IEEE Intelligent Systems, Vol. 26, No. 1, 2011.

WINGS: Intelligent Workflow-Based Design
of Computational Experiments

Yolanda Gil, Varun Ratnakar, Jihie Kim, Pedro Antonio Gonzalez-Calero,
Paul Groth, Joshua Moody, Ewa Deelman

Information Sciences Institute
University of Southern California

Abstract

Scientists use computational experiments to study natural
phenomena through the lens of software tools and computer programs. A
computational experiment consists of a description of how selected
datasets are to be processed by a series of software components, in what
order, and with what parameter configurations. Designing computational
experiments is a challenging task for scientists because of the many
interacting constraints to configure the software and to process datasets
appropriately. We present a novel approach to explore the space of
possible experiments efficiently starting from varying degrees of detail
and varying amounts of constraints provided by the user. Our approach
represents computational experiments as workflows and exploits
semantic representations of datasets and software components to reason
about the experiment design space. We show how the Wings workflow
system can automatically track constraints and rule out invalid designs,
enabling scientists to focus on the core aspects of their experiments and
goals.

Computational Experiment Design

Scientists use computational experiments to study natural phenomena through
the lens of software tools and computer programs [DeRoure et al 04]. These
software tools can be configured with diverse settings and parameters, enabling
scientists to explore different aspects of the phenomenon at hand. A computational
experiment consists of a description of how selected datasets are to be processed by
a series of software components, in what order, and with what parameter
configurations. Earth scientists use computational experiments to estimate seismic
hazard through simulations of earthquake forecasts. Biologists use computational

experiments for analysis of gene expression microarray data or molecular
interaction networks and pathways. Social scientists analyze large social networks
to discover structural regularities based on mining relations among individuals.

Designing computational experiments for scientific analysis is a complex
process. There are many different software components that could be used, ranging
from general-purpose statistics packages to custom algorithm implementations to
specific models and codes. Each of these software components has different
requirements on the kinds of data they are designed to process and constraints on
the kinds of operations they can perform. In addition, there are many accessible
datasets that could be brought to bear in the analysis, including prototypical
reference datasets as well as large shared repositories. Each dataset has metadata
attributes that describe properties of the data that may need to be taken into
account in the analysis, for example characteristics of the original collection process
(eg, instrument setups) and any subsequent pre-processing and cleansing (eg,
normalizing or discretizing). These metadata attributes determine what kinds of
components are appropriate for processing. A given component may need to be
configured according to the characteristics of the datasets to be processed. When
two or more components are used in an analysis, their settings might need to be
coordinated in order to obtain a valid result. Therefore, while designing a
computational experiment, a scientist must choose and configure software
components and datasets while considering their characteristics and requirements
so that the resulting design is a valid one.

Computational experiments are becoming increasingly more complex but critical
for analysis of many complicated issues. Although some may consist of a handful of
steps that are previously known to the scientist, they can contain dozens of steps, be
improved with novel algorithms that may be unfamiliar, and encompass aspects of
data analysis that stretch beyond the field of expertise of an individual scientist. As
the number of available components increases, it becomes difficult to discover both
the available components and to manage the constraints that dictate how those
components correctly fit together. As more and more data repositories become
shareable, it is hard to keep up with available data and to track the metadata
properties that affect how components are configured. To design a computational
experiment, a scientist faces several challenging tasks:

1. Design and plan an overall experiment: Experiments can be assembled from
scratch by selecting and combining components and datasets. Examples of
questions that one would ask include whether datasets should be normalized
before a comparison will be meaningful, or weather sampling or
dimensionality reduction would be needed for a given dataset, or whether
there are any labeled data available that would enable semi-supervised
approaches. A common alternative to designing an experiment from scratch
is to adapt experiments that others have designed. Experimenters often look
up commonly utilized and widely accepted methods and reuse them as a
skeleton or starting point to the experiment’s design.

2. Select specific components for the experiment: There may be many alternative
algorithms or many alternative implementations to carry out a step. For

example, to do dimensionality reduction one could use principal component
analysis or linear discriminant analysis. The components may vary widely in
complexity, or convenience and customization features. For example a
component that implements a classifier may include also an internal feature
selection method, but it may be better to use separate feature selection
algorithms that may be more sophisticated.

3. Configure components: A given component may have parameters that can be
set to different values to obtain different behaviors. Common kinds of
parameters are thresholds and iteration depth. In addition, it may be difficult
for a user to know how parameters should be optimally set to get better or
faster results.

4. Find datasets: Datasets with specific characteristics may be needed for a
given experiment design. For example, a semi-supervised approach may be
viable only if there are appropriate labeled datasets available.

5. Validating experiments: For computational experiments of non-trivial nature,
tracking and checking all the constraints of the software components and
datasets becomes onerous. Those constraints and requirements are typically
stated in technical papers and documentation, and therefore their tracking is
a manual and error-prone process.

6. Explore the space of possible experiments: As more algorithms and datasets
become available, and parameter settings, exploring the space of possible
computational experiments becomes unmanageable. As a result, only a small
area of the space is explored, typically focusing on already familiar
components, known datasets, and default parameter values.

7. Consider new possible experiments that incorporate new or more complex
settings: New algorithms and datasets are developed and made available
constantly, and it is hard for users to keep up and incorporate them into their
design. In recent years, not only new algorithms but new combinations of
components have been proposed which were found to be most effective in
many areas of scientific research, including ensemble methods and algorithm
portfolios. These combination methods are harder to set up than single
algorithms in isolation.

The approach we describe is a realization of a computer supported discovery
environment [de Jong and Rip 97]. [Waltz and Buchanan 09] highlight the potential
and contributions of Artificial Intelligence research over the years to computational
science. They point out the increasing need for assisting scientists in designing
computational experiments. While scientists will need to drive the process, many
routine aspects of the design process could be automated. An intelligent system
could be designed to keep track of the detailed constraints and their interactions,
enabling scientists to focus on the core aspects of their experiments and goals.

Designing Computational Experiments as Workflows

In order to assist scientists with the design of computational experiments, we
need a framework to represent the experiment declaratively as a composition of
software components and datasets and to reason about software component

constraints and relevant metadata attributes of data collections in the context of an
experiment.

We use workflows to represent computational experiments. Workflows
represent application components and their dependencies in terms of dataflow
among them. Workflow systems have been developed to assist users with some
aspect of the process, for example to assemble workflows out of large component
libraries [Hull et al 06], to optimize execution performance [Wieczorek et al 05], and
for workflow sharing [De Roure et al 09]. However, none of these systems provides
comprehensive support for the workflow design and exploration process that we
just described.

Our WINGS/Pegasus workflow system [see BOX 1] wuses workflow
representations to manage various aspects of workflow creation and execution.
WINGS reasons about dataset and component constraints to create and validate
workflows and to generate metadata for new data products [Gil et al 07; Gil et al 09].
Pegasus selects computational resources, optimizes the workflow structure, submits
the workflow for execution, monitors its progress, and resolves possible failures.

BOX 1: The WINGS/Pegasus Workflow System for Scalable Distributed Scientific
Analysis

Workflow systems can automate many aspects of workflow creation and execution. The
WINGS/Pegasus workflow system developed at USC/ISI illustrates these capabilities, with
WINGS providing automatic workflow validation and generation and Pegasus assigning
resources and managing the execution. WINGS/Pegasus was initially developed to create
large-scale workflows for physics-based simulations to construct seismic hazard maps for
the Southern California Earthquake Center. For that application, WINGS generated a
workflow with more than eight thousand computations that were mapped by Pegasus into
more than twenty four thousand jobs. WINGS also generated more than 2M triples of
metadata attributes for 100,000 new workflow data products.

WINGS (Workflow INstance Generation and Specialization) uses Al planning and semantic
reasoners to assist users in creating workflows while validating that the workflows comply
with the requirements of the software components and datasets. WINGS can reason about
the constraints of the components and the characteristics of the data and propagate them
through the workflow structure.

Once the workflow components and datasets are selected, Pegasus automatically maps
the workflow to the available computing resources and manages its execution on local
resources as well as in distributed and high-performance cyberinfrastructure resources
such as the Open Science Grid (www.osg.org) and the TeraGrid (www.teragrid.org) as well
as clouds. Detailed records of how new data products were generated by the system are
captured in a provenance catalog, which enables easy reproducibility of results.

The WINGS/Pegasus workflow system is built on open web standards from the World
Wide Web Consortium (W3C) such as the Web Ontology Language (OWL) as well as NSF
National Middleware Infrastructure (NMI) software such as Condor (www.condor.org) and
Globus (www.globus.org). Papers, tutorials, and open source software are available at
http://wings.isi.edu and http://pegasus.isi.edu.

In this paper, we discuss novel reasoning capabilities that support the
computational experiment design process. In prior publications, we have described
the details of how these capabilities are implemented using semantic web
technologies and grid technologies. This paper gives a user-centered perspective in
terms of the assistance that users receive as part of their design process. Prior
publications focused on specific details of the reasoning done by the system and
how it is integrated with a robust scalable execution system based on grid
computing. Thus, the key contribution of this paper is the presentation of an
approach that provides assistance throughout the computational experiment design
and execution process.

We have extended WINGS with novel capabilities that support the design of
computational experiments as workflows. WINGS can:

* Express reusable combinations of software components as workflow
templates
* Based on those templates, express high-level user requests that only
partially specify what datasets, parameters, or software component types are
to be used
* From a user request, generate automatically possible workflow
candidates by searching and validating:
o Choices of datasets
o Choices of parameter values
o Choices of software components
* During that search, eliminate workflow candidates that are not viable
because they contain invalid combinations of choices

The architecture of WINGS is shown in Figure 1. WINGS operates at the domain
level, where users never see any details on the execution environment. A user can
design analyses by creating workflow templates. This can be done by selecting
components and specifying their dataflow, much as they would do in any workflow
editor. WINGS goes further in that it assists users to validate templates by enforcing
the constraints specified for the workflow components. Other users could edit
existing templates to create new ones. This way, the workflow template catalog
would be populated with widely-used known-to-work methods that can be readily
used by anyone. A user wanting to run an analysis following a known method
would find the corresponding workflow template, which determines the kind of
analysis to be done, and add any additional requirements particular to their analysis
to create workflow requests or seeds. WINGS assists them by automatically and
systematically generating possible workflows that are consistent with the request.
This capability is the focus of this paper. WINGS generates workflows in three
stages. First it selects components for each step in the workflow. Then datasets
from the catalogs to elaborate the initial workflow request and its template. Finally
it configures the parameters for each component in the workflow. Once the
workflow candidates are fully elaborated, WINGS expands the workflow to specify
any parallel computations over dataset collections (but not where they will take

place). For all the new data products, it generates metadata attributes by
propagating metadata from the input data through the descriptions and constraints
specified for each of the components. The entire workflow creation and generation
process is annotated in detail in a provenance catalog for later inspection. WINGS
can convert any valid and complete workflow into a format for submission to an
execution engine. Currently WINGS can submit workflows in a scripted format for
execution in the local host, or submit workflows to Pegasus which will manage their
execution in shared distributed resources in an efficient and scalable manner.

WINGS uses W3C’'s OWL, RDF, and SWRL (http://www.w3.0org/2001/sw) to
represent workflows and their associated constraints. The core classes are defined
in OWL, and workflow templates, requests, and candidates are expressed in RDF.
Many constraints are represented as RDF triples, others that are more complex are
represented in SWRL.

WINGS assumes external catalogs of software components and datasets that can
be accessed through services. This is an important feature, since scientific
environments consist of distributed services to access the data and algorithms
necessary for data analysis. Many collaborations are set up to enable each
institution to contribute resources (data, instruments, computers, software) by
making them available to others while remaining under the control of the home
institution. Examples include the National Virtual Observatory (http://www.us-
vo.org), the Earth System Grid (http://www.earthsystemgrid.org), the Biomedical
Informatics Research Network (http://www.nbirn.org), and the Cancer Biomedical
Informatics Grid (http://cabig.cancer.gov). Data providers expose services to access
data sources. There can be many organizations playing the role of data providers,
and as a result data may be accessible in various catalogs that are distributed across
the network. Other organizations may provide algorithms, services, models, or
implemented codes that can process data and can be used as components of
workflows. Each provider maintains the resources they contribute. WINGS
assumes that the workflow system can query these catalogs to reason about their
contents. This is an important feature, and we will come back to discuss it on a later
section.

To illustrate our approach we use very simple examples from machine learning
and data mining, since machine learning algorithms are widely used in computer
science and other sciences and are likely to be familiar to the reader. It is also a
domain that illustrates the distributed nature of data and algorithm providers. Many
algorithms for machine learning are available in libraries such as Weka
(http://www.cs.waikato.ac.nz/ml/weka) and MLC (http://www.sgi.com/tech/mlc),
while many machine learning datasets used by researchers are maintained in the
well-known Irvine repository (http://archive.ics.uci.edu/ml). Many other research
groups make datasets and algorithms available on their own project sites. As in
many other scientific disciplines, researchers seek and marshal data and algorithms
for their computational experiments from these disparate and distributed
resources.

WI N GS Workflow
Workflow template
Workflow Template template catalog
Template € > Design Workflow Validation 0
Designer Interface Assistance A Workflow
services
Workflow
Workflow Generation
Request seed Component
|7 Formulation [, Component catalog
<€ Selection
e Interface Assistance :
\LIJVorkﬂow Data Component
ser Selection services
Worlfﬂow Parameter
candidates Selection —
Data
Workflow Selected catalog
i workflows . .
Explorftlon Workflow Conversion
Interface < Data
I services
¥ ¥ ¥
Execution
Execution . Execution
. in remote hosts Provenance
in local host through Pegasus/ through other |
through scripts gGridg run-time engines catalog

Figure 1: Architecture of the WINGS workflow system.

Designing Reusable Methods

Workflow templates are high-level reusable analysis methods for computational
experiments. Only some or none of the input datasets may be specified, and only
some or none of the component parameters may be set.

WINGS represents a workflow as a set of variables. Each component, dataset,
and parameter occurrence is assigned a variable. A workflow in WINGS is a complex
RDF structure with assertions about those variables and the overall dataflow. The
WINGS interface shows two views of the workflow structure: a dataflow graph that
shows the connections across components, and a constraints table that shows triples
of attribute values applied to workflow variables. The variables are shown in the
dataflow graph, and have a marking when they are assigned a specific value. The

constraints table refers to those variables to specify values, types, and other
constraints.

ModelThenClassifier-NaiveBayes-ContinuousData &3 ‘

b =Y 7

TrainingData

NumberOfBins

Datalndex

i Discretize

DiscretizedTrainingData

s NaiveBayesModeler

DiscretizedTestData
\\ BayesModel

<7 NaiveBayesClassifier

javaMaxHeapSize

i Discretize

Classification

[Ten te Constr p ced Co
C& [—]
v TestData dcdom:isDiscrete falseAAxsd:boolean
w TrainingData dcdom:isDiscrete falseAAxsd:boolean

Figure 2: Example of a workflow template in WINGS.

Figure 2 shows a workflow template in WINGS to classify a continuous dataset
with a Naive Bayes algorithm. The constraints tab at the bottom shows that the
workflow requires that input datasets be continuous. In some templates, the
components are classes rather than specific components. We mark variables that
have a specific value with a small white star. For example, Discretize and
NaiveBayesModeler are specific components and are marked with a star, while a
template with a step Modeler refers to a class of components and would not be
marked with a star (we will see an example in the next section). Some datasets can
be pre-selected, and some parameters can be pre-set.

Workflow templates may also include advanced constraints that are expressed
as rules, and shown in the Advanced Constraints tab of the interface. For example, a
well-known principle in ML is that test data cannot be used for training. In WINGS, a
workflow that trains a classifier and runs the model on test data can be constrained
so that the test data are never included in the training dataset. This is done with the
following rule:

[modelerInput not equal to classifierInput:
(:modelerInput wflow:hasDataBinding ?2dsl)
(:classifierInput wflow:hasDataBinding ?ds2)
equal(?dsl, ?2ds2)

(?t rdf:type wflow:WorkflowTemplate)

> (?t wflow:isInvalid "true"”"xsd:boolean)]

Some constraints are expressed de facto in the template diagram. In our
example, the parameter number of bins used in the two discretizers is constrained
to have the same value. This is a result of the two components sharing the same
parameter variable as input.

Templates can be created from existing templates. For example, the workflow
template on the right side of the figure was created from a generic sample-then-
model-then-classify workflow template by adding a constraint to specify the value of
the sampling interval parameter. To add constraints, a user adds a workflow
variable to the table, and then WINGS shows a list of properties that apply to that
variable. Once the property is selected, the user can specify a type constraint or
provide a value. Users can also add components to the workflow and specify their
dataflow links. Users can also create workflow templates from scratch, by selecting
components and linking them and specifying constraints on the table. Each
template keeps associated metadata about its provenance, which is shown in the
Metadata tab.

WINGS validates a workflow template by merging any constraints expressed by
the designer with constraints about datasets and components that are retrieved by
the workflow system from the respective catalogs. This is done using the workflow
generation and validation algorithm described below. Through this validation
mechanism, WINGS ensures that workflows adhere to correct practices by using
algorithms and datasets properly.

Three important unique properties of how WINGS represents workflows are key
to assisting users in the design of computational experiments:

1. A workflow template is an abstraction of many possible computational
experiments consistent with the given design as represented by the
template. The ability to use abstract components in a workflow allows
users to sketch out their initial thoughts about the experiment without
being forced to decide on specific algorithms up front. In creating a
workflow template, users do not have to specify what data or parameters
will be used.

2. The designer of an experiment can communicate its applicability and
intended use as constraints in the workflow template. When reusing or
adapting a template, the new template can be validated because the

original one already specified constraints that can be checked in the new
design.

3. Users less experienced in designing computational experiments can build
on the expertise of others by reusing their workflow templates and
modifying them to create new workflows, which are automatically
validated by the system to ensure appropriate use of the components.

In summary, users are able to create or find high-level reusable designs that
match their ideas about how a computational experiment should be carried out
while getting assistance from the system in creating valid designs that are
consistent with the system’s prior knowledge about other workflows and
specifications of the software components.

Specifying Experiments

Workflow seeds are user requests for creating an executable workflow. A seed is
formed by a workflow template combined with additional type constraints,
parameter configurations, or dataset selections. In WINGS, a seed is an
underspecified request that the system automatically elaborates and completes for
the user.

Figure 3 shows an example of a seed. It uses a template that discretizes datasets
first and then runs a modeler and a classifier. To this template, the user added a
constraint that the testing dataset needed to be labor-2007-07-30-195521, which
contains labor data statistics in a specific region. The user also constrained the
model to be human readable (decision tree models are but Bayes models are not).
Both constraints are shown at the top of the screen as a constraints table for the
seed. Like templates, seeds can have Advanced Constraints and Provenance
Metadata. For example, the user specified a constraint that the training and test
datasets must be from the same region.

Rather than designing analyses from scratch, users can design analyses by
reusing workflow templates developed by other users. In this example, the user
reused an existing generic modeler then classifier workflow template whose input
data must be discrete. Users can also modify a workflow template from the library
to create a customized analysis, as well as contribute their own templates to the
library.

Note that while a template and a seed are conceptually different, they use the
same underlying representation. The only difference is how they are categorized
by a user either as a general reusable template or as the specification of an
experiment respectively.

The distinction between seed workflows and template workflows is important.
Users do not have to design analyses from scratch, rather they can use the available
high-level data analysis routines (captured as templates) as the start of their
analyses. Seeds may leave the following unspecified:

e Algorithms to be used. In our example seed, “modeler” and “classifier” are

classes of algorithms. The user is essentially requesting that the system finds
appropriate algorithms for those workflow steps.

Datasets to be used. In our example seed, the user did not specify an input

training dataset for “TrainingData”. The user is requesting that the system
finds an appropriate dataset.
"~ | TwoDiscretizeThenModelAndClassify [E] LaborPrediction &3]

[Seed Constraints = Seed Metadata Advanced Constraints
qp =
« Datalndex wflow:hasParameterValue SAaAxsd:int
« TestData wflow:hasDataBinding dclib:labor-2007-07-30-195521
« Model rdf:type dcdom:HumanReadableModel
« TrainingData dcdom:hasDomain dcdom:labor

Seeded Template: 'TwoDiscretizeThenModelAndClassify' [change to another template] [edit template]

NumberOfins TrainingData

* Datalndex

* TestData

DiscretizedTrainingData

JavaMaxHeapSize

DiscretizedTestData

Classification

{ Template Constraints Template Metadata Advanced Constraints |

[TestData_not_equal_to_TrainingData:
(:TestData wflow:hasDataBinding ?ds1)
(:TrainingData wflow:hasDataBinding ?ds2)
equal(?dsl, ?2ds2)

(7t rdf:type wflow:WorkflowTemplate)
-> (7t wflow:isinvalid "true"AAxsd:boolean)]

Figure 3: A workflow seed requesting classifications for a labor dataset with a constraint that the
model be human readable.

Parameter settings. In our example, the javaMaxHeapSize is not specified
and the system is expected to set its value.

Because seeds can be underspecified, users are not forced to detail every last

algorithm, parameter, or dataset. Instead, users can focus on the requirements that
are most pertinent to their problem.

When a workflow seed is underspecified in any way, WINGS elaborates the seed
into workflows that can be submitted to an execution engine. The next section
describes the algorithm for generating workflows and walks through an example of
how this happens. Workflow seeds can be fully specified and if so WINGS simply
checks the validity of the seed in case the user provided any incompatible
constraints and transforms the workflow into a format suitable for its underlying
execution engine.

Automatic Generation of Valid Experiments

WINGS generates valid workflow candidates that are consistent with a given
workflow request. The workflow generation algorithm has three major phases,
summarized in BOX 2. The algorithm queries the data and component catalogs and
retrieves constraints that are merged and propagated throughout the workflow
structure, first from results to inputs and then from inputs to results. In all three
phases, any workflow candidate whose assignments are inconsistent is considered
invalid and therefore eliminated from the candidate set. Only consistent choices of
datasets, components, and parameter values lead to valid candidates, which WINGS
can then translate into a format suitable for a workflow execution engine. The
algorithm is also used to validate any workflow, including templates and requests,
by detecting whether it leads to inconsistent constraints in any of the phases.

BOX 2: AUTOMATIC WORKFLOW GENERATION AND VALIDATION IN WINGS

From an underspecified user request, WINGS generates workflow candidates that are consistent with
the request and completes their specification so they can be submitted for execution. In the process,
WINGS validates each workflow candidate and eliminates those that contain inconsistent constraints
for datasets or components. The algorithm elaborates workflow candidates in three major phases:

Phase 1. Component selection: Starting from the end data products in the workflow, the workflow is
traversed backwards and for each component find additional constraints on any input
arguments given the constraints on output. If an abstract component is encountered in the
workflow, then the component catalog is asked for a set of specialized components that match
the current workflow constraints. A new workflow candidate (a specialized workflow) is created
with each specialized component, and the backward traversal proceeds. Some parameter values
may be set during this step as more constraints on arguments are introduced. At the end of this
step, the constraints have been propagated to the workflow inputs for each workflow candidate.

Phase 2. Dataset selection: Given the constraints on inputs from the prior step, the data catalog is
queried to find available datasets that match those constraints. There can be more than one
dataset combinations for a given input set. For each combination of datasets, a new workflow
candidate (a bound workflow) is created by binding the input data variables to matching data
objects. Candidates with no matching data sources will be rejected as invalid. The data catalog is
then queried for additional metadata properties for each dataset in a workflow candidate, which
will be used in the next step.

Phase 3. Parameter selection: Given the metadata properties of the input datasets from phase 2 and
their additional constraints propagated in phase 1, traverse the workflow forward from the
initial inputs and for each step query the component catalog for additional constraints on its
outputs given the constraints on its inputs. This step results in workflows that contain metadata
properties for all intermediate and final workflow data products. For each step, the component
catalog is also queried regarding parameter values that are appropriate given the constraints on

input and output datasets. For each choice of parameter settings, a new workflow candidate (a
configured workflow) is created. Candidates are rejected if no parameter settings are possible, or
if the component constraints are incompatible with its input data constraints.

Only valid and completely specified workflows are generated with this algorithm. The user can select

@ LaborPrediction ‘ﬁ LaborPrediction-7ab434ff-56cb-46ff-babf-31f75666e50b £3

Workflow Generation FINISHED.. Results below

9 Specialized workflows, 16 Bound workflows, 8 Configured workflows, 8 DAXes

Workflow Compenent Choice! Input Data Choices Parameter Choices
Discretize
¥ (Specialized workflow) ID3Modeler TestData=labor-2007-07-30-195521 Datalndex=>5
Ciscretize
Id3Classifier
Discretize
ID3Madeler TestData=labor-2007-07-30-195521
T R LT Discretize TrainingData=labor-2007-07-30-195519 Datalndex=5
Id3Classifier
Discretize -
¥ (Configured workfiow) 'D3Modeler TestData=labor-2007-07-30-195521 g;:‘;m’gg‘;s'mu
g Discretize TrainingData=labor-2007-07-30-195519 .
1d3Classifier JavaMaxHeapSize=256M
(DAX)
Ciscretize
ID3Modeler TestData=labor-2007-07-30-195521
v =
(Bound warkflow) Discretize TrainingData=labor-2007-07-30-19553g Datalndex=3
Id3Classifier
Discretize -
: ID3Modeler TestData=labor-2007-07-30-195521 \umberOfBins=100
¥ (Configured workflow) _ B L Datalndex=5
Discretize TrainingData=labor-2007-07-30-195539 .
1d3CIassifier JavaMaxHeapSize=1024M
(DAX)
Discretize
ID3Modeler TestData=labor-2007-07-30-195521
) RS Discretize TrainingDataslabor-2007-07-30-195521 DMalndex=5
Id3Classifier
Discretize
ID3Modeler TestData=labor-2007-07-30-195521
X (Bound warkflow) Discretize TrainingData=labor-2007-07-31-161000 Datalndex=3
Id3Classifier
Discretize
¥ (Specialized workflow) - oModeler TestData=labor-2007-07-30-195521 Datalndex=5
Discretize
Id3Classifier
Discretize
J4BModeler TestData=labor-2007-07-30-195521
v =
(Bound warkflow) Discretize TrainingData=labor-2007-07-30-19551g Datalndex=3
Id3Classifier

| a subset and WINGS converts them to a format appropriate for the execution engine of choice.

Figure 4: Workflow candidates created during workflow generation.

Figure 4 shows some of the workflows generated by WINGS for the request in
Figure 3. A total of 8 workflow candidates are found to be valid for the given

request. In the figure, they are shown as configured workflows, which have all
datasets selected and all parameter values set. Each has an associated DAX for
submission to Pegasus for execution. We now explain phase by phase how the
algorithm generates these candidates.

Phase 1: Component Selection

In the first phase of the WINGS generation algorithm, components are selected.
If the workflow request contains abstract component classes, then the component
catalog is queried about valid specialized components for that class. An alternative
workflow candidate is created for each possible specialization.

In our example, WINGS specialized the workflow template by finding 9 possible
combinations of modelers and classifiers that would work with the constraints of
the workflow request. In this case, no Bayes modelers or classifiers were used since
they respectively generate or use a Bayes model and the request specified to use a
decision tree model. For our example, we had 3 decision tree modelers and 3
decision tree classifiers available (for ID3, J48, and Lmt, all well-known decision tree
algorithms). Figure 4 shows 2 of the 9 possible combinations of modelers and
classifiers, namely an ID3 modeler with an ID3 classifier and an ID3 modeler with a
a J48 classifier. We will see in later phases that some of these 9 combinations are
not viable for the request and will get eliminated.

Also in this phase, the component catalog is queried about additional constraints
placed on a component’s inputs given the constraints on its outputs. Constraints are
propagated as the algorithm does a backwards traversal from results to input data
throughout the workflow. This allows WINGS to have an extended set of constraints
for input datasets that are used in the next phase for dataset selection.

In our example, a query about each modeler returns a constraint that its input
model must be on the same domain as the test dataset. In this case, the domain of
the model must be based on labor data (specified as having labor as its domain). A
query about each classifier returns a constraint that its input training dataset must
be of the same domain as the model it outputs. Therefore, the training dataset that
is input to the workflow includes a constraint that it must be labor data (has labor as
its domain).

Phase 2: Dataset Selection

In the second phase, datasets are selected by querying the component catalog
about datasets that match the constraints in the workflow request for the input
datasets found in phase 1. An alternative workflow candidate is created for each
possible dataset match.

In our running example, only the training dataset is unspecified and the test
dataset is given. As we saw from the prior phase, WINGS has now found that the
input training dataset has a constraint that it must be of the labor domain. The data
catalog we had for this example has 4 datasets for labor data, and all of them have

some missing values (i.e. hasMissingValues is set to true). All workflows which have
Lmt algorithms (classifiers or modelers) require no missing values, so we only get
the 4 dataset bindings for the workflows without Lmt algorithms. In the figure, two
candidate bound workflows are eliminated and shown with a red mark. Thus we
end up with a total of 16 candidates that have bound inputs (4 for each of the 4
algorithm combinations that do not have Lmt algorithms).

In this phase, the data catalog is also queried to return all metadata properties of
the datasets in each workflow candidate. This is also done for any datasets specified
in the request, so that all the properties of those datasets are taken into account as
constraints are propagated in the next phase of the algorithm. In our example, a
metadata property would be returned for each labor dataset stating its size.

Phase 3: Parameter Selection

In the third and final phase, the constraints from the input datasets are
propagated forward in the workflow through each component by querying the
component catalog regarding metadata constraints on its outputs given the
constraints on its inputs. Any workflow candidates that have inconsistent
constraints are eliminated as invalid. Also in this phase, parameter values are
selected by querying the component catalog regarding appropriate parameter
values for a component given the metadata properties of its input and output
datasets. Alternative workflow candidates are created for each of the possible
parameter assignments.

In our example, the component catalog is queried for a value for the number of
bins for the first discretizer and is given the size of the training datasets. The value
returned in this case is 100. The component catalog is given this value for the
second discretizer and it is found to be acceptable. The parameter for the java heap
size (exposed by the software in the Weka library) is also set for each modeler based
on the size of its input datasets.

During this phase, a total of 8 of the 16 workflow candidates are eliminated. In
propagating the constraints through the workflow in a forward traversal, some
dataset choices from phase 2 are found to be inappropriate. First, the workflow
template had a constraint that the test data set and the training dataset could not be
the same, so 4 workflow candidates are eliminated. Second, the request had a
constraint that the training and test datasets must be from the same region and as a
result 4 more workflow candidates are eliminated. In this example no workflow
candidates for parameter value choices are eliminated, but this could happen for
example if the classifier found the value for the number of bins unacceptable for the
test dataset. In the end, a total of 8 workflows are found to be viable for the
workflow request in our example.

Discovery and Exploration

While we have used machine learning workflows in our examples, WINGS has
been used in several scientific applications including earthquake science, biomedical
image processing, and genomics [Gil et al 07; Kumar et al 09]. In particular, in
biomedical imaging processing choice of datasets and parameters in the
computational experiment affect the quality of the results as well as the
performance of the system. By breaking the image into chunks that can be
processed in parallel, better performance is obtained but the results are less
accurate. In those applications, WINGS is used to explore these tradeoffs in the
design of the workflows. The workflows generated by Wings vary as the system
explores different choices of datasets and parameters. More details can be found in
[Kumar et al 09].

A very important result of the workflow generation process that the user may
discover a combination of components that they were not previously familiar with,
or find data sets that they did not know were compatible with a particular
experimental design. Furthermore, WINGS will always include new algorithms and
datasets as they become available. For example, it could be set to periodically check
updates relevant to selected computational experiments and alert the user if new
relevant datasets or components are found.

The result of automated workflow generation is not only a set of valid workflows
that can be submitted for execution, but also a range of possible experiments with
different levels of specialization. For example, there are candidates that only contain
concrete components but not specific datasets. Likewise, there are candidates that
include both concrete components and specific datasets but do not have parameter
values assigned. These candidates may be useful as starting points for other
experiment explorations. WINGS allows any of the candidates to be saved as
templates or seeds for later reuse and modification.

For situations when many candidate workflows are generated for the user, we
envision a series of interactive iterations over the workflow generation process
where the user could browse the candidates and formulate further constraints in
their requests until a reasonable set of candidates is obtained.

Conclusions

This paper presented our approach to assist users in designing and exploring
computational experiments as workflows. The underlying workflow reasoning
algorithms reason about constraints on data and components and propagate those
constraints throughout the workflow structure. Throughout the interaction the
workflow developer is only shown the effect that those constraints have in the
context of their particular workflow. Moreover, the workflow developer need not
keep track of such constraints because they are automatically incorporated into
their workflow by the system and propagated during workflow generation and
validation. This makes it possible to modularize scientific knowledge: the
knowledge that a workflow designer needs to use is separate from the knowledge
that an algorithm designer has. Once an algorithm designer contributes an

algorithm to the catalog and expresses his/her knowledge about the component
requirements and constraints, this knowledge is readily exploited by the workflow
system and used to assist all designers of computational experiments that could
benefit from that algorithm.

A promising area of future work is integrating workflow execution into the
workflow design process. Some workflows need to be designed in portions, where
looking at the actual results of a portion helps decide how that portion should be
and once it is settled then the next portion can be designed. Another interesting
area of future work is the design of appropriate mechanisms to expose the system’s
reasoning to a user. For example, a user may want a justification for why a
parameter was set to a certain value or the reason why an algorithm is not
appropriate for their data. This would involve both extending the system to record
the reasoning behind its decisions as well as designing the presentation of such
information.

Scientists often speak of a “data deluge”, and are well aware of the need and
benefits of shared data catalogs that expose important metadata relevant to discern
appropriate use of the data and to facilitate data integration. There is an analogous
deluge of algorithm and analytic tools, and no practical mechanisms to facilitate
their use and integration. Scientists need intelligent assistance in finding algorithms
that are appropriate for their data, in discovering recent algorithms that they are
not familiar with but are relevant for their experiment, and in configuring a valid
workflow that complies with all the interacting constraints among datasets and
analytic tools. Workflow systems equipped with semantic reasoning capabilities
can enable exciting prospects for assisted scientific discovery.

Acknowledgements

We gratefully acknowledge funding from the National Science Foundation under
grant CCF-0725332 and by the Spanish Ministry of Science under grant TIN2006-
15202-C03-03. We thank our many scientist collaborators who motivated the
research described in this paper.

References

de Jong, H. and A. Rip. The computer revolution in science: steps towards the
realization of computer-supported discovery environments, Artificial
Intelligence, Special Issue on Scientific Discovery, Volume 91, Issue 2, Pages 225-
256, 1997.

DeRoure, D., Gil, Y., and Hendler, J. Guest Editor's Introduction to the Special Issue
on e-Science, IEEE Intelligent Systems, January 2004.

De Roure, D., Goble, C. and Stevens, R. (2009) The Design and Realisation of the
myExperiment Virtual Research Environment for Social Sharing of Workflows.
Future Generation Computer Systems 25, pp. 561-567.

Gil, Y., Ratnakar, V., Deelman, E., Mehta, G. and J. Kim. "Wings for Pegasus: Creating
Large-Scale Scientific Applications Using Semantic Representations of
Computational Workflows." Proceedings of the 19th Annual Conference on
Innovative Applications of Artificial Intelligence (IAAI), Vancouver, British
Columbia, Canada, July 22-26, 2007.

Gil, Y., Groth, P., Ratnakar, V. and C. Fritz. “Expressive Reusable Workflow
Templates.” Proceedings of the Fifth IEEE International Conference on e-Science,
Oxford, UK, December 9-11, 2009.

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M,, Lij, P., and T. Oinn.
“Taverna: A Tool for Building and Running Workflows of Services”, Nucleic Acids
Research, Vol 34, 2006.

Kumar, V. S., Sadayappan, P., Mehta, G., Vahi, K., Deelman, E., Ratnakar, V., Kim, J., Gil,
Y., Hall, M,, Kurc, T. and J. Saltz . “An Integrated Framework for Parameter-based
Optimization of Scientific Workflows,” To appear in Proceedings of the 18th
International Symposium on High Performance Distributed Computing (HPDC),
Munich, Germany, June 11-13, 2009.

Waltz, D. and Buchanan, B. G. “Automating Science.” Science, Vol. 324, April 2009.

Wieczorek, M., R. Prodan, and T. Fahringer, "Scheduling of Scientific Workflows in
the ASKALON Grid Environment," SIGMOD Record, vol. 34, 2005.

