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Chapter 3

The Framework:
Interpretation as Abduction

3.1 Language and Knowledge

We are able to understand language so well because we know so much. When
we read the sentence

John drove down the street in a car.

we know immediately that the driving and hence John are in the car and
that the street isn’t. We attach the prepositional phrase to the verb “drove”
rather than to the noun “street”. This is not syntactic knowledge, because
in the syntactically similar sentence

John drove down a street in Chicago.

it is the street that is in Chicago.
Therefore, a large part of the study of language should be an investiga-

tion of the question of how we use our knowledge of the world to understand
discourse. This question has been examined primarily by researchers in the
field of artificial intelligence (AI), in part because they have been interested
in linking language with actual behavior in specific situations, which has
led them to an attempt to represent and reason about fairly complex world
knowledge.

In this chapter I describe how a particular kind of reasoning, called “ab-
duction”, provides a framework for addressing a broad range of problems
that are posed in discourse and that require world knowledge in their so-
lutions. As we saw in Chapter 2, first-order logic is adequate as a mode
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of representation for the information conveyed by sentences as well as the
knowledge we bring to the discourses we interpret, but with one caveat:
Reasoning must be defeasible. Here I discuss several ways that defeasible
inference has been formalized in AI, and introduce abduction as one of those
methods. Then in successive sections I show

• how various problems in local pragmatics, such as reference res-
olution, metonymy, interpreting compound nominals, and word sense
disambiguation can be solved via abduction;

• how this processing can be embedded in an abductive process for rec-
ognizing the syntactic structure of sentences;

• how this in turn can be embedded in a process for recognizing the
structure of discourse; and

• how these can all be integrated with the recognition of the speaker’s
plan.

Then the specifics of the weighted abduction method and how axioms are
stated in this framework are described.

To be a plausible candidate for how people process language, there must
be an account of how it could be implemented in neurons. This is done in
Section 3.3.11, where it is related to the shruti structured connectionist
model of Shastri and Ajjanagade (1993). A plausible model of language
processing must also have an account of learning, and in Sections 3.3.12.1
and 3.3.12.2 such a model is presented. The first describes incremental
changes to axioms to refine them, and in the second it is shown how it can
be implemented in the shruti model via node recruitment. The chapter
closes with a comparison with relevance theory, a discussion of some of the
principal outstanding research issues, and a statement of the significance of
the big picture presented here.

3.2 Nonmonotonic Logic

The logic of mathematics is monotonic, in that once we know the truth value
of a statement, nothing else we learn can change it. Virtually all common-
sense knowledge beyond mathematics is uncertain or defeasible. Whatever
general principles we have are usually only true most of the time or true
with high probability or true unless we discover evidence to the contrary. It
is almost always possible that we may have to change what we believed to be
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the truth value of a statement upon gaining more information. Almost all
commonsense knowledge should be tagged with “insofar as I have been able
to determine with my limited access to the facts and my limited resources for
reasoning”. The logic of commonsense knowledge must be nonmonotonic.

The development of nonmonotonic logics has been a major focus in AI
research (Ginsberg, 1987). One early attempt involved “negation as failure”
(Hewitt, 1972); we assume that not P is true if we fail to prove that P .
Another early nonmonotonic logic (McDermott and Doyle, 1980) had rules
of the form “If P is true and Q is consistent with everything else we know,
then take Q to be true.”

Probably the most thoroughly investigated nonmonotonic logic was that
developed by McCarthy (1980). He introduced abnormality conditions
which the reasoner then minimized. For example, the general fact that birds
fly is expressed

(∀x)bird(x) ∧ ¬ab1(x) ⊃ fly(x)

That is, if x is a bird and not abnormal in a way specific to this rule, then
x flies. Further axioms might spell out the exceptions:

(∀x)penguin(x) ⊃ ab1(x)

That is, penguins are abnormal in the way specific to the “birds fly” rule.
Then to draw conclusions we minimize, in some fashion, those things

we take to be abnormal. If all we know about Tweety is that he is a bird,
then we assume he is not abnormal, and thus we conclude he can fly. If
we subsequently learn that Tweety is a penguin, we retract the assumption
that he is not abnormal in that way.

A problem arises with this approach when we have many axioms with
different abnormality conditions. There may be many ways to minimize the
abnormalities, each leading to different conclusions. This is illustrated by
an example that is known as the Nixon diamond (Reiter and Criscuolo,
1981). Suppose we know that generally Quakers are pacifists. We can write
this as

(∀x)Quaker(x) ∧ ¬ab2(x) ⊃ pacifist(x)

Suppose we also know that Republicans are generally not pacifists.

(∀x)Republican(x) ∧ ¬ab3(x) ⊃ ¬pacifist(x)

Then what do we conclude when we learn that Nixon is both a Quaker and a
Republican? Assuming both abnormality conditions results in a contradic-
tion. If we take ab2 to be false, we conclude Nixon is a pacifist. If we take ab3
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to be false, we conclude Nixon is not a pacifist. How do we choose between
the two possibilities? Researchers have made various suggestions for how to
think about this problem (e.g., Shoham, 1987). In general, some scheme is
needed for choosing among the possible combinations of assumptions.

In recent years there has been considerable interest in AI in the reasoning
process known as abduction, or inference to the best explanation. As it is
normally conceived in AI, it can be viewed as one variety of nonmonotonic
logic.

3.3 Abduction

The simplest way to explain abduction is by comparing it with two words it
rhymes with—deduction and induction. In deduction, from P and P ⊃ Q,
we conclude Q. In induction, from P and Q, or more likely a number
of instances of P and Q together with other considerations, we conclude
P ⊃ Q. Abduction is the third possibility. From an observable Q and a
general principle P ⊃ Q, we conclude that P must be the underlying reason
that Q is true. We assume P because it explains Q.

Of course, there may be many such possible P ’s, some contradicting
others, and therefore any method of abduction must include a method for
evaluating and choosing among alternatives. At a first cut, suppose in trying
to explain Q we know P ∧ R ⊃ Q and we know R. Then R provides partial
evidence that Q is true, making the assumption of P more reasonable. In
addition, if we are seeking to explain two things, Q1 and Q2, then it is
reasonable to favor assuming a P that explains both of them rather than a
different explanation for each.

The conclusions we draw in this way are only assumptions and may have
to be retracted later if we acquire new, contradictory information. That is,
this method of reasoning is nonmonotonic.

Abduction has a history. Prior to the late seventeenth century science
was viewed as deductive, at least in the ideal. It was felt that, on the model
of Euclidean geometry, one should begin with propositions that were self-
evident and deduce whatever consequences one could from them. As was
articulated in Chapter 1, the modern view of scientific theories (Lakatos,
1970), is quite different. One tries to construct abstract theories from which
observable events can be deduced or predicted. There is no need for the
abstract theories to be self-evident, and they usually are not. It is only
necessary for them to predict as broad a range as possible of the observable
data and for them to be “elegant”, whatever that means. Thus, the modern
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view is that science is fundamentally abductive. We seek hidden principles
or causes from which we can deduce the observable evidence.

This view of science, and hence the notion of abduction, can be seen
first, insofar as I am aware, in some passages in Newton’s Principia (1934
[1686]). At the end of Principia, in a justification for not seeking the cause
of gravity, he says, “And to us it is enough that gravity does really exist,
and act according to the laws which we have explained, and abundantly
serves to account for all the motions of the celestial bodies, and of our sea.”
(Newton 1934:547) The justification for gravity (P ) and its laws (P ⊃ Q)
is not in their self-evidential nature but in what they account for (Q).

In the eighteenth century, the German philosopher Christian Wolff (1963
[1728]) shows, to my knowledge, the earliest explicit awareness of the impor-
tance of abductive reasoning. He presents almost the standard Euclidean
account of certain knowledge, but with an important provision in his recog-
nition of the inevitability and importance of hypotheses:

Philosophy must use hypotheses insofar as they pave the way to
the discovery of certain truth. For in a philosophical hypothe-
sis certain things which are not firmly established are assumed
because they provide a reason for things which are observed to
occur. Now if we can also deduce other things which are not ob-
served to occur, then we have the opportunity to either observe
or experimentally detect things which otherwise we might not
have noticed. In this way we become more certain as to whether
or not anything contrary to experience follows from the hypoth-
esis. If we deduce things which are contrary to experience, then
the hypothesis is false. If the deductions agree with experience,
then the probability of the hypothesis is increased. And thus the
way is paved for the discovery of certain truth. (Wolff 1963:67)

He also recognizes the principle of parsimony: “If one cannot necessarily
deduce from a hypothesis the things for which it is assumed, then the hy-
pothesis is spurious.” (Wolff, 1963:68) However, he views hypotheses as only
provisional, awaiting deductive proof.

The term “abduction” was first used by C. S. Pierce (e.g., 1955). His
definition of it is as follows:

The surprising fact, Q, is observed;
But if P were true, Q would be a matter of course,
Hence, there is reason to suspect that P is true. (Pierce, 1955:151)
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(He actually used A and C for P and Q.) Pierce says that “in pure abduction,
it can never be justifiable to accept the hypothesis otherwise than as an
interrogation”, and that “the whole question of what one out of a number
of possible hypotheses ought to be entertained becomes purely a question of
economy.” That is, there must be an evaluation scheme for choosing among
possible abductive inferences.

The earliest formulation of abduction in artificial intelligence was by
Morgan (1971). He showed how a complete set of truth-preserving rules
for generating theorems could be turned into a complete set of falsehood-
preserving rules for generating hypotheses.

The first use of abduction in an AI application was by Pople (1973),
in the context of medical diagnosis. He gave the formulation of abduction
sketched above and showed how it can be implemented in a theorem-proving
framework. Literals (or propositions) that are “abandoned by deduction in
the sense that they fail to have successor nodes” (Pople, 1973:150) are taken
as the candidate hypotheses. That is, one tries to prove the symptoms and
signs exhibited and the parts of a potential proof that cannot be proven are
the candidate hypotheses. Those hypotheses are best that account for the
most data, and in service of this principle, he introduced factoring or syn-
thesis, which attempts to unify goal literals. Hypotheses where this is used
are favored. That is, that explanation is best that minimizes the number of
causes.

Work on abduction in artificial intelligence was revived in the 1980s
at several sites. Reggia and his colleagues (e.g., Reggia et al., 1983; Reg-
gia, 1985) formulated abductive inference in terms of parsimonious cover-
ing theory. Charniak and McDermott (1985) presented the basic pattern
of abduction and then discussed many of the issues involved in trying to
decide among alternative hypotheses on probabilistic grounds. Cox and
Pietrzykowski (1986) present a formulation in a theorem-proving framework
that is very similar to Pople’s, though apparently independent. It is es-
pecially valuable in that it considers abduction abstractly, as a mechanism
with a variety of possible applications, and not just as a handmaiden to
diagnosis.

Josephson and Josephson (1994) provide a comprehensive treatment of
abduction, its philosophical background, its computational properties, and
its utilization in AI applications.

I have indicated that the practice of science is fundamentally abductive.
The extension of abduction to ordinary cognitive tasks is very much in line
with the popular view in cognitive science that people going about in the
world trying to understand it are scientists in the small. This view can
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be extended to natural language understanding—interpreting discourse is
coming up with the best explanation for what is said.

The first appeal to something like abduction that I am aware of in natural
language understanding was by Grice (1967, 1989), when he introduced the
notion of conversational implicature to handle examples like the following:

A: How is John doing on his new job at the bank?
B: Quite well. He likes his colleagues and he hasn’t embezzled any

money yet.

Grice argues that in order to see this as coherent, we must assume, or
draw as a conversational implicature, that both A and B know that John is
dishonest. Although he does not say so, an implicature can be viewed as an
abductive move for the sake of achieving the best interpretation.

Lewis (1979) introduces the notion of accommodation in conversation to
explain the phenomenon that occurs when you “say something that requires
a missing presupposition, and straightaway that presupposition springs into
existence, making what you said acceptable after all.” The hearer accom-
modates the speaker.

Thomason (1990) argued that Grice’s conversational implicatures are
based on Lewis’s rule of accommodation. We might say that implicature
is a procedural characterization of something that, at the functional or in-
teractional level, appears as accommodation. Implicature is the way we do
accommodation.

In the middle 1980s researchers at several sites began to apply abduction
to natural language understanding (Norvig, 1983, 1987; Wilensky, 1983;
Wilensky et al., 1988; Charniak and Goldman, 1988, 1989; Hobbs et al.,
1988; Hobbs et al., 1993). At least in the last case the recognition that
implicature was a use of abduction was a key observation in the development
of the framework.

Norvig, Wilensky, and their associates proposed an operation called con-
cretion, one of many that take place in the processing of a text. It is a “kind
of inference in which a more specific interpretation of an utterance is made
than can be sustained on a strictly logical basis” (Wilensky et al., 1988:50).
Thus, “to use a pencil” generally means to write with a pencil, even though
one could use a pencil for many other purposes.

Charniak and his associates also developed an abductive approach to in-
terpretation. Charniak (1986) expressed the fundamental insight: “A stan-
dard platitude is that understanding something is relating it to what one
already knows. . . . One extreme example would be to prove that what one
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is told must be true on the basis of what one already knows. . . . We want
to prove what one is told given certain assumptions.” (Charniak, 1986:585)

Charniak and Goldman developed an interpretation procedure that in-
crementally built a belief network (Pearl, 1988), where the links between the
nodes, representing influences between events, were determined from axioms
expressing world knowledge. They felt that one could make not unreason-
able estimates of the required probabilities, giving a principled semantics
to the numbers. The networks were then evaluated and ambiguities were
resolved by looking for the highest resultant probabilities.

Stickel invented a method called weighted abduction (Stickel 1988; Hobbs
et al., 1993) that builds the evaluation criteria into the proof process. Briefly,
propositions to be proved are given an assumption cost—what you will have
to pay to assume them. When we backchain over a rule of the form P ⊃ Q,
the cost is passed back from Q to P , according to a weight associated with
P . Generally, P will cost more to assume than Q, so that short proofs
are favored over long ones. But if partial evidence is found, for example, if
P ∧ R ⊃ Q and we can prove R, then it will cost less to assume P than to
assume Q, and we get a more specific interpretation. In addition, if we need
to prove Q1 and Q2 and P implies both, then it will cost less to assume P
than to assume Q1 and Q2. This feature of the method allows us to exploit
the implicit redundancy inherent in natural language discourse.

Weighted abduction suggests a simple way to incorporate the uncertainty
of knowledge into the axioms expressing the knowledge. Propositions can
be assumed at a cost. Therefore, we can have propositions whose only role
is to be assumed and to levy a cost. For example, let’s return to the rule
that birds fly. We can express it with the axiom

(∀x)[bird(x) ∧ etc1(x) ⊃ fly(x)]

That is, if x is a bird and some other unspecified conditions hold for x
(etc1(x)), then x flies. The predicate etc1 encodes the unspecified conditions.
There will never be a way to prove it; it can only be assumed at cost. The
cost of etc1 will depend inversely on the certainty of the rule that birds fly.
It will cost to use this rule, but the lowest-cost proof of everything we are
trying to explain may nevertheless involve this rule and hence the inference
that birds fly. We know that penguins don’t fly:

(∀x)[penguin(x) ⊃ ¬fly(x)]

If we know Tweety is a penguin, we know he doesn’t fly. Thus, to assume etc1

is true of Tweety would lead to a contradiction, so we don’t. The relation
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between the etc predicates and the abnormality predicates of McCarthy’s
nonmonotonic logic is obvious: etc1 is just ¬ab1.

The framework of “Interpretation as Abduction” (IA) (Hobbs et al.
1993) follows directly from this method of abductive inference, and it is
the IA framework that is used in the rest of this book. Whereas in Norvig
and Wilensky’s work, abduction or concretion was one process among many
involved in natural language understanding, in the IA framework abduction
is the whole story. Whereas in Charniak and Goldman’s work, specific pro-
cedures involving abduction are implemented to solve specific interpretation
problems, in the IA framework there is only one procedure—abduction—
that is used to explain or prove the logical form of the text, and the solutions
to specific interpretation problems fall out as byproducts of this process.

It should be pointed out that in addition to what is presented below
there have been a number of other researchers who have used abduction for
various natural language understanding problems, including Nagao (1989)
for resolving syntactic ambiguity, Dasigi (1988) for resolving lexical ambigu-
ity, Rayner (1993) for asking questions of a database, Ng and Mooney (1990)
and Lascarides and Oberlander (1992) for recognizing discourse structure,
McRoy and Hirst (1991) for making repairs in presupposition errors, Ap-
pelt and Pollack (1990) for recognizing the speaker’s plan, and Harabagiu
and Moldovan (1998, 2002) for general text understanding and question-
answering using WordNet as a knowledge base.

3.4 Interpretation as Abduction

In the IA framework we can describe very concisely what it is to interpret
a sentence:

Prove the logical form of the sentence,
together with the selectional constraints that predicates

impose on
their arguments,

allowing for coercions,
Merging redundancies where possible,
Making assumptions where necessary.

By the first line we mean “prove, or derive in the logical sense, from the pred-
icate calculus axioms in the knowledge base, the logical form that has been
produced by syntactic analysis and semantic translation of the sentence.”
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We can view this as in Figure 3.1. In a discourse situation, the speaker
and hearer both have their sets of private beliefs, and there is a large over-
lapping set of mutual beliefs. An utterance lives on the boundary between
mutual belief and the speaker’s private beliefs. It is a bid to extend the
area of mutual belief to include some private beliefs of the speaker’s. It is
anchored referentially in mutual belief, and when we succeed in proving the
logical form and the constraints, we are recognizing this referential anchor.
This is the given information, the definite, the presupposed. Where it is
necessary to make assumptions, the information comes from the speaker’s
private beliefs, and hence is the new information, the indefinite, the as-
serted. Merging redundancies is a way of getting a minimal, and hence a
best, interpretation.

Figure 3.1: The Discourse Situation

Merging redundancies and minimizing the assumptions result naturally
from the method of weighted abduction.

3.5 Abduction and Local Pragmatics

Local pragmatics encompasses those problems that are posed within the
scope of individual sentences, even though their solution will generally re-
quire greater context and world knowledge. Included under this label are
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the resolution of coreference, resolving syntactic and lexical ambiguity, in-
terpreting metonymy and metaphor, and finding specific meanings for vague
predicates such as in the compound nominal.

Consider a simple example that contains three of these problems.

The Boston office called.

This sentence poses at least three local pragmatics problems, the problems
of resolving the reference of “the Boston office”, expanding the metonymy
to “[Some person at] the Boston office called”, and determining the implicit
relation between Boston and the office. Let us put these problems aside for
the moment, however, and interpret the sentence according to the IA char-
acterization. We must prove abductively the logical form of the sentence
together with the constraint “call” imposes on its agent, allowing for a co-
ercion. That is, we must prove abductively the expression (ignoring tense
and some other complexities)

(∃x, y, z, e)call′(e, x)∧ person(x)∧ rel(x, y)∧ office(y)∧Boston(z)
∧nn(z, y)

That is, there is a calling event e by x where x is a person. x may or may
not be the same as the explicit subject of the sentence, but it is at least
related to it, or coercible from it, represented by rel(x, y). y is an office
and it bears some unspecified relation nn to z which is Boston. person(x)
is the requirement that call′ imposes on its agent x. The predicate rel is
for accomodating metonymy. How it is introduced is discussed in the next
section. The interesting and important question of what specific relations
can instantiate it is dealt with in Chapter 6.

The sentence can be interpreted with respect to a knowledge base of
mutual knowledge that contains the following facts:

Boston(B1)

that is, B1 is the city of Boston.

office(O1) ∧ in(O1, B1)

that is, O1 is an office and is in Boston.

person(J1)

that is, John J1 is a person.

work-for(J1, O1)
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that is, John J1 works for the office O1.

(∀ y, z)in(y, z) ⊃ nn(z, y)

that is, if y is in z, then z and y are in a possible compound nominal relation.

(∀x, y)work-for(x, y) ⊃ rel(x, y)

that is, if x works for y, then y can be coerced into x.
Given these axioms, the proof of all of the logical form is straightforward

except for the conjunct call′(e, x). Hence, we assume that; it is the new
information conveyed by the sentence.

This interpretation is illustrated in the proof graph of Figure 1, where a
rectangle is drawn around the assumed literal call′(e, x). Such proof graphs
play the same role in interpretation as parse trees play in syntactic analysis.
They are pictures of the interpretations, and we will see many such diagrams
in this book.

Now notice that the three local pragmatics problems have been solved
as a by-product. We have resolved “the Boston office” to O1. We have
determined the implicit relation in the compound nominal to be in. And
we have expanded the metonymy to “John, who works for the Boston office,
called.”

For an illustration of the resolution of lexical ambiguity, consider an
example from Hirst (1987):

The plane taxied to the terminal.

The words “plane”, “taxied”, and “terminal” are all ambiguous.
Suppose the knowledge base consists of the following axioms:

(∀x)airplane(x) ⊃ plane(x)

or an airplane is a plane.

(∀x)wood-smoother(x) ⊃ plane(x)

or a wood smoother is a plane.

(∀x, y)move-on-ground(x, y) ∧ airplane(x) ⊃ taxi(x, y)

or for an airplane x to move on the ground to y is for it to taxi to y.

(∀x, y)ride-in-cab(x, y) ∧ person(x) ⊃ taxi(x, y)

or for a person x to ride in a cab to y is for x to taxi to y.
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Logical Form:

call′(e, x) ∧ person(x) ∧ rel(x, y)∧ office(y) ∧ Boston(z) ∧ nn(z, y)

Knowledge Base:

person(J1)
C
C
C
C
CCO

work-for(x, y) ⊃ rel(x, y)

6

work-for(J1, O1)

6

office(O1)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Boston(B1)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

in(y, z) ⊃ nn(z, y)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

in(O1, B1)

6

Figure 3.2: Interpretation of “The Boston office called.”

(∀ y)airport-terminal(y) ⊃ terminal(y)

or an airport terminal is a terminal.

(∀ y)computer-terminal(y) ⊃ terminal(y)

or a computer terminal is a terminal.

(∀ z)airport(z) ⊃ (∃x, y)airplane(x) ∧ airport-terminal(y)

or airports have airplanes and airport terminals.
The logical form of the sentence will be, roughly,

(∃x, y)plane(x) ∧ taxi(x, y) ∧ terminal(y)
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The minimal proof of this logical form will involve assuming the existence
of an airport, deriving from that the airplane, and thus the plane, and the
airport terminal, and thus the terminal, assuming x is moving on the ground
to y, and recognizing the redundancy of the airplane with the one in that
reading of “taxi”. This interpretation is illustrated in Figure 2.

Logical Form:

plane(x) ∧ taxi(x, y) ∧ terminal(y)

Knowledge Base:

6

airplane(x) ⊃ plane(x)

@
@

@
@

@
@

@
@@I

move-on-ground(x, y) ∧ airplane(x) ⊃ taxi(x, y)

S
S

S
S

S
S

S
S

S
S

SSo

airport-terminal(y) ⊃ terminal(y)

S
S

S
S

S
S

S
SSo

�
�

�
�

�
�

�>

6

airport(z) ⊃ airplane(x) ∧ airport-terminal(y)

wood-smoother(x) ⊃ plane(x)

ride-in-cab(x, y) ∧ person(x) ⊃ taxi(x, y)

computer-terminal(y) ⊃ terminal(y)

Figure 3.3: Interpretation of “The plane taxied to the terminal.”

Another possible interpretation would be one in which we assumed that
a wood smoother, a ride in a taxi, and a computer terminal all existed. It
is because weighted abduction favors merging redundancies that the correct
interpretation is the one chosen. That interpretation allows us to minimize
the assumptions we make.
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3.6 Syntax by Abduction

In Chapter 4 an extensive subset of English grammar is described in detail,
largely following Pollard and Sag’s (1994) Head-Driven Phrase Structure
Grammar but cast into the IA framework. In this treatment, the predicate
Syn is used to express the relation between a string of words and the even-
tuality it conveys. Certain axioms involving Syn, the composition axioms,
describe how the eventuality conveyed emerges from the concatenation of
strings. Other axioms, the lexical axioms, link Syn predications about words
with the corresponding logical-form fragments. There are also alternation
axioms which alter the places in the string of words where predicates find
their arguments.

In this chapter, a simplified version of the predicate Syn will be used.
We will take Syn to be a predicate of seven arguments.

Syn(w, e, f, x, a, y, b)

w is a string of words. e is the eventuality described by this string. f is the
category of the head of the phrase w. If the string w contains the logical
subject of the head, then the arguments x and a are the empty symbol “−”.
Otherwise, x is a variable refering to the logical subject and a is its category.
Similarly, y is either the empty symbol or a variable refering to the logical
object and b is either the empty symbol or the category of the logical object.
For example,

Syn(“reads a novel”, e,v, x,n,−,−)

says that the string of words “reads a novel” is a phrase describing an even-
tuality e and has a head of category verb. Its logical object “a novel” is in
the string itself, so the last two arguments are the empty symbol. Its logical
subject is not part of the string, so the fourth argument is the variable x
standing for the logical subject and the fifth argument specifies that the
phrase describing it must have a noun as its head. In Chapter 4 the full Syn
predicate contains argument positions for further complements and filler-
gap information, and the category arguments can record syntactic features
as well.

Two of the most important composition axioms are the following:

(∀w1, w2, x, a, e, f)Syn(w1, x, a,−,−,−,−)∧Syn(w2, e, f, x, a,−,−)
⊃ Syn(w1w2, e, f,−,−,−,−)

(∀w1, w2, e, f, x, a, y, b)Syn(w1, e, f, x, a, y, b)∧Syn(w2, y, b,−,−,−,−)
⊃ Syn(w1w2, e, f, x, a,−,−)
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The first axiom corresponds to the traditional “S → NP VP” rule. It says
that if w1 is a string describing an entity x and headed by a word of category
a and w2 is a string describing eventuality e, headed by a word of category
f , and lacking a logical subject x of category a, then the concatenation w1w2

is a string describing eventuality e and headed by a word of category f .
The second axiom corresponds to the traditional “VP → V NP” rule.

It says that if w1 is a string describing eventuality e, headed by a word
of category f , and lacking a logical subject x of category a and a logical
object y of category b and w2 is a string describing an entity y and headed
by a word of category b, then the concatenation w1w2 is a string describing
eventuality e, headed by a word of category f , and lacking a logical subject
x of category a, but not lacking a logical object.

A typical lexical axiom is the following:

(∀ e, x, y)past(e) ∧ read′(e, x, y) ∧ person(x) ∧ text(y)
⊃ Syn(“read”, e,v, x,n, y,n)

That is, if e is the eventuality in the past of a person x reading a text y, then
the verb “read” can be used to describe e provided noun phrases describing
x and y are found in the appropriate places, as specified by composition ax-
ioms. Lexical axioms thus encode the logical form fragment corresponding
to a word (past(e) ∧ read′(e, x, y)), selectional constraints (person(x) and
text(y)), the spelling (or in a more detailed account, the phonology) of the
word (“read”), its category (verb), and the syntactic constraints on its com-
plements (that x and y must come from noun phrases). The lexical axioms
constitute the interface between syntax and world knowledge; knowledge
about reading is encoded in axioms involving the predicate read′, whereas
knowledge of syntax is encoded in axioms involving Syn, and these two are
linked here.

Interpreting a sentence W is then proving the expression

(∃ e)Syn(W, e,v,−,−,−,−)

i.e., proving that W is headed by a verb, describes some eventuality e, and
is complete in that it does not lack a logical subject and logical object. The
parse of the sentence is found because composition axioms are used in the
proof. The logical form is generated because that part of the proof bottoms
out in lexical axioms. The local pragmatics problems are solved because
that logical form is then proved. That is, in the course of proving that a
string of words is a grammatical, interpretable sentence, the interpretation
process backchains through composition axioms to lexical axioms (the syn-
tactic processing) and then is left with the logical form of the sentence to
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be proved. A proof of this logical form was the IA characterization of the
interpretation of a sentence given in the previous section.

The proof graph of the syntactic part of the interpretation of “John
read Ulysses” is shown in Figure 3.4. Note that knowledge that John is a
person and Ulysses is a text is used to establish the selectional constraints
associated with “read”.
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Figure 3.4: Parse of “John read Ulysses.”

In Chapter 4 there are about a dozen composition axioms, corresponding
to similar rules in Pollard and Sag (1994). There is one lexical axiom for ev-
ery word sense and subcategorization pattern; the lexical axioms constitute
the lexicon.

There are also a number of alternation axioms that handle such things
as passive constructions. These axioms alter the order of, or otherwise
modify, the arguments of the predicate associated with a construction’s head.
Metonymic coercion relations can be introduced by means of an alternation
axiom of the form

Syn(w, e, f, x0, a, y, b) ∧ rel(x0, x) ⊃ Syn(w, e, f, x, a, y, b)

That is, a word or phrase w looking for a subject referring to x0 can be used
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to describe the same situation if its subject refers to x instead, where x is
related to x0 by a coercion relation rel.

As presented so far, abduction plays no role in this encoding of syntactic
knowledge. Syntactic processing is just logical deduction. The principal ad-
vantage of the framework is that it allows syntactic analysis to be done with
other interpretion processes in a uniform framework. In addition, various
sorts of ungrammaticality—telegraphic discourse, disfluencies, scrambling—
can be handled by means of assumptions.

In this section we have recast the problem of interpreting a sentence
as one of proving that the string of words is a grammatical, interpretable
sentence. Local pragmatics is subsumed under that characterization in the
word “interpretable”. It is well known that there are interactions between
syntactic processing and pragmatics. By solving both problems with one
proof and choosing among proofs by means of a common evaluation metric,
we can model those interactions. Sometimes less favored solutions will be
chosen in each part of the proof because that results in the lowest-cost proof
overall.

In the next section we will see how this picture can be embedded in an
even larger picture.

3.7 Recognizing Discourse Structure

When two segments of discourse are adjacent, that very adjacency conveys
information. Each segment, insofar as it is coherent, conveys information
about a situation or eventuality, and the adjacency of the segments conveys
the suggestion that the two situations are related in some fashion, or are
parts of larger units that are related. Part of what it is to understand a
discourse is to discover what that relation is.

Overwhelmingly, the relations that obtain between discourse segments
are based on causal, similarity, or figure-ground relations between the sit-
uations they convey. We can thus define a number of coherence relations
in terms of the relations between the situations. This aspect of discourse
structure can be built into the abduction framework.

Suppose w1 and w2 are two adjacent segments of discourse and that w1w2

is their concatenation. If Segment(w, e) says that the string w is a coherent
segment of discourse describing the eventuality e and CoherenceRel(e1, e2, e)
says that there is a coherence relation between e1 and e2 and that the com-
bination of the two conveys e, then we can express the basic composition
rule for discourse as
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(∀w1, w2, e1, e2, e)Segment(w1, e1) ∧ Segment(w2, e2)
∧CoherenceRel(e1, e2, e)

⊃ Segment(w1w2, e)

That is, when we combine two coherent segments of discourse with a co-
herence relation we get a coherent segment of discourse. By applying this
successively to a stretch of discourse, we get a tree-like structure for the
whole discourse.

This process bottoms out in sentences, after which syntactic rules tell us
the structure and meaning of the string of words. This is captured by the
rule

(∀w, e)Syn(w, e,v,−,−,−,−) ⊃ Segment(w, e)

That is, a grammatical sentence conveying e is a coherent segment of dis-
course conveying e.

In the previous section the solution to local pragmatics problems—
proving the logical form—was embedded in the problem of finding the syn-
tactic structure of, or parsing, a sentence. These two axioms now embed
parsing the sentence in the problem of recognizing the discourse structure
of the whole text. If W is a text, then interpreting W is a matter of proving
that it is a coherent segment of discourse conveying some eventuality e:

(∃ e)Segment(W, e)

Now let us consider an example. Explanation is a coherence relation, and
a first approximation of a definition of the Explanation relation would be
that the eventuality described by the second segment causes the eventuality
described by the first:

(∀ e1, e2)cause(e2, e1) ⊃ CoherenceRel(e1, e2, e1)

That is, if what is described by the second segment could cause what is
described by the first segment, then there is a coherence relation between the
segments. In explanations, what is explained is the dominant segment (the
nucleus in the terms of Rhetorical Structure Theory (Mann and Thompson,
1986)), so it is e1 that is described by the composed segment. Hence, the
third argument of CoherenceRel is e1.

Consider a variation on a classic example of pronoun resolution difficul-
ties from Winograd (1972):

The police prohibited the women from demonstrating.
They feared violence.
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How do we know “they” in the second sentence refers to the police and not
to the women?

As in Section 6, we will ignore this local pragmatics problem and pro-
ceed to interpret the text by abduction. To interpret the text is to prove
abductively the expression

(∃ e)Segment(“The police . . . violence.”, e)

This involves proving that each sentence is a segment, by proving they are
grammatical, interpretable sentences, and proving there is a coherence re-
lation between them. To prove they are sentences, we would tap into an
expanded version of the sentence grammar of Section 3.3.6. This would bot-
tom out in the logical forms of the sentences, via the lexical axioms, and
thus require us to prove abductively those logical forms.

One way to prove there is a coherence relation between the sentences is
to prove there is an Explanation relation between them by showing there is
a causal relation between the eventualities they describe.

After back-chaining in this manner, we are faced with proving the ex-
pression

(∃ e1, p, d, w, e2, y, v, z)police(p)∧ prohibit′(e1, p, d)∧ demonstrate′(d,w)
∧ cause(e2, e1) ∧ fear′(e2, y, v) ∧ violent′(v, z)

That is, there is a prohibiting event e1 by the police p of a demonstrating
event d by the women w. There is a fearing event e2 by someone y (“they”)
of violence v by someone z. The fearing event e2 causes the prohibiting
event e1. This expression is just the (simplified) logical forms of the two
sentences, plus the hypothesized causal relation between them.

Suppose, plausibly enough, we have in our knowledge base the following
axioms:

(∀ e2, y, v)fear′(e2, y, v) ⊃ (∃ d2)diswant′(d2, y, v)∧ cause(e2, d2)

That is, if e2 is a fearing by y of v, then that will cause the state d2 of y not
wanting or “diswanting” v.

(∀ d,w)demonstrate′(d,w) ⊃ (∃ v, z)cause(d, v) ∧ violent′(v, z)

That is, demonstrations cause violence.

(∀ d, v, d2, y)cause(d, v) ∧ diswant′(d2, y, v)
⊃ (∃ d1)diswant′(d1, y, d) ∧ cause(d2, d1)
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That is, if someone y diswants v and v is caused by d, then that will cause y
to diswant d as well. If you don’t want the effect, you don’t want the cause.

(∀ d1, p, d)diswant′(d1, p, d) ∧ authority(p)
⊃ (∃ e1)prohibit′(e1, p, d) ∧ cause(d1, e1)

That is, if those in authority diswant something, that will cause them to
prohibit it.

(∀ e1, e2, e3)cause(e1, e2) ∧ cause(e2, e3) ⊃ cause(e1, e3)

That is, cause is transitive.

(∀ p)police(p) ⊃ authority(p)

That is, the police are in authority.
From these axioms, we can prove all of the above logical form except

the propositions police(p), demonstrate′(d,w), and fear′(f, y, v), which we
assume. This is illustrated in Figure 3. Notice that in the course of doing the
proof, we unify y with p, thus resolving the problematic pronoun reference
that originally motivated this example. “They” refers to the police.

One can imagine a number of variations on this example. If we had not
included the axiom that demonstrations cause violence, we would have had
to assume the violence and the causal relation between demonstrations and
violence. Moreover, other coherence relations might be imagined here by
constructing the surrounding context in the right way. It could be followed
by the sentence “But since they had never demonstrated before, they did
not know that violence might result.” In this case, the second sentence
would play a subordinate role to the third, forcing the resolution of “they”
to the women. Each example, of course, has to be analyzed on its own, and
changing the example changes the analysis. In Winograd’s original version
of this example,

The police prohibited the women from demonstrating, because
they feared violence.

the causality was explicit, thus eliminating the coherence relation as a source
of ambiguity. The literal cause(e2, e1) would be part of the logical form.

Winograd’s contrasting text, in which “they” is resolved to the women,
is

The police prohibited the women from demonstrating, because
they advocated violence.
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Figure 3.5: Interpretation of “The police prohibited the women from demon-
strating. They feared violence.”
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Here we would need the facts that when one demonstrates one advocates and
that advocating something tends to bring it about. Then showing a causal
relation between the clauses will result in “they” being identified with the
demonstrators.

3.8 Recognizing the Speaker’s Plan

As presented so far, understanding discourse is seeing the world of the text
as coherent, which in turn involves viewing the content of the text as ob-
servables to be explained. The focus has been on the information conveyed
explicitly or implicitly by the discourse. We can call this the informational
account of a discourse.

But utterances are embedded in the world as well. They are produced
to realize a speaker’s intention, or more generally, they are actions in the
execution of a speaker’s plan to achieve some goal. The description of how a
discourse realizes the speakers’ goals may be called the intentional account
of the discourse.

Let us consider the intentional account from the broadest perspective.
An intelligent agent is embedded in the world and must, at each instant, un-
derstand the current situation. The agent does so by finding an explanation
for what is perceived. Put differently, the agent must explain why the com-
plete set of observables encountered constitutes a coherent situation. Other
agents in the environment are viewed as intentional, that is, as planning
mechanisms, and this means that the best explanation of their observable
actions is most likely to be that the actions are steps in a coherent plan.
Thus, making sense of an environment that includes other agents entails
making sense of the other agents’ actions in terms of what they are intended
to achieve. When those actions are utterances, the utterances must be un-
derstood as actions in a plan the agents are trying to effect. That is, the
speaker’s plan must be recognized—the intentional account.

Generally, when a speaker says something it is with the goal of the hearer
believing the content of the utterance, or thinking about it, or considering
it, or taking some other cognitive stance toward it. Let us subsume all
these mental terms under the term “cognize”. Then we can summarize the
relation between the intentional and informational accounts succinctly in
the following formula:

intentional-account = goal(A, cognize(B, informational-account)

The speaker ostensibly has the goal of changing the mental state of the
hearer to include some mental stance toward the content characterized by
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the informational account. Thus, the informational account is embedded in
the intentional account. When we reason about the speaker’s intention, we
are reasoning about how this goal fits into the larger picture of the speaker’s
ongoing plan. We are asking why the speaker seems to be trying to get
the hearer to believe this particular content. The informational account
explains the situation described in the discourse; the intentional account
explains why the speaker chose to convey this information.

The (defeasible) axiom that encapsulates this is

(∀ s, h, e1, e, w)goal(s, e1) ∧ cognize′(e1, h, e) ∧ Segment(w, e)
⊃ utter(s, h,w)

That is, normally if a speaker s has a goal of the hearer h cognizing a
situation e and w is a string of words that conveys e, then s will utter w
to h. We appeal to this axiom to interpret the utterance as an intentional
communicative act. That is, if you (U) utter to me (I) a string of words
(W ), then to explain this observable event, I have to prove

utter(U, I,W )

and I begin to do so by backchaining on the above axiom. Reasoning about
the speaker’s plan is a matter of establishing the first two propositions in
the antecedent of the axiom. Determining the informational content of the
utterance is a matter of establishing the third, as described in the previous
sections. The two sides of the proof influence each other since they share
variables and since minimality results when both are explained and when
they share propositions.

Both the intentional and informational accounts are necessary. The
informational account is needed because we have no direct access to the
speaker’s plan. We can only infer it from history and behavior. The content
of the utterance is often the best evidence of the speaker’s intention, and
often the intention is no more than to convey that particular content. On
the other hand, the intentional account is necessary in cases like pragmatic
ellipsis, where the informational account is highly underdetermined and the
global interpretation is primarily shaped by our beliefs about the speaker’s
plan.

Perhaps most interesting are cases of genuine conflict between the two
accounts. The informational account does not seem to be true, or it seems
to run counter to the speaker’s goals for the hearer to come to believe it, or
it ought to be obvious that the hearer already does believe it. Tautologies
are an example of the last of these cases—tautologies such as “boys will be
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boys,” “fair is fair,” and “a job is a job.” Norvig and Wilensky (1990) cite
this figure of speech as something that should cause trouble for an abduction
approach that seeks minimal explanations, since the minimal explanation is
that they just express a known truth. Such an explanation requires no
assumptions at all.

In fact, the phenomenon is a good example of why an informational
account of discourse interpretation has to be embedded in an intentional
account. Let us imagine two parents, A and B, sitting in the playground
and talking.

A: Your Johnny is certainly acting up today, isn’t he?
B: Boys will be boys.

In order to avoid dealing with the complications of plurals and tense in this
example, let us simplify B’s utterance to

B: A boy is a boy.

Several informational accounts of this utterance are possible. The first
is the Literal Extensional Interpretation. The first “a boy” introduces a
specific, previously unidentified boy and the second says about him that he
is a boy. The second informational account is the Literal Intensional Inter-
pretation. The sentence expresses a trivial implicative relation between two
general propositions—boy(x) and boy(x). The third is the Desired Inter-
pretation. The first “a boy” identifies the typical member of a class which
Johnny is a member of and the second conveys a general property, “being
a boy”, as a way of conveying a specific property, “misbehaving”, which is
true of members of that class.

More precisely, the logical form of the sentence can be written as follows:

(∃ e1, e2, x, y, z, w)boy′(e1, x) ∧ rel(z, x) ∧ be(z,w) ∧ rel(w, y) ∧
boy′(e2, y)

The sentence expresses a be relation between two entities, but either or both
of its arguments may be subject to coercion. Thus, we have introduced the
two rel relations. The logical form can be given the tortured paraphrase,
“z is w, where z is related to x whose boy-ness is e1 and w is related to y
whose boy-ness is e2.”

The required axioms are as follows:
Everything is itself:
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(∀x)be(x, x)

Implication can be expressed by “to be”:

(∀ e1, e2)imply(e1, e2) ⊃ be(e1, e2)

Implication is reflexive:

(∀ e)imply(e, e)

Boys misbehave:

(∀ e1, x)boy′(e1, x) ⊃ (∃ e3)misbehave′(e3, x) ∧ imply(e1, e3)

Misbehavers are often boys:

(∀ e3, x)misbehave′(e3, x) ∧ etc1(x) ⊃ (∃ e2)boy′(e2, x)

Identity is a possible coercion relation:

(∀x)rel(x, x)

An entity can be coerced into a property of the entity:

(∀ e, x)boy′(e, x) ⊃ rel(e, x)
(∀ e, x)misbehave′(e, x) ⊃ rel(e, x)

Note that we have axioms in both directions relating boys and mis-
behaving; in Section 3.3.10 the general way of expressing axioms is with
biconditionals and etc predicates. The axioms with the coercion relation rel
in the consequent begin to spell out the range of possible interpretations for
rel.

Now the Literal Extensional Interpretation is established by taking the
two coercion relations to be identity, taking be to be expressing identity, and
assuming boy(e1, x) (or equivalently, boy(e2, y)).

In the Literal Intensional Interpretation, z is identified with e1, w is
identified with e2, and boy′(e1, x) and boy′(e2, y) are taken to be the two
coercion relations. Then e2 is identified with e1 and be(e1, e1) is interpreted
as a consequence of imply(e1, e1). Again, boy(e1, x) is assumed.

In the Desired Interpretation, the first coercion relation is taken to
be boy′(e1, x), identifying z as e1. The second coercion relation is taken
to be misbehave′(e3, y), identifying w as e3. If etc1(y) is assumed, then
misbehave′(e3, y) explains boy(e2, y). If boy(e1, x) is assumed, it can explain
misbehave′(e3, y), identifying x and y, and also imply(e1, e3). The latter
explains be(e1, e3).
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** FIGURE **
Considering the informational account alone, the Literal Extensional In-

terpretation is minimal and hence would be favored. The Desired Interpre-
tation is the worst of the three.

But the Literal Extensional and Intensional Interpretations leave the fact
that the utterance occurred unaccounted for. In the intentional account, this
is what we need to explain. The explanation would run something like this:

B wants A to believe that B is not responsible for Johnny’s mis-
behaving.

Thus, B wants A to believe that Johnny misbehaves necessarily.

Thus, given that Johnny is necessarily a boy, B wants A to be-
lieve that Johnny’s being a boy implies that he misbehaves.

Thus, B wants to convey to A that being a boy implies misbe-
having.

Thus, given that boy-ness implies misbehaving is a possible in-
terpretation of a boy being a boy, B wants to say to A that
a boy is a boy.

The content of the utterance under the Literal Extensional and Inten-
sional Interpretations do not lend themselves to explanations for the fact
that the utterance occurred, whereas the Desired Interpretation does. The
requirement for the globally minimal explanation in an intentional account,
that is, the requirement that both the content and the fact of the utterance
must be explained, forces us into an interpretation of the content that would
not be favored in an informational account alone. We are forced into an in-
terpretation of the content that, while not optimal locally, contributes to a
global interpretation that is optimal.

3.9 Weighted Abduction

In deduction, from (∀x)p(x) ⊃ q(x) and p(A), one concludes q(A). In in-
duction, from p(A) and q(A), or more likely, from a number of instances of
p(A) and q(A) together with other facts, one concludes (∀x)p(x) ⊃ q(x).
Abduction is the third possibility. From (∀x)p(x) ⊃ q(x) and q(A), one
concludes p(A). One can think of q(A) as the observable evidence, of
(∀x)p(x) ⊃ q(x) as a general principle that could explain q(A)’s occur-
rence, and of p(A) as the inferred, underlying cause or explanation of q(A).
Of course, this mode of inference is not valid; there may be many possible
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such p(A)’s. Therefore, other criteria are needed to choose among the pos-
sibilities. We have already argued that abduction is the way to understand
discourse; but because multiple inconsistant proofs and thus interpretations
are possible, we need a way of choosing the best one.

One obvious criterion is the consistency of p(A) with the rest of what one
knows. Two other criteria are what Thagard (1978) has called simplicity and
consilience. Roughly, simplicity is that p(A) should be as small as possible,
and consilience is that q(A) should be as big as possible. We want to get
more bang for the buck, where q(A) is bang, and p(A) is buck.

There is a property of natural language discourse, noticed by a number
of linguists (e.g., Joos, 1972; Wilks, 1972), that suggests a role for simplicity
and consilience in interpretation—its high degree of redundancy. Consider

Inspection of oil filter revealed metal particles.

An inspection is a looking at that causes one to learn a property relevant to
the function of the inspected object. The function of a filter is to capture
particles from a fluid. To reveal is to cause one to learn. If we assume the two
causings to learn are identical, the two sets of particles are identical, and the
two functions are identical, then we have explained the sentence in a minimal
fashion. Because we have exploited this redundancy, a small number of
inferences and assumptions (simplicity) have explained a large number of
syntactically independent propositions in the sentence (consilience). As a
by-product, we have moreover shown that the inspector is the one to whom
the particles are revealed and that the particles are in the filter, facts which
are not explicitly conveyed by the sentence.

Another issue that arises in abduction in choosing among potential expla-
nations is what might be called the “informativeness-correctness tradeoff”.
Many previous uses of abduction in AI from a theorem-proving perspective
have been in diagnostic reasoning (e.g., Pople, 1973; Cox and Pietrzykowski,
1986), and they have assumed “most-specific abduction”. If we wish to ex-
plain chest pains, it is not sufficient to assume the cause is simply chest
pains. We want something more specific, such as “pneumonia”. We want
the most specific possible explanation. In natural language processing, how-
ever, we often want the least specific assumption. If there is a mention of a
fluid, we do not necessarily want to assume it is lube oil. Assuming simply
the existence of a fluid may be the best we can do.1 However, if there is
corroborating evidence, we may want to make a more specific assumption.
In

1As Freud is purported to have said, “Sometimes a cigar is just a cigar.”
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Alarm sounded. Flow obstructed.

if we know the alarm is for the lube oil pressure, then this provides evidence
that the flow is not merely of a fluid but of lube oil. The more specific
our assumptions are, the more informative our interpretation is. The less
specific they are, the more likely they are to be correct.

We therefore need a scheme of abductive inference with three features.
First, it should be possible for goal expressions to be assumable, at varying
costs. Second, there should be the possibility of making assumptions at
various levels of specificity. Third, there should be a way of exploiting the
natural redundancy of texts to yield more economic proofs.

Weighted abduction just such a scheme.2 First, every conjunct in the
logical form of the sentence is given an assumability cost. Second, this cost
is passed back to the antecedents in Horn clauses by assigning weights to
them. Axioms are stated in the form

(3.1) Pw1
1 ∧ Pw2

2 ⊃ Q

This says that P1 and P2 imply Q, but also that if the cost of assuming Q is
c, then the cost of assuming P1 is w1c, and the cost of assuming P2 is w2c.3

Third, factoring or synthesis is allowed. That is, goal expressions may be
unified, in which case the resulting expression is given the smaller of the
costs of the input expressions. Thus, if the goal expression is of the form

(∃ . . . , x, y, . . .) . . . ∧ q(x) ∧ . . . ∧ q(y) ∧ . . .

where q(x) costs $20 and q(y) costs $10, then factoring assumes x and y to
be identical and yields an expression of the form

(∃ . . . , x, . . .) . . . ∧ q(x) ∧ . . .

where q(x) costs $10. This feature leads to minimality through the exploita-
tion of redundancy.

Note that in (3.1), if w1 + w2 < 1, most-specific abduction is favored—
why assume Q when it is cheaper to assume P1 and P2. If w1 + w2 > 1,
least-specific abduction is favored—why assume P1 and P2 when it is cheaper
to assume Q. But in

2The abduction scheme is due to Mark Stickel, and it, or a variant of it, is described
at greater length in Stickel (1988, 1989).

3Stickel (1989) generalizes the weights to arbitrary functions of c.



DRAFT 30

P .6
1 ∧ P .6

2 ⊃ Q

if P1 has already been derived, it is cheaper to assume P2 than Q. P1 has
provided evidence for Q, and assuming the “balance” P2 of the necessary
evidence for Q should be cheaper.

Factoring can also override least-specific abduction. Suppose we have
the axioms

P .6
1 ∧ P .6

2 ⊃ Q1

P .6
2 ∧ P .6

3 ⊃ Q2

and we wish to derive Q1 ∧Q2, where each conjunct has an assumability cost
of $10. Assuming Q1 ∧Q2 will then cost $20, whereas assuming P1 ∧ P2 ∧ P3

will cost only $18, since the two instances of P2 can be unified. Thus, the
abduction scheme allows us to adopt the careful policy of favoring least-
specific abduction while also allowing us to exploit the redundancy of texts
for more specific and thus more informative interpretations.

Finally, we should note that whenever an assumption is made, it first
must be checked for consistency, at least in a shallow manner.

In the above examples we have used equal weights on the conjuncts in the
antecedents. It is more reasonable, however, to assign the weights accord-
ing to the “semantic contribution” each conjunct makes to the consequent.
Consider, for example, the axiom

(∀x)car(x).8 ∧ no-top(x).4 ⊃ convertible(x)

We have an intuitive sense that car contributes more to convertible than
no-top does. We are more likely to assume something is a convertible if we
know that it is a car than if we know it has no top.4 The weights on the
conjuncts in the antecedent are adjusted accordingly.

Exactly how the weights and costs should be assigned and the sematics
of the number are explored in Chapter 7. Until then it will be shown how
the rules allow correct interpretations to be possible, and occasionally it will
be argued that the correct interpretation is likely to be chosen because of
redundancy in the text. But arguments that the correct interpretation will
be the one selected from among all the possible interpretations will have to
await Chapter 7.

4To prime this intuition, imagine two doors. Behind one is a car. Behind the other
is something with no top. You pick a door. If there’s a convertible behind it, you get to
keep it. Which door would you pick?
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3.10 “Et Cetera” Propositions and the Form of
Axioms

In the abductive approach to interpretation, we determine what implies the
logical form of the sentence rather than determining what can be inferred
from it. We backward-chain rather than forward-chain. Thus, one would
think that we could not use superset information in processing the sentence.
Since we are backward-chaining from the propositions in the logical form,
the fact that, say, lube oil is a fluid, which would be expressed as

(3.2) (∀x)lube-oil(x) ⊃ fluid(x)

could not play a role in the analysis of a sentence containing “lube oil”. This
is inconvenient. In the text

Flow obstructed. Metal particles in lube oil filter.

we know from the first sentence that there is a fluid. We would like to identify
it with the lube oil mentioned in the second sentence. In interpreting the
second sentence, we must prove the expression

(∃x)lube-oil(x)

If we had as an axiom

(∀x)fluid(x) ⊃ lube-oil(x)

then we could establish the identity. But of course we don’t have such an
axiom, for it isn’t true. There are lots of other kinds of fluids. There would
seem to be no way to use superset information in our scheme.

Fortunately, however, there is a way. We can make use of this informa-
tion by converting the axiom to a biconditional. In general, axioms of the
form

species ⊃ genus

can be converted into biconditional axioms of the form

genus ∧ differentiae ≡ species

Often as in the above example, we will not be able to prove the differentiae,
and in many cases the differentiae cannot even be spelled out. But in our
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abductive scheme, this does not matter; they can simply be assumed. In
fact, we need not state them explicitly. We can simply introduce a predicate
which stands for all the remaining properties. It will never be provable, but
it will be assumable. Thus, we can rewrite (3.2) as

(3.3) (∀x)fluid(x).6 ∧ etc1(x).6 ≡ lube-oil(x)

Then the fact that something is fluid can be used as evidence for its being
lube oil, since we can assume etc1(x). With the weights distributed according
to semantic contribution, we can go to extremes and use an axiom like

(∀x)mammal(x).2 ∧ etc2(x).9 ⊃ elephant(x)

to allow us to use the fact that something is a mammal as (weak) evidence
for its being an elephant. This axiom can be taken to say, “One way of
being a mammal is being an elephant.”

Although this device may seem ad hoc, we view it as implementing a
fairly general solution to the problems of nonmonotonicity in commonsense
reasoning and vagueness of meaning in natural language. The use of “et
cetera” propositions is a very powerful, and liberating, device. Before we
hit upon this device, in our attempts at axiomatizing a domain in a way that
would accommodate many texts, we were always “arrow hacking”—trying
to figure out which way the implication had to go if we were to get the right
interpretations, and lamenting when that made no semantic sense. With “et
cetera” predications, that problem went away, and for principled reasons.
Implicative relations could be used in either direction. Moreover, their use is
liberating when constructing axioms for a knowledge base. It is well-known
that almost no concept can be defined precisely. We are now able to come
as close to a definition as we can and introduce an “et cetera” proposition
with an appropriate weight to indicate how far short we feel we have fallen.

The “et cetera” propositions play a role analogous to the abnormality
propositions of circumscriptive logic (McCarthy, 1980, 1987). In circum-
scriptive theories it is usual to write axioms like

(∀x)bird(x) ∧ ¬Ab1(x) ⊃ flies(x)

This certainly looks like the axiom

(∀x)bird(x) ∧ etc3(x)w ⊃ flies(x)
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The literal ¬Ab1(x) says that x is not abnormal in some particular respect.
The literal etc3(x) says that x possesses certain unspecified properties, for
example, that x is not abnormal in that same respect. In circumscription,
one minimizes over the abnormality predicates, assuming they are false wher-
ever possible, perhaps with a partial ordering on abnormality predicates to
determine which assumptions to select (e.g., Poole, 1989). Our abduction
scheme generalizes this a bit: The literal etc3(x) may be assumed if no
contradiction results and if the resulting proof is the most economical one
available. Moreover, the “et cetera” predicates can be used for any kind of
differentiae distinguishing a species from the rest of a genus, and not just
for those related to normality.

There is no particular difficulty in specifying a semantics for the “et
cetera” predicates. Formally, etc1 in axiom (3.3) can be taken to denote
the set of all things that either are not fluid or are lube oil. Intuitively,
etc1 conveys all the information one would need to know beyond fluidness
to conclude that something is lube oil. As with nearly every predicate in
an axiomatization of commonsense knowledge, it is hopeless to spell out
necessary and sufficient conditions for an “et cetera” predicate. In fact, the
use of such predicates is motivated largely by a recognition of this fact about
commonsense knowledge.

The “et cetera” predicates could be used as the abnormality predicates
are in circumscriptive logic, with separate axioms spelling out conditions
under which they would hold. However, in the view adopted here, more
detailed conditions would be spelled out by expanding axioms of the form

(∀x)p1(x) ∧ etc4(x) ⊃ q(x)

to axioms of the form

(∀x)p1(x) ∧ p2(x) ∧ etc5(x) ⊃ q(x)

where the weight on etc5(x) would be less than that on etc4(x). An “et
cetera” predicate would appear only in the antecedent of a single axiom
and never in a consequent. Thus, the “et cetera” predications are only
place-holders for assumption costs. They are never proved. They are only
assumed.

Let us summarize at this point the most elaborate form axioms in the
knowledge base will have. If we wish to express an implicative relation
between concepts p and q, the most natural way to do so is as the axiom

(∀x, z)p(x, z) ⊃ (∃ y)q(x, y)



DRAFT 34

where z and y stand for arguments that occur in one predication but not in
the other. When we introduce eventualities, this axiom becomes

(∀ e1, x, z)p′(e1, x, z) ⊃ (∃ e2, y)q′(e2, x, y)

Next we introduce an “et cetera” proposition into the antecedent to take
care of the imprecision of our knowledge of the implicative relation.

(∀ e1, x, z)p′(e1, x, z) ∧ etc1(x, z) ⊃ (∃ e2, y)q′(e2, x, y)

It is also useful to make explicit in the axiom itself the implication rela-
tion between the antecedent and the consequent. We can do this by including
an imply predication in the consequent.

(∀ e1, x, z)p′(e1, x, z)∧ etc1(x, z) ⊃ (∃ e2, y)q′(e2, x, y)∧ imply(e1, e2)

This relation can be made stronger in some cases. For example there
may be a causal or enabling relation between the eventualities described
in the antecedent and consequent. In these cases, the predicates cause or
enable would replace imply. We saw this in the axioms of Section 3.3.7.

Since the rules are only defeasible, and especially since we are using etc
predications to allow inference from a general term to a specific term, the
relation imply is sometimes too strong. For example, being a mammal does
not imply being an elephant. Thus, we will sometimes also want to weaken
the imply relation to mere association—the predicate assoc.

Now we can biconditionalize the relation between p and q by writing the
converse axiom as well:

(∀ e1, x, z)p′(e1, x, z)∧ etc1(x, z) ⊃ (∃ e2, y)q′(e2, x, y)∧ imply(e1, e2)

(∀ e1, x, y)q′(e2, x, y)∧ etc2(x, y) ⊃ (∃ e1, z)p′(e1, x, z)∧ assoc(e2, e1)

This then is the most general formal expression in our abductive logic of
what is intuitively felt to be an association between the concepts p and q.

In this book, for notational convenience, I will use the simplest form of
axiom I can get away with for the example. The reader should keep in mind
however that these are only abbreviations for the full, biconditionalized form
of the axiom.5

5The full axioms are non-Horn, but not seriously so. They can be Skolemized and
broken into two axioms having the same Skolem functions. This remark holds as well for
other axioms in this article that have conjunctions in the consequent.
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3.11 Anchoring Abduction in a Structured Con-
nectionist Model

Because of its elegance and very broad coverage, the “Interpretation as Ab-
duction” model is very appealing on the symbolic level. But to be a plausible
candidate for how people understand language, there must be an account of
how it could be implemented in neurons. In this section I describe in outline
how the abduction framework can be realized in a structured connection-
ist model called shruti developed by Lokendra Shastri (Ajjanagadde and
Shastri, 1991; Shastri and Ajjanagadde, 1993; Shastri and Grannes, 1996;
Shastri, 1999; Shastri and Wendelken, 2000; Wendelken and Shastri, 2002).
Of course, substantial work still remains to determine whether this kind of
model is what actually exists in the human brain, although there is sugges-
tive evidence. But by linking the symbolic and connectionist levels we are at
least providing a proof of possibility for the “Interpretation as Abduction”
framework.6

Traditional connectionist models have been very good at implementing
defeasible propositional logic. Indeed, all the applications to natural lan-
guage processing in this tradition begin by setting up the problem so that
it is a problem in propositional logic. But this is not adequate for natural
language understanding in general. For example, the coreference problem
requires the expressivity of first-order logic to even state. We need a way
of expressing predicate-argument relations and a way of expressing different
instantiations of the same general principle. We need a mechanism for uni-
versal instantiation. In the connectionist literature, this has gone under the
name of the variable-binding problem.

Prior to the development of shruti it was considered difficult (Mc-
Carthy, 1988) and even impossible (Fodor and Pylyshyn, 1988) for con-
nectionist models to solve in a biologically plausible manner the complex
version of the variable-binding problem arising in the systematic propaga-
tion of dynamic bindings for instantiating inferred relations. These misgiv-
ings were understandable because conventional techniques for representing
variable bindings require storing and communicating names or pointers, but
the storage and processing capacity of neurally plausible nodes and the reso-
lution of their outputs are insufficient to support this functionality. shruti
offers a neurally plausible solution to the variable binding problem based on
temporal synchrony.

The essential idea behind the shruti architecture is simple and elegant.
6Parts of this section were written in collaboration with Lokendra Shastri.
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A predication is represented as an assemblage or cluster of nodes, and ax-
ioms representing general knowledge are realized as connections among these
clusters. Inference is accomplished by means of spreading activation through
these structures.

In the cluster representing predications, two nodes, a collector node and
an enabler node, correspond to the predicate and fire asynchronously. The
level of activation on the enabler node keeps track of the “utility” of this
predication in the proof that is being searched for. That is, the activation
is higher the greater the need to find a proof for this predication. The level
of activation on the collector node is higher the greater the plausibility that
this predication is part of the desired proof. We can think of the activations
on the enabler nodes as prioritizing goal expressions, whereas the activations
on the collector nodes indicate degree of belief in the predications, or more
properly, degree of belief in the current relevance of the predications. The
connections between nodes of different predication clusters have a strength
of activation, or link weight, that corresponds to strength of association
between the two concepts. The proof process then consists of activation
spreading through enabler nodes, as we backchain through axioms, and then
spreading back through collector nodes after bottoming out in something
known.

In addition, in the predication cluster, there are argument nodes, one
for each argument of the predication. These fire synchronously with the
argument nodes in other predication clusters to which they are connected.
Thus, if the clusters for p(x, y) and q(z, x) are connected, with the two x
nodes linked to each other, then the two x nodes will fire in synchrony, and
the y and z nodes will fire at an offset with the x nodes and with each
other. This synchronous firing indicates that the two x nodes represent
variables bound to the same value. This constitutes the solution to the
variable-binding problem.

Proofs are searched for in parallel, and winner-takes-all circuitry sup-
presses all but the one whose collector nodes have the highest level of acti-
vation.

There are complications in this model for such things as managing dif-
ferent predications with the same predicate but different arguments. But
the essential idea is as described. In brief, the view of relational informa-
tion processing implied by shruti is one where reasoning is a transient but
systematic propagation of rhythmic activity over structured cell-ensembles,
each active entity is a phase in the rhythmic activity, dynamic bindings are
represented by the synchronous firing of appropriate nodes, long-term facts
are circuits that detect coincidences in the ongoing flux of rhythmic activ-
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ity, and rules are high-efficacy links that cause the propagation of rhythmic
activity between cell-ensembles. Reasoning is the spontaneous outcome of a
shruti network.

In the abduction framework, the typical axiom in the knowledge base is
of the form

(3.4) (∀x, y)[p1(x, y) ∧ p2(x, y) ⊃ (∃ z)[q1(x, z) ∧ q2(x, z)]]

That is, the top level logical connective will be implication. There may be
multiple predications in the antecedent and in the consequent. There may be
variables (x) that occur in both the antecedent and the consequent, variables
(y) that occur only in the antecedent, and variables (z) that occur only in
the consequent. Abduction backchains from predications in consequents of
axioms to predications in antecedents. Every step in the search for a proof
can be considered an abductive proof where all unproved predications are
assumed for a cost. The best proof is the least cost proof.

The implementation of this axiom in shruti requires predication clusters
of nodes, as described in Section 2, and axiom clusters of nodes (see Figure
3.6). A predication cluster has one collector node and one enabler node, both
firing asynchronously, corresponding to the predicate and one synchronously
firing node for each argument. An axiom cluster has one collector node and
one enabler node, both firing asynchronously, recording the plausibility and
the utility, respectively, of this axiom participating in the best proof. It also
has one synchronously firing node for each variable in the axiom – in our
example, nodes for x, y and z.

The axiom is then encoded in a structure like that shown in Figure
2. There is a predication cluster for each of the predications in the axiom
and one axiom cluster that links the predications of the consequent and
antecedent. In general, the predication clusters will occur in many axioms;
this is why their linkage in a particular axiom must be mediated by an axiom
cluster.

Suppose the proof process is backchaining from the predication q1(x, z).
The activation on the enabler node (?) of the cluster for q1(x, z) induces an
activation on the enabler node for the axiom cluster. This in turn induces
activation on the predication nodes for p1(x, y) and p2(x, y). Meanwhile the
firing of the x node in the q1 cluster induces the x node of the axiom cluster
to fire in synchrony with it, which in turn causes the x nodes of the p1 and
p2 clusters to fire in synchrony as well. In addition, a link (not shown) from
the enabler node of the axiom cluster to the y argument node of the same
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Figure 3.6: Axiom encoded in shruti.

cluster causes the y argument node to fire, while links (not shown) from the
x and z nodes cause that firing to be out of phase with the firing of the x and
z nodes. This firing of the y node of the axiom cluster induces synchronous
firing in the y nodes of the p1 and p2 clusters.

By this means we have backchained over axiom (9) while keeping distinct
the variables that are bound to different values. We are then ready to
backchain over axioms in which p1 and p2 are in the consequent.

As mentioned above, the q1 cluster is linked to other axioms as well, and
in the course of backchaining, it induces activation in those axioms’ clusters
too. In this way, the search for a proof proceeds in parallel. Inhibitory links
will eventually force a winner-takes-all outcome.

The strength of activation from the q1 enabler node to the axiom enabler
node is proportional to the conditional probability that this axiom is used
in proving q1(x, z).

A link from the enabler to the collector node of a predication cluster
transmits activation proportional to the prior probability of an instance of
this predication being true and relevant and inversely proportional to the
strength of activation on the enabler node. This is how proofs bottom out,
either in assumptions or in predications known to hold (high prior). The
inverse relation between enablers and collectors is because a high activation
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on enablers indicates a high utility of proving rather than assuming the
predication.

This description conveys the essence of how abductive inference can be
implemented in shruti, although it is oversimplified in several respects.
Certain technical problems arise, and how they are dealt with is addressed
in Chapter 7.

3.12 Learning Structured Knowledge

3.12.1 Incremental Changes to Axioms

To have a plausible biological model of language understanding, we must
also have a biologically plausible account of how the required knowledge can
be learned. Here we present such an account, first at the symbolic level in
terms of incremental changes to axioms and then at the connectionist level
in terms of node recruitment.

Most work in learning has assumed that the basic structure of the knowl-
edge base is known and the problem is to adjust weights to maximize the
frequency of the right answers. The current implementation of shruti al-
ready supports this form of learning. The harder problem in learning is to
learn the structure of the axioms. Our view is that axioms can be built up
in an incremental fashion, as long as this involves a biologically plausible
mechanism and each increment confers an advantage. Axioms can be con-
structed incrementally through sequences of five symbolic operations that
each have neural realizations in the shruti framework using the mechanism
of recruitment learning (see below). The five operations are as follows:

1. Increase the arity of a predicate: p(x) ⇒ p(x, y)

For example, it may be learned that mother is not a property of a single
entity but a relation between two entities: mother(x) ⇒ mother(x, y)

2. Introduce a new predicate p1 as a specialization of an old predicate p:
p1(x) ⊃ p(x)

For example, the predicate beagle may be introduced as a specializa-
tion of dog: beagle(x) ⊃ dog(x)

3. Add a proposition to the antecedent of an axiom:
p1(x) ⊃ q(x) ⇒ p1(x) ∧ p2(x) ⊃ q(x)
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For example, it may be learned that not every seat is a chair, but only
seats with backs:
seat(x) ⊃ chair(x) ⇒ seat(x) ∧ back(y, x) ⊃ chair(x)

4. Add a proposition to the consequent of an axiom:
p(x) ⊃ q1(x) ⇒ p(x) ⊃ q1(x) ∧ q2(x)

For example, it may be learned that snow is not only white, but also
cold.
snow(x) ⊃ white(x) ⇒ snow(x) ⊃ white(x) ∧ cold(x)

5. Telescope or chunk two axioms to produce a shorter inferential path
(as in soar (Newell, 1990)):
p1(x) ⊃ p2(x); p2(x) ⊃ p3(x) ⇒ p1(x) ⊃ p3(x)

Two other incremental changes can be viewed as special cases of 3 and
4 above.

• Specialize predicates in the antecedent of an axiom:
p(x) ⊃ q(x) ⇒ p1(x) ⊃ q(x),

where p1(x) ⊃ p(x)

For example, it may be learned that not all dogs have floppy ears, only
beagles. dog(x) ⊃floppy-ears(x) ⇒ beagle(x) ⊃floppy-ears(x),

• Specialize predicates in the consequent of an axiom:

p(x) ⊃ q(x) ⇒ p(x) ⊃ q1(x),
where q1(x) ⊃ q(x)

For example, it may be learned that rabbits are not only mammals;
more specifically, they are rodents. rabbit(x) ⊃ mammal(x) ⇒
rabbit(x) ⊃ rodent(x),

Each of these incremental operations clearly refines the knowledge base
and hence confers greater functionality. We now discuss how it could be
implemented at the neural level.

3.12.2 Recruitment Learning

7

7This section was largely written by Lokendra Shastri.
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Recruitment learning (Wickelgren, 1979; Feldman, 1982; Shastri, 1988;
Die-derich, 1989; Valiant, 1994) can be described as follows: Learning oc-
curs within a network of randomly connected nodes. Recruited nodes are
those nodes in the network that have acquired a distinct meaning or func-
tionality by virtue of their strong interconnections to other recruited nodes
and/or other sensorimotor (i.e., input/output) nodes. Nodes that are not
yet recruited can be viewed as “free” nodes. Such nodes are connected via
weak links to a large number of free, recruited, and/or sensorimotor nodes.
These free nodes form a primordial network from which suitably connected
nodes may be recruited for representing new items. For example, a novel
concept q that can be expressed as a conjunct of existing concepts p1 and
p2 can be learned by (i) identifying free nodes that receive links from nodes
representing p1 as well as nodes representing p2 and (ii) “recruiting” one or
more such free nodes by strengthening the weights of links incident on such
nodes from p1 and p2 nodes.

The notion of recruitment learning has been extended to include the
formation of relational concepts (Shastri, 1988; Valiant, 1994) and it has
been shown that recruitment learning can be firmly grounded in the biolog-
ical phenomena of long-term potentiation (LTP) and long-term depression
(LTD) that involve rapid, long-lasting, and highly specific changes in synap-
tic strength (Shastri, 2001).

Wendelken and Shastri (2000) show how the + to + links and the ? to ?
links with appropriate probabilistic weights can be formed among relational
clusters to encode causal knowledge, and a similar method can be used for
implementing the five incremental changes to axioms.

A central feature of causation is that causes precede effects. It is therefore
reasonable to assume that we would only learn a causal rule A → B when
we observe A to occur before B. As a learning rule for shruti, this can
mean that a +A to+B link should be strengthened only when the activity
at the source of the link (+A) precedes activity at the target (+B). For
a ? to ? link, we assume the opposite behavior, namely that such a link
should be strengthened if and only if its source becomes active once its
target is already firing. In this manner, we require that one observation
precede another by some amount of time and also that both occur within
a specified window. Recently, it has been shown that this form of learning
which depends on the relative timing of spikes in pre- and post-synaptic
cells is biologically plausible and has interesting computational properties
(see Song, Miller and Abbot, 2000).

The starting point is a collection of relational focal clusters, differentiated
into + nodes, ? nodes, and argument nodes. It is assumed that each type
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of node is connected via low weight links to a large number of nodes of its
own type; this connection would typically be mediated by an intermediate
layer of cells. The learning rule for a + to + link is as follows: if the source
has been active sufficiently long and the target then becomes active, the
link weight is updated as wt+1 = wt + α ∗ (1 − wt) where α = 1/#updates;
otherwise if the source has been active sufficiently long and the target fails
to fire, the weight is decremented wt+1 = wt−α ∗wt. If the target becomes
active before the source, then there is no change. It is easy to see that
wt+1 = (#increases)/(#updates), where w0 = 0, correctly encodes the
probability that the target of the link follows the source within a specified
window of time. A modification of this rule including a normalization term,
to account for the possibility of multiple sources, reduces the weight increase
on a link by a factor proportional to the number of active links impinging on
the same target (Grossberg, 1987). This allows a link weight for +A → +B
to encode P (B|onlyA) and not just P (B|A).

For ? to ? links, the learning rule is nearly the reverse of the above.
In this case, a similar weight increase occurs whenever a link target has
been active for sufficiently long and a source becomes active, and a weight
decrease occurs when a target remains active for too long without activity
at the source. If the source becomes active first, then there is no change.
Again, it is easy to see that this link correctly records the probability that
the source fires after the target (within a designated time window), and for
a link ?B →?A this can be reasonably interpreted as P (B|A).

Links between arguments, the links connecting the ? and + nodes of a
predicate, and inhibitory links also have to be learned in a suitable manner.

Accounts similar to this can be constructed for each of the incremental
operations. For example, adding a new consequent to an axiom involves
recruiting a new predication cluster and strengthening its connections to
the collector, enabler and argument nodes of the axiom cluster, in response
to frequent simultaneous activation of the two clusters. These issues are
discussed further in Chapter 7.

3.13 Relation to Relevance Theory

One of the other principal contenders for a theory of how we understand
extended discourse is Relevance Theory (RT) (Sperber and Wilson, 1986).
In fact, the “Interpretation as Abduction” (IA) framework and RT are very
close to each other in the processing that would implement them.

In RT, the agent is in the situation of having a knowlege base K and
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hearing a sentence with content Q. From K and Q a new set R of inferences
can be drawn:

K,Q ` R

RT says that the agent strives to maximize R in an appropriately hedged
sense. An immediate consequence of this is that insofar as we are able to
pragmatically strengthen Q by means of axioms of the form

P ⊃ Q

then we are getting a better R, since P implies anything that Q implies, and
then some. In the IA framework, we begin with pragmatic strengthening.
The task of the agent is to explain the general Q with the more specific P .

This means that anything done in the IA framework ought to carry over
without change into RT. Much of the work in RT depends primarily or solely
on pragmatic strengthening, and where this is the case, it can immediately
be incorporated into the IA framework. RT also makes use of pragmatic
loosening. In Chapter 6 it is shown how the same effect can be achieved via
the coercion used in interpreting metonymy.

From the point of view of IA, people are going through the world trying
to figure out what is going on. From the point of view of RT, they are going
through the world trying to learn as much as they can, and figuring out
what is going on is in service of that.

The IA framework has been worked out in greater detail formally and, I
believe, has a more compelling justification—explaining the observables in
our environment. But a great deal of excellent work has been done in RT, so
it is useful to know that the two frameworks are almost entirely compatible.

3.14 The Golden Spike

Because of its complexity, the problem of understanding how the brain works
is immense. It is simply not possible to describe directly how neurobiological
mechanisms result in intelligent behavior. A common strategy in cognitive
science is to divide the problem into subproblems by hypothesizing two
intermediate levels – a symbolic level and a connectionist level. Intelligent
behavior is implemented in a symbolic level, which is in turn implemented
in a connectionist architecture, which is realized in assemblages of neurons.

There has been substantial success in artificial intelligence and other
fields in implementing varieties of intelligent behavior in symbolic architec-
tures. In the last decade and a half, a consensus has been emerging that
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abduction, or inference to the best explanation, is a key process underlying
much intelligent behavior (e.g., Josephson and Josephson, 1990). In this
book I show that a very broad range of problems in natural language un-
derstanding can be viewed as abductive inference. To interpret a text one
must find a minimal proof of the logical form of the sentences in the text,
allowing for assumptions, and linguistic problems such as the resolution of
reference, metonymy, and syntactic ambiguity are solved as a by-product
of such a process. More generally, with the right logical formalizations of
discourse structure, the rules of syntax, and commonsense knowledge, the
interpretation of discourse can be viewed as a matter of coming up with
the “best” proof that the string of words constitutes a coherent block of dis-
course, allowing assumptions, where ”best” is determined by a cost function.
Heretofore the problems with symbolic models have been that they lack bi-
ological plausibility, there are no compelling accounts of how learning could
take place within them, and the means of choosing among alternatives, such
as the cost function in abduction, tend to be ad hoc.

The appeal of connectionist architectures is precisely that they solve
these three problems. The operation of nodes in connectionist models is
biologically motivated; it is based on what we know about the way neurons
communicate. There is a natural story to tell about how learning takes
place in connectionist models. Connectionist models are designed to choose
among alternatives. Typically, however, in order for them to exhibit any-
thing approaching intelligent behavior, they have to be set up in specialized
ways for the problem being solved. They have generally lacked the expres-
sive power required for natural language understanding. While they are able
to choose among competing hypotheses well, there has been no natural way
for them to do, for example, coreference resolution and other tasks involving
reasoning about the identity and nonidentity of entities. Essentially, they
implement a kind of “soft” propositional logic, whereas intelligent behavior
requires a kind of “soft” first-order logic. There needs to be a way of express-
ing general rules and keeping different instances of a general rule distinct,
which in first-order logic is realized by universal instantiation.

Shastri has developed the connectionist model shruti that solves this
problem dynamically by means of the synchronous firing of neurons. That
is, logical axioms are represented in assemblages of nodes, with different
nodes representing predicates and arguments. When argument nodes are
bound to the same value, they fire in synchrony. While it is impossible to
know in the current state of neurobiology whether this model is correct, we
do know that synchronous firing of neurons occurs and that it has something
to do with entities being in the same category. The model is thus at least
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biologically plausible.
This book explicates how the the abductive model of natural language

understanding can be linked up with the shruti connectionist model. shruti
provides the biological plausibility that symbolic models lack. A natural
method for the automatic learning of axioms is suggested. shruti provides
a way of choosing among alternative interpretations discovered by abductive
reasoning. At the same time, the abductive framework gives the connection-
ist model the expressive power required for realistically complex intelligent
behavior.

In the enterprise of linking intelligent behavior with neurobiology via
symbolic and connectionist levels, the connection between the two interme-
diate levels has heretofore been missing. By linking them here, this work
points the way toward that Golden Spike that will connect accounts of in-
telligent actions with accounts of biological activity.
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