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ABSTRACT
The increased availability of online learning resources in the form
of courses, videos, and tutorials has created new opportunities for
independent learners, but it has also increased the difficulty of
planning a course of study. Where should the learner start? What
should the learner know before tackling a new course? Manually
identifying these prerequisite relations between learning resources
or concepts is expensive in terms of time and expertise, and it is
particularly difficult to do so for new or rapidly changing areas of
knowledge. To address this challenge, we present a new method for
identifying prerequisite relations based on naturally occurring data,
namely the navigation patterns of users on the Wikipedia online
encyclopedia. Our supervised learning approach shows that the
navigation network structure can be used to identify dependencies
among concepts in several domains.
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1 INTRODUCTION
Self-directed learners can benefit greatly from the scientific and
technical training resources available online. However, it can be
challenging to organize these resources into a suitable educational
plan. In traditional education, whether in the classroom or in text-
books, concepts are taught in a sequence determined by an expert’s
understanding of the domain. Self-directed online learners, how-
ever, may not know where to begin. For example, if your goal is to
understand recursive neural networks, you may not know that you
first need to understand several more basic concepts in mathematics
and machine learning.
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In this task, learners can be guided by a concept graph, which links
particular educational resources – such as online courses, videos,
and tutorials – to the concepts they cover and links each concept
to any more basic, prerequisite concepts. We consider a concept A
to be a prerequisite of concept B if A is necessary or significantly
helpful for understanding B. (Other relations, such as similarity
or hyponymy, can hold between concepts without either being a
prerequisite of the other.) A concept graph can be used directly by
a learner to explore the conceptual structure of the domain, like
looking at a map, or it can be used by applications to recommend
particular learning resources based on the prerequisites between
concepts, as in the generation of structured reading lists [5].

Manually constructing a concept graph is time-consuming and
requires significant domain knowledge, motivating automatic meth-
ods. We introduce an approach that infers prerequisite relations
between concepts based on the navigation of users on Wikipedia.
We treat encyclopedia articles as identifying concepts – with vary-
ing levels of granularity – and train a classifier to predict whether
conceptA is a prerequisite of concept B based on features computed
from a graph of “clickstream” data, where articles are connected by
weighted edges that indicate the number of times users followed
links from one article to the other. Intuitively, users visiting an
article are interested in learning about that concept, and they will
follow links to other articles they believe will support that objective.
Thus, navigation tends to flow from a concept to its prerequisites.

For training and testing, we use two sets of gold-standard pre-
requisite data. One is an existing set, which covers several domains
and uses crowdsourced judgments of whether a prerequisite rela-
tion holds between a pair of Wikipedia articles [15]. The other is
derived from a large, expert-generated concept graph for machine
learning [7], which we semi-automatically map to the most relevant
Wikipedia articles.

The contributions of this paper are: (1) a novel approach to
prerequisite identification based on the observed behavior of online
learners and (2) a new evaluation set for prerequisites based on a
semi-automatic mapping of an expert-generated concept graph to
Wikipedia.

2 RELATEDWORK
Manually curated graphs of prerequisite relations are used to guide
learners1 and plan curricula – i.e., to order learning resources based

1 For a recent example, see Figure 1.6 in Goodfellow et al.’s 2016 textbook on deep
learning [4].
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on the concepts they cover. For instance, Stanford’s course CS 234
Reinforcement Learning has as a prerequisite CS 229Machine Learn-
ing, which lists linear algebra, probability, and statistics as prereq-
uisites.2 Several researchers have recently presented approaches to
automatically infer these relations between concepts and pedagogi-
cal resources. Before presenting our approach, we briefly review
these efforts.

Talukdar and Cohen [15] crowdsourced judgments of prerequi-
site relations, and then employed a maximum-entropy classifier
with three types of features: (1) derived fromWikipedia’s link graph,
(2) related to Wikipedia users’ edits, and (3) related to article con-
tent. Their classifier achieved 58.82% accuracy. Liang et al. [10]
proposed a link-based metric for measuring prerequisite relations
among Wikipedia concepts. They compute prerequisites based on
reference distance (RefD), where Wikipedia links serve as “refer-
ence relations” among concepts. (Reference distance is asymmetric,
so A and B cannot both be prerequisites of each other.) They evalu-
ate on Talukdar and Cohen’s prerequisite data and on their own
gold-standard dataset made by crawling university websites and
mapping to Wikipedia concepts. Since this new evaluation set finds
prerequisites at the level of entire courses, they are significantly
more coarse-grained than the Metacademy-based data set we intro-
duce (e.g., a concept would be Machine learning, not Markov chain
Monte Carlo).

Liang et al. [10] re-implemented Talukdar andCohen’smaximum-
entropy method, for which they report a higher average accuracy
of 60.4%, which may be due to the use of newer Wikipedia data.
They also introduce a simpler method which achieves a higher
average accuracy of 61.2%. In later work, Liang et al. [11] studied
the applicability of an active learning approach applied to their pre-
vious method with some novel features. They employed different
query strategies for pool-based active learning and concluded that
query-by-committee constantly outperforms other methods. They
also achieved higher accuracy compared to other related work.

Wang et al. [16] use the order of topics in textbook tables of
contents to extract concept maps by jointly optimizing the extrac-
tion of key concepts with corresponding Wikipedia articles and the
identification of prerequisite relations. They evaluate their method
by building concept maps from six textbooks and having domain
experts evaluate the results. A limitation of this approach is that
it requires concepts to have already been ordered by an expert in
a textbook. For many domains, appropriate textbooks may not be
readily available, or a concept graph might require combining the
orderings from multiple textbooks.

Medio et al. [13] considered predicting prerequisite relations be-
tween “learning objects” on Coursera. For each learning object, they
find a set of related Wikipedia articles and, using Coursera’s gold-
standard prerequisites between courses, they train a classifier using
textual and hyperlink features of the matched Wikipedia articles.
Given that many learning resources can describe the same concepts,
we are interested in inferring prerequisite relations among concepts
and using these to form learning plans rather than predicting pre-
requisite relations among particular resources.

2 http://exploredegrees.stanford.edu/schoolofengineering/computerscience

Gordon et al. [6] present a novel model where each concept – a la-
tent Dirichlet allocation (LDA) topic learned from a corpus of scien-
tific articles – is linked by prerequisite relations as a step in building
a concept graph to support the automatic generation of personal-
ized reading lists. Using this formulation of concepts as probability
distributions over words, they introduced an information-theoretic
view of prerequisite relations based on cross entropy and informa-
tion flow. An advantage of this work is that it does not rely on an
external reference source like Wikipedia, but a limitation is that
the results of unsupervised topic discovery are harder for humans
to interpret than a Wikipedia article.

2.1 Our Approach
In this paper, we use Wikipedia articles as concepts, which can
be linked to learning resources, such as online courses, videos, or
documents, e.g., by using Explicit Semantic Analysis [3]. While
there are limitations to the use of Wikipedia articles as concepts,
such as the problem of identifying sub-articles describing a facet of
a more general concept [12], each article has a clear interpretation,
and the set of articles has broad coverage.

Rather than use the textual or hyperlink network features of pre-
vious work, we use a new data source: the Wikipedia Clickstream,
consisting of actual navigation of learners among articles. While
we do not assert that this navigation replaces the information that
can be learned from other features, we investigate how much it can
contribute toward the problem of prerequisite identification.

Like previous work in this area, we use the Talukdar and Co-
hen [15] Wikipedia evaluation set. However, like Liang et al. [10],
we see the need for an additional, naturally occurring evaluation
set – albeit with more specific concepts than they used – leading
us to create mappings from Metacademy to Wikipedia. These data
sets are described in more detail in the next section.

3 DATA SETS
We use three sources of data: the Wikipedia Clickstream and two
sets of prerequisite relations used for training and testing. The first
is Talukdar and Cohen’s multi-domain crowdsourced judgments,
used by most previous work, and the second is a new data set based
on Metacademy’s expert-enumerated prerequisite relations, which
were created to guide learners rather than to evaluate research.

3.1 Wikipedia Clickstream
The Wikipedia Clickstream [17] consists of data sets containing
counts of (referrer, resource) pairs extracted from the user request
logs of the English, Farsi, and Arabic editions of Wikipedia. The
data is divided into months of clicks, starting with January 2015,
and includes only pairs of articles with more than 10 clicks. The
clickstream data can be seen as giving a weighted network of arti-
cles [9], where the weights are human navigation through a popular
network of learning resources. For research projects, it is a large
network; it includes 1.3 million nodes and 22 million edges for
January 2017 alone. In addition to navigation between articles, it
includes inbound clicks from web sites such as google.com.

We compute our features using the English Wikipedia click-
stream data sets that were released for January and February 2015,
six months in 2016, and January 2017. We filtered these data sets to
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only those links where both articles are in the set of concepts under
consideration (articles predicted to be relevant by the automatic
mapping of Metacademy concepts or those articles chosen for in-
clusion in the CMU prerequisite data set, described in the following
sections). Note that pairs retrieved at this step include not only
positive examples of prerequisite pairs but also (probable) negative
examples, where both concepts are of interest in the domain but
are not known to have a prerequisite relation.

3.2 CMU Prerequisite Data
The CMU prerequisite data [15] covers five domains: Global Warm-
ing, Meiosis, Newton’s Laws of Motion, Parallel Postulate, and
Public-key Cryptography. For each domain, Talukdar and Cohen
selected pairs of articles based on their random walk with restart
(RWR) scores. At the time the data was collected, every pair of
articles (d , d ′) in their data set had a hyperlink from d to d ′. These
pairs were then presented to people on Amazon Mechanical Turk,
who were asked whether (1) d ′ is a prerequisite of d , (2) d is a
prerequisite of d ′, (3) the articles are unrelated, (4) the articles are
related but there is no prerequisite relation, or (5) don’t know. For
the Newton’s Laws and Global Warming domains, they collected
five votes for each of 400 pairs per domain. For the Parallel Postulate
and Public-key Cryptography domains, they collected three votes
for each of 200 pairs per domain. For Meiosis, they collected three
votes for each 400 pairs. A limitation of these data sets is their mod-
est scale, including fewer than 100 positive pairs of prerequisites
per domain.

While naturally occurring sources of prerequisites – like Meta-
cademy, described next – consist of only positive examples, the
CMU data set includes three types of negative samples: unrelated
pairs, pairs that are related but not prerequisites, and when a prereq-
uisite was identified as being in the other direction. Following the
processing described by Talukdar and Cohen, we excluded “Don’t
know” responses, aggregated the votes, and assigned final labels
based on majority vote for each pair, breaking ties arbitrarily. We
considered the three mentioned types of relations between pairs as
negative examples for the final data sets.

3.3 Metacademy Prerequisite Data
Metacademy (metacademy.org) is a free, open-source platform for
learning. It covers 487 concepts related to machine learning, which
are connected in 1,208 prerequisite pairs (7,947 under transitive
closure). Figure 1 shows a sample Metacademy learning plan, where
each edge represents a prerequisite relation. To use the expert-
generated Metacademy prerequisite relations for the problem of
inferring prerequisites among Wikipedia concepts, we introduce
a method to map Metacademy concepts to the closest matches in
Wikipedia’s semantic space.

Finding Possible Wikipedia Matches. Our initial set of possible
matches comes from querying a search engine, since this lets us
exploit significant relevance engineering, including features based
on human intelligence (since search engines generally take hu-
man clicks into account when ranking results). In particular, we
searched DuckDuckGo for “Metacademy concept + wiki page” and

Figure 1: Sample learning plan from Metacademy

excluded results with URLs that were not from Wikipedia.3 The
granularity of concepts on Metacademy sometimes differs from
that of articles on Wikipedia, so some concepts in learning plans do
not have exactly corresponding Wikipedia articles, either because
they are too specific (e.g., Higher-order partial derivatives or Linear
regression closed-form solution) or because they are too general (e.g.,
Expectation and variance).

Predicting Relevance of Matches. For a sample of 100 Metacademy
concepts, 763 search results were annotated as 0 (not related), 0.5
(related), or 1 (exact match, either for the whole article or a section
of it). The annotation was performed by two of the authors, with a
Pearson correlation of 0.75 (p < 0.001). We found that about 89% of
samples that were labeled as 1 by both annotators also have rank 1
in search results. So, a simple baseline classifier predicts that the
first result for every query is a correct match.4 To distinguish which
of the additional results are likely to be related (0.5) vs not (0), we
use the “Category” of the Wikipedia articles: An article whose set
of categories overlaps with the categories of the rank-1 result for
that query will be labeled as 0.5. If there is no overlap, then the
article is likely to be a spurious match. Based on manual inspection,
we included two levels of ancestor categories when determining
overlap.

As an example, if we search for “d separation”, three Wikipedia
articles are found in the first page of results: Bayesian network,
M-separation, and Separation of powers. Our automatic method
labels Bayesian network as 1, since it is the top-ranked search result.
It labels M-separation as 0.5, since it has the common category
Graphical models, and it labels Separation of powers as 0.

3 Three additional kinds of searches were also tried, including the basic query, searching
with the “site:” restrictor, and searching on Wikipedia itself, but these had lower
precision.
4 This was the top-splitting rule learned by a decision tree classifier trained on the
results of the four methods of search we tested. However, the decision tree was less
good at predicting 0.5 and 0 annotations, leading us to manually produce the rules
described.

metacademy.org


While this is a simple method for predicting the relevance of
Wikipedia results, it has a 0.7 correlation (p < 0.001) with the
average of the human annotators – nearly as high as the inter-
annotator agreement. We sampled an additional 30 Metacademy
concepts for annotation by one of the authors as a validation set.
The predictions had a 0.72 correlation with the human annotations
for the validation set. Therefore, we used the results of this simple
method for finding related Wikipedia articles.

We searched for 487 Metacademy concepts on DuckDuckGo and
used our semi-automatic method for the rest of the unannotated
matches (results of 487, minus 100 queries). Focusing on matches
labeled 0.5 or 1, we retrieved 776 distinct Wikipedia articles (1,091
total matches). For 1,208 learning pairs we get 3,419 pairs of Wiki-
pedia concepts.

Our semi-automatic mapping of Metacademy concepts to Wi-
kipedia is being released at https://doi.org/10.6084/m9.figshare.
7799774 and can be used to evaluate other work on prerequisite dis-
covery. Our method for mapping concepts to Wikipedia’s semantic
space is general, and we expect it can be applied to gold-standard
concept graphs that may exist for other domains.

3.4 Final Data Sets
The final data sets used for the prerequisite prediction experiments
described in the next section consist of the entries from the aggre-
gated Wikipedia clickstream data, where both articles belong to
the set of concepts from the CMU or Metacademy prerequisites.

For the Metacademy data, we also compute sets of gold-standard
prerequisites based on transitive closure. The transitive closure
deals with the fact that, much as concepts can be enumerated at
different levels of granularity, prerequisite relations may include
intermediate dependent concepts or ignore them, e.g., we can say
that Hidden Markov model depends on Stochastic process or we can
say that Hidden Markov Model depends on Markov chain, which
depends on Stochastic process. To compute the transitive closure, if
(C1, C2) and (C2, C3) are prerequisite pairs, then we consider (C1,
C3) as prerequisites as well.

Since we are dealing with a binary classification problem, the
supervised learner needs some number of examples for both classes
(prerequisite and not). In prerequisite relation identification, it is
typically easy to find negative examples, while positive examples
are scarce. Using the transitive closure can help for domains where
we do not have enough labeled positive examples, ameliorating the
problem of class imbalance.

While the CMU data set contains both positive and negative
labeled pairs of concepts, Metacademy only contains positive ex-
amples, and we require some negative samples for our final data
set. As a simple technique for generating negative samples, we
make a closed-world assumption: Any example of navigation in the
clickstream involving a concept from the domain that is not known
to have a prerequisite relationship is taken as a negative example.

The original Metacademy data set is referred to as MA and the
transitive closure, consisting of 14,633 pairs of concepts, as MA-TR.
We use sub-sampling of majority class to create MA-bal and MA-
bal-TR, which are balanced data sets – ones where there are the
same number of observations for each class. The class distributions
for the final Metacademy data sets are given in Table 1.

Table 1: Class distributions ofMetacademy prerequisite data

Transitive closure

Data Set Original
MA

Balanced
MA-bal

Original
MA-TR

Balanced
MA-bal-TR

Prerequisites 10% 50% 18% 50%
Non-prereq. 90% 50% 82% 50%

Figure 2: Visualizing positive prerequisite edges associated
with Metacademy learning pairs (data set MA)

The graph of positive examples fromMA is visualized in Figure 2,
using the Yifan Hu proportional layout algorithm [8] in Gephi
[1]. The large connected subgraph includes most of the relevant
Wikipedia pages. Manual inspection of nodes in the graph shows
nodes in the small subgraphs are mostly irrelevant results from the
automatic matching using a search engine.

4 METHOD
To predict prerequisites, we train supervised classifiers on a set
of features defined using the Wikipedia clickstream data for the
concepts of interest. In this section, we define the features and
discuss our choice of classifiers.

4.1 Features
We focused on user navigation–based features, excluding those
related to the content of the articles. We create a directed, weighted
graph from the clickstream matches, where the weight of an edge
from article A to article B is the total number of clicks. We started
with a few predictive features defined from this graph and incre-
mentally added more until we achieved satisfying results. The final
features are:

• Weight. Total number of clicks from article A to B.
• Backward weight. Total number of clicks from B to A.
• Sum. Sum of weight and backward weight.
• Diff. Absolute difference betweenweight and backwardweight
features.

• Sum of all transitions. Sum of the weights of all outgoing
edges from A.
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Figure 3: Feature importance for decision tree on MA-bal

• Mean of weights. Average of the weights of all outgoing edges
from A.

• Normalized weight. Weight divided by sum of transitions.
• Normalized backward weight. The backward weight divided
by the sum of all transitions for B.

• Weight greater thanmean. A binary feature indicatingwhether
the weight is greater than the mean of weights.

• Backward weight greater than mean. A binary feature indicat-
ing whether the backward weight is greater than B’s mean
of weights.

The intuition behind our use of backward navigation features (from
an article to its prerequisites) is the idea that users who do not
understand concept B will then study concept A if it will help them.

There is a low likelihood that we will have clickstream data (a
non-trivial amount of direct navigation in the recorded months) for
all pairs of articles in the gold-standard data sets. To improve the
coverage of concepts, we also computed the maximum potential
navigation (PN) on paths with one or two intermediate nodes. For
one intermediate node, this is computed as:

PN1(A,B) = max
C

[min(weight[A → C],weight[C → B])]

We did not consider any temporal properties of the available
data, e.g., which articles existed or were connected by links for
which months. Rather, we summed the clickstream counts for each
pair across all available months.

4.2 Classifiers
For each data set, we trained binary classifiers using all of the
features, using the scikit-learn [14] package in Python. In initial ex-
periments, we used logistic regression and decision tree classifiers
and then added AdaBoost and Gaussian naïve Bayes to compare the

performance. We chose logistic regression as a classic classifier suit-
able for binary classification. We also used Gaussian naïve Bayes
since we are dealing with continuous features and naïve Bayes is
a simple algorithm used as an initial classification in many exper-
iments. Decision tree is used since it can handle class imbalance
better than other classical classifiers and can also produce human
understandable rules. AdaBoost is a popular ensemble-learning
method which usually gives more robust models. We set the maxi-
mum number of estimators in AdaBoost as 200 and use a decision
tree with maximum depth equal to three as base estimators. We
used these classifiers with five-fold cross validation and used 80%
of the data set as training and 20% for testing.

5 RESULTS
Our goal is to label a pair of concepts as a prerequisite or not a
prerequisite. We measure performance of classifiers on the Meta-
cademy and CMU prerequisite data in terms of the accuracy, preci-
sion, recall, and F1 scores. Accuracy shows the average performance
of each classifier as the fraction of the pairs that have been success-
fully labeled.

Accuracy =
Correct predictions (both classes)

All samples
Precision is the fraction of correctly labeled pairs.

Precision =
Prereq. pairs ∩ Retrieved pairs

Retrieved pairs
Recall calculates what fraction of all prerequisites are identified.

Recall =
Prereq. pairs ∩ Retrieved pairs

Prereq. pairs
In Tables 2 and 3, we present the performance of our classifiers for

the original and transitive closure sets of prerequisite relations from
Metacademy. The AdaBoost and decision tree classifiers, trained



Table 2: Performance of predictions on the Metacademy datasets MA and MA-bal

MA MA-bal
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Random Classifier 0.50 0.10 0.50 0.17 0.50 0.50 0.50 0.50
Lazy Conservative Classifier 0.90 0 0 0 0.50 0 0 0
Logistic Regression 0.91 0.03 0.01 0.01 0.55 0.61 0.37 0.46
Gaussian Naïve Bayes 0.89 0.17 0.10 0.12 0.74 0.18 0.29 0.22
Decision Tree 0.93 0.61 0.64 0.62 0.81 0.78 0.77 0.77
AdaBoost 0.92 0.69 0.13 0.22 0.80 0.80 0.78 0.80

Table 3: Performance of predictions on the Metacademy datasets with transitive closure, MA-TR and MA-bal-TR

MA-TR MA-bal-TR
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Random Classifier 0.50 0.18 0.50 0.26 0.50 0.50 0.50 0.50
Lazy Conservative Classifier 0.82 0 0 0 0.50 0 0 0
Logistic Regression 0.88 0.12 0.01 0.02 0.56 0.60 0.57 0.59
Gaussian Naïve Bayes 0.86 0.19 0.06 0.09 0.54 0.67 0.16 0.26
Decision Tree 0.91 0.62 0.65 0.63 0.78 0.77 0.79 0.78
AdaBoost 0.90 0.73 0.17 0.28 0.78 0.78 0.78 0.78

over balanced data sets (MA-bal and MA-bal-TR) produce the best
results achieving precision, recall, and F1 scores of around 80%.

Since negative examples constitute 90% of data set MA, a lazy
conservative classifier can predict with 90% accuracy simply by
predicting every pair of concepts not to be prerequisites. (This is
known as the accuracy paradox.) We include this lazy classifier and
a random classifier as baselines. In the Metacademy prerequisite
data sets MA and MA-TR, the performance of logistic regression
and Gaussian naïve Bayes classifiers could not beat the baseline
lazy classifier. As expected, logistic regression is highly sensitive
to class imbalance, and it ignores the minority class. This is due to
the cost function and update rule of logistic regression, where a
good model for the majority class can minimize the cost function.
The naïve Bayes classifier gives poor performance because we are
using a basic version of naïve Bayes in which the class prior biases
the predictions toward the majority class.

Performance can be improved by using a classifier that better
handles class imbalance, such as decision tree. Decision tree is
resilient against class imbalance because it selects the splitting rules
based on information gain (or Gini index), which can force both
classes to be addressed. The scikit-learn library uses an optimized
version of the CART algorithm [2], which tries to induce a tree with
largest information gain at each node. Sub-sampling the majority
class can also help our classifier to boost the precision and recall in
the balanced data sets (MA-bal and MA-bal-TR).

In our experiments, using the transitive closure did not signifi-
cantly change the performance. This is the case because our gold
standard had enough positive pairs and even finding matched click-
stream records for a subset of them sufficed to train a good classifier.
Especially in the original data set (MA), using transitive closure
(MA-TR) could not beat the class imbalance problem in our data
set.

Looking at the learned decision tree for MA, the top splitting fea-
ture is Normalized backward weight. This supports our hypothesis
that learners will read an article and, if they do not understand the
concept, will navigate to its prerequisite concepts. Figure 3 shows
the importance of different features for a decision tree classifier
based on Gini index computed on MA-bal and MA-bal-TR.

Table 4 shows the coverage of the Wikipedia clickstream data on
different domains of the CMU data set and Metacademy. Including
intermediate nodes helps to increase the coverage especially for the
CMU data set. The average coverage using direct links is 51%, which
increases to 70% while using one intermediate node and 76% while
using two intermediate nodes. Note that there are multiple reasons
there may not be a match in the clickstream. For the Metacademy
data, 15% of the concepts have no matching Wikipedia articles.
Another possibility is that there is no direct hyperlink between the
Wikipedia articles; using the Wikipedia API, we find that for only
28% of these pairs we do not find in the clickstream there is an
associated link in Wikipedia.

Table 5 shows the performance of a decision tree classifier for
the CMU data set over the covered concepts. The performance of
the classifiers followed the pattern observed for the Metacademy
data sets, so we only report the best results from the decision tree,
although AdaBoost performed similarly. It is difficult to directly
compare our results to previous work using the CMU prerequisite
data set. Talukdar and Cohen [15] do not explain the details of their
in-domain training approach (since their main focus was out-of-
domain), so we cannot mimic the details of their experiment for a
fair comparison. However, for the subset of the data set covered
by the Wikipedia clickstream, our predications are more accurate
than their maximum entropy classifier, as shown in Figure 4. Liang
et al. [10] also compare their performance on the CMU data set,



Table 4: Coverage for the CMU and Metacademy data sets

Coverage with Newton’s
Laws

Public-key
Cryptography

Global
Warming

Parallel
Postulate Meiosis Metacademy

Direct link 41% 63% 55% 36% 58% 18%
1 intermediate node 55% 72% 78% 61% 82% 30%
2 intermediate nodes 60% 79% 88% 68% 86% 31%

Meiosis Public-key Cryptography Parallel Postulate Newton’s Laws Global Warming
0

0.2

0.4
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0.8
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Figure 4: Comparison of our accuracy with Talukdar and Cohen [15] for the subset of the CMU data set covered by the Wiki-
pedia clickstream

Table 5: Performance of our decision tree classifier on the
five domains of the CMU data set

Acc. Prec. Recall F1 Score

Newton’s Laws 0.83 0.81 0.87 0.84
Public-key Cryptography 0.82 0.81 0.85 0.83
Meiosis 0.85 0.84 0.86 0.85
Parallel Postulate 0.81 0.82 0.82 0.82
Global Warming 0.87 0.86 0.88 0.87

using out of domain training. Since our approach uses in-domain
training, we cannot directly compare our results to theirs.

6 CONCLUSION
To help learners follow a coherent path through a knowledge do-
main, wewant to infer when one concept is a prerequisite of another.
We have described a new approach to this problem that exploits the
“clickstream” of human navigation among articles on Wikipedia.
In particular, we find that an important feature is the backward
navigation from a more advanced concept to one of its prerequi-
sites. We evaluate our classification methods over an existing gold
standard of prerequisites crowdsourced by researchers at CMU and
over a new data set of expert-generated prerequisites from Meta-
cademy that we map into Wikipedia’s semantic space. Training
decision tree and AdaBoost classifiers over balanced datasets, we

obtain precision, recall and F1 scores of around 80% on this new
Metacademy dataset and F1 measures from 82% to 87% on the CMU
dataset. We hope that these new techniques based on navigation
data will enable self-directed learners to take a greater advantage
of the vast amounts of learning materials available on the Web.
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