
Video annotation lets users rapidly index data
in large multimedia databases and make

inferences about the data stream’s content. A
human operator can specify gross indices, such as
the date or hour, and perhaps the location and the
activity (for example, a football game) at the time
of capture. Finer-grain annotations require sepa-
rating the video into meaningful segments such
as shots and scenes. Many automated techniques
and annotation formats for capturing this type of
information exist. However, the descriptions they
produce don’t define the data stream content ade-
quately for semantic retrieval and reasoning. Such
descriptions must be based on observable or
inferrable events in the data streams.

We describe a framework for video event rep-
resentation and annotation that’s based on the
definition of an ontology suitable for video con-
tent. An ontology consists of a specific vocabu-

lary for describing a certain reality and a set of
explicit assumptions regarding the vocabulary’s
intended meaning.1 The Video Event Represen-
tation Language (VERL)2-4 describes an event
ontology, and the Video Event Markup Language
(VEML)4 lets us annotate instances of the events
described in VERL (see the sidebar “Using VERL
and VEML” on p. 78 for an example).

Annotating video in VEML consists of describ-
ing instances of events and objects, in a previ-
ously defined ontology using VERL. Figure 1
illustrates the conceptual elements involved and
their relationships: annotations draw on one or
several domain-specific ontologies, defined
according to VERL concepts and constructs.
VEML incorporates extensible event and object
type hierarchies rooted in VERL’s event and
object concepts. The annotations also draw on
VEML for content organization. Marking up data
streams in a well-defined language rooted in an
ontology enables nonambiguous data sharing
among users. Furthermore, annotation data is
accessible to automatic machine manipulation
for indexing or inferencing.

The framework we describe resulted from dis-
cussions at a series of workshops sponsored by
the US government’s Advanced Research and
Development Activity (ARDA). It therefore
includes the intellectual contributions of many
individuals. Currently, only a small community
of researchers is using VERL and VEML; this arti-
cle aims to publicize the framework to a broader
community as its relevance depends on its wide-
spread adoption. An earlier description can be
found elsewhere.5

VERL
VERL is a formal language for representing

events for designing an ontology for an applica-

76 1070-986X/05/$20.00 © 2005 IEEE

Standards John R. Smith
IBM

Alexandre R.J.
François and
Ram Nevatia
University of

Southern
California

Jerry Hobbs
Information

Sciences Institute,
USC

Robert C. Bolles
SRI International

VERL: An Ontology Framework
for Representing and Annotating
Video Events

The notion of “events” is extremely important in characterizing the con-
tents of video. An event is typically triggered by some kind of change of
state captured in the video, such as when an object starts moving. The
ability to reason with events is a critical step toward video understanding.
This article describes the findings of a recent workshop series that has pro-
duced an ontology framework for representing video events—called Video
Event Representation Language (VERL)—and a companion annotation
framework, called Video Event Markup Language (VEML). One of the key
concepts in this work is the modeling of events as composable, whereby
complex events are constructed from simpler events by operations such as
sequencing, iteration, and alternation. The article presents an extensible
event and object ontology expressed in VERL and discusses a detailed
example of applying VERL and VEML to the description of a “tailgating”
event in surveillance video.

—John R. Smith

Editor’s Note

tion domain and for annotating data with that
ontology’s categories.

In VERL, we describe complex activities by
composing simpler activities in a hierarchical
framework. The lowest-level events are primitive
events. Composite events are defined by composi-
tions of lower-level events. Sequencing is the most
common composition operation. For example,
we’d describe an event involving a person getting
out of a car and going into a building using the fol-
lowing sequence: opening car door, getting out of
car, closing car door (optional), walking to build-
ing, opening building door, and entering building.

VERL also includes more complex composition
operations such as iteration and alternation. Com-
posite events containing multiple simultaneous
events are called multithreaded. In such events, the
event description must also comprise temporal
relationships between subevents. To do this, we
use Allen’s interval algebra,6 which defines quali-
tative relations between intervals. We could also
use a more complete time ontology such as OWL-
Time (http://www.isi.edu/~pan/OWL-Time.html),
a time ontology for the Semantic Web, written in
the Web Ontology Language (OWL).

This representation scheme lets us construct a
large variety of composite events from relatively
few common primitive events. The definition of
primitive events is context dependent. We can
consider walking a primitive, or we can describe
it in terms of composition of leg motions. We
also describe objects hierarchically, constructing
complex objects from simpler ones, thus being
able to construct many objects from a limited set.

VERL draws on previous research in computer
vision and knowledge representation. In the com-
puter vision community, Ivanov and Bobick sug-
gested using context-free grammars.7 Nevatia,
Zhao and Hongeng, advocated using hierarchical
decomposition and the single/multiple thread ter-
minology.8 Vu, Brémond, and Thonnat have
developed similar concepts.9 In artificial intelli-
gence literature, Narayanan developed a formalism
for executing actions and applied it to several lin-
guistics problems.2 This work has influenced the
development of the process component of OWL-S,
an ontology of services for the Semantic Web.

Language constructs
We now briefly describe the elements and

constructs of VERL.

Objects, states, and events. Objects have
properties or attributes, which we can logically

think of as one-argument predications. Objects
can also stand in relation to other objects; we
think of these as predications with two or more
arguments.

We think of properties, attributes, and rela-
tions as states. The term “state” often means the
aggregate of all the properties and relations of all
relevant entities at a given moment in time. In
ordinary language, however, we talk about the
state of a single entity that persists over time—
for example, the state of John’s being sick. We
use this notion of state in this article.

A change of state in an object triggers an event.
Thus, when a rock rolls down a hill, its location
changes. We can write change(p(x), q(x))
or change(at(x, y), at(x, z). Events gen-
erally occur in a specified interval. They typically
have locations as well, inherited from the partic-
ipants’ locations. We could also import a location
ontology.

Types. An annotation is a pair consisting of a
thing in a VERL ontology and a designation of a
location in the video data—that is, <thing,
loc>.

Three basic types exist in the language. Every-
thing is a thing. Thing describes a physical object,
a state, or an event. Two types of things exist: ents
and evs. The type ent encompasses entities, and
can generally be thought of as physical objects,
although some applications apply the term more
broadly. The type ev encompasses states and
events. Normally, a person is of type ent, and his
or her running is of type ev. In some applica-
tions, we can expand this hierarchy to more spe-
cific types. For example, we could introduce
person and vehicle as subtypes of type ent.

An annotation is a pair consisting of a thing
in a VERL ontology and a designation of a loca-
tion in the video data—that is, <thing, loc>.
We can specify locations in any standard for-
malism including local or world coordinates.

77

O
cto

b
er–D

ecem
b

er 2005

Events
VERL

Annotations

Domain ontologies

Support for link
to physical
evidence Observed

instances

VEML

Figure 1. Components

of ontology-based

event-level annotation.

78

Standards

To illustrate the Video Event Representation Language (VERL)
and the Video Event Markup Language (VEML), we consider
tailgating, an action that involves gaining access to a secure
facility by entering behind an authorized individual. Obvious-
ly, many subscenarios correspond to tailgating. As an example,
we consider a version that consists of a sequence of subevents
involving two people, x and y, and a door. The sequence is as
follows: person x approaches the door, unlocks the door, and
goes through (while person y is nearby), and then y enters the
door (without having unlocked it).

An observation of this event would consist of the observa-
tion of an instance of each subevent type, consistently involv-

ing instances of the required objects, at times that are compat-
ible with the constraints imposed by the sequence. From these
observations, a human or machine could infer the occurrence
of a complex event of type tailgating. A corresponding VEML
annotation should specify the instance’s characteristics and link
it to its supporting evidence.

Figure A shows a sample set of VERL definitions leading to
the description of a tailgating event.

The VEML file portion in Figure B encodes the global infor-
mation about the data and scene, and then describes the
objects and events detected in the data (scene-centric part only
for legibility). In this example, four objects of interest exist:

Using VERL and VEML

Figure A. Sample set of VERL definitions: (a) subtypes of entities (a partial taxonomy of ents for this example); (b) primitive

properties of ents (if you were to specify mobile and container as subtypes of ent, you couldn’t have mobile containers); (c) rules

associated with ents and evs; (d) processes describing relationships, events, and so on; and (e) description of a tailgating event.

SUBTYPE(person, ent)
SUBTYPE(facility, ent)
SUBTYPE(portal, ent)
SUBTYPE(door, portal)
SUBTYPE(window, portal)

(a)

PRIMITIVE(container(ent x))
PRIMITIVE(mobile(ent x))
PRIMITIVE(open(portal x))
PRIMITIVE(closed(portal x))
PRIMITIVE(locked(portal x))
PRIMITIVE(unlocked(portal x))
PRIMITIVE(portal-of(portal p, container
c))

//x is on the inside of the container y
PRIMITIVE(inside-of(ent x, ent y))
// (= close) x is within

// some distance of y, where the
//distance is context dependent.

PRIMITIVE(near(ent x, ent y)

(b)

RULE(IMPLY(person(x), mobile(x))
//people are mobile
RULE(IMPLY(facility(x), container(x))
//all facilities are containers
RULE(IMPLY(portal(p), AND(container(c),
//portal-of(p, c))))
//portal open => container
RULE(IMPLY(AND(portal-of(p, c), open(p)),
//container(c)))

(c)

PROCESS(far(ent x, ent y),
NOT(near(x, y)))
PROCESS(outside-of (ent x, ent y),
NOT(inside-of (x, y)))

PROCESS(approach(ent x, ent y), cause(x,
change(far(x,y), near(x, y))))
PROCESS(leave(ent x, ent y), cause(x,
change(near(x, y), far(x, y))))
PROCESS(exit(ent x, ent y), change(inside-
of(x,y)),outside-of(x,y)))
PROCESS(enter(ent x, ent y),
change(outside-of(x,y)),inside-of(x,y)))
PROCESS(unlock(portal p),
change(locked(p)),unlocked(p)))
PROCESS(open(portal p),
change(closed(p)), open(p)))

(d)

//definition of a Tailgating event — x is
//near y when y gets access to a facility,
//& then x enters behind y
//without authorization
SINGLE-THREAD(tailgate(ent x, ent y,
facility f),

AND (portal-of(door, f),
Sequence(
approach(y, door),
unlock(y, door),
open(y, door),
AND(enter(y, f), near(x, y)),
NOT(unlock(x, door)),
enter(x, f))))

(e)

79

❚ Person1, who unlocks the door and enters the facility legitimately,

❚ Person2, who enters by following Person1 through the door,

❚ Facility1, the locked container that the two people enter, and

❚ Door1, the door through which the two people enter the facility.

Several events might be detected and encoded in the file,

but some of the key events for this example are

❚ Person1 approaches Door1,

❚ Person2 follows Person1,

❚ Person1 unlocks Door1, and

❚ Person2 enters Door1 by tailgating Person1.

Figure B. Example file-encoding events in VEML.

<scene>

<ontology>
<source>…/ontologies/physicalSecurity.verl
</source>
</ontology>

<streams>
<video id=“sneak02”>
<offset unit=“frames”>0</offset>
<duration unit=“frames”>450
</duration>
<samplingRate>30</samplingRate>
<source>/home/dvtt2/IU/video/
data/sneak02/sneak02.sriv
</source>

</video>
</streams>

<context>
<!— To Be Determined —>
</context>

<objects>
<object type=“PERSON” id=“OBJECT1”>
<property name=“name” value=
“Person1”/>
<tracks></tracks>

</object>
<object type=“PERSON” id=“OBJECT2”>
<property name=“name” value=
“Person2”/>
<tracks></tracks>

</object>
<object type=“FACILITY” id=
“OBJECT3”>
<property name=“name” value=
“Facility1”/>
<tracks></tracks>

</object>
<object type=“ENTRANCE” id=
“OBJECT4”>
<property name=“name” value=
“Door1”/>
<tracks></tracks>

</object>
</objects>

<events>

<event type=“APPROACH” id=“EVENT1”>
<begin unit=“frames”>136</begin>
<end unit=“frames”>247</end>
<property name=“name” value=
“Approach1”/>
<argument argNum=“1” value=“Person1”/>
<argument argNum=“2” value=“Door1”/>

</event>
<event type=“FOLLOW” id=“EVENT2”>
<begin unit=“frames”>177</begin>
<end unit=“frames”>247</end>
<property name=“name” value=
“Follow1”/>
<argument argNum=“1” value=
“Person2”/>
<argument argNum=“2” value=
“Person1”/>

</event>
<event type=“UNLOCK” id=“EVENT3”>
<begin unit=“frames”>260</begin>
<end unit=“frames”>332</end>
<property name=“name” value=
“Unlock1”/>
<argument argNum=“1” value=“Person1”/>
<argument argNum=“2” value=“Door1”/>

</event>
…
<event type=“TAILGATE” id=“EVENT12”>
<begin unit=“frames”>177</begin>
<end unit=“frames”>508</end>
<property name=“name” value=
“Tailgate1”/>
<argument argNum=“1” value=
“Person1”/>
<argument argNum=“2” value=
“Person2”/>
<argument argNum=“3” value=
“Facility1”/>

</event>
</events>

</scene>

VERL expressions. In VERL, variables and
constants can be any one of the three types.

We define a VERL expression (vexpr) as

❚ a constant or variable: vexpr → constant |
variable. For example, John, X1, Fire-1, and
E1 can all be vexprs. The vexpr type is the
constant or variable type. Thus, if John is an
entity constant, then E1 will be an event vari-
able if, for example, it refers to John’s run-
ning, and so on.

❚ a function symbol applied to the appropriate
number of vexprs as an argument: vexpr →
fct “(” [vexpr { “,” vexpr }*]

“)” (square brackets indicate an element is
optional—for example, the function might
have no arguments; curly brackets group ele-
ments; and the Kleene star [*] means zero or
more instances). The arguments must be of
the right type. For example, if head-of is a
function taking one entity vexpr as its argu-
ment, then head-of (John) is a vexpr. The
function determines the resulting thing type.
Thus, head-of would be an entity function
and head-of (John) would be an entity.

❚ a predicate symbol applied to the appropriate
number of arguments: vexpr → pred “(”
[vexpr { “,” vexpr } *] “)”. The
arguments must be of the right type, and the
result is always of type ev. For example, if
“change” is a predicate symbol relating two
things of type ev, then change (E1, E2) is a
vexpr of type ev.

❚ a logical operator applied to the appropriate
number of vexprs of type ev:

vexpr →

“AND” “(” vexpr {“,” vexpr } * “)” |

“OR” “(” vexpr {“,” vexpr } *

“)” |

“IMPLY” “(” vexpr “,” vexpr “)” |

“NOT” “(” vexpr “)” |

“EQUIV” “(” vexpr “,” vexpr “)”

❚ AND and OR take one or more arguments.
IMPLY and EQUIV take two arguments. NOT
takes one argument. The result is always of
type ev. Things of type ev can be event types

or event tokens. NOT takes an event type as
its argument. Thus, if we say that NOT
(run(John)) occurs at a location in the
video data, we’re saying that no event of type
(run(John)) occurs there.

We can use a constant or variable as a label on
a vexpr: vexpr → {constant | variable}

“:” vexpr.

The resulting vexpr refers to the same thing as
its constituent vexpr and is of the same type. We
can use the label elsewhere to refer to that thing.
Without labels, ambiguities could result. Suppose
we refer to John’s running twice in a file:
run(John) ... run(John). These might or
might not be the same instance of running. If we
say E1: run(John) ... E1, they refer to the
same instance of running.

Defining composite events in VERL. Process
is the basic operator for defining composite
events. It takes a predication and a vexpr as its
two arguments. The predication is a predicate
applied to the appropriate number of arguments
where the arguments have an optional type spec-
ification:

defn → “PROCESS” “(” pred “(”

[argspec {“,” argspec}* “)”
[“,” vexpr] “)”

argspec → type variable | variable

The second process argument is optional, and
if it’s missing, we assume the process is primi-
tive—that is, it’s directly implemented in soft-
ware in the given application. For example, if we
have the predicate located-at relating a thing to
an entity, and a predicate change relating two
things of type ev, we can define the predicate
move as

PROCESS(move(thing x, ent y, ent z)

change(located-at(x, y),located-
at(x, z)))

That is, for a thing x to move from entity y to
entity z, x’s location must change from y to z.

Labels defined inside a process statement are
local to that process statement. Thus, if we
write

PROCESS(move(thing x, ent y, ent z),

80

IE
EE

 M
ul

ti
M

ed
ia

Standards

change(e1: located-at(x, y),

e2: located-at(x, z))),

we can’t write e1 or e2 outside of the process
statement and expect it to refer to the same enti-
ty it refers to inside the process statement.

We can use three other operators in place of
process: primitive, single-thread, and multithread.
We use primitive when the process definition has
no second argument. Primitive means that the
predicate isn’t defined in VERL but is imple-
mented in code directly. Single-thread means
that all constituent events in the definition hap-
pen sequentially without overlap. We use multi-
thread when no such constraint exists. For
example, if located-at and change are primitive
predicates, a move event is a single-thread event.
We’d rewrite the previous example as:

PRIMITIVE(located-at(thing x, ent y))

PRIMITIVE(change(ev e1, ev e2))

SINGLE-THREAD(move(thing x, ent y,
ent z), change(located-at(x, y),

located-at(x, z))

Inference rules. In addition to annotating
specific events and defining composite proper-
ties, relations, and events, we might also want to
specify inference rules that let us draw conclu-
sions from what we recognize in the data. For
this we use the operator rule, which takes two
vexprs of type ev as its arguments: Rule(vexpr,
vexpr).

A rule is an implication; the first vexpr implies
the second. For example, suppose we define
carry(x, y, a, b, t) (x carries y from

a to b during time interval t), as x holds
y during t and x moves from a to b during t:

PROCESS(carry(x, y, a, b, t),

AND(hold(x, y, t), move(x, a, b, t)))

Then, if we want to say that when x carries y
from a to b during t, y also moves from a to b dur-
ing t: RULE(IMPLY(carry(x, y, a, b, t),
move(y, a, b, t))).

We interpret variables in the implication’s
antecedent as universally quantified and vari-
ables occurring in the consequent but not in the
antecedent as existentially quantified. Thus, we
interpret RULE(p(x, z), q(x, y)) as (A x,
z) [p(x, z) → (E y) q(x, y)].

Control structures. Constructing complex
events by composing simpler events is central to
our representation scheme. We distinguish
between single-thread events, in which only one
event is happening at a given time, and multi-
thread events, in which more than one event is
happening.

As mentioned earlier, sequence is the most
fundamental relation among component events.
First one event occurs and then another event
occurs. We can encode this if we reify
eventsthat is, treat events as individuals to
which constants and variables in our logic or lan-
guage can refer. The expression Sequence(e1,
e2) describes the composite event consisting of
event e1 followed by event e2 where the events
occur in sequence and don’t overlap. To con-
struct longer sequences, we let sequence take an
arbitrary number of arguments: Sequence (e1,
e2, e3, ...). The resulting vexpr describes
the composite event consisting of all the argu-
ment events occurring sequentially.

VERL also defines control structures for itera-
tion or loops, as described elsewhere.2

Temporal relations. Representing the tem-
poral relations among component events is cru-
cial in recognizing composite events. For most
applications, describing the relations among the
temporal intervals occupied by the component
events, according to Allen’s interval algebra,6 is
sufficient. This is because agents respond pri-
marily to other agents’ actions or moving objects’
behavior. This is true even if one of the threads
is precisely timed, such as a conveyor belt in a
factory where the worker is responding primarily
to the part’s appearance rather than the passage
of a certain amount of time.

Time comes in two varieties: instants and
intervals. Thus,

SUBTYPE(temporal-entity, thing)

SUBTYPE(instant, temporal-entity)

SUBTYPE(interval, temporal-entity)

Of two distinct instants, one is before the other.
The predicate after is the inverse of before:
before(t1, t2), after(t1, t2), t1 = t2.

An instant t and an interval T can be in sever-
al possible relations: begins(t, T),

inside(t, T), ends(t, T). It’s possible that
none of these is true.

81

O
cto

b
er–D

ecem
b

er 2005

Six possible basic relations exist between two
intervals: before(T1, T2), meets(T1, T2),
overlaps(T1, T2), begins(T1, T2), con-
tains(T1, T2), and ends(T1, T2). These rela-
tions form the basis of Allen’s interval algebra. We
define them in terms of begins, inside, and ends
relations between instants and intervals.

Two possible relations exist between events
and times:

❚ Events can occur instantaneously: at-time
(e, t), where t is an instant.

❚ Events can occur across intervals with a dura-
tion: during(e, T), where T is an interval.

The OWL-Time (OWL is the Web Ontology
Language; see http://www.w3.org/2004/OWL)
ontology elaborates these concepts and includes
measures of duration, clock and calendar terms,
and temporal aggregates.3

VERL semantics
Although VERL expressions are designed to

appear natural to human users, each expression
corresponds to a formal first-order logical state-
ment. Thus, standard inference engines can rea-
son with VERL-derived annotations. We omit the
details here due to their complexity and the lack
of space.

Hierarchies of domain-specific ontologies
VERL allows encoding of knowledge with var-

ious degrees of generality, resulting in hierarchies
of domain-specific ontologies in which concepts
with a narrower range of relevance are defined in
terms of more general concepts. Examples of gen-
eral ontologies include time, time relationships,
and spatial relationships. For example, we could
divide an ontology of objects and video events
pertaining to physical security into more specific
subdomains, such as bank monitoring, outdoor
surveillance, and railroad crossing monitoring.3

Each subdomain is likely to draw on common
concepts that it refines or specializes in its spe-
cific context.

VEML
VEML is a language for recording the observa-

tion of instances of concepts defined in an event
and object ontology specified in VERL. VEML
consists of a set of structures, compatible with
the VERL definitions, that allows links to physi-
cal (media) evidence. Figure 2 shows VEML’s top-
level structures and their relationships. The
scene, defined as a convex region of space and
time, represents the largest scope of a VEML
annotation (and thus its root). A scene consists
of objects (instances), and events (instances)
involving the objects (in the remainder of the
article, we’ll specify “instance” only when it’s

82

IE
EE

 M
ul

ti
M

ed
ia

Standards

Reference (1:n)

Scene context:
Geometry, world
coordinates, and
altitude

Composition (1:n)

Tracks

Object

Events
Observations

ObjectTrack

VEML:

VEML:

VEML:

VEML:

VEML:

VEML:

VEML:VEML:VEML:

VERL:

VERL:

VEML:

Stream (ID)

Samples

Stream

Context

Tracks

SceneContext

Objects

Observations

EventTrack

Event

StreamContext

Data

Stream (ID)

Samples

Time stamp
Objects

Data
Events

ObjectObservation

EventObservation

Object (ID)
Time stamp

Event (ID)

Evidence

Events
Time stamp

Objects

Scene

Streams
Events

Context

Reference (n:1)

Figure 2. VEML scene

description structure.

ambiguous). The scene can be described in vari-
ous recordings or data streams.

Scene context data, such as geometry, world
coordinates, and geographical information, are
the high-level scene components. Each compo-
nent type is the root of an extensible-type hier-
archy allowing specialization. Furthermore, at
this level, all entities are defined in the scene over
a period of time and carry start and duration (or
end) time data. Instances of these types therefore
encode information in a scene-centric approach,
independent of stream-level specifics.

As the following sections describe, streams,
objects, and events structures and their relation-
ships represent the most powerful and distin-
guishing aspect of VEML.

Streams
In VEML, a scene description can involve sev-

eral data streams of different types and durations,
overlapping (or not) arbitrarily. Figure 3 details
the defining attributes of a generic data stream.

We add traditional metadata through special-
ized context data structures or by deriving spe-
cialized stream structures from the base stream
class (such as image or audio streams). Any data
stream, however, consists of a sequence of sam-
ples. Each time-stamped sample carries associated
data. The data associated with a sample include
both raw data and processed data. We define data
structures for the data through specialization
(image data, blobs, and so on). In addition, each

sample carries a list of object observations and a
list of event observations. These structures estab-
lish a relationship between scene-centric and
stream-centric description (data evidence).

Objects and events
VEML’s object and event concepts are rooted

in VERL, so the corresponding structures are
quite similar.

Figure 4 (next page) illustrates how VEML’s
extensible event-type hierarchy encodes the rel-
evant object ontology (regrouped in domain-spe-
cific ontologies, or d-onts). For both analytical
and retrieval purposes, object instances must be
linked to relevant observations in data streams.

As mentioned earlier, an object instance will
occur in individual samples of data streams. The
object observation structure, stored in the sam-
ple’s object (observations) list, establishes the link
between the object instance (ID) and the evi-
dence in the data attached to the sample. The list
of consecutive observations of a given object in
a given stream constitutes a trajectory (a term
directly taken from the object-tracking applica-
tion domain).

The corresponding structure is stored in an
object’s tracks list, and establishes the link to a
stream and the object observations in the stream
(via the samples). If complete information is
stored, the data structures allow, for example,
retrieval of all observations of a given object in a
given stream (trajectory), in all streams, or,

83

O
cto

b
er–D

ecem
b

er 2005

Camera properties:
Position, orientation,
field of view, and focal length

Image stream properties:
Origin (file name/input device),
size, and depth

Data properties:
Origin, time stamp
(creation)

Image properties:
Size, depth

Blob properties:
Bounding box,
centroid, and moments

Inheritance

ImageStream

Stream
StreamContext

<properties>

Data

<properties>

ImageData

<properties>

Blob

<properties>

EventObservation

Evidence

Event (ID)

ObjectObservation

Evidence

Object (ID)
Sample

Objects
Data

Events

Time stamp

Samples
Context

Offset
Duration

Sampling rate

Camera

<properties>

VEML:

VEML:

VEML:

VEML:

VEML:

VEML:
VEML:

VEML:

VEML:

Figure 3. Stream

specialization.

84

IE
EE

 M
ul

ti
M

ed
ia

Standards

reversely, retrieval of the corresponding object
instance from an observation in a sample. This
last case corresponds to the scenario in which an
operator, while watching an annotated video,
pauses and clicks on an object (area in a frame) to
query information about the object defined in the
scene. Finally, object instances point to all of the
event instances in which they participate, and,
inversely, events reference all objects involved.

Figure 5 shows the data structures for event
ontology encoding. We achieve correspondence
between scene-centric, stream-centric, and sample-
level event instance encoding in the same way as
for object instances. The root generic event type
is specialized to capture the generic event types
defined in VERL: primitive, single-threaded
(sequence), and multithreaded events. In partic-
ular, encoding complex event instances captures
the relationships with corresponding subevent
instances. This connection occurs at the scene-
centric level.

Implementation
VEML underwent two proof-of-concept

implementation phases. The first implementa-
tion was VEML 1.0.3 Its primary purpose was to
validate the underlying concepts; it took the
form of a direct encoding of the data structures
as a constrained subset of the Extensible Markup
Language (XML, http://www.w3.org/XML) using

XML document type definitions and XML
schema. Annotation files produced for a refer-
ence video corpus conformed to this syntax.

VEML 2.0 is the latest expression of VEML,4

and is in the form of a constrained subset of
OWL called OWL Description Language, or
OWL-DL (http://www.w3.org/2004/OWL), itself
a constrained subset of XML. OWL-DL provides
a type system supporting inheritance, containers,
and references needed to encode and support the
data structures defining VEML. Because VEML
imports VERL elements, at least a partial expres-
sion of VERL in OWL is also required, although
OWL-DL isn’t powerful enough to express all
VERL constructs.

Using OWL to express VEML lets us leverage
existing and future tools based on both OWL and
underlying standards. For example, Jena is a Java
framework for building Semantic Web (http://
www.w3.org/2001/sw/) applications. It provides
“a programmatic environment for RDF [resource
description framework], RDFS [RDF schema], and
OWL, including a rule-based inference engine”
(http://Jena.sourceforge.net). Protégé (http://
protege.stanford.edu)10 is an integrated software
tool that was particularly useful for developing
the current VEML prototype in OWL. Further-
more, Protégé is an appropriate environment for
encoding and visualizing domain-specific event
and object ontologies. However, optimal user

Ontology
specializations
(examples)

Domain-specific
specializations
(examples)

Object properties: ID, mass,
and geometry (LODs)

ObjectTrack

ObjectObservation

Observations

Stream (ID)

MobileObject ContextualObject

<properties>

VERL:

VEML:

VEML:

FixedObject

<properties>

Human

<properties>

Car

<properties>

Door

<properties>

Suitcase

<properties>

PortableObject

<properties>

Tracks

Object

Events

ID
<properties>

Object (ID)
Evidence

Figure 4. Object

ontology encoding.

D-ont stands for

domain ontology.

experience requires dedicated video scene anno-
tation and visualization tools.

VEML is extensible, and the definition of the
underlying data structures is left open for more
specific elements. Specific applications might
therefore require specific data formats and
descriptors—such as a method-specific data for-
mat for supporting evidence in the observation
of a specific event type in video frames. This is
also where we could import descriptors from
existing standards, such as MPEG-7.11 VEML’s dis-
tinguishing feature is the underlying set of high-
level data structure encoding and relating the
event ontology and scene-centric and stream-
centric representations. We could also imple-
ment these elements in the context of an existing
formalism other than OWL, such as MPEG-7,
and possibly consider integrating them in the
standard.

Conclusion
We described an extensible and hierarchical

framework for video event ontology and anno-
tations. For this framework to be useful, detailed
domain ontologies and tools for annotation need
to be developed. Integration of this framework
with MPEG-7 standards would be another impor-
tant step. We hope that a community of users
will emerge resulting in accomplishment of these
objectives. MM

Acknowledgments
The US government’s Advanced Research and

Development Activity funded this research under
a contract to the Department of Energy’s Pacific
National Northwest Laboratory. We are grateful
to the workshop participants, who are listed in a
more complete report.4

References
1. S. Bechhofer et al., OWL Web Ontology Language Ref-

erence, Feb. 2004, http://www.w3.org/TR/owl-ref.

2. S. Narayanan, KARMA: Knowledge-Based Action Rep-

resentations for Metaphor and Aspect, PhD disserta-

tion, Univ. of California, Berkeley, 1997.

3. B. Bolles and R. Nevatia, ARDA Event Taxonomy

Challenge Project Final Report, Feb. 2004;

https://rrc.mitre.org//nwrrc/event-taxonomy-final-

report.pdf.

4. B. Bolles and R. Nevatia, A Hierarchical Video Event

Ontology in OWL, ARDA Challenge Workshop

Report, 2004; https://rrc.mitre.org//nwrrc/OWL-

events-final-report.pdf.

5. R. Nevatia, J. Hobbs, and B. Bolles, “An Ontology for

Video Event Representation,” Proc. IEEE Workshop on

Event Detection and Recognition, IEEE Press, June 2004.

6. J.F. Allen and G. Ferguson, “Actions and Events in

Interval Temporal Logic,” Spatial and Temporal Rea-

soning, O. Stock, ed., Kluwer Academic Publishers,

1997, pp. 205-245.

85

O
cto

b
er–D

ecem
b

er 2005

ObjectObservation

Event (ID)

Primitive

<properties>

ComplexEvent

Sequence

Primitives

MultiThread

Threads

Approach

<properties>

Enter

<properties>

Tailgate

<properties>

Domain-specific
specializations
(examples)

VERL VERL:

VEML:

VERL:

VEML:

VERL:

VERL: VERL:

Evidence

EventTrack

Observations

Stream (ID)

Event

Tracks
Objects (eventArgs?)

Temporal constraints
Logical constrains

ID

Figure 5. Event ontology

encoding.

86

IE
EE

 M
ul

ti
M

ed
ia

Standards

7. Y.A. Ivanov and A.F. Bobick, “Recognition of Visual

Activities and Interactions by Stochastic Parsing,”

IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 22, no. 8, Aug. 2000, pp. 852-872.

8. R. Nevatia, T. Zhao, and S. Hongeng, “Hierarchical

Language-Based Representation of Events in Video

Streams,” Proc. Workshop Event Mining (in conjunc-

tion with IEEE Int’l Conf. Computer Vision and

Pattern Recognition [CVPR]), IEEE CS Press, 2003,

p. 39.

9. T. Vu, F. Brémond, and M. Thonnat, “Automatic

Video Interpretation: A Novel Algorithm for Tempo-

ral Scenario Recognition,” Proc. 18th Int’l Joint Conf.

Artificial Intelligence, Springer, 2003, pp. 523-533.

10. N.F. Noy et al., “Creating Semantic Web Contents

with Protégé-2000,” IEEE Intelligent Systems, vol.

16, no. 2, 2001, pp. 60-71.

11. J.M. Martinez, ed., MPEG-7 Overview, ISO/IEC

report no. JTC1/SC29/WG11N5525, Int’l Organiza-

tion for Standardization, Mar. 2003, http://www.

chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.

htm.

For further information on this or any other comput-
ing topic, please visit our Digital Library at http://
www.computer.org/publications/dlib.

