2

3 or all of the human
annotators agreed. Table 5 shows the accuracy of our auto-
mated linking for mappings at different levels of annotator
agreement (e.g., more than 2 out of 3 annotators agreed on
191 of the 200 persons matches to DBLP, and all of the an-
notators agreed on 188 matches).
Releasing ERuDIte as Linked Data. In the spirit of open
data sharing, we expose all the metadata for each of the
learning resources in the ERuDIte collection as linked
data in the JSON-LD format, under a Creative Commons
Attribution-ShareAlike 4.0 International license.

We provide the ERuDIte linked data in two ways. First,
every learning resource page on BigDataU.org includes a
JSON-LD representation of the resource metadata (cf. List-
ing 1). This facilitates indexing by search engines and thus
greater accessibility for users. Using the resource meta-

data, we provide faceted search on the TCC Web Portal
(e.g., http://bigdatau.org/search?query=machine+learning),
allowing learners to explore and interact with the resources
in ERuDIte. Second, we released the complete index in
JSON-LD and N-Triples format at https://doi.org/10.5281/
zenodo.1214375.

We applied our previous work on data exchange,
Karma (Knoblock et al. 2012), to the learning resource,
person, and organization records, which we internally
store in a relational database, to generate RDF and
JSON-LD data. Karma uses R2RML models to map
tabulated data into RDF using semi-automated meth-
ods to speed up the mapping process. We applied
Karma’s framing mechanism to create collections of
linked schema:CreativeWork, schema:Organization, and
schema:Person entities as JSONL files.

5 Related Work
There has been a sustained interest in applying semantic
web technologies to model educational resources, as seen
by early vision papers, such as Bourda and Doan (2003)
which proposed a semantic web for learning resources us-
ing an RDF schema version of the IEEE Learning Object
Metadata standard, journal special issues (Anderson and
Whitelock 2004), survey papers (Aroyo and Dicheva 2004;
Dietze et al. 2013; Pereira et al. 2018), and the recent ISWC
2015 LINKed EDucation workshop. Other educational re-
source collection efforts include ELIXIR Training e-Support
System (tess.elixir-europe.org), GOBLET (Brazas, Black-
ford, and Attwood 2017), and the Open Educational Re-
sources Commons (oercommons.org). Our project shares
many of the same goals of these previous efforts. Our fo-
cus has been on indexing recent video content in the rapidly
evolving field of data science using automated methods for
scalability. Moreover, in addition, to formalize the metadata
of learning resources using semantic web standards and on-
tologies, we link persons and organizations to well-known
sources, such as DBpedia and DBLP.

6 Discussion
We have presented ERuDIte, the BD2K TCC Educational
Resource Discovery Index for Data Science. ERuDIte con-
tains over 11,000 training resources on data science in-
cluding courses (MOOCs), video tutorials, conference talks,
technical books, and other materials. The metadata of these
resources is described uniformly using Schema.org and au-
tomatically tagged with concepts from the Data Science Ed-
ucation Ontology (DSEO). To ensure high quality, the re-
sources and metadata descriptions are curated by experts.

We represent ERuDIte as linked data to facilitate open ac-
cess. We use record linkage techniques to map the references
to people and organizations in the learning resource meta-
data to external entities in DBpedia, DBLP, and ORCID,
thus embedding our collection in the web of linked data.

Our collection is continually growing. We are currently
curating several thousand data science videos from YouTube
and books from Google Books and plan to add them to our
collection as they are reviewed and accepted. We hope that



Type Source Accuracy (≥ 2
3 ) Support (≥ 2

3 ) Accuracy (1) Support (1)

Organization DBpedia 0.816 98 0.905 84
Person DBpedia 0.964 197 0.964 196
Person DBLP 0.942 191 0.947 188

Table 5: Accuracy of automatic linking for test sets where ≥ 2
3 or all (1) of the annotators agree, and the number of matches in

the test set (support).

ERuDIte will contribute to the growth of open linked educa-
tional resources on the web.

A major ongoing effort is to identify prerequisite rela-
tions between learning resources, e.g., that linear regression
should be learned before logistic regression. We plan to pro-
vide personalized training paths using resource descriptions
and prerequisite relations, as well as collected user interac-
tions (searches, creation of educational plans, ratings) from
the BigDataU.org web portal.

While ERuDIte is specifically focused on data science
learning resources, our approaches to describe, enrich, and
organize online learning resources could naturally extend to
any domain with a collection of resources that needs struc-
ture to enable search and exploration. We hope that the ap-
proach of ERuDIte will encourage the creation of other en-
hanced resource aggregators, thus providing open collec-
tions and tools for continuous learning for anyone interested
in delving into a specific knowledge domain.
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