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ABSTRACT 
Automated Machine Learning (AutoML) systems are emerging 
that automatically search for possible solutions from a large space 
of possible kinds of models. Although fully automated machine 
learning is appropriate for many applications, users often have 
knowledge that supplements and constraints the available data 
and solutions. This paper proposes human-guided machine 
learning (HGML) as a hybrid approach where a user interacts with 
an AutoML system and tasks it to explore different problem 
settings that reflect the user’s knowledge about the data available.  
We present: 1) a task analysis of HGML that shows the tasks that 
a user would want to carry out, 2) a characterization of two 
scientific publications, one in neuroscience and one in political 
science, in terms of how the authors would search for solutions 
using an AutoML system, 3) requirements for HGML based on 
those characterizations, and 4) an assessment of existing AutoML 
systems in terms of those requirements. 
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1 Introduction 
In recent years, Automated Machine Learning (AutoML) 
approaches are making great strides to automatically search for 
machine learning solutions from a large space of possible kinds of 
models.  Typically, a solution is created by choosing a model (e.g., 
random forest, SVM, etc.) and then configuring those models by 
assigning (hyper)parameter values [1]–[4]. 

A series of challenges and workshops have led to steadfast 
improvements [5]. Commercial products are now becoming 
available that automate machine learning, notably for image 
classification and select natural language processing tasks [6].  
While fully automated model learning is appropriate for many 
applications, there are many contexts where full automation is not 
desirable or possible.  

This is the case when users have knowledge that 
supplements the available data, particularly in a scientific research 
context. An AutoML system would look at a set of instances or 
images the same whether they are about tumor tissues or ad 
placements.  However, biologists would bring to bear extensive 
knowledge about human disease in the development of a machine 
learning model. Without this knowledge, machine learning 
models might optimize model search criteria but be inconsistent 
with what is known about the data and its context.  Moreover, 
without incorporating this knowledge the solution search space 
might be intractable. In many cases, users explore alternative 
settings (different models, different features and different 
datasets) in order to consider a variety of questions and 
hypotheses. 

This paper proposes human-guided machine learning 
(HGML) as a hybrid approach where a user interacts with an 
AutoML system and tasks it to explore different problem settings 
that reflect the user’s knowledge about the data available.  This 
requires an intelligent user interface that allows users to specify 
alternative problem settings and explore different models, and an 
AutoML system that can be tasked to generate solutions according 
to the user’s guidance.  We explore requirements for HGML based 
on two substantial scientific publications in different disciplines 
(political science and neuroscience), and analyze how those 
requirements could be met by AutoML systems. 

The main contributions of this paper are: 1) An integrated 
user interface and AutoML system that supports basic interactions  
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Figure 1: Our initial integrated system that serves as a baseline for Human-Guided Machine Learning (HGML). 

as a baseline for HGML; 2) A task analysis of HGML that 
enumerates discrete user tasks to guide AutoML systems; 3) 
Characterizations of two significant studies in neuroscience and 
political science based on that task analysis; 4) Requirements for 
HGML resulting from those characterizations; and 5) An 
assessment of how those requirements could be accommodated by 
AutoML systems. 

The paper begins with a description of an existing AutoML 
system that supports basic interactions with users.  We then 
motivate why users could use their knowledge to effectively guide  
the search for machine learning models.  We follow with a task 
analysis of common tasks involved in HGML, mapping these tasks 
to the steps followed in two recent publications in different 
disciplines.  We then assess whether existing AutoML systems 
could accommodate those requirements. We finish with a 
discussion and an outline of future work. 

2 Automating Machine Learning 
A variety of approaches to AutoML have been explored in recent 
years.  Auto-WEKA [1] combines automated model selection with 
(hyper)parameter optimization using the machine learning 
functions or primitives provided by the popular WEKA toolkit [7]. 
The approach was adopted for the scikit-learn library [8] in Auto-
sklearn [2], extended with meta-learning and ensemble 
construction, and later with probabilistic matrix factorization [4].  
TPOT offers an alternative approach using genetic algorithms [3]. 

3 Interacting with an AutoML System 
In prior work, we integrated an AutoML system [10] with a user 
interface for statistical and machine learning model exploration 
[9] to allow users to specify machine learning problems of interest 
and have the AutoML system generate solutions.  Figure 1 shows 
a snapshot of this system.  The left-hand side summarizes the 
variables in a dataset, the middle portion highlights statistical 
properties of each variable (which can be explored further by the 

user), and the right-hand side shows how a user can specify a 
machine learning problem of interest. With that specification, the 
AutoML system returns the top ranked multi-step solutions that 
include an appropriate machine learning model. 

Our AutoML system uses a phased approach to AutoML that 
can ingest naturally occurring data of any size and type, and use 
third-party data processing and modeling primitives [10].  In 
contrast with previous approaches to AutoML, this system can 
ingest different kinds of data such as tables, text, images and 
audio. The system exploits expert-like planning strategies to 
factor the search for multi-step solutions into phases: 1) extract 
features of interest from the dataset, 2) build a solution skeleton 
with the types of model and other steps to include, 3) address 
algorithm requirements with additional steps, 4) perform a 
hyperparameter search to improve the results, and 5) generate 
ensembles with the top-ranked models.  The planner generates 
multi-step solutions that include featurization steps, data cleaning 
steps, imputation steps and modeling steps. 

In this integrated system, a user specifies:  1) A target dataset 
with many instances (or data points); 2) A problem description 
(currently this can be classification or regression); 3) A 
specification of training and test data as subsets of the target 
dataset, including cross-validation details (number of folds, 
stratified or plain); and 4) An evaluation metric, which can be 
accuracy, mean squared error, and F1 macro.  The system returns 
the top ranked solutions.  Below are some example solutions for a 
classification problem to map questions to answers, showing the 
main steps and accuracy: 

HashingVectorizer -> LabelEncoder -> LogisticRegressionCV (0.9489) 
CountVectorizer -> LabelEncoder -> BernoulliNB (0.9486) 
TfidfVectorizer -> LabelEncoder -> AdaBoostClassifier (0.9460) 

This integrated system provides a baseline for HGML, in that 
it allows users to task the AutoML planner to find a machine 
learning solution but does not support other kinds of guidance 
from users.  In the next section we motivate why this guidance is 
key in many applications. 
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4 Human-Guided Machine Learning 
We view human-guided machine learning (HGML) as a new area 
of research focused on how to assist users to use domain 
knowledge to guide an AutoML system to select machine learning 
algorithms and find multi-step solutions.  Exploiting domain 
knowledge is particularly important for scientific data, which 
have been our focus to date. 

There is important domain knowledge that can inform a 
predictive model but cannot be derived directly from a dataset or 
from abstract statistical or learning theory. This includes 
substantive theories about the context of the data, past results in 
the literature that lend prior weight to different factors and 
models, the purpose and properties of a good model, and the 
applicability of solutions from an AutoML system. This 
knowledge is complementary to the data itself.   

In today’s very best research settings, where there are 
collaborations between domain experts and machine learning 
experts, exploration into the data is a joint venture where machine 
learning experts drive the computational machinery of analysis, 
but are directed to the interesting features by the knowledge of 
the domain experts. Often domain experts do not even realize 
what knowledge is most valuable, or what its implications are for 
tailoring the statistical choices, but a good machine learning 
collaborator can untangle and extract that information through 
discussion and model exploration. The goal of our work is to 
increasingly automate what a machine learning expert 
contributes to this process, so that a domain expert can develop 
machine learning models on their own. 

Domain experts are typically heavily invested in the 
collection of their data, understand the variables well, pose 
questions that could be answered from the data, and possess 
substantive knowledge about the plausibility of various 
relationships that may emerge from models. What they may not 
know is the range of plausible models appropriate to their 
objectives, how to configure and parameterize models to explore 
the solution space, or how to interpret their results. We could 
imagine a hypothetical consulting machine learning expert whose 
role is to tease out all of the expert knowledge the researcher 
possesses, address any data quality issues, choose appropriate 
machine learning models, and then conduct tests as to whether 
the model has any failings. Alas, the extreme overabundance of 
data in many domains greatly surpasses the availability of such 
individuals, leaving many data-rich questions unresolved.  

Our goal is to develop HGML systems that allow a domain 
expert, without a machine learning expert, to use relevant domain 
knowledge to inform the automated search for a high quality, 
impactful and interpretable model, including necessary data 
preparation steps necessary for analysis. 

An HGML approach assumes iterative exploration and 
incremental development of models.  That is, it does not assume a 
one-shot problem set up by the user and solution generation by 
the system. Users are expected to explore a variety of settings and 
models in order to understand the data and to formulate 
appropriate questions and hypotheses. 

5 Related Work 
The most closely related work is on interactive machine learning 
research and human-in-the-loop machine learning, a thorough 
review is provided in [11].  A variety of work has focused on 
interactive clustering, where users interact with a single type of 
clustering model, typically by requesting that clusters be split or 
merged.  [16] focus on assisting a user to select parameter value 
ranges for clustering based on visualizations of a variety of 
metrics. In the case of clustering text data, there are approaches 
that allow users to provide additional kinds of input, such as term-
based feedback on topic models [17]–[18].  Other work has 
focused on interactive feature selection for machine learning by 
developing user models based on prior interactions [19].  These 
approaches focus on helping a user set up and interact with 
machine learning models, while HGML allows users to task an 
AutoML system to do so. 

Visual analytics focuses on approaches to generate 
visualizations that can help a user understand and analyze data, 
and even transform the data through manipulation [12]–[15]. 
Others have focused on exploring data through queries and 
statistic tests [20]–[21].  This exploration can lead a user to define 
new classes or features [22]. This work is complementary to 
HGML in that it focuses on helping users decide what features or 
classes to use rather on enabling them to specify features based 
on their knowledge. 

There is also work on learning procedures from user logs or 
from demonstration [23]–[25], which could be the basis for  
HGML approaches that learn from watching users create end-to-
end machine learning solutions in their domains. 

In summary, prior work addresses issues of users providing 
input or reacting to a model generated by a machine learning 
algorithm, using the terms “interactive machine learning” or 
“human-in-the-loop machine learning”.  There is no interaction 
on data preparation steps, which are known to affect the 
performance of machine learning models.  There are also no 
choices of types models, as users interact with a single model (e.g., 
a k-means clustering model).  In contrast, human-guided machine 
learning focuses on the user providing guidance to a fully 
automated machine learning system. Our work shifts the 
attention to maximizing machine learning automation, and takes 
the user interactions further to collaborate with an AutoML 
system that can: 1) take on a variety of machine learning tasks on 
a wide range of types of data, 2) explore several model types, and 
3) consider entire end-to-end solutions that include data 
preparation and feature generation steps. 

6 Task Analysis 
This section describes our task analysis work to characterize 
common tasks involved in human-guided machine learning.  We 
followed two phases, the first was top-down and the second 
bottom up. 

Table 1 summarizes the resulting tasks, showing in boldface 
the tasks that resulted from the second phase of the analysis.  
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Table 1. Major Tasks Involved in Human-Guided Machine Learning (HGML). 
Task Category 

& Purpose  
Task ID and description User reason Intended Guidance 

D
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a 
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V
ar
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bl
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Se
le

ct
io

n  [VS1] The user may require that certain variables be 
given more priority 

User’s domain knowledge indicates the importance 
of specific variables  

Affect feature selection and 
weighting 

[VS2] The user may suggest new variables that combine 
existing variables 

User’s domain knowledge and experience indicates 
new variables  

Affect feature generation  

[VS3] The user may modify the framing (e.g., 
temporal, spatial) in which the variables exist 

User is interested in a particular time period or 
area  

Affect feature selection 

[VS4] The user may fill in missing values in data 
based on existing variables 

User’s domain knowledge indicates other variables 
may be good indicators  

Affect missing value imputation 

[VS5] The user may augment the available data with 
new variables 

User may know of related data sources that can be 
brought to bear 

Affect data and feature 
availability 

V
ar

ia
bl

e 
R

eq
ui

re
m

en
ts

 [VR1] The user may ask that certain variables be included 
or excluded in a model 

User’s domain knowledge indicates certain 
variables are good/bad predictors for the task at 
hand 

Affect feature selection/filtering 

In
st

an
ce

  
Se

le
ct

io
n [IS1] The user may highlight instances that need to be 

accounted for in the model 
The user is interested in target instances for the 
analysis at hand 

Affect the instances used to 
train a model 

[IS2] The user may select a subpopulation based on 
properties of the instances  

User’s knowledge indicates sub-population may 
lead to more precise analysis 

Affect the instances used to 
train a model 

[IS3] The user may remove specific instances (e.g., 
outliers, poor quality, etc.) 

The user believes that certain instances in the 
dataset will bias the model in undesirable ways 

Affect the instances used to 
train a model  

[IS4] The user selects training and test data, 
optionally with cross-validation specifications 

The user may want to explore different training 
and test data splits of the data  

Affect the instances used to 
train and test a model 

M
od

el
 D

ev
el

op
m

en
t 

M
od

el
 

Se
le

ct
io

n [MS1] The user may request a specific type of model Users may have preferences (e.g., for a causal 
model or for an explanatory model) 

Affect the models included in 
the solution 

[MS2] The user may request a specific type of model 
to replace the model in a prior solution 

User question of interest may redefine what 
models are appropriate to the task at hand 

Affect the models included in   
a solution 

Pa
ra

m
et

e
r 

Se
tt

in
gs

 [PT1] The user may request the use of specific parameter 
values 

User’s knowledge may indicate target parameters 
to reach a good solution efficiently 

Configure models included in 
the solution 

So
lu

ti
on

 
 D

es
ig

n [SD1] The user may request specific data preparation 
steps (primitives or more general steps) to be present in 
the solution 

User’s domain knowledge indicates that a certain 
feature generation or imputation step may be 
required 

Affect the models included in 
the final solution 

[SD2] The user may request to replace a data 
preparation step in a prior solution with a new step 

User domain knowledge may assist search, or user 
may want to investigate consequences of model 
choices 

Affect the models included in 
the final solution 

M
od

el
 In

te
rp

re
ta

ti
on

 

M
od

el
 

A
ss

es
sm

en
t [QC1] The user may request quantities of interest to be 

computed 
Users may request metrics, the regression slope, or 
ask for other means of interpreting a model 

Perform computations on the 
data or model 

[QC2] The user may request certain intermediate results 
that may be of interest 

Intermediate results may indicate how a solution is 
analyzing data, and what features are being 
considered 

Record intermediate results of 
the analysis 

M
od

el
 

 C
om

pa
ri

so
n  [MC1] The user may ask for two or more solutions each 

with a different type of model 
Users may want to compare alternatives (e.g., 
based on model performance or explainability) 

Generate several solutions 

[MC2] The user may ask for two or more solutions with a 
given model but each trained on different subsets of the 
instances 

Users may want to compare how models differ 
when trained with different data 

Generate several solutions 

[MC3] The user may ask to compare two or more 
solutions with the same model but different data 
preparation steps 

Users may want to find an explanation for the 
results provided to understand the different steps 
that appear in different solutions  

Compare provenance records 
(i.e., steps, parameters, etc.) of 
two solutions 

[MC4] The user may ask to compare two or more 
solutions with the same model but different 
parameters 

User wants to understand the sensitivity of the 
model to different parameters 

Compare provenance records of 
solutions 

[MC5] The user may ask for a comparison between 
two models, all other solution steps being the same 

Users may want an explanation of why two models 
have different performance 

Generate a comparison of 
models 

Pa
ra

m
et

er
 

C
om

pa
ri

so n [PC1] The user may ask for several solutions, each with 
the same model or model primitive but a range of 
parameter values for one or more parameters 

Users may want to validate a solution by verifying 
that is not significantly affected by a given 
parameter 

Generate several solutions  
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We omit for brevity 2 tasks concerning hypothesis generation and 
testing, since they are not yet supported by existing AutoML 
systems. A detailed description of the tasks is available in [26]. 

6.1 First Phase: Initial Task Analysis 
In the first phase, we took a top-down approach and articulated 
and categorized an initial set of tasks based on our understanding 
of how users work with machine learning algorithms to develop 
applications and our expectation of how they would want to 
interact with an AutoML framework. Table 1 shows the resulting 
13 tasks (in light typestyle), grouped under general purpose and 
three major categories: 
1. Data Use: Tasks concerning use of data allow users to specify 

which observations (rows) and features (columns) should be 
used to generate a machine learning model specific to the 
user's foundational question of interest.  For example, experts 
might need to remove data points that are not relevant to the 
question at hand, or give priority to observations that are 
more important to correctly predict.  They might wish to 
include certain variables based on prior knowledge in the 
literature or to explicitly test a theory of interest, or remove 
variables they know cannot be related to increase the speed 
of the automated model search [27]. 

2. Model Development: Model development tasks broadly 
involve the user constraining the space of possible models 
beyond what could automatically be computed.  Users may 
have prior knowledge or judgements they can provide that 
(directly or indirectly) help to tune model parameters.  More 
importantly, the underlying purpose of their analysis, (which 
only they know) may change what models are appropriate.  
For example, in causal analysis there is a need for machine 
learning models that avoid bias [28]. 

3. Model Interpretation: Interpretation of machine learned 
models allows the user to guide how diagnostics and 
predictions from the model best illuminate the questions of 
interest the expert is interested in understanding.  Also, 
directly comparing the performance of differently 
constructed models allows the researcher to better 
understand what the models infer about the world. 

6.2 Second Phase: Annotation of Research 
Publications 

In this phase, we followed a bottom-up approach and analyzed 
two very different publications where the authors describe a series 
of models, and annotated the author’s activities according to our 
tasks based on the author’s notes in the papers. That is, we tried 
to envision what the interaction would be between the article 
authors and an HGML system. This used the 13 tasks we had 
categorized, and added 10 more tasks shown in boldface in Table 
1. A more detailed analysis is provided in [29]. 

6.2.1 Neuroscience Analysis. learning analysis produced by the 
ENIGMA neuroscience consortium [32]. ENIGMA aims to 
conduct large-scale collaborative research studies that show 
reliable and reproducible findings with greatly improved 

statistical power. The article analyzed here [30]-[31] aims to come 
to an unbiased consensus on the extent to which brain scans can 
classify patients with major depressive disorder (MDD) in the 
largest study of its kind.   

Data for the consortium is pooled from independent MDD 
studies from around the world, allowing for a combined dataset of 
over 2,500 samples. Each individual study, or “cohort”, recruited 
both healthy individuals and patients with clinically diagnosed 
depression, and collected MRI and clinical data according to 
independent criteria (e.g., some were studies of younger adults, 
some older, some had no age restriction, some were more 
medicated, some were unmediated, etc.; all were studies of MDD). 
While many classification attempts have shown over 80% 
accuracy in MDD classification from imaging measures (see [33] 
for an extensive review), most studies had been limited in power 
with less than 50 samples in each group and lacked independent 
replication in a separate sample. Furthermore, publication bias 
where null or unremarkable results are not published, has limited 
reports of more modest or unsuccessful classification attempts. 

Table 2 gives an overview of our analysis of the article, 
showing the identifier for the user interaction, the task type 
corresponding to the tasks in Table 1, and a brief description. The 
authors explore 6 different models. 

The authors choose one cohort in the list of cohorts as the 
test data and all the other cohorts as the training data. This is done 
to prevent data leakage, such that the test data was collected on a 
brain scanner that is different from those used in the training data, 
and had its own specifications on patient and control inclusion 
and exclusion criteria. In other words, the classification is 
performed to evaluate MDD diagnosis independent of specific 
study conditions. Leaving out an entire cohort for testing could 
reflect the actual performance of the models on unseen data 
collection. 
After conducting the classification using the entire set of samples, 
the authors further refined their models to be trained and tested, 
or just tested, on a specific subset of samples determined by 
clinical, non-imaging related features. In Model 3, 4, 5, and 6 the 
classification was set according to factors such as the sex of the 
participants and whether the MDD patients had multiple 
depressive episodes. By comparing their performance, the 
generalizability and specificity of the models is exposed. 

The authors did not include non-imaging features (i.e., age, 
sex) in models 1 and 2, but those features were included in models 
3, 4, 5 and 6. While the imaging features were of primary interest, 
factors such as sex and age are related to the distribution of the 
imaging brain measures, so by comparing models 1 and 2 versus 
models 3, 4, 5, and 6, the authors could compare the performance 
of imaging measures alone to models that also account for basic 
patient demographic information, which would almost always be 
available in a clinical setting. 

6.2.2 Political Science Analysis. In [34] Fearon provides a 
quintessential style of analysis in social science, which we call 
"empirical robustness." The author is interested in whether a 
hypothesis is supported across alternative data and modeling 
specifications. The hypothesis explored is that primary 
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Table 2. Task Analysis for Neuroscience Article. 
ID Task Type Description  

Model 1 (Lasso + SVM with brain image features) 
N1 VR1 Leave out non-brain-image columns (“sex” and “Episodes”). 
N2 IS2/VR1 Eliminate subjects whose age is over 21, and then drop the column “age”. 
N3 IS3 Drop all rows with missing values. 
N4 IS2 Set up training set as all cohorts (sites) but one, each time leaving out a cohort as test set. 
N5 VR1 Drop columns “subjid” and “site” from both training data and test data. 
N6 IS4 Use stratified cross validation to evaluate the model trained on partial training set. 
N7 MS1 Run Lasso on training set to gain feature importance (weights). 
N8 VS1 Use the feature weights produced by Lasso and larger than 0 to select important features for modeling. If there are more 

than 5 features whose weights are large than 0, only keep the most important 5 features.  
N9 MS1/PT1 Build a SVM model with specified parameters: kernel=rbf, gamma={1e-1,1e-5}, c={1,10,100,1000} for a grid search. 
N10 QC1 Use multiple metrics (sensitivity, specificity, accuracy, balanced accuracy, F1 score, Matthews correlation coefficient and 

confusion matrix) to evaluate model performance. Accuracy, F1 score and Confusion Matrix are used to evaluate the model 
directly and other metrics are for comparison to previous publication. 

N11 PD1 Perform N7 to N10 on the whole training set and use the test set to evaluate model performance. 
Model 2 (Logistic Regression with brain image features) 
N1 – N6 same as above 

N12 MS1/PT1 Build Logistic Regression model with specified parameters, penalty=l1, solver=liblinear, class_weight=balanced. 
N10 same as above 

N13 PD1 Perform N12 and N10 on the whole training set and use the test set to evaluate model performance. 
Model 3 (Lasso + SVM with brain image features and splitting test set based on recurrence) 
N14 VR1 Leave out the non-brain-image column “sex”. 
N15 VS2/VR1 Generate variable “recur” based on the variable “Episodes”. “Episodes” represents the number of times a disease occurred. If 

the disease occurred more than once, the “recur” value is 2. Otherwise, the “recur” value is 1, meaning the disease just 
occurred once on the subject. Then drop the variable “Episodes”. 

N2 – N10 same as above 
N16 IS2 Split all test instances into two groups by their “recur” values (1 and 2). Then the user can observe if there is a difference in 

predictions between the two groups of test data, which can show the influence of the “recur” feature to the model. 
N11 same as above 
Model 4 (Logistic Regression with brain image features and splitting test set based on recurrence) 
N14 - N15 and N2 – N6 and N12 and N10 and N16 and N13 same as above 
Model 5 (Lasso + SVM with brain image features and splitting test set based on sex) 

N17 VR1 Leave out the non-brain-image column “Episodes”. 
N2 – N10 same as above 

N18 IS2 Split all test instances into two groups by their “sex” values (1 or 2). Then the user can observe if there is a difference in 
predictions between the two groups of test data, which can show the influence of the “sex” feature to the model. 

N11same as above 
Model 6 (Logistic Regression with brain image features and splitting test set based on sex) 
N17 and N2 – N6 and N12 and N10 and N18 and N13 same as above 

commodity exports (!"#) increase the likelihood of civil waronset. 
Earlier work by Collier and Hoeffler [35] argue sxp to be the 
primary driver  of civil war  risk.  To demonstrate  the fragility of 
their findings, Fearon first identifies points where Collier and 
Hoeffler chose one of several viable paths in model construction. 
For example, Collier and Hoeffler use a five-year data aggregation 
when a single-year aggregation is equally justifiable. He then 
shows that the empirical relationship between !"# and civil war 
onset is not robust under these alternative specifications. 
While AutoML systems could take Fearon's or Collier and 
Hoeffler's data and produce a model to predict the onset of civil 
conflict, they would not be able to identify the policy relevance of 
sxp, the widespread impact of Collier and Hoeffler's work, and 
thus the need to thoroughly assess the finding's fragility. 
Furthermore, Fearon's expertise with this type of data and his 
substantive knowledge of civil wars allowed him to identify a 
meaningful set of alternative viable paths. The domain knowledge 
that he brings to bear on this problem is outside, or auxiliary to, 
the data itself. 

Table 3 shows the interaction tasks for each of the steps 
involved in creating all the models reported in Fearon’s article. He 
begins with a replication of Collier and Hoeffler's base model (Step 
F1). Here, !"# and !"#$ are each statistically significant, and a 
likelihood ratio test shows the pair is jointly significant. The same 
holds for a model containing only !"# and !"#$ as predictors (F2). 
He adds log(#)#*+,-.)/) to this reduced model (F3) and shows 
comparably sized effects for !"# and !"#$ between this reduced 
model and the base model. He splits the data into treciles by 
population and !"#/GDP to show that the core empirical finding 
is present only for large states. Then, Fearon explores a number of 
alternative viable modeling decisions to show the fragility of this 
base finding. 

Briefly, he shows that log(!"#) is statistically significant (F6) 
and uses a generalized additive model to provide some empirical 
support for using log(!"#)instead of !"# and !"#$ (F5). He 
disaggregates the data from five-year to one-year observations 
(F7) and re-estimates the baseline model (F8), along with 
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Table 3. Task Analysis for Political Science Article. 
ID Task Type Dataset  Description of Interaction 

TABLE 2 MODEL 1 (Collier and Hoeffler Model Replication) 
F1 VR1, MS1, QC1 DS1 Fearon develops a logistic regression model with specified variables from Collier and Hoeffler’s dataset (DS1) and tests the 

joint significance of primary commodity exports (!"#) and !"#$ with a likelihood ratio test (1$ test). 
F2 VR1, MS1, QC1 DS1 Fearon determines F1 feature significance by developing a logistic regression model using !"# and !"#$ and runs a 1$ test. He 

notices a weak relationship, but unlikely due to chance. 
F3 VR1, MS1, QC1 DS1 Fearon adds log(#)#*+,-.)/) to the F2 model, resulting in !"#’s coefficient approaching the value in F1. He runs a 1$ test, 

noticing the impact of !"# and log(#)#*+,-.)/), with civil war onset probability at .11 in the 90th percentile of !"#. 
F4 IS2 DS1 Fearon hypothesizes 1$ test in F3 passed due to the impact of large countries, as they have low commodity exports as a 

percentage of GDP, but a higher civil war risk. He creates TABLE 3, which includes the proportion of civil war onset at the 
intersections of country population and !"# treciles. 

TABLE 2 MODEL 2 (Adjusting from Parabolic to 234 Relationship) 
F5 MS1, PT1 DS1 Collier and Hoeffler note a parabolic relationship between !"# and log()55!) of civil war onset. Fearon proves them incorrect, 

instead hypothesizing an inverse log relationship and proving so using a generalized additive model (GAM). 
F6 VS2, MS1, QC1 DS1 Fearon concludes log(!"#) should be created to replace !"# and !"#$, creating dataset DS2, and used with the other dependent 

variables in a logistic regression model. Fearon then runs a 1$ test, noticing a reduced correlation. 
TABLE 2 MODEL 3 (Making Temporal Framing Adjustments) 
F7 VS3, PD1 DS1 Fearon adjusts temporal framing of data to yearly periods, as five-year periods cause issues with quickly renewed wars and 

expand variable lag times. Many variables are measured annually or are time invariant and 75% of !"#’s variation is across 
countries. With 6 = .85 for !"# in year - vs. -	– 	5, he uses linear interpolation or spline to fill missing values, creating DS3. 

F8 VR1, MS1, QC1 DS3 Fearon includes specified variables in the logistic regression model. The coefficient for fractionalization falls by a factor of 
three, while for geographic dispersion is close to zero. Fearon runs a 1$ test, failing to reject the null hypothesis. 

TABLE 2 MODEL 4, 5, and 6 (Dropping Control Variables) 
F9 VR1, MS1, QC1 DS3 Fearon drops fractionalization, ethnic dominance, and geographic dispersion from F8 and runs a 1$ test. 

TABLE 4 MODEL 1, 2, and 3 (Dropping Control Variables with an adjusted log Relationship) 
F10 VS2, MS1, QC1 DS3 Fearon adjusts TABLE 2 MODEL 3-6 by replacing !"# and !"#$ with log(!"#), creating DS4, and creates a logistic regression 

model with other dependent variables. He then runs a 1$ test. 
F11 VR1, MS1, QC1 DS4 Fearon drops fractionalization, ethnic dominance, and geographic dispersion from the logistic regression model. He runs a 1$ 

test, noting lower statistical significance than TABLE 2 MODEL 6. 
TABLE 5 MODEL 1 (Filling Missing Data with Multiple Imputation) 
F12 PD1 DS1 He uses multiple imputation to highlight the “significance” of !"# based on list-wise deletion of observations, creating DS5. 
F13 VR1, MS1, QC1 DS5 Fearon creates a logistic regression model with specified variables and runs a 1$ test. Coefficients move towards zero, !"# and 

!"#$ drop by a factor of two, and the 10th to 90th percentile changes from 1.1 to 11 percent to 2.3 to 7.4 percent. 
TABLE 5 MODEL 2 (Dropping Control Variables on Modified Dataset) 
F14 VR1, MS1, QC1 DS5 Fearon drops fractionalization, ethnic dominance, and geographic dispersion from F13 and runs a 1$ test. 

TABLE 5 MODEL 3 (Adjusting Temporal Frame on Modified Dataset) 
F15 VS3, PD1 DS5 Fearon adjusts the temporal framing to single years and uses multiple imputation or spline for the missing data, creating DS6. 

F16 VR1, MS1, QC1 DS6 Fearon creates a logistic regression model with specified variables and runs a 1$ test, noting a lack of statistical significance. 

TABLE 5 MODEL 4 (Dropping Control Variables from Temporally Modified Dataset) 
F17 VR1, MS1, QC1 DS6 Fearon drops fractionalization, ethnic dominance, and geographic dispersion from F16 and runs a 1$ test. 

TABLE 6 MODEL 1 (Isolating Oil Exports from =>?) 
F18 VS2, MS1, QC1 DS1 Fearon creates a variable calculated as a percentage of fuel exports vs. total exports, creating DS7, because high oil dependence 

is associated with higher civil war risk. He runs a logistic regression with dependent variables and a 1$ test. 
TABLE 6 MODEL 2 (Dropping Control Variables from Isolated Dataset) 
F19 VR1, MS1, QC1 DS7 Fearon drops fractionalization, ethnic dominance, and geographic dispersion from F18 and runs a 1$ test. 
TABLE 6 MODEL 3 (Adjusting Temporal Frame on Isolated Dataset) 
F20 VS3, PD1 DS7 He adjusts the temporal framing to single years and uses multiple imputation or spline to fill the missing data, creating DS8. 
F21 VR1, MS1, QC1 DS8 Fearon creates a logistic regression model with specified variables and runs a 1$ test, with oil exports and !"# trading places. 
TABLE 6 MODEL 4 (Adding log Relationship to Isolated Dataset) 
F22 VS2, MS1, QC1 DS8 Fearon creates log(!"#), creating DS9, creates a logistic regression model with dependent variables, and runs a 1$ test. 

TABLE 6 MODEL 5 (Dropping Control Variables from Isolated Dataset) 
F23 VR1, MS1, QC1 DS9 Fearon drops fractionalization, ethnic dominance, and geographic dispersion from F22 and runs a 1$ test. While !"# is 

insignificant, there is strong support for a nonrandom association between high oil exports and civil war risk. 
TABLE 7 MODEL 1 (Hypothesis Testing Government Observance of Contracts) 
F24 VR1 DS2 Fearon disputes Collier and Hoeffler’s argument on rebel financing through cash crops/fuel exports, proving !"# dependence 

for national income marks weak state institutions by using a measure of a state’s administrative capability and integrity. 

F25 MS1 DS2 Fearon creates a regression model for the measure of contract observance on log(!"#) and log(./@)AB). 
TABLE 7 MODEL 2 (Adding Fuel Exports to Government Observance of Contracts) 
F26 VR1 DS2 Fearon adds fuel exports as another measure of weakness to F25. 

F27 MS1 DS2 Fearon creates a regression model, with the estimated coefficient for !"# becoming statistically insignificant, but fuel exports 
maintaining significance. Oil exporters thus have weaker states given income per capita, and while exporters of other 
commodities have marginally less reliable governments on average, they are not consistently weak. 
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additional models containing log(!"#) and different sets of 
control variables (F9-F11). Fearon then uses multiple imputation 
for both the five-year and one-year datasets and re-estimates (F12-
F14). In sum, the empirical relationship between primary 
commodity exports and civil war onset disappears, as evidenced 
in p-values for !"#, !"#$, log(!"#), and the likelihood ratio tests 
for the joint significances of !"# and !"#$ across different models. 

Through this process we have identified a number of core 
requirements for the empirical robustness feature. However, 
Fearon briefly touches upon alternative modeling decisions, 
particularly with human-guided modifications to the dataset, but 
chooses not to explore them further. One example involves the 
inconsistencies in attributing civil wars to countries; e.g., the 
separatist movement in Azerbaijan in 1964 (when it was part of 
the USSR) was coded as a civil war in Azerbaijan, while civil 
unrest in Chechnya in the 1990s (when it was part of the USSR 
and Russia) was coded as a civil war in Russia. Other 
inconsistencies appear in the many anti-colonial movements in 
the 1950s and 1960s that led to conflicts and independent nations 
across much of Asia and Africa, and in the 2000s in East Timor. 
Thus, a more thorough assessment of the finding's empirical 
robustness would include datasets that identify civil conflicts 
using different criteria (e.g. [36]). 

Similarly, Fearon notes trouble in collecting economic data at 
the time when Collier and Hoeffler conducted their analysis, 
ensuring many states facing conflict were omitted from the 
dataset. With data now more accessible, additional conflicts can 
be tracked, even if the dataset is uniquely formatted. Methods can 
be developed to normalize the data sets in ways that ensure model 
compatibility. 

6.2.3 Discussion. The analysis of the two articles confirmed 
that the tasks resulting from our top-down analysis do occur 
when users are developing machine learning models. The bottom-
up analysis resulted in 10 additional tasks, shown in bold in Table 
1: VS3, VS4, VS5, IS3, IS4, MS2, SD2, MC3, MC4, MC5. Although 
the two articles were selected for their diversity and their 
documentation of the exploration of solutions, other articles may 
uncover additional tasks. 
We noticed that in both articles the researchers iterate over a very 
general pattern consisting of four stages: 
A. There is first a set of tasks focused on feature selection and 

generation (Tasks VR1, VS2, VS3, IS2, IS3) 
B. There is then a set of steps focused on selecting the model 

(Task MS1) 
C. (Optionally) configuring the model with feature weights or 

parameter values (Tasks VS1, PT1) 
D. There is then a request for quantities of interest and metrics 

(Task QC1) 

The specifics of feature generation and selection vary very 
widely as the researchers explore different models.   

Another significant observation is that there are a few tasks 
from our initial task analysis that did not come up in the analysis 
of these articles.  Asking for intermediate results (QC2) did not 
appear in the narrative of the articles, but we are sure that the 
researchers did look at intermediate data. Imputation based on 
other variables (VS4) did not appear either, but we know this is a 

very common task and we expect at least the neuroscience 
researchers took a shortcut by removing values (IS3) instead.  
Augmenting the data (VS5) does not appear, but it is something 
that was pursued by other work in [36] mentioned earlier. 

Perhaps the most interesting observation concerns how a 
user would build on previous solutions and models.  Although the 
tasks that involve model and solution comparison (MC1-MC3) did 
not appear directly in the analysis of the articles, they are implicit 
in the task sequence.  The neuroscience article was comparing 
SVM and logistic regression (MC1), using different populations 
(MC2), and using different features (MC3).  The social sciences 
article leans more heavily on feature generation and selection 
(MC3).   

Although this was not apparent in the articles analyzed, we 
expect that users would interact with an AutoML system by 
taking a previous solution and modifying it, or exploring 
variations of it.  Therefore, we added comparison of model 
parameters and comparison of models (MC4-MC5).  In addition, if 
users compare solutions or models, we would expect that they 
would request new solutions that are variations of previous ones.  
Hence, we added tasks for replacing models (MS2) and replacing 
data preparation steps (SD2) in prior solutions. HGML has the 
potential not only for bringing users the power of exploring 
additional machine learning models more efficiently, but allowing 
them to easily compare solutions in a more compact and effective 
manner. 

7 Designing HGML Systems 
Effective design of HGML systems require mapping the task 
analysis into requirements for the user interface and for the 
AutoML planner.  

Table 4 summarizes user interface requirements (URe) and 
AutoML planner requirements (PRe) for HGML. Some tasks 
mapped to multiple requirements and some requirements 
spanning across multiple tasks. 

7.1 Accommodating HGML User Interface 
Requirements 

In our baseline system, described earlier, the focus is primarily on 
the construction of a solution, which entails a single interaction 
with the user and a single, known endpoint: a solution that 
includes an estimated model. In HGML, the  interaction  is  no 
longer  linear, as  we extract domain knowledge before the model 
is constructed, we increase the number of models constructed and 
the user views those models and contributes more domain 
knowledge. Rather, the interaction is better characterized as 
iterative and nonlinear. It is iterative because models are returned, 
refined, and then re-estimated. It is nonlinear because a user may 
return to an earlier model, or go back to any associated options, 
after running an arbitrarily number of models with many different 
options selected.  

Individually, the HGML requirements listed in Table 4 can be 
easily incorporated into our existing user interface. For example,  
formula builders and query constructors could be added  
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Table 4. Requirements for Human-Guided Machine Learning. 
Task User Interface Requirements Machine Learning Planner Requirements 

[VS1] The user may require that certain 
variables be given more priority 

URe1: Allow user to specify the priority of 
variables to be included in the model 

PRe1: Planner must use modeling primitives that 
accept guidance about the relative weight of different 
variables  

[VS2] The user may suggest new 
variables that combine existing variables 

URe2: Allow user to select features to be 
combined and to create a specific rule or 
function to generate the new values 

PRe2: Planner must add a feature generation primitive 
based on a user-provided rule or function 
PRe3: Planner must include user specified primitives 
in the solution 

[VS3] The user may modify the framing 
(eg temporal, spatial) in which the 
variables exist 

URe3: Allow user to create additional data points 
or eliminate data points from the dataset based 
on time and space qualifiers 

(No requirement) 

[VS4] The user may fill in missing values 
in data based on existing variables 

URe4: Allow user to define a rule or function to 
generate the missing values 

PRe4: Planner must perform an imputation step based 
on a user-provided rule or function 

[VS5] The user may augment the 
available data with new variables 

URe5: Allow user to merge new variables with 
existing data 

(No requirement) 

[VR1] The user may ask that certain 
variables be included or excluded in a 
model 

URe6: Allow user to select variables to be 
included or excluded from the model 

PRe5: Planner must use modeling primitives that 
accept guidance about what variables need to be 
included in the model 

[IS1] The user may highlight instances 
that need to be accounted for in the model 

URe7: Allow user to select instances that need to 
be accounted for in the model  

PRe6: Planner must use modeling primitives that 
accept guidance about instances to be included in the 
model 

[IS2] The user may select a subpopulation 
based on properties of the instances  

URe8: Allow user to specify parameters 
indicative of a subpopulation to divide the data 
URe9: Allow user to define a rule or function to 
generate a subpopulation 

(No requirement) 

[IS3] The user may remove specific 
instances (e.g., outliers, poor quality, etc) 

URe10: Allow user to remove instances from 
dataset 

(No requirement) 

[IS4] The user selects training and test 
data, optionally with cross-validation 
specifications 

URe11: Allow user to group dataset instances 
into different combinations of training and test 
data 

PRe7: Planner must accept a specification of training 
and test data and cross-validation requirements 

[MS1] The user may request a specific 
type of model  

URe12: Allow user to specify the class of model 
desired 

PRe8: Planner should use a hierarchy of primitives 
grouped according to model type, and include the 
user selected class in the solution 
PRe3: (same as above) 

[MS2] The user may request a specific 
type of model to replace the model in a 
prior solution 

URe13: Allow user to select a previous solution 
and indicate what new model is desired 

PRe9: Planner should modify a prior solution to 
include the new model 

[PT1] The user may request the use of 
specific parameter values 

URe14: Allow user to specify a model and the 
parameter values desired 

PRe10: Planner should include user specified model 
and parameter values in the solution  

[SD1] The user may request specific data 
preparation steps (primitives or more 
general steps) to be present in the 
solution 

URe15: Allow user to specify types of data 
preparation primitives to be included in a 
solution (i.e. data imputation) 
 

PRe11: Planner should include a hierarchy of 
primitives grouped by classes according to their 
function, and include the user selected class in the 
solution 
PRe3: (same as above) 

[QC1] The user may request quantities of 
interest (QI’s) to be computed 

URe16: Allow user to request a particular 
statistic test and parameters 

PRe12: Planner should include primitives to generate 
metrics and standard statistical tests for models  

[QC2] The user may specify certain 
intermediate results that may be of 
interest 

URe17: Allow user to request results after any 
step in a solution  

PRe13: Planner should return intermediate results of a 
pipeline 

[MC1] The user may ask for two or more 
solutions each with a different type of 
model 

URe18: Allow user to specify multiple models to 
be included in solutions that have otherwise the 
same steps 

PRe7: (same as above)  
PRe14: Planner should generate solutions that use the 
same steps but differ in the type of model used 

[MC2] The user may ask for two or more 
solutions with a given model but each 
trained on different subsets of the 
instances 

URe11 (same as above)  
URe12 (same as above) 

PRe6 (same as above) 
PRe7 (same as above)  

[MC3] The user may ask to compare two 
or more solutions with same model but 
different data preparation steps 

URe19: Generate comparative explanations for 
two given solutions 

PRe15: Planner must be able to return detailed 
provenance records of the solutions 
PRe16: Primitives must support explanation 

[MC4] The user may ask to compare two 
or more solutions with the same model 
but different data preparation steps  

 URe20: Contrast two solutions in terms of the 
steps involved 

PRe15 (same as above) 

[MC5] The user may ask for a comparison 
between two models, all other solution 
steps being the same 

URe21: Generate comparative explanations for 
two given models 

PRe16 (same as above) 
PRe17: Primitives must support comparative 
explanation 
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to create new variables from existing ones (URe2) and to select 
subpopulations (URe7, URe8). These types of interactions may be 
facilitated with graphical displays of the data, for example brush-
able density plots.  

More challenging will be the combination of HGML 
requirements to reflect the iterative and nonlinear nature of the 
interactions discussed above. For example, the user would need to 
refer to specific solutions and their individual steps in relation to 
one another (URe13-URe17). Data may be manipulated for one 
model, and that manipulation may be undone for the next, only to 
be recalled later in the session (URe13). Users may want to 
compare two solutions (URe17) where one step differs (URe16). 
Maintaining usability and transparency, essential for user trust, 
becomes more complex in such interactions. 

7.2 Accommodating HGML Planner 
Requirements 

Some requirements for the planner concern the primitives 
available to the planner for composing solutions.  For modeling 
primitives, these would be to accept input about feature weights 
(PRe1), variables to be included in the model (PRe5), instances to 
be accounted for in the model (PRe6), and support explanation 
(PRe16).  The planner would need to access metadata about 
primitives that describes them in this light.  Our planner includes 
a metadata catalog that is extensible to new primitive metadata.  
The planner would have to be extended to accept constraints that 
restrict the solutions it generates accordingly.  Other AutoML 
systems, such as AutoWEKA, Auto-sklearn, and TPOT, do not 
have metadata in their primitives, and would have to be extended 
in that way.  The inclusion of primitives for generation of metrics 
and quantities of interest (PRe12) is not difficult to accommodate, 
as it simply involves having the primitives. 

We note that when a user defines a feature generation step 
(PRe2) or imputation step (PRe4) this needs to be turned into a 
primitive that the planner incorporates into the solution, since it 
would have to be applied to the test data.  Our planner does not 
yet support this, and neither do other planners. All consider the 
primitive library as pre-existing. 

Another set of requirements concern seeding the solutions 
with some partial specification, so the search is restricted to 
solutions which conform to that specification.  These 
requirements include the appearance of a certain imputation 
(PRe4) or data preparation primitive in the solution (PRe3), the use 
of a certain type of model (PRe8, PRe10, PRe11), and the use of 
specific parameter values for models (PRe10).  Our planner has a 
phase where it builds a solution skeleton that it elaborates in later 
phases.  It would have to be extended to accept a skeleton formed 
with the user’s requirements, which would not be very difficult.  
For AutoWEKA and Auto-sklearn, it would be relatively easy to 
support the use of a certain type of model, but not other 
requirements as they do not assemble multi-step solutions.  For 
TPOT, which uses a genetic algorithm, it is unclear that the 
exploration for solutions could be controlled not to deviate from 
the initial skeleton. 

Recording the provenance of the solutions generated would 
support important aspects of explanation and comparisons (PRe13 
and PRe15).  Our planner fully supports these. 

Supporting the specification of training and test data and 
cross validation (PRe7) is an overarching function for solution 
generation. Our planner already supports this. Other planners 
would have to be extended accordingly. 

Perhaps the most interesting extension stems from 
requirements about the use of a hierarchy of primitives grouped 
in classes (PRe8, PRe11). This would support users stating the 
increasingly more specific requests, for example, for “a naïve 
Bayes classifier”, “a hierarchical Bayes classifier”, and the 
“sklearn-hierarchicalClassification primitive”.  Our planner 
supports these hierarchies in its primitive catalog, both based on 
algorithm type (e.g., Bayesian vs deep learning primitives) and 
algorithm function (e.g., imputation vs feature generation 
primitives). Other AutoML planners do not currently support 
these hierarchies. 

8 Conclusions 
In this paper we presented requirements for human-guided 
machine learning, where domain experts use their knowledge to 
affect how an automated machine learning system generates 
models.  These requirements are based on a task analysis of the 
different kind of interactions that would need to be supported 
between users and AutoML systems. We presented an analysis 
that reconstructs the potential interactions with such a system by 
the authors of two articles in neuroscience and social sciences that 
explore a variety of models.  Our results show that users would 
follow repetitive patterns in their interactions. We also presented 
a baseline system that enables users to simply ask an AutoML 
system to generate a solution, and analyzed several AutoML 
systems in terms of how they would need to be extended to 
support the requirements. In future work, we plan to extend our 
baseline system with the requirements described in this paper. 
This would open exciting possibilities for domain experts to 
generate machine learning models of improved quality for many 
problems without the help of machine learning experts. 

ACKNOWLEDGMENTS 
This material is based on research sponsored by the Defense 
Advanced Research Projects Agency (DARPA) under agreement 
numbers FA8750-17-C-0106 and FA8750-17-2-0114. The views and 
conclusions contained herein are those of the authors and should 
not be interpreted as necessarily representing the official policies 
or endorsements, either expressed or implied, of DARPA or the 
U.S. Government. 

REFERENCES 
[1]  C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-WEKA: 

Combined Selection and Hyperparameter Optimization of Classification 
Algorithms,” in Proc. of KDD, pp. 847–855, 2013. 

[2]  M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter, 
“Efficient and Robust Automated Machine Learning,” in Advances in Neural 
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. 
Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., pp. 2962–2970, 2015. 



 

Towards Human-Guided Machine Learning IUI '19, March 17–20, 2019, Marina del Rey, California, USA 
 

 

[3]  R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, L. C. Kidd, and J. H. 
Moore, “Automating Biomedical Data Science Through Tree-Based Pipeline 
Optimization,” in Applications of Evolutionary Computation, pp. 123–137, 2016. 

[4]  N. Fusi, R. Sheth, and H. Melih Elibol, “Probabilistic Matrix Factorization for 
Automated Machine Learning,” ArXiv E-Prints, May 2017. 

[5]  AUTOML, “AutoML home page,” 07-Oct-2018. 
[6]  Google, “Google Cloud AutoML,” 07-Oct-2018. 
[7]  I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning 

Tools and Techniques, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann 
Publishers Inc., 2011. 

[8]  F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. 
Res., vol. 12, pp. 2825–2830, 2011. 

[9]  J. Honaker and V. D’Orazio, “Statistical Modeling by Gesture: A Graphical, 
Browser-based Statistical Interface for Data Repositories,” in Extended 
Proceedings of ACM Hypertext, 2014. 

[10]  Y. Gil et al., “P4ML: A Phased Performance-Based Pipeline Planner for 
Automated Machine Learning,” in Proceedings of Machine Learning Research, 
ICML 2018 AutoML Workshop, 2018. 

[11]  S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza, “Power to the People: The 
Role of Humans in Interactive Machine Learning,” AI Mag., vol. 35, no. 4, p. 105, 
2014. 

[12]  B. C. Kwon et al., “Clustervision: Visual Supervision of Unsupervised 
Clustering,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 142–151, Jan. 
2018. 

[13]  S. Liu, J. Xiao, J. Liu, X. Wang, J. Wu, and J. Zhu, “Visual Diagnosis of Tree 
Boosting Methods,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 163–173, 
2018. 

[14]  Y. Ming, H. Qu, and E. Bertini, “RuleMatrix: Visualizing and Understanding 
Classifiers with Rules,” CoRR, vol. abs/1807.06228, 2018. 

[15]  S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive Visual 
Specification of Data Transformation Scripts,” in ACM Human Factors in 
Computing Systems (CHI), 2011. 

[16]  B. Jiang and J. Canny, “Interactive Machine Learning via a GPU-accelerated 
Toolkit,” in Proceedings of the 22nd International Conference on Intelligent User 
Interfaces - IUI ’17, Limassol, Cyprus, pp. 535–546, 2017. 

[17]  E. Sherkat, S. Nourashrafeddin, E. E. Milios, and R. Minghim, “Interactive 
Document Clustering Revisited: A Visual Analytics Approach,” in Proceedings of 
the 23rd International Conference on Intelligent User Interfaces  - IUI ’18, Tokyo, 
Japan, pp. 281–292, 2018. 

[18]  A. Smith, V. Kumar, J. Boyd-Graber, K. Seppi, and L. Findlater, “Closing the 
Loop: User-Centered Design and Evaluation of a Human-in-the-Loop Topic 
Modeling System,” in Proceedings of the 23rd International Conference on 
Intelligent User Interfaces  - IUI ’18, Tokyo, Japan, pp. 293–304, 2018. 

[19]  L. Micallef et al., “Interactive Elicitation of Knowledge on Feature Relevance 
Improves Predictions in Small Data Sets,” in Proceedings of the 22nd International 
Conference on Intelligent User Interfaces - IUI ’17, Limassol, Cyprus, pp. 547–552, 
2017. 

[20]  K. Dhamdhere, K. S. McCurley, R. Nahmias, M. Sundararajan, and Q. Yan, 
“Analyza: Exploring Data with Conversation,” in Proceedings of the 22nd 
International Conference on Intelligent User Interfaces - IUI ’17, Limassol, Cyprus, 
pp. 493–504, 2017. 

[21]  L. Sha, P. Lucey, Y. Yue, P. Carr, C. Rohlf, and I. Matthews, “Chalkboarding: A 
New Spatiotemporal Query Paradigm for Sports Play Retrieval,” in Proceedings 
of the 21st International Conference on Intelligent User Interfaces - IUI ’16, Sonoma, 
California, USA, pp. 336–347, 2016. 

[22]  N.-C. Chen, J. Suh, J. Verwey, G. Ramos, S. Drucker, and P. Simard, “AnchorViz: 
Facilitating Classifier Error Discovery through Interactive Semantic Data 
Exploration,” in Proceedings of the 23rd International Conference on Intelligent 
User Interfaces  - IUI ’18, Tokyo, Japan, pp. 269–280, 2018. 

[23]  H. Dev and Z. Liu, “Identifying Frequent User Tasks from Application Logs,” in 
Proceedings of the 22nd International Conference on Intelligent User Interfaces - IUI 
’17, Limassol, Cyprus, pp. 263–273, 2017. 

[24]  T. Y. Lee, C. Dugan, and B. B. Bederson, “Towards Understanding Human 
Mistakes of Programming by Example: An Online User Study,” in Proceedings of 
the 22nd International Conference on Intelligent User Interfaces - IUI ’17, Limassol, 
Cyprus, pp. 257–261, 2017. 

[25]  T. Intharah, D. Turmukhambetov, and G. J. Brostow, “Help, It Looks Confusing: 
GUI Task Automation Through Demonstration and Follow-up Questions,” in 
Proceedings of the 22nd International Conference on Intelligent User Interfaces - IUI 
’17, Limassol, Cyprus, pp. 233–243, 2017. 

[26]  Y. Gil, J. Honaker, V. D’Orazio, S. Gupta, Y. Ma, and D. Garijo, “An Initial Task 
Analysis for Human-Guided Machine Learning,” ArXiv E-Prints, 2019. 

[27] H. Wallach, “Computational social science ≠ computer science + social data,” 
Commun. ACM, vol. 61, no. 3, pp. 42–44, Feb. 2018. 

[28]  S. Athey, “Machine Learning and Causal Inference for Policy Evaluation,” in 
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining - KDD ’15, Sydney, NSW, Australia, pp. 5–6 2015. 

[29]  Y. Gil, J. Honaker, V. D’Orazio, S. Gupta, Y. Ma, and D. Garijo, “Towards 
Human-Guided Machine Learning: Top-Down and Bottom-Up Task Analysis,” 
ArXiv E-Prints, 2019. 

[30]  D. Zhu et al., “Classification of Major Depressive Disorder via Multi-Site 
Weighted LASSO Model,” CoRR, vol. abs/1705.10312, 2017. 

[31]  B. Riedel, D. Zhu, N. Jahansad, and M. Harrison, “MRI based classification of 
Major Depressive Disorder in 16 Cohorts Worldwide:  An ENIGMA machine 
learning study,” Rev. Mol. Psychiatry, 2018. 

[32]  P. M. Thompson et al., “The ENIGMA Consortium: large-scale collaborative 
analyses of neuroimaging and genetic data,” Brain Imaging Behav., Jan. 2014. 

[33]  T. Wolfers, J. K. Buitelaar, C. F. Beckmann, B. Franke, and A. F. Marquand, “From 
estimating activation locality to predicting disorder: A review of pattern 
recognition for neuroimaging-based psychiatric diagnostics,” Neurosci. 
Biobehav. Rev., vol. 57, pp. 328–349, 2015. 

[34]  J. D. Fearon, “Primary Commodity Exports and Civil War,” J. Confl. Resolut., vol. 
49, no. 4, pp. 483–507, Aug. 2005. 

[35]  P. Collier and A. Hoeffler, Greed and Grievance in Civil War. The World Bank, 
1999. 

[36] N. Sambanis, “What Is Civil War? Conceptual and Empirical Complexities of an 
Operational Definition,” J. Confl. Resolut., vol. 48, no. 6, pp. 814–858, 2004. 

 


