Verfploeter: Broad and Load-Aware Anycast Mapping

Wouter B. de Vries, Ricardo de O. Schmidt, Wes Hardaker, John Heidemann, Pieter-Tjerk de Boer, Aiko Pras

2017-11-15
Our Starting Goals:

- Develop a technique to:
 - Accurately map anycast catchments
 - Accurately study B’s anycast IPv4 catchments
 - Predict load in advance of changes
 - Study anycast stability over time
Traditional "Active" Anycast Probing

- Traditional techniques require lots of Vantage Points
- e.g. RIPE Atlas
"Verfploeter" uses "Passive" Vantage Points

- Verfploeter uses the Internet as its vantage points
- We collect response traffic to ICMP "pings"
Input: An IPv4 Hitlist

- Previous work supplied us with ICMP-responsive IP-addresses in each IPv4 /24 block:

 Xun Fan and John Heidemann,
 "Selecting Representative IP Addresses for Internet Topology Studies"

- https://ant.isi.edu/datasets/ip_hitlists/

- Example addresses:
 1.0.100.37
 1.0.101.100
 1.0.102.123
 1.0.103.1
 1.0.104.1
 1.0.105.106
 1.0.106.123
RIPE Atlas Coverage of B-Root

(measured 2017/05/15)
Verfploeter Coverage of B-Root

Note: huge scale difference
Tangled: Studying A Larger Anycast Testbed

- Tangled: A 9-site anycast testbed University of Twente
- Tangled provides a more complex anycast test framework

<table>
<thead>
<tr>
<th>Location</th>
<th>Host</th>
<th>Upstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Sydney</td>
<td>Vultr</td>
</tr>
<tr>
<td>FR</td>
<td>Paris</td>
<td>Vultr</td>
</tr>
<tr>
<td>JP</td>
<td>Tokyo</td>
<td>WIDE</td>
</tr>
<tr>
<td>NL</td>
<td>Enschede</td>
<td>Univ. of Twente</td>
</tr>
<tr>
<td>UK</td>
<td>London</td>
<td>Vultr</td>
</tr>
<tr>
<td>US</td>
<td>Miami</td>
<td>Florida Int. Univ.</td>
</tr>
<tr>
<td>US</td>
<td>Washington</td>
<td>USC/ISI</td>
</tr>
<tr>
<td>BR</td>
<td>Sao Paulo</td>
<td>Florida Int. Univ.</td>
</tr>
<tr>
<td>DK</td>
<td>Copenhagen</td>
<td>DK-Hostmaster</td>
</tr>
</tbody>
</table>

- Note: some locations have common upstreams
RIPE Atlas Coverage of Tangled
Verfploeter Coverage of Tangled

Copyright (C) 2017 by University of Southern California
Do We Need To Look Inside ASes?

Given our significant number of new vantage points:

- Can we study traffic catchments within an AS?
- Do the number of sites seen change:
 - with prefix size?
 - with AS size?
- Can we measure routing stability using Verfploeter?
- ASes announcing more prefixes are likely to see more anycast sites
Sites Seen vs Prefix Size

80% of prefixes smaller than /16 reach a single site
Larger prefixes are more likely to see more sites
Anycast Stability Over 24 Hours

- Measurements taken every 15 minutes using Tangled
- `to_NR`: addresses switching to "not reachable"
- `from_NR`: addresses switching from "not reachable"
Anycast Stability Over 24 Hours

- 3.54M (95%) of VPs maintained catchment
- 89k (2.4%) changed from response to non-responsive
- near the same for flipping back
- 4.6k (0.1%) VPs changed catchment within 2809 ASes
- General Conclusion: anycast is quite stable
Network Flips

Networks flipping the most:

<table>
<thead>
<tr>
<th>AS</th>
<th>Owner</th>
<th>IPs (/24s)</th>
<th>Flips</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4134</td>
<td>CHINANET</td>
<td>47,963</td>
<td>257,915</td>
</tr>
<tr>
<td>2</td>
<td>7922</td>
<td>COMCAST</td>
<td>3,933</td>
<td>19,133</td>
</tr>
<tr>
<td>3</td>
<td>6983</td>
<td>ITCDELTIA</td>
<td>1,372</td>
<td>15,403</td>
</tr>
<tr>
<td>4</td>
<td>6739</td>
<td>ONO-AS</td>
<td>849</td>
<td>13,347</td>
</tr>
<tr>
<td>5</td>
<td>37963</td>
<td>ALIBABA</td>
<td>2,493</td>
<td>10,988</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td>43,388</td>
<td>188,630</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>108,493</td>
<td>505,416</td>
</tr>
</tbody>
</table>

Notes:

- 63% of the flipping are in these 5 ASes
- CHINANET accounts for 51% of the flips alone
- All the flips recorded are located in 2809 ASes
Verfploeter Sizing Summary

- Verfploeter sees ~430x more network blocks than Atlas
 - Atlas has some unique blocks though
- Difference in /24s seen by Verfploeter and Atlas:

<table>
<thead>
<tr>
<th></th>
<th>Atlas</th>
<th>Verfploeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>/24 blocks seen</td>
<td>8677</td>
<td>3,786,907</td>
</tr>
<tr>
<td>geolocatable</td>
<td>8677</td>
<td>3,786,229</td>
</tr>
<tr>
<td>unique</td>
<td>2079</td>
<td>3,606,300</td>
</tr>
</tbody>
</table>
Verfploeter: Ready For Use

Verfploeter provides a novel mechanism for studying anycast

- Paper:
 - https://www.isi.edu/~johnh/PAPERS/Vries17a.pdf

- Datasets:
 - https://ant.isi.edu/datasets/anycast/index.html#verfploeter

- Software:
 - https://ant.isi.edu/software/verfploeter/index.html

Please feel free to contact us for help or to share your results