

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004, Pages 66-85.

An Ontology of Time for the Semantic Web
JERRY R. HOBBS and FENG PAN
University of Southern California, Information Sciences Institute
__

In connection with the DAML project for bringing about the Semantic Web, an ontology of time is being
developed for describing the temporal content of Web pages and the temporal properties of Web services. This
ontology covers topological properties of instants and intervals, measures of duration, and the meanings of
clock and calendar terms.
Categories and Subject Descriptors: I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and
Methods - Representations (procedural and rule-based); Temporal logic; I.2.7 [Artificial Intelligence]:
Natural Language Processing - Text analysis; H.3.5 [Information Storage and Retrieval]: Online Information
Services - Web-based services; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing -
Linguistic processing
General Terms: Design, Documentation, Languages, Theory, Verification
Additional Key Words and Phrases: Ontology, time, semantic web, temporal information, temporal relation,
duration, clock and calendar, time zone
__

1. INTRODUCTION

The DARPA Agent Markup Language (DAML) project is DARPA’s effort to bring into
reality the semantic Web, in which Web users and automatic agents will be able to access
information on the Web via descriptions of the content and capabilities of Web resources
rather than key words. An important part of this effort is the development of
representative ontologies of the most commonly used domains. We have developed such
an ontology of temporal concepts for describing the temporal content of Web pages and
the temporal properties of Web services. This effort has been informed by temporal
ontologies developed at a number of sites; it is intended to capture the essential features
of all of them and make them easily available to a large group of Web developers and
users, embedded in the ontology mark-up language OWL.1
 The bulk of information on the Web is in natural language; this information will be
easier to encode for the semantic Web insofar as community-wide annotation and
automatic tagging schemes and the DAML time ontology are compatible with each other.
Indeed, this compatibility was explored by Hobbs and Pustejovsky [2003].
 In this article we outline the temporal ontology. Five categories of temporal concepts
are considered, and the principal predicates and their associated properties are described
for each category.
__
 This research was supported by the Defense Advanced Research Projects Agency under Air Force Research
Laboratory contract F30602-00-C-0168 and by the Advanced Research and Development Agency.
Authors' addresses: University of Southern California / Information Sciences Institute, 4676 Admiralty Way,
Marina del Rey, CA 90292, USA. Emails: {hobbs, pan}@isi.edu.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Permission may be requested from the Publications Dept., ACM, Inc., 1515 Broadway,
New York, NY 10036, USA, fax:+1(212) 869-0481, permissions@acm.org
© 2004 ACM 1073-0516/04/0300-0066 $5.00

1 http://www.w3c.org/2001/sw/WebOnt/

An Ontology of Time for the Semantic Web • 67

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

 A note on notation before we begin: conjunction (∧) takes precedence over
implication (⊃) and equivalence (≡). Formulas are assumed to be universally quantified
on the variables appearing in the antecedent of the highest-level implication. Thus,

p 1 (x) ∧ p 2 (y) ⊃ q 1 (x,y) ∧ q 2 (y)
is to be interpreted as

(∀ x,y)[[p 1 (x) ∧ p 2 (y)] ⊃ [q 1 (x,y) ∧ q 2 (y)]]

2. TOPOLOGICAL TEMPORAL RELATIONS

2.1 Instants and Intervals
There are two subclasses of TemporalEntity: Instant and Interval.

Instant(t) ⊃ TemporalEntity(t)
Interval(T) ⊃ TemporalEentity(T)

These are the only two subclasses of temporal entities.
(∀ T)[TemporalEntity(T) ⊃ Interval(T) ∨ Instant(T)

As we will see, intervals are, intuitively, things with extent and instants are, intuitively,
point-like in that they have no interior points. (In what follows, lower case t is used for
instants, upper case T for intervals and for temporal-entities unspecified as to subtype.
This is strictly for the reader’s convenience, and has no formal significance.)
 The predicates begins and ends are relations between instants and temporal entities.

begins(t,T) ⊃ Instant(t) ∧ TemporalEntity(T)
ends(t,T) ⊃ Instant(t) ∧ TemporalEntity(T)

For convenience, we can say that the beginning and end of an instant is itself. The
converses of these rules are also true.

Instant(t) ≡ begins(t,t)
Instant(t) ≡ ends(t,t)

The beginnings and ends of temporal entities, if they exist, are unique.
TemporalEntity(T) ∧ begins(t 1 ,T) ∧ begins(t 2 ,T) ⊃ t 1 = t 2

TemporalEntity(T) ∧ ends(t 1 ,T) ∧ ends(t 2 ,T) ⊃ t 1 = t 2
In one approach to infinite intervals, a positively infinite interval has no end and a
negatively infinite interval has no beginning. Hence, we use the relations begins and ends
in the core ontology, rather than defining functions beginningOf and endOf, since the
functions would not be total. They can be defined in an extension of the core ontology
that posits instants at positive and negative infinity.
 The predicate inside is a relation between an instant and an interval.

inside(t,T) ⊃ Instant(t) ∧ Interval(T)
This concept of inside is not intended to include beginnings and ends of intervals, as seen
below.
 It will be useful in characterizing clock and calendar terms to have a relation between
instants and intervals that says that the instant is inside or the beginning of the interval.

(∀ t,T)[beginsOrIn(t,T) ≡ [begins(t,T) ∨ inside(t,T)]]
The predicate timeBetween is a relation among a temporal entity and two instants.

timeBetween(T,t 1 ,t 2) ⊃ TemporalEntity(T) ∧ Instant(t 1) ∧ Instant(t 2)
The two instants are the beginning and end points of the temporal entity.

(∀ t 1 ,t 2)[t 1 ≠ t 2 ⊃ (∀ T)[timeBetween(T,t 1 ,t 2) ≡ begins(t 1 ,T) ∧ ends(t 2 ,T)]]

68 • J.R. Hobbs and F. Pan

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

The ontology is silent about whether the interval from t to t, if it exists, is identical to the
instant t.
 The ontology is silent about whether intervals consist of instants.
 The ontology is silent about whether intervals are uniquely determined by their starts
and ends.
 The core ontology is silent about whether intervals are uniquely determined by their
beginnings and ends.
 We can define a proper interval as one whose start and end are not identical.

(∀ T)ProperInterval(T)
≡ Interval(T) ∧ (∀ t 1 ,t 2)[begins(t 1 ,T) ∧ ends(t 2 ,T) ⊃ t 1 ≠ t 2]]

The ontology is silent about whether there are any intervals that are not proper intervals.
2.2 Before
There is a before relation on temporal entities, which gives directionality to time. If
temporal entity T 1 is before temporal entity T 2 , then the end of T 1 is before the start of

T 2 . Thus, before can be considered to be basic to instants and derived for intervals.

(∀ T 1 ,T 2)[before(T 1 ,T 2)

 ≡ (∃ t 1 ,t 2)[ends(t 1 ,T 1) ∧ begins(t 2 ,T 2) ∧ before(t 1 ,t 2)]]
The before relation is anti-reflexive, anti-symmetric, and transitive.

before(T 1 ,T 2) ⊃ T 1 ≠ T 2

before(T 1 ,T 2) ⊃ ¬before(T 2 ,T 1)

before(T 1 ,T 2) ∧ before(T 2 ,T 3) ⊃ before(T 1 ,T 3)
The end of an interval is not before the beginning of the interval.

Interval(T) ∧ begins(t 1 ,T) ∧ ends(t 2 ,T) ⊃ ¬before(t 2 ,t 1)
The beginning of a proper interval is before the end of the interval.

ProperInterval(T) ∧ begins(t 1 ,T) ∧ ends(t 2 ,T) ⊃ before(t 1 ,t 2)
If one instant is before another, there is a time between them.

Instant(t 1) ∧ Instant(t 2) ∧ before(t 1 ,t 2) ⊃ (∃ T) timeBetween(T,t 1 ,t 2)
The ontology is silent about whether there is a time between t and t.
 If an instant is inside a proper interval, then the beginning of the interval is before the
instant, which is before the end of the interval. This is the principal property of inside.

inside(t,T) ∧ begins(t 1 ,T) ∧ ends(t 2 ,T) ∧ ProperInterval(T)

 ⊃ before(t 1 ,t) ∧ before(t,t 2)
The relation after is defined in terms of before.

after(T 1 ,T 2) ≡ before(T 2 ,T 1)
The ontology is silent about whether time is linearly ordered. Thus it supports theories of
time, such as the branching futures theory, which conflate time and possibility or
knowledge.
 The basic ontology is silent about whether time is dense, that is, whether between any
two instants there is a third instant. Thus it supports theories in which time consists of
discrete instants.

An Ontology of Time for the Semantic Web • 69

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

2.3 Interval Relations
The relations between intervals defined in Allen’s temporal interval calculus [Allen and
Kautz 1985; Allen and Ferguson 1997] can be defined in a straightforward fashion in
terms of before and identity on the beginning and end points. It is a bit more complicated
than the reader might at first suspect, since allowance has to be made for the possibility
of infinite intervals. Since one of the intervals could be infinite and lack an end point, the
relation between the end points has to be dependent on their existence.
 The standard interval calculus assumes all intervals are proper; and we do this here too.
The definitions of the interval relations in terms of before relations among their
beginning and end points, when they exist, are given by the following axioms. In these
axioms, t 1 and t 2 are the beginning and end of interval T 1 ; t 3 and t 4 are the beginning

and end of T 2 .

(∀ T 1 ,T 2)[intEquals(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∀ t 1)[begins(t 1 ,T 1) ≡ begins(t 1 ,T 2)]

 ∧ (∀ t 2)[ends(t 2 ,T 1) ≡ ends(t 2 ,T 2)]]]

(∀ T 1 ,T 2)[intBefore(T 1 ,T 2)

 ≡ ProperInterval(T 1) ∧ ProperInterval(T 2) ∧ before(T 1 ,T 2)]

(∀ T 1 ,T 2)[intMeets(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∃ t)[ends(t,T 1) ∧ begins(t,T 2)]]]

(∀ T 1 ,T 2)[intOverlaps(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∃ t 2 ,t 3)[ends(t 2 ,T 1) ∧ begins(t 3 ,T 2) ∧ before(t 3 ,t 2)

 ∧ (∀ t 1)[begins(t 1 ,T 1) ⊃ before(t 1 ,t 3)]

 ∧ (∀ t 4)[ends(t 4 ,T 2) ⊃ before(t 2 ,t 4)]]]]

(∀ T 1 ,T 2)[intStarts(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∃ t 2)[ends(t 2 ,T 1) ∧ (∀ t 1)[begins(t 1 ,T 1) ≡ begins(t 1 ,T 2)]

 ∧ (∀ t 4)[ends(t 4 ,T 2) ⊃ before(t 2 ,t 4)]]]]

(∀ T 1 ,T 2)[intDuring(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∃ t 1 ,t 2)[begins(t 1 ,T 1) ∧ ends(t 2 ,T 1)

 ∧ (∀ t 3)[begins(t 3 ,T 2) ⊃ before(t 3 ,t 1)]

 ∧ (∀ t 4)[ends(t 4 ,T 2) ⊃ before(t 2 ,t 4)]]]]

70 • J.R. Hobbs and F. Pan

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

(∀ T 1 ,T 2)[intFinishes(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∃ t 1)[begins(t 1 ,T 1) ∧ (∀ t 3)[begins(t 3 ,T 2) ⊃ before(t 3 ,t 1)]

 ∧ (∀ t 4)[ends(t 4 ,T 2) ≡ ends(t 4 ,T 1)]]]]
The inverse interval relations can be defined in terms of these relations.

intAfter(T 1 ,T 2) ≡ intBefore(T 2 ,T 1)

intMetBy(T 1 ,T 2) ≡ intMeets(T 2 ,T 1)

intOverlappedBy(T 1 ,T 2) ≡ intOverlaps(T 2 ,T 1)

intStartedBy(T 1 ,T 2) ≡ intStarts(T 2 ,T 1)

intContains(T 1 ,T 2) ≡ intDuring(T 2 ,T 1)

intFinishedBy(T 1 ,T 2) ≡ intFinishes(T 2 ,T 1)
In addition, it will be useful below to have a single predicate for intervals intersecting in
at most an instant.

nonoverlap(T 1 ,T 2)

 ≡ [intBefore(T 1 ,T 2) ∨ intAfter(T 1 ,T 2) ∨ intMeets(T 1 ,T 2)

 ∨ intMetBy(T 1 ,T 2)]
We could have as easily defined this in terms of before relations on the beginnings and
ends of the intervals.
 So far the concepts and axioms in the ontology of time would be appropriate for scalar
phenomena in general.

2.4 Linking Time and Events
The time ontology links to other things in the world through four predicates: atTime,
during, holds, and timeSpan. We assume that another ontology provides for the
description of events, either a general ontology of event structure abstractly conceived, or
specific, domain-dependent ontologies for specific domains.
 The term “eventuality" will be used to cover events, states, processes, propositions,
states of affairs, and anything else that can be located with respect to time. The possible
natures of eventualities would be spelled out in the event ontologies. The term
“eventuality" in this article is only an expositional convenience and has no formal role in
the time ontology.
 The predicate atTime relates an eventuality to an instant, and is intended to say that the
eventuality holds, obtains, or is taking place at that time.

atTime(e,t) ⊃ Instant(t)
The predicate during relates an eventuality to an interval, and is intended to say that the
eventuality holds, obtains, or is taking place during that interval.

during(e,T) ⊃ Interval(T)
If an eventuality obtains during an interval, it obtains at every instant inside the interval
and during every subinterval.

during(e,T) ∧ inside(t,T) ⊃ atTime(e,t)
during(e,T) ∧ intDuring(T 1 ,T) ⊃ during(e,T 1)

An Ontology of Time for the Semantic Web • 71

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

Note that this means that an intermittant activity, like writing a book, does not hold
“during" the interval from the beginning to the end of the activity. Rather the “convex
hull" of the activity holds “during" the interval.
 Whether a particular process is viewed as instantaneous or as occuring over an interval
is a granularity decision that may vary according to the context of use, and is assumed to
be provided by the event ontology.
 Often, the eventualities in the event ontology are best thought of as propositions; the
relation between these and times is most naturally called holds. The predication
holds(e,T) would say that e holds at instant T or during interval T. The predicate holds
would be part of the event ontology, not part of the time ontology, although its second
argument would be provided by the time ontology. The designers of the event ontology
may or may not want to relate holds to atTime and during by axioms such as the
following:

holds(e,t) ∧ Instant(t) ≡ atTime(e,t)
holds(e,T) ∧ Interval(T) ≡ during(e,T)

Similarly, the event ontology may provide other ways of linking events with times, for
example, by including a time parameter in predications.

p(x,t)
This time ontology provides ways of reasoning about the t’s; their use as arguments of
predicates from another domain would be a feature of the ontology of the other domain.
 The predicate timeSpan relates eventualities to instants or intervals (or temporal
sequences of instants and intervals). For contiguous states and processes, it tells the entire
instant or interval for which the state or process obtains or takes place.

timeSpan(T,e) ⊃ TemporalEntity(T) ∨ tseq(T)2
timeSpan(T,e) ∧ Interval(T) ⊃ during(e,T)
timeSpan(t,e) ∧ Instant(t) ⊃ atTime(e,t)
timeSpan(T,e) ∧ Interval(T) ∧ ¬inside(t,T) ∧ ¬begins(t,T) ∧ ¬ends(t,T)

 ⊃ ¬atTime(e,t)
timeSpan(t,e) ∧ Instant(t) ∧ t 1 ≠ t ⊃ ¬atTime(e,t 1)

Whether the eventuality obtains at the start and end points of its time span is a matter for
the event ontology to specify. The silence here on this issue is the reason timeSpan is not
defined in terms of necessary and sufficient conditions.
 In an extension of the time ontology, we also allow temporal predicates to apply
directly to events, should the user wish. Thus, begins(t,e) says that the instant t begins the
interval that is the time span of eventuality e; see the documentation3 for details.
 Different communities have different ways of representing the times and durations of
states and events (or processes). In one approach, states and events can both have
durations, and at least events can be instantaneous. In another approach, events can only
be instantaneous and only states can have durations. In the latter approach, events that
one might consider as having duration (e.g., heating water) are modeled as a state of the
system that is initiated and terminated by instantaneous events. That is, there is the
instantaneous event of the start of the heating at the start of an interval, which transitions
the system into a state in which the water is heating. The state continues until another
instantaneous event occurs—the stopping of the heating at the end of the interval. These
two perspectives on events are straightforwardly interdefinable in terms of the ontology

2 tseq(T): T is a temporal sequence.
3 http://www.isi.edu/~pan/damltime/time-entry-documentation.txt

72 • J.R. Hobbs and F. Pan

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

we have provided. This is a matter for the event ontology to specify; this time ontology is
neutral with respect to the choice.

3. MEASURING DURATIONS

3.1 Temporal Units
This development assumes that ordinary arithmetic is available.
 There are at least two approaches that can be taken toward measuring intervals. The
first is to consider units of time as functions from Intervals to Reals. Owing to infinite
intervals, the range must also include Infinity.

minutes: Intervals → Reals ∪ {Infinity}
minutes([5:14,5:17]) = 3

The other approach is to consider temporal units to constitute a set of entities, call it
TemporalUnits, and have a single function duration mapping Intervals × TemporalUnits
into the Reals.

duration: Intervals × TemporalUnits → Reals ∪ {Infinity}
duration([5:14,5:17],*Minute*) = 3

The two approaches are interdefinable:
seconds(T) = duration(T,*Second*)
minutes(T) = duration(T,*Minute*)
hours(T) = duration(T,*Hour*)
days(T) = duration(T,*Day*)
weeks(T) = duration(T,*Week*)
months(T) = duration(T,*Month*)
years(T) = duration(T,*Year*)

Ordinarily, the first is more convenient for stating specific facts about particular units; the
second is more convenient for stating general facts about all units.
 The arithmetic relations among the various units are as follows:

seconds(T) = 60∗minutes(T)
minutes(T) = 60∗hours(T)
hours(T) = 24∗days(T)
days(T) = 7∗weeks(T)
months(T) = 12∗years(T)

The relation between days and months (and, to a lesser extent, years) are specified as part
of the ontology of clock and calendar, below. On their own, however, month and year are
legitimate temporal units.
3.2 Concatenation and Hath
The multiplicative relations above don’t tell the whole story of the relations among
temporal units. Temporal units are composed of smaller temporal units. A larger temporal
unit is a concatenation of smaller temporal units. We first define a general relation of
concatenation between an interval and a set of smaller intervals. We then introduce a
predicate Hath that specifies the number of smaller unit intervals that concatenate to a
larger interval.
 Concatenation: A proper interval x is a concatenation of a set S of proper intervals if
and only if S covers all of x, and all members of S are subintervals of x and are mutually
disjoint. (The third conjunct on the right side of ≡ is because beginsOrIn only covers
instants that begin or are inside x.)

An Ontology of Time for the Semantic Web • 73

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

concatenation(x,S)
 ≡ ProperInterval(x)

 ∧ (∀ z)[beginsOrIn(z,x) ⊃ (∃ y)[member(y,S) ∧ beginsOrIn(z,y)]]
 ∧ (∀ z)[ends(z,x) ⊃ (∃ y)[member(y,S) ∧ ends(z,y)]]
 ∧ (∀ y)[member(y,S)
 ⊃ [intStarts(y,x) ∨ intDuring(y,x) ∨ intFinishes(y,x)

∨ intEquals(y,x)]]
 ∧ (∀ y 1 ,y 2)[member(y 1 ,S) ∧ member(y 2 ,S)

 ⊃ [y 1 = y 2 ∨ nonoverlap(y 1 ,y 2)]]
The following properties of concatenation can be proved as theorems:
There are elements in S that start and finish x:

concatenation(x,S) ⊃ (∃ ! y 1)[member(y 1 ,S) ∧ intStarts(y 1 ,x)]

concatenation(x,S) ⊃ (∃ ! y 2)[member(y 2 ,S) ∧ intFinishes(y 2 ,x)]
If S is a singleton set, its single element is x.

concatenation(x,S) ∧ card(S) = 1 ⊃ S = {x}
The property of convexity holds in the ontology if and only if the end points of an
interval uniquely determine it. This is an assumption the user can make for any
application, and will normally want to.

Convex() ≡ (∀ T 1 ,T 2)[intEquals(T 1 ,T 2) ≡ T 1 = T 2]
If convexity holds, then except for the first and last elements of S, every element of S has
elements that precede and follow it.

Convex() ⊃
[concatenation(x,S)
 ⊃ (∀ y 1)[member(y 1 ,S)

 ⊃ [intFinishes(y 1 ,x)

 ∨ (∃ ! y 2)[member(y 2 ,S) ∧ intMeets(y 1 ,y 2)]]]]
Convex() ⊃

[concatenation(x,S)
 ⊃ (∀ y 2)[member(y 2 ,S)

 ⊃ [intStarts(y 2 ,x)

 ∨ (∃ ! y 1)[member(y 1 ,S) ∧ intMeets(y 1 ,y 2)]]]]
The uniqueness (∃ !) follows from non-overlap.
 Hath: The basic predicate used here for expressing the composition of larger intervals
out of smaller clock and calendar intervals is Hath, from statements like “30 days hath
September" and “60 minutes hath an hour." Its structure is

Hath(N,u,x)
meaning “N proper intervals of duration one unit u hath the proper interval x." That is, if
Hath(N,u,x) holds, then x is the concatenation of N unit intervals where the unit is u. For
example, if x is some month of September then Hath(30,*Day*,x) would be true.
 Hath is defined as follows:

Hath(N,u,x) ≡ (∃ S)[card(S) = N ∧ (∀ z)[member(z,S) ⊃ duration(z,u) = 1]
∧ concatenation(x,S)]

That is, x is the concatenation of a set S of N proper intervals of duration one unit u.

74 • J.R. Hobbs and F. Pan

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

 The type constraints on its arguments can be proved as a theorem: N is an integer
(assuming that is the constraint on the value of card), u is a temporal unit, and x is a
proper interval:

Hath(N,u,x) ⊃ integer(N) ∧ TemporalUnit(u) ∧ ProperInterval(x)
This treatment of concatenation will work for scalar phenomena in general. This
treatment of Hath will work for measurable quantities in general.
3.3 The Structure of Temporal Units
We now define predicates true of intervals that are 1 temporal unit long. For example,
week is a predicate true of intervals whose duration is one week.

second(T) ≡ seconds(T) = 1
minute(T) ≡ minutes(T) = 1
hour(T) ≡ hours(T) = 1
day(T) ≡ days(T) = 1
week(T) ≡ weeks(T) = 1
month(T) ≡ months(T) = 1
year(T) ≡ years(T) = 1

We are now in a position to state the relations between successive temporal units.
minute(T) ⊃ Hath(60,*Second*,T)
hour(T) ⊃ Hath(60,*Minute*,T)
day(T) ⊃ Hath(24,*Hour*,T)
week(T) ⊃ Hath(7,*Day*,T)
year(T) ⊃ Hath(12,*Month*,T)

The relations between months and days are discussed in Section 4.5.

4. CLOCK AND CALENDAR

4.1 Time Zones
What hour of the day an instant is in is relative to the time zone. This is also true of
minutes, since there are regions in the world, e.g., central Australia, where the hours are
not aligned with GMT hours, but are, e.g., offset half an hour. To our knowledge, seconds
are not relative to the time zone.
 Days, weeks, months, and years are also relative to the time zone, since, e.g., 2004
began in the Eastern Standard time zone, three hours before it began in the Pacific
Standard time zone. Thus, predications about all clock and calendar intervals except
seconds are relative to a time zone.
 This can be carried to what seems like a ridiculous extreme, but turns out to yield a
very concise treatment. The Common Era (CE or AD) is also relative to a time zone
because 2004 years ago it began three hours earlier in what is now the Eastern Standard
time zone than in what is now the Pacific Standard time zone. What we think of as the
Common Era is in fact 24 (actually more) slightly displaced half-infinite intervals. (We
leave BCE to specialized ontologies.)
 The principal functions and predicates will specify a clock or calendar unit interval to
be the nth such unit in a larger interval. The time zone need not be specified in this
predication if it is already built into the nature of the larger interval. That means that the
time zone only needs to be specified in the largest interval, that is, the Common Era; that
time zone will be inherited by all smaller intervals. Thus, the Common Era can be
considered as a function from time zones to intervals.

CE(z) = T

An Ontology of Time for the Semantic Web • 75

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

Fortunately, this counterintuitive conceptualization will usually be invisible and, for
example, in Section 4.5, will not be evident in the most useful expressions for time. In
fact, the CE predication functions as a good place to hide considerations of time zone
when they are not relevant.
 We have been referring to time zones, but in fact it is more convenient to work in what
we might call the “time standard" in a time zone. That is, it is better to work with *PST*
as a legal entity than with the *PST* zone as a geographical region. A time standard is a
way of computing the time relative to a world-wide system of computing time. For each
time standard, there is a zone, or geographical region, and a time of the year in which it is
used to describe local times. Where and when a time standard is used has to be
axiomatized; this involves interrelating a time ontology and at least a simple geographical
ontology. These relations can be quite complex. We have done this for the entire world;
see Section 4.2.
 If we were to conflate time zones (i.e., geographical regions) and time standards, it
would likely result in problems in several situations. For example, the Eastern Standard
zone and the Eastern Daylight zone are not identical, since most of Indiana is on Eastern
Standard time all year. The state of Arizona and the Navajo Indian Reservation, two
overlapping geopolitical regions, have different time standards – one is Pacific and one is
Mountain.
 Time standards that seem equivalent, like Eastern Standard and Central Daylight,
should be thought of as separate entities. Whereas they function identically in the time
ontology, they do not do so in the ontology that articulates time and geography. For
example, it would be false to say that parts of Indiana shift in April from Eastern
Standard to Central Daylight time.

4.2 Time Zone Data in OWL
We have developed a time zone resource in OWL, not only for the US but also for the
entire world,4 which includes three parts: the time ontology file, the US time zone
instance file, and the world time zone instance file.
 The time zone ontology links a simple geographic ontology with our time ontology. It
defines a vocabulary about regions, political regions (countries, states, counties,
reservations, and cities), time zones, daylight savings policies, and the relationships
among these concepts. Its instances also link to other existing data on the Web, such as
Terry Payne’s US states instances,5 FIPS 55 county instances,6 and ISO country
instances.7
 It can handle all the usual time zone and daylight savings cases. For example, Los
Angles uses PST, the time offset from Greenwich Mean Time (GMT) is -8 hours, and it
observed daylight savings from April 4 to October 31 in 2004. But it handles unusual
cases as well. For example, in Idaho the northern part is in the Pacific zone, the southern
part in the Mountain. The city of West Wendover, Nevada is in the Mountain time zone,
while the rest of Nevada is in the Pacific.
 For the details, see the documentation,8 which includes an outline of the ontology and
examples of anticipated use.

4 http://www.isi.edu/ pan/timezonehomepage.html
5 http://www.daml.ri.cmu.edu/ont/USRegionState.daml
6 http://www.daml.org/2003/02/fips55/
7 http://www.daml.org/2001/09/countries/iso
8 http://www.isi.edu/~pan/damltime/time-zone-documentation.txt

76 • J.R. Hobbs and F. Pan

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

4.3 Clock and Calendar Units
The aim of this section is to explicate the various standard clock and calendar intervals. A
day as a calender interval begins at and includes midnight, and goes until, but does not
include, the next midnight. By contrast, a day as a duration is any interval that is 24 hours
in length. The day as a duration was dealt with in Section 3; this section deals with the
day as a calendar interval.
 Including the beginning but not the end of a calendar interval in the interval may strike
some as arbitrary. But we get a cleaner treatment if, for example, all times of the form
12:xx am, including 12:00 am, are part of the same hour and day, and all times of the
form 10:15:xx, including 10:15:00, are part of the same minute.
 It is useful to have three ways of saying the same thing: the clock or calendar interval y
is the nth clock or calendar interval of type u in a larger interval x. For minutes, this can
be expressed as follows:

min(y,n,x)
Under the reasonable assumption that there is only one such y, this can also be expressed
as follows:

minFn(n,x) = y
For stating general properties about clock intervals, it is also useful to have the following
way of expressing the same thing:

clockInt(y,n,u,x)
This expression says that y is the nth clock interval of type u in x. For example, the
proposition clockInt(10:03,3,*Minute*,[10:00,11:00]) holds.
 Here u is a member of the set of clock units, that is, one of *Second*, *Minute*, or
Hour.
 The larger interval x may not line up exactly with clock intervals. In this case we take y
to be the nth complete clock interval of type u in x.
 In addition, there is a calendar unit function with similar structure:

calInt(y,n,u,x)
This says that y is the nth calendar interval of type u in x. For example, the proposition
calInt(12Mar2002,12,*Day*,Mar2002) holds. Here u is one of the calendar units *Day*,
Week, *Month*, and *Year*.
 The unit *DayOfWeek* is introduced in Section 4.4.
 The relations among these modes of expression are as follows:

sec(y,n,x) ≡ clockInt(y,n,*Second*,x)
secFn(n,x) = y ≡ clockInt(y,n,*Second*,x)
min(y,n,x) ≡ clockInt(y,n,*Minute*,x)
minFn(n,x) = y ≡ clockInt(y,n,*Minute*,x)
hr(y,n,x) ≡ clockInt(y,n,*Hour*,x)
hrFn(n,x) = y ≡ clockInt(y,n,*Hour*,x)
da(y,n,x) ≡ calInt(y,n,*Day*,x)
daFn(n,x) = y ≡ calInt(y,n,*Day*,x)
mon(y,n,x) ≡ calInt(y,n,*Month*,x)
monFn(n,x) = y ≡ calInt(y,n,*Month*,x)
yr(y,n,x) ≡ calInt(y,n,*Year*,x)
yrFn(n,x) = y ≡ calInt(y,n,*Year*,x)

Weeks and months are dealt with separately, below.

An Ontology of Time for the Semantic Web • 77

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

 The am/pm designation of hours is represented by the function hr12.
hr12(y,n,*am*,x) ≡ hr(y,n,x)
hr12(y,n,*pm*,x) ≡ hr(y,n+12,x)

 A distinction is made above between clocks and calendars because they differ in how
they number their unit intervals. The first minute of an hour is labelled with 0; for
example, the first minute of the hour [10:00,11:00] is 10:00. The first day of a month is
labelled 1; the first day of March is March 1. We number minutes for the number just
completed; we number days for the day we are working on. Thus, if the larger unit has N
smaller units, the argument n in clockInt runs from 0 to N-1; whereas, in calInt, n runs
from 1 to N. To state properties true of both clock and calendar intervals, we can use the
predicate calInt and relate the two notions with the axiom

calInt(y,n,u,x) ≡ clockInt(y,n-1,u,x)
Note that the Common Era is a calendar interval in this sense, since it begins with 1 CE
and not 0 CE.
 The type constraints on the arguments of calInt are as follows:

calInt(y,n,u,x) ⊃ Interval(y) ∧ integer(n) ∧ TemporalUnit(u) ∧ Interval(x)
Each of the calendar intervals is that unit long; for example, a calendar year is a year
long.

calInt(y,n,u,x) ⊃ duration(y,u) = 1
There are properties relating to the labelling of clock and calendar intervals. If N u’s hath
x and y is the nth u in x, then n is between 1 and N.

calInt(y,n,u,x) ∧ Hath(N,u,x) ⊃ 0 < n ≤ N
The larger interval x need not line up with calendar intervals. For example, it might go
from 12:36 pm, February 1, to 12:36 pm, February 3; this interval Hath two days, but not
two calendar days. However, if x is itself a calendar interval, and u is a unit other than
Week, then there is a 1st small interval, and it starts the large interval.

Hath(N,u,x) ∧ calInt(x,n 1 ,u 1 ,x 1) ∧ u ≠ *Week* ⊃ (∃ ! y) calInt(y,1,u,x)

Hath(N,u,x) ∧ calInt(x,n 1 ,u 1 ,x 1) ∧ u ≠ *Week* ∧ calInt(y,1,u,x)
⊃ intStarts(y,x)

Under the same conditions, there is an Nth small interval, and it finishes the large
interval.

Hath(N,u,x) ∧ calInt(x,n 1 ,u 1 ,x 1) ∧ u ≠ *Week* ⊃ (∃ ! y) calInt(y,N,u,x)]

Hath(N,u,x) ∧ calInt(x,n 1 ,u 1 ,x 1) ∧ u ≠ *Week* ∧ calInt(y,N,u,x)
⊃ intFinishes(y,x)

Under these conditions, all but the last small interval have a small interval that succeeds
and is met by it.

calInt(y 1 ,n,u,x) ∧ calInt(x,n 1 ,u 1 ,x 1) ∧ u ≠ *Week* ∧ Hath(N,u,x) ∧ n < N

 ⊃ (∃ ! y 2)[calInt(y 2 ,n+1,u,x) ∧ intMeets(y 1 ,y 2)]
Moreover, all but the first small interval have a small interval that precedes and meets it.

calInt(y 2 ,n,u,x) ∧ calInt(x,n 1 ,u 1 ,x 1) ∧ u ≠ *Week* ∧ Hath(N,u,x) ∧ 1 < n

 ⊃ (∃ ! y 1)[calInt(y 1 ,n-1,u,x) ∧ intMeets(y 1 ,y 2)]

4.4 Weeks
A week is any seven consecutive days. A calendar week, by contrast, according to a
commonly adopted convention, starts at midnight, Saturday night, and goes to the next

78 • J.R. Hobbs and F. Pan

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

midnight, Saturday night. That is, weeks start with Sunday. (By contrast, the ISO 8061
standard week starts with Monday.) There are 52 weeks in a year, but there are not
usually 52 calendar weeks in a year.
 Weeks are independent of months and years. However, we can still talk about the nth
week in some larger period of time, e.g., the third week of the month or the fifth week of
the semester.9 So the same three modes of representation are appropriate for weeks as
well.

wk(y,n,x) ≡ calInt(y,n,*Week*,x)
wkFn(n,x) = y ≡ calInt(y,n,*Week*,x)

As it happens, the n and x arguments will often be irrelevant when we only want to say
that some period is a calendar week.
 The day of the week is a calendar interval of type *Day*. The nth day-of-the-week in a
week is the nth day in that interval.

dayofweek(y,n,x) ≡ da(y,n,x) ∧ (∃ n 1 ,x 1) wk(x,n 1 ,x 1)
The days of the week have special names in English.

dayofweek(y,1,x) ≡ Sunday(y,x)
dayofweek(y,2,x) ≡ Monday(y,x)
dayofweek(y,3,x) ≡ Tuesday(y,x)
dayofweek(y,4,x) ≡ Wednesday(y,x)
dayofweek(y,5,x) ≡ Thursday(y,x)
dayofweek(y,6,x) ≡ Friday(y,x)
dayofweek(y,7,x) ≡ Saturday(y,x)

For example, Sunday(y,x) says that y is the Sunday of week x.
 The ISO 8061 standard week is related to the traditional week as follows:

0 < n < 7 ⊃ [isodayofweek (y,n,x) ≡ dayofweek(y,n+1,x)]
 isodayofweek (y,7,x) ≡ Sunday(y,x)
 Since a day of the week is also a calendar day, it is a theorem that it is a day long.

dayofweek(y,n,x) ⊃ day(y)
One correspondence anchors the cycle of weeks to the rest of the calendar, for example,
saying that January 1, 2002 was the Tuesday of some week x.

(∀ z)(∃ x)Tuesday(dayFn(1,monFn(1,yrFn(2002,CE(z)))),x)
We can define weekdays and weekend days as follows:

weekday(y,x) ≡ [Monday(y,x) ∨ Tuesday(y,x) ∨ Wednesday(y,x)
∨ Thursday(y,x) ∨ Friday(y,x)]

weekendday(y,x) ≡ [Saturday(y,x) ∨ Sunday(y,x)]
4.5 Months and Years
The months have special names in English. In these rules we specify that the larger
interval is a calendar year.

[yr(x,n 1 ,x 1) ∧ mon(y,1,x)] ≡ January(y,x)

[yr(x,n 1 ,x 1) ∧ mon(y,2,x)] ≡ February(y,x)

[yr(x,n 1 ,x 1) ∧ mon(y,3,x)] ≡ March(y,x)

[yr(x,n 1 ,x 1) ∧ mon(y,4,x)] ≡ April(y,x)

9This may not accord perfectly with how we talk about such things, since we really mean
the nth complete week in x.

An Ontology of Time for the Semantic Web • 79

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

[yr(x,n 1 ,x 1) ∧ mon(y,5,x)] ≡ May(y,x)

[yr(x,n 1 ,x 1) ∧ mon(y,6,x)] ≡ June(y,x)

[yr(x,n 1 ,x 1) ∧ mon(y,7,x)] ≡ July(y,x)

[yr(x,n 1 ,x 1) ∧ mon(y,8,x)] ≡ August(y,x)

[yr(x,n 1 ,x 1) ∧ mon(y,9,x)] ≡ September(y,x)

[yr(x,n 1 ,x 1) ∧ mon(y,10,x)] ≡ October(y,x)

[yr(x,n 1 ,x 1) ∧ mon(y,11,x)] ≡ November(y,x)

[yr(x,n 1 ,x 1) ∧ mon(y,12,x)] ≡ December(y,x)
The number of days in a month have to be spelled out for individual months.

January(m,y) ⊃ Hath(31,*Day*,m)
March(m,y) ⊃ Hath(31,*Day*,m)
April(m,y) ⊃ Hath(30,*Day*,m)
May(m,y) ⊃ Hath(31,*Day*,m)
June(m,y) ⊃ Hath(30,*Day*,m)
July(m,y) ⊃ Hath(31,*Day*,m)
August(m,y) ⊃ Hath(31,*Day*,m)
September(m,y) ⊃ Hath(30,*Day*,m)
October(m,y) ⊃ Hath(31,*Day*,m)
November(m,y) ⊃ Hath(30,*Day*,m)
December(m,y) ⊃ Hath(31,*Day*,m)

The definition of a leap year is as follows:
(∀ z)[leapYear(y) ≡ (∃ n,x)[yr(y,n,CE(z))

 ∧ [divides(400,n) ∨ [divides(4,n) ∧ ¬divides(100,n)]]]
We leave leap seconds to specialized ontologies.
 Now the number of days in February can be specified.

February(m,y) ∧ leapYear(y) ⊃ Hath(29,*Day*,m)
February(m,y) ∧ ¬leapYear(y) ⊃ Hath(28,*Day*,m)

A reasonable approach to defining month as a unit of temporal measure would be to
specify that the start and end points have to be on the same days of successive months.
The following rather ugly axiom captures this.

month(T)
 ≡ (∃ t 1 ,t 2 ,d 1 ,d 2 ,n 1 ,n 2 ,n 3 ,n 4 ,m 1 ,m 2 ,y 1 ,y 2 ,e,h 1 ,h 2 ,j 1 ,j 2 ,s 1 ,s 2)

 [begins(t 1 ,T) ∧ ends(t 2 ,T) ∧ beginsOrIn(t 1 ,d 1)

 ∧ beginsOrIn(t 2 ,d 2) ∧ da(d 1 ,n 1 ,m 1) ∧ mon(m 1 ,n 3 ,y 1)

 ∧ yr(y 1 ,n 4 ,e) ∧ da(d 2 ,n 2 ,m 2)

 ∧ [mon(m 2 ,n 3 +1,y 1)

∨ (∃ y 2)[n 1 = 12 ∧ mon(m 2 ,1,y 2) ∧ yr(y 2 ,n 4 +1,e)]]

 ∧ Hath(n,*Day*,m 2) ∧ [[n ≥ n 1 ∧ n 2 = n 1]

∨ [n < n 1 ∧ n 2 = n]]

80 • J.R. Hobbs and F. Pan

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

 ∧ beginsOrIn(t 1 ,h 1) ∧ beginsOrIn(t 2 ,h 2)

 ∧ (∃ i)[hr(h 1 ,i,d 1) ∧ hr(h 2 ,i,d 2)]

 ∧ beginsOrIn(t 1 ,j 1) ∧ beginsOrIn(t 2 ,j 2)

 ∧ (∃ i)[min(j 1 ,i,h 1) ∧ min(j 2 ,i,h 2)]

 ∧ beginsOrIn(t 1 ,s 1) ∧ beginsOrIn(t 2 ,s 2)

 ∧ (∃ i)[sec(s 1 ,i,j 1) ∧ sec(s 2 ,i,j 2)]]
The first eight conjuncts in the consequent identify and label the days the interval begins
and ends in. The ninth conjunct checks that the months are right, taking care of the
rollover from December to January. The tenth and eleventh conjuncts make sure the days
are right, taking care of the case where the second month has too few days. In this
definition, one month from 2:36 pm, January 31, 2004, is 2:36 pm, February 29, 2004.
The last nine conjuncts make sure the hours, minutes, and seconds are right. This
definition does not handle precisions less than a second. It would be a technical exercise
to do so.
 Thus, the month as a measure of duration is related to days as a measure of duration
only indirectly, mediated by the calendar. It is possible to prove that months are between
28 and 31 days.
 The mismatch between days and months in the calendar entails significant difficulties
in working out a satisfactory temporal arithmetic. We will deal with this problem in a
subsequent paper.
 To say that July 4 is a holiday in the United States, we could write

(∀ d,m,y)[da(d,4,m) ∧ July(m,y) ⊃ holiday(d,USA)]
Holidays like Easter can be defined in terms of this ontology coupled with an ontology of
the phases of the moon.
 Other calendar systems could be axiomatized similarly, and the BCE era could also be
axiomatized in this framework; these are left as exercises for interested developers.

5. DESCRIBING TIMES AND DURATIONS

5.1 Timestamps
Standard notation for times list the year, month, day, hour, minute, second, and time
zone. It is useful to define a predication for this.

timeOf(t,y,m,d,h,n,s,z)
≡ beginsOrIn(t,secFn(s,minFn(n,hrFn(h,

daFn(d,monFn(m,yrFn(y,CE(z))))))))
Alternatively,

timeOf(t,y,m,d,h,n,s,z)
 ≡ (∃ s 1 ,n 1 ,h 1 ,d 1 ,m 1 ,y 1 ,e)

[beginsOrIn(t,s 1) ∧ sec(s 1 ,s,n 1) ∧ min(n 1 ,n,h 1)

 ∧ hr(h 1 ,h,d 1) ∧ da(d 1 ,d,m 1) ∧ mon(m 1 ,m,y 1)

 ∧ yr(y 1 ,y,e) ∧ CE(z) = e]
For example, an instant t has the time

5:14:35pm PST, Wednesday, February 6, 2002

An Ontology of Time for the Semantic Web • 81

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

if the following properties hold for t:
timeOf(t,2002,2,6,17,14,35,*PST*)
∧ (∃ w,x)[beginsOrIn(t,w) ∧ Wednesday(w,x)]

The second line says that t is in the Wednesday w of some week x.
 The relations among time zones can be expressed in terms of the timeOf predicate.
Two examples follow:

timeOf(t,y,m,d,h,n,s,*EST*) ≡ timeOf(t,y,m,d,h,n,s,*CDT*)
timeOf(t,y,m,d,h,n,s,*GMT*) ∧ hours(T) = 8 ∧ ends(t,T)
 ∧ begins(t 1 ,T) ∧ timeOf(t 1 ,y 1 ,m 1 ,d 1 ,h 1 ,n,s,*GMT*)

 ⊃ timeOf(t,y 1 ,m 1 ,d 1 ,h 1 ,n,s,*PST*)
In the second rule, subtracting an interval of 8 hours from the time t and looking at the
time of its beginning point hides the ugly details of computing the years, months, and
days in case of rollover. For those who prefer to see the ugly details, here they are:

(∀ t,y,m,d,h,n,s)[h ≥ 8
 ⊃ [timeOf(t,y,m,d,h,s,*GMT*) ≡ timeOf(t,y,m,d,h-8,s,*PST*)

(∀ t,y,m,d,h,n,s)[h < 8 ∧ d > 1
 ⊃ [timeOf(t,y,m,d,h,s,*GMT*) ≡ timeOf(t,y,m,d-1,h+16,s,*PST*)

(∀ t,y,m,d,h,n,s,M,d 1 ,Y)[h < 8 ∧ d = 1 ∧ m > 1 ∧ mon(M,m,Y)

 ∧ yr(Y,y,CE(*GMT*) ∧ Hath(d 1 ,*Day*,M)

 ⊃ [timeOf(t,y,m,d,h,s,*GMT*) ≡ timeOf(t,y,m-1,d 1 ,h+16,s,*PST*)
(∀ t,y,m,d,h,n,s)[h < 8

 ⊃ [timeOf(t,y,1,1,h,s,*GMT*) ≡ timeOf(t,y-1,12,31,h+16,s,*PST*)
5.2 Calendar-Clock Descriptions
It is inconvenient to express calInt(y,n,u,x) and clockInt(y,n,u,x) directly in a description
logic-based markup language, such as OWL, since x is itself a clock or calendar interval
that requires description. So we have defined a calendar-clock or time description in
OWL for specifying both calendar and clock information for a calendar-clock interval.
 A calendar-clock description has the following properties or fields: unitType, yearOf,
monthOf, weekOf, dayOf, hourOf, minuteOf, secondOf, and timeZoneOf. The property
unitType specifies the temporal unit type of the calendar-clock description, and its
domain is the set of temporal units.
 For example, the unit type of 10:30 is minute, and the unit type of March 20, 2003 is
day. The unit type is required. For a given temporal unit type, all the fields or properties
for smaller units will be ignored; for instance, if the temporal unit type is day, the values
of the fields or properties hourOf, minuteOf, and secondOf, if present, will be ignored.
 Since calendar-clock descriptions are for describing calendar-clock intervals, we have
defined a property or relation, called calendarClockDescriptionOf with
CalendarClockDescription as the range.
 To express calInt(12Mar2002,12,*Day*,Mar2002), for example, using a calendar-
clock description, we need an instance of CalendarClockDescription that has values only
for unitType (day), yearOf (2002), monthOf (3), and dayOf (12).
clockInt(10:03,3,*Minute*,[10:00, 11:00]) can be expressed similarly.
 More details about calendar-clock descriptions, as well as duration descriptions,
together with examples used in OWL-S10 can be found in Pan and Hobbs [2004].

10 http://www.daml.org/services/owl-s/

82 • J.R. Hobbs and F. Pan

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

5.3 Duration Descriptions
There are two systems of time that are based on different astronomical facts. The year-
month system is based on the revolution of the earth around the sun. The week-day-hour-
minute-second system is based on the rotation of the earth around its axis. As long as we
don’t mix these two systems, temporal arithmetic is simple. But they don’t align well,
and when we try to relate days and months, complications arise, as we have already seen.
 We cannot simply rule out months as units, as some have suggested. Monthly rates
play a very important role in commerce. If you pay $1000 a month in rent, you are paying
more per day for your apartment in February than in March, and often when rents are
prorated, the number of days in that specific month is used in the calculation, although in
some industries months have been normalized to 28 or 30 days.
 Hence it is important to build a consistent system of duration measurement that
involves both months and days.
 Here we introduce duration descriptions, in which the duration of an arbitrary finite
interval can be described as a concatenation of years, months, weeks, days, hours,
minutes, seconds, and fractions of seconds. The primary convention we follow is that
used by car rental and other companies that have different rates for different periods of
time. From the beginning of the interval, we fit in as many of the largest unit type as
possible. Then, into the remainder, we fit in as many as possible of the next largest unit
type, and so on. For example, when we rent a car, we pay the weekly rate for as many full
weeks as we keep the car, then we pay the daily rate for any leftover full days, then the
hourly rate for any leftover hours.
 The predication durationOf(T,y,m,w,d,h,n,s) says that duration of the interval T is y
years, m months, w weeks, d days, h hours, n minutes, and s seconds. The values of the
numeric arguments can be any real number, although indeterminacies will arise if we try
to determine the identity of a duration described as a fractional number of months and a
duration described in terms of days. We allow real numbers, rather than restricting the
values to integers, because we frequently talk about such durations as 1 1/2 months.
However, for the rest of this development we assume that all of the numeric arguments
are integers.
 The predicate durationOf can be defined in the following rather cumbersome manner:

durationOf(T,y,m,w,d,h,n,s)
 ≡ (∃ S,T 1)[concatenation(T,S ∪{T 1 }) ∧ card(S) = y

 ∧ (∀ v)[v∈S ⊃ year(v)]
 ∧ intFinishes(T 1 ,T) ∧ durationOf(T 1 ,0,m,w,d,h,n,s)]

durationOf(T,0,m,w,d,h,n,s)
 ≡ (∃ S,T 1)[concatenation(T,S ∪{T 1 }) ∧ card(S) = m

 ∧ (∀ v)[v∈S ⊃ month(v)]
 ∧ intFinishes(T 1 ,T) ∧ durationOf(T 1 ,0,0,w,d,h,n,s)]

durationOf(T,0,0,w,d,h,n,s)
 ≡ (∃ S,T 1)[concatenation(T,S ∪{T 1 }) ∧ card(S) = w

 ∧ (∀ v)[v∈S ⊃ week(v)]
 ∧ intFinishes(T 1 ,T) ∧ durationOf(T 1 ,0,0,0,d,h,n,s)]

An Ontology of Time for the Semantic Web • 83

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

durationOf(T,0,0,0,d,h,n,s)
 ≡ (∃ S,T 1)[concatenation(T,S ∪{T 1 }) ∧ card(S) = d

 ∧ (∀ v)[v∈S ⊃ day(v)]
 ∧ intFinishes(T 1 ,T) ∧ durationOf(T 1 ,0,0,0,0,h,n,s)]

durationOf(T,0,0,0,0,h,n,s)
 ≡ (∃ S,T 1)[concatenation(T,S ∪{T 1 }) ∧ card(S) = h

 ∧ (∀ v)[v∈S ⊃ hour(v)]
 ∧ intFinishes(T 1 ,T) ∧ durationOf(T 1 ,0,0,0,0,0,n,s)]

durationOf(T,0,0,0,0,0,n,s)
 ≡ (∃ S,T 1)[concatenation(T,S ∪{T 1 }) ∧ card(S) = n

 ∧ (∀ v)[v∈S ⊃ minute(v)]
 ∧ intFinishes(T 1 ,T) ∧ durationOf(T 1 ,0,0,0,0,0,0,s)]

durationOf(T,0,0,0,0,0,0,s)
 ≡ (∃ S,T 1)[concatenation(T,S) ∧ card(S) = s

 ∧ (∀ v)[v∈S ⊃ second(v)]]
The axiom saying that an instant has 0 duration is

Instant(t) ⊃ durationOf(t,0,0,0,0,0,0,0)
The predicates timeOf and durationOf can be related. Corresponding to every time is the
duration of the interval from the beginning of the Common Era to that time.

timeOf(t0,1,1,1,0,0,0) ∧ timeBetween(T,t0,t)
 ⊃ (∀ y,m,d,h,n,s)[timeOf(t,y,m,d,h,n,s)

 ≡ durationOf(T,y-1,m-1,d-1,h,n,s)]

The duration of an interval can have many different descriptions. An interval can be 1
day 2 hours, or 26 hours, or 1560 minutes, and so on. It is useful to be able to talk about
these descriptions in a convenient way as independent objects and to talk about their
equivalences. Thus, we define a specific kind of individual called a “duration
description," together with a number of functions relating the duration description to the
values of each of the eight arguments of durationOf. So we convert the 8-ary predicate
durationOf into eight binary relations that are more convenient for description logic-
based markup languages like OWL. Here is the definition of the duration description:

(∀ T,y,m,w,d,h,n,s)[durationOf(T,y,m,w,d,h,n,s)
 ≡ (∃ D)[durationDescriptionOf(D,T) ∧ DurationDescription(D)

 ∧ yearsOf(D) = y ∧ monthsOf(D)=m
 ∧ weeksOf(D)=w ∧ daysOf(D)=d
 ∧ hoursOf(D)=h ∧ minutesOf(D)=n ∧ secondsOf(D)=s]]

We say that a duration description is canonical if the number of weeks is zero and the
number of all other units is less than the number of those units in the next higher unit.
That is, there is an arbitrarily large number of years, less than 12 months, less than 24
hours, less than 60 minutes, and less than 60 seconds. The number of days is less than the
number that could be consumed by one more month, given where the interval is anchored
in time.

84 • J.R. Hobbs and F. Pan

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

 The definition of canonicalDurDescr(D) is as follows:

canonicalDurDescr(D)
 ≡ [0 ≤ monthsOf(D) < 12 ∧ weeksOf(D) = 0
 ∧ 0 ≤ hoursOf(D) < 24 ∧ 0 ≤ minutesOf(D) < 60

 ∧ 0 ≤ secondsOf(D) < 60
 ∧ (∃ T,T 1 ,T 2 ,t,t 1 ,t 2)

 [durationOf(T 1 ,yearsOf(D),monthsOf(D),0,0,0,0,0)

 ∧ durationDescriptionOf(D,T) ∧ begins(t 1 ,T)

 ∧ begins(t 1 ,T 1) ∧ month(T 2) ∧ intMeets(T 1 ,T 2)

 ∧ ends(t 2 ,T 2) ∧ ends(t,T) ∧ before(t,t 2)]]

The existentially quantified expression at the end requires explanation. T is the interval
that D describes. T 1 is the interval starting at the same point and including only D’s year

and month segments. T 2 is a month-long interval that is appended to the end of T 1 . The

daysOf slot of D is canonical if and only if T ends before T 2 does. The complexities of
day-month arithmetic are hidden in the predicate month.

6. FUTURE DIRECTIONS

6.1 Temporal Arithmetic
As long as we stay within the year-month system or the week-day-hour-minute-second
system, temporal arithmetic is just arithmetic and requires only a few simple axioms to
encode. When we mix months and days, problems arise.
 We are currently working on a set of relatively simple rules that will allow us to do
temporal arithmetic with months and days with a moderate degree of consistency. (This
will be the subject of a future paper.) However, just to give the reader a flavor of the
problems, consider that January 31, 2003, plus 2 months equals March 31, 2003. But if
we add the months one at a time, we get a different result. January 31, 2003, plus one
month is February 28, 2003. February 28, 2003, plus one month would seem to be March
28, 2003. If we want to avoid results like this, we need, in some sense, to keep track of
the history of the computation.

6.2 Deictic Time
Deictic temporal concepts such as “now,” “today,” “tomorrow night,” and “last year” are
more common in natural language texts than they will be in descriptions of Web
resources, hence we have postponed development of this domain until the first three are
in place. But since most of the content on the Web is in natural language, it will
ultimately be necessary for this ontology to be developed. It should, as well, mesh well
with the annotation standards used in automatic tagging of text (cf., Hobbs and
Pustejovsky [2003]).
 We expect that the key concept in this area will be a relation now between an instant
and an utterance or document.

now(t,d)
It may refer to the time of writing, the time of reading, a period of validity, or some other
functionally determined instant or interval.

An Ontology of Time for the Semantic Web • 85

ACM Transactions on Asian Language Information Processing, Vol. 3, No. 1, March 2004.

 The concept of “today" would also be relative to a document, and be defined as
follows:

today(T,d) ≡ (∃ t,n,x)[now(t,d) ∧ inside(t,T) ∧ da(T,n,x)]
That is, T is today with respect to document d if and only if there is an instant t in T that
is now with respect to the document and T is a calendar day (and thus the nth calendar
day in some interval x).
 Present, past, and future can be defined in the obvious way in terms of now and before.
 Another feature of a treatment of deictic time is an axiomatization of the concepts of
“last," “this," and “next" on anchored sequences of temporal entities.

6.3 Aggregates of Temporal Entities
A number of common expressions and commonly used properties are properties of
sequences of temporal entities. These properties may be properties of all the elements in
the sequence, as in “every Wednesday” or they may be properties of parts of the
sequence, as in “three times a week” or “an average of once a year”. We have also
postponed development of this domain until the first three domains are well in hand.

6.4 Vague Temporal Concepts
In natural language, a very important class of temporal expressions are inherently vague.
Included in this category are such terms as “soon," “recently," “late," and “a little while."
These require an underlying theory of vagueness, and in any case are probably not
immediately critical for the Semantic Web. (This area will be postponed for a little
while).

ACKNOWLEDGMENTS
We have profited from discussions with James Allen, George Ferguson, Pat Hayes,
Inderjeet Mani, Drew McDermott, Adam Pease, James Pustejovsky, Stephen Reed, and
Austin Tate, among others, none of whom, however, would necessarily agree entirely
with the way we have characterized the effort.

REFERENCES
ALLEN, J.F. AND FERGUSON, G. 1997. Actions and events in interval temporal logic. In Spatial and Temporal

Reasoning. O. Stock, ed., Kluwer, Dordrecht, Netherlands, 205-245.
ALLEN, J.F. AND KAUTZ, H.A. 1985. A model of naive temporal reasoning. In Formal Theories of the

Commonsense World. J.R. Hobbs and R.C. Moore, eds., Ablex., 251-268.
HOBBS, J.R. AND PUSTEJOVSKY, J. 2003. Annotating and reasoning about time and events. In Proceedings of

AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning (Stanford, CA, March
2003).

PAN, F. AND HOBBS, J.R. 2004. Time in OWL-S. In Proceedings of AAAI Spring Symposium on Semantic Web
Services (Stanford University, CA, March 2004).

Received March 2004; revised June 2004; accepted June 2004

