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In connection with the DAML project for bringing about the Semantic Web, an ontology of time is being 
developed for describing the temporal content of Web pages and the temporal properties of Web services. This 
ontology covers topological properties of instants and intervals, measures of duration, and the meanings of 
clock and calendar terms. 
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Linguistic processing 
General Terms: Design, Documentation, Languages, Theory, Verification  
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1. INTRODUCTION 

The DARPA Agent Markup Language (DAML) project is DARPA’s effort to bring into 
reality the semantic Web, in which Web users and automatic agents will be able to access 
information on the Web via descriptions of the content and capabilities of Web resources 
rather than key words. An important part of this effort is the development of 
representative ontologies of the most commonly used domains. We have developed such 
an ontology of temporal concepts for describing the temporal content of Web pages and 
the temporal properties of Web services. This effort has been informed by temporal 
ontologies developed at a number of sites; it is intended to capture the essential features 
of all of them and make them easily available to a large group of Web developers and 
users, embedded in the ontology mark-up language OWL.1  
    The bulk of information on the Web is in natural language; this information will be 
easier to encode for the semantic Web insofar as community-wide annotation and 
automatic tagging schemes and the DAML time ontology are compatible with each other. 
Indeed, this compatibility was explored by Hobbs and Pustejovsky [2003]. 
    In this article we outline the temporal ontology. Five categories of temporal concepts 
are considered, and the principal predicates and their associated properties are described 
for each category. 
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    A note on notation before we begin: conjunction ( ∧ ) takes precedence over 
implication (⊃) and equivalence (≡). Formulas are assumed to be universally quantified 
on the variables appearing in the antecedent of the highest-level implication. Thus,  

p 1 (x) ∧  p 2 (y) ⊃ q 1 (x,y) ∧  q 2 (y) 
is to be interpreted as  

(∀ x,y)[[p 1 (x) ∧  p 2 (y)] ⊃ [q 1 (x,y) ∧  q 2 (y)]] 
 

2. TOPOLOGICAL TEMPORAL RELATIONS  

2.1 Instants and Intervals 
There are two subclasses of TemporalEntity: Instant and Interval.  

Instant(t)  ⊃  TemporalEntity(t)  
Interval(T)  ⊃  TemporalEentity(T) 

These are the only two subclasses of temporal entities.  
(∀ T)[TemporalEntity(T)  ⊃  Interval(T)   ∨  Instant(T) 

As we will see, intervals are, intuitively, things with extent and instants are, intuitively, 
point-like in that they have no interior points. (In what follows, lower case t is used for 
instants, upper case T for intervals and for temporal-entities unspecified as to subtype. 
This is strictly for the reader’s convenience, and has no formal significance.) 
    The predicates begins and ends are relations between instants and temporal entities.  

begins(t,T)  ⊃  Instant(t) ∧  TemporalEntity(T)  
ends(t,T)  ⊃  Instant(t) ∧  TemporalEntity(T) 

For convenience, we can say that the beginning and end of an instant is itself. The 
converses of these rules are also true.  

Instant(t)  ≡  begins(t,t)  
Instant(t)  ≡  ends(t,t) 

The beginnings and ends of temporal entities, if they exist, are unique.  
TemporalEntity(T) ∧  begins(t 1 ,T) ∧  begins(t 2 ,T)  ⊃  t 1  =  t 2   

TemporalEntity(T) ∧  ends(t 1 ,T) ∧  ends(t 2 ,T)  ⊃  t 1  =  t 2  
In one approach to infinite intervals, a positively infinite interval has no end and a 
negatively infinite interval has no beginning. Hence, we use the relations begins and ends 
in the core ontology, rather than defining functions beginningOf and endOf, since the 
functions would not be total. They can be defined in an extension of the core ontology 
that posits instants at positive and negative infinity. 
    The predicate inside is a relation between an instant and an interval.  

inside(t,T)  ⊃  Instant(t) ∧  Interval(T) 
This concept of inside is not intended to include beginnings and ends of intervals, as seen 
below. 
    It will be useful in characterizing clock and calendar terms to have a relation between 
instants and intervals that says that the instant is inside or the beginning of the interval.  

(∀ t,T)[beginsOrIn(t,T)  ≡  [begins(t,T)  ∨  inside(t,T)]] 
The predicate timeBetween is a relation among a temporal entity and two instants.  

timeBetween(T,t 1 ,t 2 ) ⊃  TemporalEntity(T) ∧  Instant(t 1 ) ∧  Instant(t 2 )  
The two instants are the beginning and end points of the temporal entity.  

(∀ t 1 ,t 2 )[t 1  ≠ t 2  ⊃  (∀ T)[timeBetween(T,t 1 ,t 2 ) ≡  begins(t 1 ,T) ∧  ends(t 2 ,T)]] 
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The ontology is silent about whether the interval from t to t, if it exists, is identical to the 
instant t. 
    The ontology is silent about whether intervals consist of instants. 
    The ontology is silent about whether intervals are uniquely determined by their starts 
and ends. 
    The core ontology is silent about whether intervals are uniquely determined by their 
beginnings and ends. 
    We can define a proper interval as one whose start and end are not identical.  

(∀ T)ProperInterval(T)  
≡  Interval(T) ∧  (∀ t 1 ,t 2 )[begins(t 1 ,T) ∧  ends(t 2 ,T)  ⊃  t 1  ≠ t 2 ]] 

The ontology is silent about whether there are any intervals that are not proper intervals. 
2.2 Before 
There is a before relation on temporal entities, which gives directionality to time. If 
temporal entity T 1  is before temporal entity T 2 , then the end of T 1  is before the start of 

T 2 . Thus, before can be considered to be basic to instants and derived for intervals.  

(∀ T 1 ,T 2 )[before(T 1 ,T 2 ) 

    ≡ (∃ t 1 ,t 2 )[ends(t 1 ,T 1 ) ∧  begins(t 2 ,T 2 ) ∧  before(t 1 ,t 2 )]]  
The before relation is anti-reflexive, anti-symmetric, and transitive.  

before(T 1 ,T 2 ) ⊃ T 1  ≠ T 2   

before(T 1 ,T 2 ) ⊃ ¬before(T 2 ,T 1 )  

before(T 1 ,T 2 ) ∧  before(T 2 ,T 3 ) ⊃ before(T 1 ,T 3 ) 
The end of an interval is not before the beginning of the interval.  

Interval(T) ∧  begins(t 1 ,T) ∧  ends(t 2 ,T) ⊃ ¬before(t 2 ,t 1 ) 
The beginning of a proper interval is before the end of the interval.  

ProperInterval(T) ∧  begins(t 1 ,T) ∧  ends(t 2 ,T) ⊃ before(t 1 ,t 2 )  
If one instant is before another, there is a time between them.  

Instant(t 1 ) ∧  Instant(t 2 ) ∧  before(t 1 ,t 2 ) ⊃ (∃ T) timeBetween(T,t 1 ,t 2 )  
The ontology is silent about whether there is a time between t and t. 
    If an instant is inside a proper interval, then the beginning of the interval is before the 
instant, which is before the end of the interval. This is the principal property of inside.  

inside(t,T) ∧  begins(t 1 ,T) ∧  ends(t 2 ,T) ∧  ProperInterval(T) 

    ⊃ before(t 1 ,t) ∧  before(t,t 2 )  
The relation after is defined in terms of before.  

after(T 1 ,T 2 ) ≡ before(T 2 ,T 1 ) 
The ontology is silent about whether time is linearly ordered. Thus it supports theories of 
time, such as the branching futures theory, which conflate time and possibility or 
knowledge. 
    The basic ontology is silent about whether time is dense, that is, whether between any 
two instants there is a third instant. Thus it supports theories in which time consists of 
discrete instants. 
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2.3 Interval Relations 
The relations between intervals defined in Allen’s temporal interval calculus [Allen and 
Kautz 1985; Allen and Ferguson 1997] can be defined in a straightforward fashion in 
terms of before and identity on the beginning and end points. It is a bit more complicated 
than the reader might at first suspect, since allowance has to be made for the possibility 
of infinite intervals. Since one of the intervals could be infinite and lack an end point, the 
relation between the end points has to be dependent on their existence. 
    The standard interval calculus assumes all intervals are proper; and we do this here too. 
The definitions of the interval relations in terms of before relations among their 
beginning and end points, when they exist, are given by the following axioms. In these 
axioms, t 1  and t 2  are the beginning and end of interval T 1 ; t 3  and t 4  are the beginning 

and end of T 2 .  

(∀ T 1 ,T 2 )[intEquals(T 1 ,T 2 ) 

    ≡ [ProperInterval(T 1 ) ∧  ProperInterval(T 2 )  

    ∧  (∀ t 1 )[begins(t 1 ,T 1 ) ≡ begins(t 1 ,T 2 )]  

    ∧  (∀ t 2 )[ends(t 2 ,T 1 ) ≡ ends(t 2 ,T 2 )]]] 

(∀ T 1 ,T 2 )[intBefore(T 1 ,T 2 ) 

    ≡ ProperInterval(T 1 ) ∧  ProperInterval(T 2 ) ∧  before(T 1 ,T 2 )] 

(∀ T 1 ,T 2 )[intMeets(T 1 ,T 2 ) 

    ≡ [ProperInterval(T 1 ) ∧  ProperInterval(T 2 ) 

    ∧  (∃ t)[ends(t,T 1 ) ∧  begins(t,T 2 )]]] 

(∀ T 1 ,T 2 )[intOverlaps(T 1 ,T 2 ) 

    ≡ [ProperInterval(T 1 ) ∧  ProperInterval(T 2 ) 

    ∧  (∃ t 2 ,t 3 )[ends(t 2 ,T 1 ) ∧  begins(t 3 ,T 2 ) ∧  before(t 3 ,t 2 )  

    ∧  (∀ t 1 )[begins(t 1 ,T 1 ) ⊃ before(t 1 ,t 3 )]  

    ∧  (∀ t 4 )[ends(t 4 ,T 2 ) ⊃ before(t 2 ,t 4 )]]]] 

(∀ T 1 ,T 2 )[intStarts(T 1 ,T 2 ) 

    ≡ [ProperInterval(T 1 ) ∧  ProperInterval(T 2 ) 

    ∧  (∃ t 2 )[ends(t 2 ,T 1 ) ∧  (∀ t 1 )[begins(t 1 ,T 1 ) ≡ begins(t 1 ,T 2 )]  

     ∧  (∀ t 4 )[ends(t 4 ,T 2 ) ⊃ before(t 2 ,t 4 )]]]] 

(∀ T 1 ,T 2 )[intDuring(T 1 ,T 2 ) 

    ≡ [ProperInterval(T 1 ) ∧  ProperInterval(T 2 ) 

    ∧  (∃ t 1 ,t 2 )[begins(t 1 ,T 1 ) ∧  ends(t 2 ,T 1 )  

     ∧  (∀ t 3 )[begins(t 3 ,T 2 ) ⊃ before(t 3 ,t 1 )]  

     ∧  (∀ t 4 )[ends(t 4 ,T 2 ) ⊃ before(t 2 ,t 4 )]]]] 
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(∀ T 1 ,T 2 )[intFinishes(T 1 ,T 2 ) 

    ≡ [ProperInterval(T 1 ) ∧  ProperInterval(T 2 ) 

    ∧  (∃ t 1 )[begins(t 1 ,T 1 ) ∧  (∀ t 3 )[begins(t 3 ,T 2 ) ⊃ before(t 3 ,t 1 )]  

    ∧  (∀ t 4 )[ends(t 4 ,T 2 ) ≡ ends(t 4 ,T 1 )]]]] 
The inverse interval relations can be defined in terms of these relations.  

intAfter(T 1 ,T 2 ) ≡ intBefore(T 2 ,T 1 ) 

intMetBy(T 1 ,T 2 ) ≡ intMeets(T 2 ,T 1 ) 

intOverlappedBy(T 1 ,T 2 ) ≡ intOverlaps(T 2 ,T 1 ) 

intStartedBy(T 1 ,T 2 ) ≡ intStarts(T 2 ,T 1 ) 

intContains(T 1 ,T 2 ) ≡ intDuring(T 2 ,T 1 ) 

intFinishedBy(T 1 ,T 2 ) ≡ intFinishes(T 2 ,T 1 ) 
In addition, it will be useful below to have a single predicate for intervals intersecting in 
at most an instant.  

nonoverlap(T 1 ,T 2 ) 

    ≡ [intBefore(T 1 ,T 2 ) ∨ intAfter(T 1 ,T 2 ) ∨ intMeets(T 1 ,T 2 )   

       ∨ intMetBy(T 1 ,T 2 )] 
We could have as easily defined this in terms of before relations on the beginnings and 
ends of the intervals. 
    So far the concepts and axioms in the ontology of time would be appropriate for scalar 
phenomena in general. 

2.4 Linking Time and Events 
The time ontology links to other things in the world through four predicates: atTime, 
during, holds, and timeSpan. We assume that another ontology provides for the 
description of events, either a general ontology of event structure abstractly conceived, or 
specific, domain-dependent ontologies for specific domains. 
    The term “eventuality" will be used to cover events, states, processes, propositions, 
states of affairs, and anything else that can be located with respect to time. The possible 
natures of eventualities would be spelled out in the event ontologies. The term 
“eventuality" in this article is only an expositional convenience and has no formal role in 
the time ontology. 
    The predicate atTime relates an eventuality to an instant, and is intended to say that the 
eventuality holds, obtains, or is taking place at that time.  

atTime(e,t) ⊃ Instant(t) 
The predicate during relates an eventuality to an interval, and is intended to say that the 
eventuality holds, obtains, or is taking place during that interval.  

during(e,T) ⊃ Interval(T) 
If an eventuality obtains during an interval, it obtains at every instant inside the interval 
and during every subinterval.  
 

during(e,T) ∧  inside(t,T) ⊃ atTime(e,t) 
during(e,T) ∧  intDuring(T 1 ,T) ⊃ during(e,T 1 ) 
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Note that this means that an intermittant activity, like writing a book, does not hold 
“during" the interval from the beginning to the end of the activity. Rather the “convex 
hull" of the activity holds “during" the interval. 
    Whether a particular process is viewed as instantaneous or as occuring over an interval 
is a granularity decision that may vary according to the context of use, and is assumed to 
be provided by the event ontology. 
    Often, the eventualities in the event ontology are best thought of as propositions; the 
relation between these and times is most naturally called holds. The predication 
holds(e,T) would say that e holds at instant T or during interval T. The predicate holds 
would be part of the event ontology, not part of the time ontology, although its second 
argument would be provided by the time ontology. The designers of the event ontology 
may or may not want to relate holds to atTime and during by axioms such as the 
following:  

holds(e,t) ∧  Instant(t) ≡ atTime(e,t)  
holds(e,T) ∧  Interval(T) ≡ during(e,T) 

Similarly, the event ontology may provide other ways of linking events with times, for 
example, by including a time parameter in predications.  

p(x,t) 
This time ontology provides ways of reasoning about the t’s; their use as arguments of 
predicates from another domain would be a feature of the ontology of the other domain.  
    The predicate timeSpan relates eventualities to instants or intervals (or temporal 
sequences of instants and intervals). For contiguous states and processes, it tells the entire 
instant or interval for which the state or process obtains or takes place.  

timeSpan(T,e) ⊃ TemporalEntity(T) ∨ tseq(T)2  
timeSpan(T,e) ∧  Interval(T) ⊃ during(e,T)  
timeSpan(t,e) ∧  Instant(t) ⊃ atTime(e,t) 
timeSpan(T,e) ∧  Interval(T) ∧  ¬inside(t,T) ∧  ¬begins(t,T) ∧  ¬ends(t,T) 

    ⊃ ¬atTime(e,t)   
timeSpan(t,e) ∧  Instant(t) ∧  t 1  ≠  t ⊃ ¬atTime(e,t 1 ) 

Whether the eventuality obtains at the start and end points of its time span is a matter for 
the event ontology to specify. The silence here on this issue is the reason timeSpan is not 
defined in terms of necessary and sufficient conditions. 
    In an extension of the time ontology, we also allow temporal predicates to apply 
directly to events, should the user wish. Thus, begins(t,e) says that the instant t begins the 
interval that is the time span of eventuality e; see the documentation3 for details. 
    Different communities have different ways of representing the times and durations of 
states and events (or processes). In one approach, states and events can both have 
durations, and at least events can be instantaneous. In another approach, events can only 
be instantaneous and only states can have durations. In the latter approach, events that 
one might consider as having duration (e.g., heating water) are modeled as a state of the 
system that is initiated and terminated by instantaneous events. That is, there is the 
instantaneous event of the start of the heating at the start of an interval, which transitions 
the system into a state in which the water is heating. The state continues until another 
instantaneous event occurs—the stopping of the heating at the end of the interval. These 
two perspectives on events are straightforwardly interdefinable in terms of the ontology 

                                                           
2 tseq(T): T is a temporal sequence. 
3 http://www.isi.edu/~pan/damltime/time-entry-documentation.txt 
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we have provided. This is a matter for the event ontology to specify; this time ontology is 
neutral with respect to the choice. 

3. MEASURING DURATIONS 

3.1 Temporal Units 
This development assumes that ordinary arithmetic is available. 
    There are at least two approaches that can be taken toward measuring intervals. The 
first is to consider units of time as functions from Intervals to Reals. Owing to infinite 
intervals, the range must also include Infinity.  

minutes: Intervals → Reals ∪ {Infinity} 
minutes([5:14,5:17]) = 3 

The other approach is to consider temporal units to constitute a set of entities, call it 
TemporalUnits, and have a single function duration mapping Intervals × TemporalUnits 
into the Reals.  

duration: Intervals × TemporalUnits → Reals ∪ {Infinity} 
duration([5:14,5:17],*Minute*) = 3 

The two approaches are interdefinable:  
seconds(T) = duration(T,*Second*)  
minutes(T) = duration(T,*Minute*)  
hours(T) = duration(T,*Hour*)  
days(T) = duration(T,*Day*)  
weeks(T) = duration(T,*Week*)  
months(T) = duration(T,*Month*)  
years(T) = duration(T,*Year*) 

Ordinarily, the first is more convenient for stating specific facts about particular units; the 
second is more convenient for stating general facts about all units. 
    The arithmetic relations among the various units are as follows:  

seconds(T) = 60∗minutes(T)  
minutes(T) = 60∗hours(T)  
hours(T) = 24∗days(T)  
days(T) = 7∗weeks(T)  
months(T) = 12∗years(T)  

 
The relation between days and months (and, to a lesser extent, years) are specified as part 
of the ontology of clock and calendar, below. On their own, however, month and year are 
legitimate temporal units. 
3.2 Concatenation and Hath 
The multiplicative relations above don’t tell the whole story of the relations among 
temporal units. Temporal units are composed of smaller temporal units. A larger temporal 
unit is a concatenation of smaller temporal units. We first define a general relation of 
concatenation between an interval and a set of smaller intervals. We then introduce a 
predicate Hath that specifies the number of smaller unit intervals that concatenate to a 
larger interval. 
    Concatenation: A proper interval x is a concatenation of a set S of proper intervals if 
and only if S covers all of x, and all members of S are subintervals of x and are mutually 
disjoint. (The third conjunct on the right side of ≡ is because beginsOrIn only covers 
instants that begin or are inside x.) 
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concatenation(x,S) 
    ≡ ProperInterval(x)  

    ∧  (∀ z)[beginsOrIn(z,x) ⊃ (∃ y)[member(y,S) ∧  beginsOrIn(z,y)]]  
    ∧  (∀ z)[ends(z,x) ⊃ (∃ y)[member(y,S) ∧  ends(z,y)]]  
    ∧  (∀ y)[member(y,S)  
   ⊃ [intStarts(y,x) ∨ intDuring(y,x) ∨ intFinishes(y,x)  

∨ intEquals(y,x)]]  
    ∧  (∀ y 1 ,y 2 )[member(y 1 ,S) ∧  member(y 2 ,S)  

    ⊃ [y 1 = y 2  ∨ nonoverlap(y 1 ,y 2 )]] 
The following properties of concatenation can be proved as theorems: 
There are elements in S that start and finish x:  

concatenation(x,S) ⊃ (∃ ! y 1 )[member(y 1 ,S) ∧  intStarts(y 1 ,x)] 

concatenation(x,S) ⊃ (∃ ! y 2 )[member(y 2 ,S) ∧  intFinishes(y 2 ,x)] 
If S is a singleton set, its single element is x.  

concatenation(x,S) ∧  card(S) = 1 ⊃ S = {x} 
The property of convexity holds in the ontology if and only if the end points of an 
interval uniquely determine it. This is an assumption the user can make for any 
application, and will normally want to.  

Convex() ≡ (∀ T 1 ,T 2 )[intEquals(T 1 ,T 2 ) ≡ T 1  = T 2 ] 
If convexity holds, then except for the first and last elements of S, every element of S has 
elements that precede and follow it.  

Convex() ⊃  
[concatenation(x,S)   
    ⊃ (∀ y 1 )[member(y 1 ,S)  

    ⊃ [intFinishes(y 1 ,x)  

        ∨ (∃ ! y 2 )[member(y 2 ,S) ∧  intMeets(y 1 ,y 2 )]]]] 
Convex() ⊃  

[concatenation(x,S)   
       ⊃ (∀ y 2 )[member(y 2 ,S)  

    ⊃ [intStarts(y 2 ,x)  

        ∨ (∃ ! y 1 )[member(y 1 ,S) ∧  intMeets(y 1 ,y 2 )]]]]  
The uniqueness (∃ !) follows from non-overlap. 
    Hath: The basic predicate used here for expressing the composition of larger intervals 
out of smaller clock and calendar intervals is Hath, from statements like “30 days hath 
September" and “60 minutes hath an hour." Its structure is  

Hath(N,u,x) 
meaning “N proper intervals of duration one unit u hath the proper interval x." That is, if 
Hath(N,u,x) holds, then x is the concatenation of N unit intervals where the unit is u. For 
example, if x is some month of September then Hath(30,*Day*,x) would be true. 
     Hath is defined as follows:  

Hath(N,u,x) ≡ (∃ S)[card(S) = N ∧  (∀ z)[member(z,S) ⊃ duration(z,u) = 1]  
∧  concatenation(x,S)] 

That is, x is the concatenation of a set S of N proper intervals of duration one unit u. 



74 • J.R. Hobbs and F. Pan 
 

 
ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004. 

    The type constraints on its arguments can be proved as a theorem: N is an integer 
(assuming that is the constraint on the value of card), u is a temporal unit, and x is a 
proper interval:  

Hath(N,u,x) ⊃ integer(N) ∧  TemporalUnit(u) ∧  ProperInterval(x)  
This treatment of concatenation will work for scalar phenomena in general. This 
treatment of Hath will work for measurable quantities in general. 
3.3 The Structure of Temporal Units 
We now define predicates true of intervals that are 1 temporal unit long. For example, 
week is a predicate true of intervals whose duration is one week.  

second(T) ≡ seconds(T) = 1  
minute(T) ≡ minutes(T) = 1  
hour(T) ≡ hours(T) = 1  
day(T) ≡ days(T) = 1  
week(T) ≡ weeks(T) = 1   
month(T) ≡ months(T) = 1  
year(T) ≡ years(T) = 1 

We are now in a position to state the relations between successive temporal units.  
minute(T) ⊃ Hath(60,*Second*,T)  
hour(T) ⊃ Hath(60,*Minute*,T)  
day(T) ⊃ Hath(24,*Hour*,T)  
week(T) ⊃ Hath(7,*Day*,T)  
year(T) ⊃ Hath(12,*Month*,T) 

The relations between months and days are discussed in Section 4.5. 

4. CLOCK AND CALENDAR 

4.1 Time Zones 
What hour of the day an instant is in is relative to the time zone. This is also true of 
minutes, since there are regions in the world, e.g., central Australia, where the hours are 
not aligned with GMT hours, but are, e.g., offset half an hour. To our knowledge, seconds 
are not relative to the time zone. 
    Days, weeks, months, and years are also relative to the time zone, since, e.g., 2004 
began in the Eastern Standard time zone, three hours before it began in the Pacific 
Standard time zone. Thus, predications about all clock and calendar intervals except 
seconds are relative to a time zone. 
    This can be carried to what seems like a ridiculous extreme, but turns out to yield a 
very concise treatment. The Common Era (CE or AD) is also relative to a time zone 
because 2004 years ago it began three hours earlier in what is now the Eastern Standard 
time zone than in what is now the Pacific Standard time zone. What we think of as the 
Common Era is in fact 24 (actually more) slightly displaced half-infinite intervals. (We 
leave BCE to specialized ontologies.) 
    The principal functions and predicates will specify a clock or calendar unit interval to 
be the nth such unit in a larger interval. The time zone need not be specified in this 
predication if it is already built into the nature of the larger interval. That means that the 
time zone only needs to be specified in the largest interval, that is, the Common Era; that 
time zone will be inherited by all smaller intervals. Thus, the Common Era can be 
considered as a function from time zones to intervals.  
 

CE(z) = T 
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Fortunately, this counterintuitive conceptualization will usually be invisible and, for 
example, in Section 4.5, will not be evident in the most useful expressions for time. In 
fact, the CE predication functions as a good place to hide considerations of time zone 
when they are not relevant. 
    We have been referring to time zones, but in fact it is more convenient to work in what 
we might call the “time standard" in a time zone. That is, it is better to work with *PST* 
as a legal entity than with the *PST* zone as a geographical region. A time standard is a 
way of computing the time relative to a world-wide system of computing time. For each 
time standard, there is a zone, or geographical region, and a time of the year in which it is 
used to describe local times. Where and when a time standard is used has to be 
axiomatized; this involves interrelating a time ontology and at least a simple geographical 
ontology. These relations can be quite complex. We have done this for the entire world; 
see Section 4.2. 
    If we were to conflate time zones (i.e., geographical regions) and time standards, it 
would likely result in problems in several situations. For example, the Eastern Standard 
zone and the Eastern Daylight zone are not identical, since most of Indiana is on Eastern 
Standard time all year. The state of Arizona and the Navajo Indian Reservation, two 
overlapping geopolitical regions, have different time standards – one is Pacific and one is 
Mountain. 
    Time standards that seem equivalent, like Eastern Standard and Central Daylight, 
should be thought of as separate entities. Whereas they function identically in the time 
ontology, they do not do so in the ontology that articulates time and geography. For 
example, it would be false to say that parts of Indiana shift in April from Eastern 
Standard to Central Daylight time. 

4.2 Time Zone Data in OWL 
We have developed a time zone resource in OWL, not only for the US but also for the 
entire world,4 which includes three parts: the time ontology file, the US time zone 
instance file, and the world time zone instance file. 
    The time zone ontology links a simple geographic ontology with our time ontology. It 
defines a vocabulary about regions, political regions (countries, states, counties, 
reservations, and cities), time zones, daylight savings policies, and the relationships 
among these concepts. Its instances also link to other existing data on the Web, such as 
Terry Payne’s US states instances,5 FIPS 55 county instances,6 and ISO country 
instances.7 
    It can handle all the usual time zone and daylight savings cases. For example, Los 
Angles uses PST, the time offset from Greenwich Mean Time (GMT) is -8 hours, and it 
observed daylight savings from April 4 to October 31 in 2004. But it handles unusual 
cases as well. For example, in Idaho the northern part is in the Pacific zone, the southern 
part in the Mountain. The city of West Wendover, Nevada is in the Mountain time zone, 
while the rest of Nevada is in the Pacific. 
    For the details, see the documentation,8 which includes an outline of the ontology and 
examples of anticipated use. 

                                                           
4 http://www.isi.edu/ pan/timezonehomepage.html 
5 http://www.daml.ri.cmu.edu/ont/USRegionState.daml 
6 http://www.daml.org/2003/02/fips55/ 
7 http://www.daml.org/2001/09/countries/iso 
8 http://www.isi.edu/~pan/damltime/time-zone-documentation.txt 
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4.3 Clock and Calendar Units 
The aim of this section is to explicate the various standard clock and calendar intervals. A 
day as a calender interval begins at and includes midnight, and goes until, but does not 
include, the next midnight. By contrast, a day as a duration is any interval that is 24 hours 
in length. The day as a duration was dealt with in Section 3; this section deals with the 
day as a calendar interval. 
    Including the beginning but not the end of a calendar interval in the interval may strike 
some as arbitrary. But we get a cleaner treatment if, for example, all times of the form 
12:xx am, including 12:00 am, are part of the same hour and day, and all times of the 
form 10:15:xx, including 10:15:00, are part of the same minute. 
    It is useful to have three ways of saying the same thing: the clock or calendar interval y 
is the nth clock or calendar interval of type u in a larger interval x. For minutes, this can 
be expressed as follows:  

min(y,n,x) 
Under the reasonable assumption that there is only one such y, this can also be expressed 
as follows:  

minFn(n,x) = y 
For stating general properties about clock intervals, it is also useful to have the following 
way of expressing the same thing:  

clockInt(y,n,u,x) 
This expression says that y is the nth clock interval of type u in x. For example, the 
proposition clockInt(10:03,3,*Minute*,[10:00,11:00]) holds. 
    Here u is a member of the set of clock units, that is, one of *Second*, *Minute*, or 
*Hour*. 
    The larger interval x may not line up exactly with clock intervals. In this case we take y 
to be the nth complete clock interval of type u in x. 
    In addition, there is a calendar unit function with similar structure:  

calInt(y,n,u,x) 
This says that y is the nth calendar interval of type u in x. For example, the proposition 
calInt(12Mar2002,12,*Day*,Mar2002) holds. Here u is one of the calendar units *Day*, 
*Week*, *Month*, and *Year*. 
    The unit *DayOfWeek* is introduced in Section 4.4. 
    The relations among these modes of expression are as follows:  

sec(y,n,x) ≡ clockInt(y,n,*Second*,x)  
secFn(n,x) = y ≡ clockInt(y,n,*Second*,x)  
min(y,n,x) ≡ clockInt(y,n,*Minute*,x)  
minFn(n,x) = y ≡ clockInt(y,n,*Minute*,x)  
hr(y,n,x) ≡ clockInt(y,n,*Hour*,x)  
hrFn(n,x) = y ≡ clockInt(y,n,*Hour*,x)  
da(y,n,x) ≡ calInt(y,n,*Day*,x)  
daFn(n,x) = y ≡ calInt(y,n,*Day*,x)  
mon(y,n,x) ≡ calInt(y,n,*Month*,x)  
monFn(n,x) = y ≡ calInt(y,n,*Month*,x)  
yr(y,n,x) ≡ calInt(y,n,*Year*,x)  
yrFn(n,x) = y ≡ calInt(y,n,*Year*,x) 

Weeks and months are dealt with separately, below. 
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    The am/pm designation of hours is represented by the function hr12.  
hr12(y,n,*am*,x) ≡ hr(y,n,x)  
hr12(y,n,*pm*,x) ≡ hr(y,n+12,x) 

    A distinction is made above between clocks and calendars because they differ in how 
they number their unit intervals. The first minute of an hour is labelled with 0; for 
example, the first minute of the hour [10:00,11:00] is 10:00. The first day of a month is 
labelled 1; the first day of March is March 1. We number minutes for the number just 
completed; we number days for the day we are working on. Thus, if the larger unit has N 
smaller units, the argument n in clockInt runs from 0 to N-1; whereas, in calInt, n runs 
from 1 to N. To state properties true of both clock and calendar intervals, we can use the 
predicate calInt and relate the two notions with the axiom  

calInt(y,n,u,x) ≡ clockInt(y,n-1,u,x) 
Note that the Common Era is a calendar interval in this sense, since it begins with 1 CE 
and not 0 CE. 
     The type constraints on the arguments of calInt are as follows:  

calInt(y,n,u,x) ⊃ Interval(y) ∧  integer(n) ∧  TemporalUnit(u) ∧  Interval(x) 
Each of the calendar intervals is that unit long; for example, a calendar year is a year 
long.  

calInt(y,n,u,x) ⊃ duration(y,u) = 1 
There are properties relating to the labelling of clock and calendar intervals. If N u’s hath 
x and y is the nth u in x, then n is between 1 and N.  

calInt(y,n,u,x) ∧  Hath(N,u,x) ⊃ 0 < n ≤ N 
The larger interval x need not line up with calendar intervals. For example, it might go 
from 12:36 pm, February 1, to 12:36 pm, February 3; this interval Hath two days, but not 
two calendar days. However, if x is itself a calendar interval, and u is a unit other than 
*Week*, then there is a 1st small interval, and it starts the large interval.  

Hath(N,u,x) ∧  calInt(x,n 1 ,u 1 ,x 1 ) ∧  u ≠ *Week* ⊃ (∃ ! y) calInt(y,1,u,x)  

Hath(N,u,x) ∧  calInt(x,n 1 ,u 1 ,x 1 ) ∧  u ≠ *Week* ∧  calInt(y,1,u,x)  
⊃ intStarts(y,x)  

Under the same conditions, there is an Nth small interval, and it finishes the large 
interval.  

Hath(N,u,x) ∧  calInt(x,n 1 ,u 1 ,x 1 ) ∧  u ≠ *Week* ⊃ (∃ ! y) calInt(y,N,u,x)]  

Hath(N,u,x) ∧  calInt(x,n 1 ,u 1 ,x 1 ) ∧  u ≠ *Week* ∧  calInt(y,N,u,x) 
⊃ intFinishes(y,x)  

Under these conditions, all but the last small interval have a small interval that succeeds 
and is met by it.  

calInt(y 1 ,n,u,x) ∧  calInt(x,n 1 ,u 1 ,x 1 ) ∧  u ≠ *Week* ∧  Hath(N,u,x) ∧  n < N 

    ⊃ (∃ ! y 2 )[calInt(y 2 ,n+1,u,x) ∧  intMeets(y 1 ,y 2 )]  
Moreover, all but the first small interval have a small interval that precedes and meets it.  

calInt(y 2 ,n,u,x) ∧  calInt(x,n 1 ,u 1 ,x 1 ) ∧  u ≠ *Week* ∧  Hath(N,u,x) ∧  1 < n 

    ⊃ (∃ ! y 1 )[calInt(y 1 ,n-1,u,x) ∧  intMeets(y 1 ,y 2 )] 

4.4 Weeks 
A week is any seven consecutive days. A calendar week, by contrast, according to a 
commonly adopted convention, starts at midnight, Saturday night, and goes to the next 
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midnight, Saturday night. That is, weeks start with Sunday. (By contrast, the ISO 8061 
standard week starts with Monday.) There are 52 weeks in a year, but there are not 
usually 52 calendar weeks in a year. 
    Weeks are independent of months and years. However, we can still talk about the nth 
week in some larger period of time, e.g., the third week of the month or the fifth week of 
the semester.9  So the same three modes of representation are appropriate for weeks as 
well.  

wk(y,n,x) ≡ calInt(y,n,*Week*,x)  
wkFn(n,x) = y ≡ calInt(y,n,*Week*,x) 

As it happens, the n and x arguments will often be irrelevant when we only want to say 
that some period is a calendar week. 
    The day of the week is a calendar interval of type *Day*. The nth day-of-the-week in a 
week is the nth day in that interval.  

dayofweek(y,n,x) ≡ da(y,n,x) ∧  (∃ n 1 ,x 1 ) wk(x,n 1 ,x 1 ) 
The days of the week have special names in English.  

dayofweek(y,1,x) ≡ Sunday(y,x)  
dayofweek(y,2,x) ≡ Monday(y,x)  
dayofweek(y,3,x) ≡ Tuesday(y,x)  
dayofweek(y,4,x) ≡ Wednesday(y,x)  
dayofweek(y,5,x) ≡ Thursday(y,x)  
dayofweek(y,6,x) ≡ Friday(y,x)  
dayofweek(y,7,x) ≡ Saturday(y,x) 

For example, Sunday(y,x) says that y is the Sunday of week x. 
    The ISO 8061 standard week is related to the traditional week as follows: 

0 < n < 7 ⊃ [isodayofweek (y,n,x) ≡ dayofweek(y,n+1,x)]  
 isodayofweek (y,7,x) ≡ Sunday(y,x) 
    Since a day of the week is also a calendar day, it is a theorem that it is a day long.  

dayofweek(y,n,x) ⊃ day(y) 
One correspondence anchors the cycle of weeks to the rest of the calendar, for example, 
saying that January 1, 2002 was the Tuesday of some week x.  

(∀ z)(∃ x)Tuesday(dayFn(1,monFn(1,yrFn(2002,CE(z)))),x) 
We can define weekdays and weekend days as follows:  

weekday(y,x) ≡ [Monday(y,x) ∨ Tuesday(y,x) ∨ Wednesday(y,x)   
∨ Thursday(y,x) ∨ Friday(y,x)] 

weekendday(y,x) ≡ [Saturday(y,x) ∨ Sunday(y,x)] 
4.5 Months and Years 
The months have special names in English. In these rules we specify that the larger 
interval is a calendar year.  

[yr(x,n 1 ,x 1 ) ∧  mon(y,1,x)] ≡ January(y,x)  

[yr(x,n 1 ,x 1 ) ∧  mon(y,2,x)] ≡ February(y,x)  

[yr(x,n 1 ,x 1 ) ∧  mon(y,3,x)] ≡ March(y,x)  

[yr(x,n 1 ,x 1 ) ∧  mon(y,4,x)] ≡ April(y,x)  

                                                           
9This may not accord perfectly with how we talk about such things, since we really mean 
the nth complete week in x. 
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[yr(x,n 1 ,x 1 ) ∧  mon(y,5,x)] ≡ May(y,x)  

[yr(x,n 1 ,x 1 ) ∧  mon(y,6,x)] ≡ June(y,x)  

[yr(x,n 1 ,x 1 ) ∧  mon(y,7,x)] ≡ July(y,x)  

[yr(x,n 1 ,x 1 ) ∧  mon(y,8,x)] ≡ August(y,x)  

[yr(x,n 1 ,x 1 ) ∧  mon(y,9,x)] ≡ September(y,x)  

[yr(x,n 1 ,x 1 ) ∧  mon(y,10,x)] ≡ October(y,x)  

[yr(x,n 1 ,x 1 ) ∧  mon(y,11,x)] ≡ November(y,x)  

[yr(x,n 1 ,x 1 ) ∧  mon(y,12,x)] ≡ December(y,x) 
The number of days in a month have to be spelled out for individual months.  

January(m,y) ⊃ Hath(31,*Day*,m)  
March(m,y) ⊃ Hath(31,*Day*,m)  
April(m,y) ⊃ Hath(30,*Day*,m)  
May(m,y) ⊃ Hath(31,*Day*,m)  
June(m,y) ⊃ Hath(30,*Day*,m)  
July(m,y) ⊃ Hath(31,*Day*,m)  
August(m,y) ⊃ Hath(31,*Day*,m)  
September(m,y) ⊃ Hath(30,*Day*,m)  
October(m,y) ⊃ Hath(31,*Day*,m)  
November(m,y) ⊃ Hath(30,*Day*,m)  
December(m,y) ⊃ Hath(31,*Day*,m) 

The definition of a leap year is as follows:  
(∀ z)[leapYear(y) ≡ (∃ n,x)[yr(y,n,CE(z))  

         ∧  [divides(400,n) ∨ [divides(4,n) ∧  ¬divides(100,n)]]] 
We leave leap seconds to specialized ontologies. 
    Now the number of days in February can be specified.  

February(m,y) ∧  leapYear(y) ⊃ Hath(29,*Day*,m)  
February(m,y) ∧  ¬leapYear(y) ⊃ Hath(28,*Day*,m) 

A reasonable approach to defining month as a unit of temporal measure would be to 
specify that the start and end points have to be on the same days of successive months. 
The following rather ugly axiom captures this.  

month(T) 
    ≡ (∃ t 1 ,t 2 ,d 1 ,d 2 ,n 1 ,n 2 ,n 3 ,n 4 ,m 1 ,m 2 ,y 1 ,y 2 ,e,h 1 ,h 2 ,j 1 ,j 2 ,s 1 ,s 2 )  

   [begins(t 1 ,T) ∧  ends(t 2 ,T) ∧  beginsOrIn(t 1 ,d 1 )  

    ∧  beginsOrIn(t 2 ,d 2 ) ∧  da(d 1 ,n 1 ,m 1 ) ∧  mon(m 1 ,n 3 ,y 1 )  

    ∧  yr(y 1 ,n 4 ,e) ∧  da(d 2 ,n 2 ,m 2 )  

    ∧  [mon(m 2 ,n 3 +1,y 1 ) 

∨ (∃ y 2 )[n 1  = 12 ∧  mon(m 2 ,1,y 2 ) ∧  yr(y 2 ,n 4 +1,e)]]  

    ∧  Hath(n,*Day*,m 2 ) ∧  [[n ≥ n 1  ∧  n 2  = n 1 ]  

∨ [n < n 1  ∧  n 2  = n]]  
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    ∧  beginsOrIn(t 1 ,h 1 ) ∧  beginsOrIn(t 2 ,h 2 ) 

    ∧  (∃ i)[hr(h 1 ,i,d 1 ) ∧  hr(h 2 ,i,d 2 )]   

    ∧  beginsOrIn(t 1 ,j 1 ) ∧  beginsOrIn(t 2 ,j 2 )  

    ∧  (∃ i)[min(j 1 ,i,h 1 ) ∧  min(j 2 ,i,h 2 )]  

          ∧  beginsOrIn(t 1 ,s 1 ) ∧  beginsOrIn(t 2 ,s 2 )  

    ∧  (∃ i)[sec(s 1 ,i,j 1 ) ∧  sec(s 2 ,i,j 2 )]] 
The first eight conjuncts in the consequent identify and label the days the interval begins 
and ends in. The ninth conjunct checks that the months are right, taking care of the 
rollover from December to January. The tenth and eleventh conjuncts make sure the days 
are right, taking care of the case where the second month has too few days. In this 
definition, one month from 2:36 pm, January 31, 2004, is 2:36 pm, February 29, 2004. 
The last nine conjuncts make sure the hours, minutes, and seconds are right. This 
definition does not handle precisions less than a second. It would be a technical exercise 
to do so. 
    Thus, the month as a measure of duration is related to days as a measure of duration 
only indirectly, mediated by the calendar. It is possible to prove that months are between 
28 and 31 days. 
    The mismatch between days and months in the calendar entails significant difficulties 
in working out a satisfactory temporal arithmetic. We will deal with this problem in a 
subsequent paper. 
    To say that July 4 is a holiday in the United States, we could write  

(∀ d,m,y)[da(d,4,m) ∧  July(m,y) ⊃ holiday(d,USA)] 
Holidays like Easter can be defined in terms of this ontology coupled with an ontology of 
the phases of the moon. 
    Other calendar systems could be axiomatized similarly, and the BCE era could also be 
axiomatized in this framework; these are left as exercises for interested developers. 

5. DESCRIBING TIMES AND DURATIONS 

5.1 Timestamps 
Standard notation for times list the year, month, day, hour, minute, second, and time 
zone. It is useful to define a predication for this.  

timeOf(t,y,m,d,h,n,s,z) 
≡ beginsOrIn(t,secFn(s,minFn(n,hrFn(h,  

daFn(d,monFn(m,yrFn(y,CE(z)))))))) 
Alternatively,  

timeOf(t,y,m,d,h,n,s,z) 
    ≡ (∃ s 1 ,n 1 ,h 1 ,d 1 ,m 1 ,y 1 ,e)   

[beginsOrIn(t,s 1 ) ∧  sec(s 1 ,s,n 1 ) ∧  min(n 1 ,n,h 1 )   

 ∧  hr(h 1 ,h,d 1 ) ∧  da(d 1 ,d,m 1 ) ∧  mon(m 1 ,m,y 1 )  

 ∧  yr(y 1 ,y,e) ∧  CE(z) = e] 
For example, an instant t has the time  
 

5:14:35pm PST, Wednesday, February 6, 2002 
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if the following properties hold for t:  
timeOf(t,2002,2,6,17,14,35,*PST*)  
∧  (∃ w,x)[beginsOrIn(t,w) ∧  Wednesday(w,x)] 

The second line says that t is in the Wednesday w of some week x. 
    The relations among time zones can be expressed in terms of the timeOf predicate. 
Two examples follow:  

timeOf(t,y,m,d,h,n,s,*EST*) ≡ timeOf(t,y,m,d,h,n,s,*CDT*)  
timeOf(t,y,m,d,h,n,s,*GMT*) ∧  hours(T) = 8 ∧  ends(t,T)  
  ∧  begins(t 1 ,T) ∧  timeOf(t 1 ,y 1 ,m 1 ,d 1 ,h 1 ,n,s,*GMT*) 

          ⊃ timeOf(t,y 1 ,m 1 ,d 1 ,h 1 ,n,s,*PST*)  
In the second rule, subtracting an interval of 8 hours from the time t and looking at the 
time of its beginning point hides the ugly details of computing the years, months, and 
days in case of rollover. For those who prefer to see the ugly details, here they are:  

(∀ t,y,m,d,h,n,s)[h ≥ 8 
    ⊃ [timeOf(t,y,m,d,h,s,*GMT*) ≡ timeOf(t,y,m,d,h-8,s,*PST*)  

(∀ t,y,m,d,h,n,s)[h < 8 ∧  d > 1 
    ⊃ [timeOf(t,y,m,d,h,s,*GMT*) ≡ timeOf(t,y,m,d-1,h+16,s,*PST*)  

(∀ t,y,m,d,h,n,s,M,d 1 ,Y)[h < 8 ∧  d = 1 ∧  m > 1 ∧  mon(M,m,Y)  

         ∧  yr(Y,y,CE(*GMT*) ∧  Hath(d 1 ,*Day*,M) 

    ⊃ [timeOf(t,y,m,d,h,s,*GMT*) ≡ timeOf(t,y,m-1,d 1 ,h+16,s,*PST*)  
(∀ t,y,m,d,h,n,s)[h < 8 

    ⊃ [timeOf(t,y,1,1,h,s,*GMT*) ≡ timeOf(t,y-1,12,31,h+16,s,*PST*) 
5.2 Calendar-Clock Descriptions 
It is inconvenient to express calInt(y,n,u,x) and clockInt(y,n,u,x) directly in a description 
logic-based markup language, such as OWL, since x is itself a clock or calendar interval 
that requires description. So we have defined a calendar-clock or time description in 
OWL for specifying both calendar and clock information for a calendar-clock interval. 
    A calendar-clock description has the following properties or fields: unitType, yearOf, 
monthOf, weekOf, dayOf, hourOf, minuteOf, secondOf, and timeZoneOf. The property 
unitType specifies the temporal unit type of the calendar-clock description, and its 
domain is the set of temporal units. 
    For example, the unit type of 10:30 is minute, and the unit type of March 20, 2003 is 
day. The unit type is required. For a given temporal unit type, all the fields or properties 
for smaller units will be ignored; for instance, if the temporal unit type is day, the values 
of the fields or properties hourOf, minuteOf, and secondOf, if present, will be ignored. 
    Since calendar-clock descriptions are for describing calendar-clock intervals, we have 
defined a property or relation, called calendarClockDescriptionOf with 
CalendarClockDescription as the range. 
    To express calInt(12Mar2002,12,*Day*,Mar2002), for example, using a calendar-
clock description, we need an instance of CalendarClockDescription that has values only 
for unitType (day), yearOf (2002), monthOf (3), and dayOf (12). 
clockInt(10:03,3,*Minute*,[10:00, 11:00]) can be expressed similarly. 
    More details about calendar-clock descriptions, as well as duration descriptions, 
together with examples used in OWL-S10 can be found in Pan and Hobbs [2004]. 
                                                           
10 http://www.daml.org/services/owl-s/ 
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5.3 Duration Descriptions 
There are two systems of time that are based on different astronomical facts. The year-
month system is based on the revolution of the earth around the sun. The week-day-hour-
minute-second system is based on the rotation of the earth around its axis. As long as we 
don’t mix these two systems, temporal arithmetic is simple. But they don’t align well, 
and when we try to relate days and months, complications arise, as we have already seen. 
    We cannot simply rule out months as units, as some have suggested. Monthly rates 
play a very important role in commerce. If you pay $1000 a month in rent, you are paying 
more per day for your apartment in February than in March, and often when rents are 
prorated, the number of days in that specific month is used in the calculation, although in 
some industries months have been normalized to 28 or 30 days. 
    Hence it is important to build a consistent system of duration measurement that 
involves both months and days. 
    Here we introduce duration descriptions, in which the duration of an arbitrary finite 
interval can be described as a concatenation of years, months, weeks, days, hours, 
minutes, seconds, and fractions of seconds. The primary convention we follow is that 
used by car rental and other companies that have different rates for different periods of 
time. From the beginning of the interval, we fit in as many of the largest unit type as 
possible. Then, into the remainder, we fit in as many as possible of the next largest unit 
type, and so on. For example, when we rent a car, we pay the weekly rate for as many full 
weeks as we keep the car, then we pay the daily rate for any leftover full days, then the 
hourly rate for any leftover hours. 
    The predication durationOf(T,y,m,w,d,h,n,s) says that duration of the interval T is y 
years, m months, w weeks, d days, h hours, n minutes, and s seconds. The values of the 
numeric arguments can be any real number, although indeterminacies will arise if we try 
to determine the identity of a duration described as a fractional number of months and a 
duration described in terms of days. We allow real numbers, rather than restricting the 
values to integers, because we frequently talk about such durations as 1 1/2 months. 
However, for the rest of this development we assume that all of the numeric arguments 
are integers. 
    The predicate durationOf can be defined in the following rather cumbersome manner:  
 

durationOf(T,y,m,w,d,h,n,s) 
    ≡ (∃ S,T 1 )[concatenation(T,S ∪{T 1 }) ∧  card(S) = y 

    ∧  (∀ v)[v∈S ⊃ year(v)]  
    ∧  intFinishes(T 1 ,T) ∧  durationOf(T 1 ,0,m,w,d,h,n,s)]  

durationOf(T,0,m,w,d,h,n,s) 
    ≡ (∃ S,T 1 )[concatenation(T,S ∪{T 1 }) ∧  card(S) = m   

    ∧  (∀ v)[v∈S ⊃ month(v)]  
         ∧  intFinishes(T 1 ,T) ∧  durationOf(T 1 ,0,0,w,d,h,n,s)]  

durationOf(T,0,0,w,d,h,n,s) 
    ≡ (∃ S,T 1 )[concatenation(T,S ∪{T 1 }) ∧  card(S) = w   

    ∧  (∀ v)[v∈S ⊃ week(v)]  
    ∧  intFinishes(T 1 ,T) ∧  durationOf(T 1 ,0,0,0,d,h,n,s)]  
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durationOf(T,0,0,0,d,h,n,s) 
    ≡ (∃ S,T 1 )[concatenation(T,S ∪{T 1 }) ∧  card(S) = d   

    ∧  (∀ v)[v∈S ⊃ day(v)]  
    ∧  intFinishes(T 1 ,T) ∧  durationOf(T 1 ,0,0,0,0,h,n,s)]  

durationOf(T,0,0,0,0,h,n,s) 
    ≡ (∃ S,T 1 )[concatenation(T,S ∪{T 1 }) ∧  card(S) = h   

    ∧  (∀ v)[v∈S ⊃ hour(v)]  
    ∧  intFinishes(T 1 ,T) ∧  durationOf(T 1 ,0,0,0,0,0,n,s)]  

durationOf(T,0,0,0,0,0,n,s) 
    ≡ (∃ S,T 1 )[concatenation(T,S ∪{T 1 }) ∧  card(S) = n   

    ∧  (∀ v)[v∈S ⊃ minute(v)]  
    ∧  intFinishes(T 1 ,T) ∧  durationOf(T 1 ,0,0,0,0,0,0,s)]  

durationOf(T,0,0,0,0,0,0,s) 
    ≡ (∃ S,T 1 )[concatenation(T,S) ∧  card(S) = s   

    ∧  (∀ v)[v∈S ⊃ second(v)]] 
The axiom saying that an instant has 0 duration is  

Instant(t) ⊃ durationOf(t,0,0,0,0,0,0,0) 
The predicates timeOf and durationOf can be related. Corresponding to every time is the 
duration of the interval from the beginning of the Common Era to that time.  
 

timeOf(t0,1,1,1,0,0,0) ∧  timeBetween(T,t0,t) 
    ⊃ (∀ y,m,d,h,n,s)[timeOf(t,y,m,d,h,n,s)  

    ≡ durationOf(T,y-1,m-1,d-1,h,n,s)] 
 

The duration of an interval can have many different descriptions. An interval can be 1 
day 2 hours, or 26 hours, or 1560 minutes, and so on. It is useful to be able to talk about 
these descriptions in a convenient way as independent objects and to talk about their 
equivalences. Thus, we define a specific kind of individual called a “duration 
description," together with a number of functions relating the duration description to the 
values of each of the eight arguments of durationOf. So we convert the 8-ary predicate 
durationOf into eight binary relations that are more convenient for description logic-
based markup languages like OWL. Here is the definition of the duration description:  
 

(∀ T,y,m,w,d,h,n,s)[durationOf(T,y,m,w,d,h,n,s) 
    ≡ (∃ D)[durationDescriptionOf(D,T) ∧  DurationDescription(D)   

    ∧  yearsOf(D) = y ∧  monthsOf(D)=m  
    ∧  weeksOf(D)=w ∧  daysOf(D)=d  
    ∧  hoursOf(D)=h ∧  minutesOf(D)=n ∧  secondsOf(D)=s]] 
 

We say that a duration description is canonical if the number of weeks is zero and the 
number of all other units is less than the number of those units in the next higher unit. 
That is, there is an arbitrarily large number of years, less than 12 months, less than 24 
hours, less than 60 minutes, and less than 60 seconds. The number of days is less than the 
number that could be consumed by one more month, given where the interval is anchored 
in time. 
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    The definition of canonicalDurDescr(D) is as follows:  
 

canonicalDurDescr(D) 
    ≡ [0 ≤ monthsOf(D) < 12 ∧  weeksOf(D) = 0  
       ∧  0 ≤ hoursOf(D) < 24 ∧  0 ≤ minutesOf(D) < 60  

    ∧  0 ≤ secondsOf(D) < 60  
    ∧  (∃ T,T 1 ,T 2 ,t,t 1 ,t 2 )  

        [durationOf(T 1 ,yearsOf(D),monthsOf(D),0,0,0,0,0)  

        ∧  durationDescriptionOf(D,T) ∧  begins(t 1 ,T)  

        ∧  begins(t 1 ,T 1 ) ∧  month(T 2 ) ∧  intMeets(T 1 ,T 2 )  

        ∧  ends(t 2 ,T 2 ) ∧  ends(t,T) ∧  before(t,t 2 )]] 
 

The existentially quantified expression at the end requires explanation. T is the interval 
that D describes. T 1  is the interval starting at the same point and including only D’s year 

and month segments. T 2  is a month-long interval that is appended to the end of T 1 . The 

daysOf slot of D is canonical if and only if T ends before T 2  does. The complexities of 
day-month arithmetic are hidden in the predicate month. 

6. FUTURE DIRECTIONS 

6.1 Temporal Arithmetic 
As long as we stay within the year-month system or the week-day-hour-minute-second 
system, temporal arithmetic is just arithmetic and requires only a few simple axioms to 
encode. When we mix months and days, problems arise. 
    We are currently working on a set of relatively simple rules that will allow us to do 
temporal arithmetic with months and days with a moderate degree of consistency. (This 
will be the subject of a future paper.) However, just to give the reader a flavor of the 
problems, consider that January 31, 2003, plus 2 months equals March 31, 2003. But if 
we add the months one at a time, we get a different result. January 31, 2003, plus one 
month is February 28, 2003. February 28, 2003, plus one month would seem to be March 
28, 2003. If we want to avoid results like this, we need, in some sense, to keep track of 
the history of the computation. 

6.2 Deictic Time 
Deictic temporal concepts such as “now,” “today,” “tomorrow night,” and “last year” are 
more common in natural language texts than they will be in descriptions of Web 
resources, hence we have postponed development of this domain until the first three are 
in place. But since most of the content on the Web is in natural language, it will 
ultimately be necessary for this ontology to be developed. It should, as well, mesh well 
with the annotation standards used in automatic tagging of text (cf., Hobbs and 
Pustejovsky [2003]). 
    We expect that the key concept in this area will be a relation now between an instant 
and an utterance or document.  

now(t,d) 
It may refer to the time of writing, the time of reading, a period of validity, or some other 
functionally determined instant or interval. 
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    The concept of “today" would also be relative to a document, and be defined as 
follows:  

today(T,d) ≡ (∃ t,n,x)[now(t,d) ∧  inside(t,T) ∧  da(T,n,x)]  
That is, T is today with respect to document d if and only if there is an instant t in T that 
is now with respect to the document and T is a calendar day (and thus the nth calendar 
day in some interval x). 
    Present, past, and future can be defined in the obvious way in terms of now and before. 
    Another feature of a treatment of deictic time is an axiomatization of the concepts of 
“last,"  “this," and “next" on anchored sequences of temporal entities. 

6.3 Aggregates of Temporal Entities 
A number of common expressions and commonly used properties are properties of 
sequences of temporal entities. These properties may be properties of all the elements in 
the sequence, as in “every Wednesday” or they may be properties of parts of the 
sequence, as in “three times a week” or “an average of once a year”. We have also 
postponed development of this domain until the first three domains are well in hand. 

6.4 Vague Temporal Concepts 
In natural language, a very important class of temporal expressions are inherently vague. 
Included in this category are such terms as “soon," “recently," “late," and “a little while." 
These require an underlying theory of vagueness, and in any case are probably not 
immediately critical for the Semantic Web. (This area will be postponed for a little 
while). 
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