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Abstract 

In this paper we describe our approach for representing 
temporal aggregates in OWL, as an extension to the initial 
version of the OWL-Time, a temporal ontology for 
describing the temporal content of Web pages and the 
temporal properties of Web services. We represent the 
temporal aggregates ontology in both first-order logic 
axioms and OWL encodings. We also present several 
examples in detail to show how our ontology can be used to 
represent complex multiple-layered and conditional 
temporal aggregates for the Semantic Web. 

1. Introduction   
Temporal information is everywhere on the Web, 
especially in the Web services (Dumas et al. 2001; 
McIlraith et al. 2001; Medjahed et al. 2003), such as 
temporal availability of services (e.g., “an advertised 
service is available from 01/01/2004 to 01/15/2005” 
(Dumas et al. 2001)), temporal constraints on the user’s 
preferences (e.g., “I would prefer driving over flying if the 
driving time to my destination is less than three hours.” 
(McIlraith et al. 2001); “I would like to receive this book 
by next Monday.”), temporal information in service 
description (e.g., rental dates of car rental services; order 
dates, process time, and delivery dates of book-selling 
services (Pan and Hobbs 2004)), and so on. 
 In response to this need, in conjunction with OWL-S 
(OWL-S Coalition 2004), a temporal ontology, OWL-Time 
(Hobbs and Pan 2004) (formerly DAML-Time), has been 
developed for describing the temporal content of Web 
pages and the temporal properties of Web services, as 
required for Semantic Web (Berners-Lee et al. 2001) 
applications. Its development is being informed by 
temporal ontologies developed at a number of sites and is 
intended to capture the essential features of all of them and 
make them and their associated resources easily available 
to a large group of Web developers and users.  
 OWL-Time is currently used in the OWL-S process file 
for the definitions of the class “Process” and 
“ControlConstruct”, and the property “timeout” and 
“timeoutAbsolute”. As shown in (Pan and Hobbs 2004), it 
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can also be used to define service input parameters (e.g., 
the departure time for air ticketing services), output 
parameters (e.g., the process time for book-selling 
services), and conditional output parameters (e.g., delivery 
duration for book-selling services, depending on the type 
of shipping methods the user selects). 
 The initial version of the OWL-Time includes the 
topological aspects of time, measures of duration, and the 
clock and calendar information. We have now extended it 
to cover temporal aggregates as well, and this paper 
describes that work. 
 Temporal aggregates are aggregates/collections of 
temporal entities, for instance, “every 3rd Monday in 
2001”, and “4 consecutive Sundays”. Such information is 
very common on the Web, for example, in Web services 
you may have “the customer service is available from 8am 
to 5pm EST every working day between 01/01/2004 to 
01/15/2005 (Dumas et al. 2001)”; “send me the closing 
price of IBM, every 7 days after it exceeds $100, as long as 
it remains above $100 (Motakis and Zaniolo 1997)”.  
 This paper more focuses on the OWL (McGuinness and 
Harmelen 2003) encodings of the temporal aggregate 
ontology1. The complete first-order logic (FOL) 
axiomatization of the ontology can be found in (Pan and 
Hobbs 2005). However, for most of the predicate 
definitions and the examples, both FOL axioms and the 
corresponding OWL encodings are shown together. In fact, 
we can see the two representations are very consistent and 
it’s straightforward to map from the OWL encodings back 
to the FOL axioms so that it can access the full ontology of 
time for temporal reasoning.   
 In Section 2 and 3 we first describe some basics of 
OWL-Time, including the topological temporal relations, 
and the calendar and clock information. Here we only 
present those parts that are essential for our treatment of 
temporal aggregates. The full definitions of OWL-Time 
can be found in (Hobbs and Pan 2004). The temporal 
aggregates ontology, especially its OWL encodings, is 
described in detail in Section 4, and examples are shown in 
Section 5 to illustrate how our ontology can be used to 
represent temporal aggregates information, including 
complex multiple-layered and conditional temporal 
aggregates, in FOL and OWL.   

                                                 
1 For the complete OWL encodings of the temporal aggregates ontology, 
see http://www.isi.edu/~pan/damltime/TemporalAggregates.owl 



2. Topological Temporal Relations 
The most basic temporal concepts in the ontology are 
Instant, Interval, Instant Event, and Interval Event. Instants 
are, intuitively, point-like in that they have no interior 
points, and intervals are, intuitively, things with extent. 
Instant events are events that are instantaneous, for 
example, the arrival of a package, and interval events are 
events that span some time interval, for example, a meeting 
from 2pm to 3pm. 
 Besides these four basic temporal concepts, there are 
five other more general temporal concepts/classes: 
Temporal Thing, Temporal Entity, Instant Thing, Interval 
Thing, and Event.  The subclass hierarchy of these 
temporal concepts/classes is shown in the Figure 1. The 
arcs denote the (super) class has only those subclasses, for 
example, Instant Thing has only two subclasses: Instant 
and Instant Event. 
 
 

 

 

 

 

 
Figure1: Subclass hierarchy of temporal concepts 
 
Their FOL axiom definitions and the corresponding OWL 
encodings are straightforward. For example, Temporal 
Entity has only two subclasses:  Interval and Instant, and 
this is defined in FOL and OWL as: 
 
FOL:  
   TemporalEntity(T) ≡ Interval(T) ∨ Instant(T) 
 
OWL: 
  <owl:Class rdf:ID="Instant">  
    <rdfs:subClassOf rdf:resource="#TemporalEntity"/> 
  </owl:Class> 
 
  <owl:Class rdf:ID="Interval">  
    <rdfs:subClassOf rdf:resource="#TemporalEntity"/> 
  </owl:Class> 
 
  <owl:Class rdf:ID="TemporalEntity"> 
    <owl:unionOf rdf:parseType="Collection"> 
      <owl:Class rdf:about="#Instant" /> 
      <owl:Class rdf:about="#Interval" /> 
    </owl:unionOf> 
  </owl:Class> 
 
begins and ends are relations between instant things and 

temporal things, and the beginnings and ends of temporal 
entities, if they exist, are unique. In some approach to 
infinite intervals, a positively infinite interval has no end, 

and a negatively infinite interval has no beginning.  Hence, 
we use the relations begins and ends in the ontology, 
rather than defining functions beginning-of and end-of, 
since the functions would not be total. begins is defined 
as: 
 
FOL: 
  begins(t,T) ⊃ InstantThing(t) ∧ TemporalThing(T) 
 
OWL:  
  <owl:ObjectProperty rdf:ID="begins"> 
    <rdf:type rdf:resource="&owl;FunctionalProperty" /> 
    <rdfs:domain rdf:resource="#TemporalThing" /> 
    <rdfs:range  rdf:resource="#InstantThing" /> 
  </owl:ObjectProperty> 
 
 inside is a relation between an instant thing and an 
interval thing, and it is not intended to include beginnings 
and ends of intervals.  
 The relations between intervals defined in Allen’s 
temporal interval calculus (Allen 1984) and temporal 
durations are also defined in OWL-Time. 

3. Clock and Calendar 
Calendar intervals are described with the predicate calInt:  
  calInt(y,n,u,x) 
 This says that y is the nth calendar interval of type u in x. 
For example, the proposition calInt (12Mar 
2002,12,*Day*,Mar2002) holds. Here u is one of the 
calendar units *Day*, *Week*, *Month*, and *Year*. 
 Clock intervals, weeks, days of the week, months, and 
years are also defined (Hobbs and Pan 2004).  
 Standard notation for date lists the year, month, day, and 
time zone. It is useful to define a predication for this: 
(Dates of intervals can be defined similarly) 
 
dateOf(t,y,m,d,z) 
   ≡ (∃d 1 ,m 1 ,y 1 ,e) [beginsOrIn(t,d 1 ) 
  ∧ calInt(d 1 ,d,*Day*,m 1 ) ∧ calInt(m 1 ,m,*Month*,y 1 ) 
  ∧ calInt(y 1 ,y,*Year*,e) ∧ CE(z) = e] 

3.1 Calendar-Clock Description 
To express calInt(y,n,u,x) and clockInt(y,n,u, x) 
directly in OWL is inconvenient since x is itself a clock or 
calendar interval that requires description. So we defined a 
calendar-clock description in OWL for specifying the 
calendar and clock information for a calendar-clock 
interval, a subclass of Interval. 

A calendar-clock description has the following 
properties/fields: unit type, year, month, week, day, day of 
week, day of year, hour, minute, second, and time zone: 

 
<owl:Class rdf:ID="CalendarClockDescription"> 
    <owl:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#unitType" /> 
           <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1 
       </owl:cardinality> 

Instant Interval Instant Event Interval Event 

Instant Thing Interval Thing 

Event Temporal Entity 

Temporal Thing 



      </owl:Restriction> 
    </owl:subClassOf>  
  ... 
    <owl:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#timeZone" /> 
            <owl:maxCardinality 
   rdf:datatype="&xsd;nonNegativeInteger">1 
        </owl:maxCardinality> 
      </owl:Restriction> 
    </owl:subClassOf> 
  </owl:Class> 

 
The property unitType specifies the temporal unit type 

of the calendar-clock description, and its domain is 
TemporalUnit: 

 
  <owl:Class rdf:ID="TemporalUnit">  
    <owl:oneOf rdf:parseType="Collection"> 
      <TemporalUnit rdf:about="#unitSecond" /> 
      <TemporalUnit rdf:about="#unitMinute" /> 
      <TemporalUnit rdf:about="#unitHour" /> 
      <TemporalUnit rdf:about="#unitDay" /> 
      <TemporalUnit rdf:about="#unitWeek" /> 
      <TemporalUnit rdf:about="#unitMonth" /> 
      <TemporalUnit rdf:about="#unitYear" /> 
    </owl:oneOf> 
  </owl:Class> 

 
For example, the temporal unit type of 10:30 is minute 

(unitMinute), and the temporal unit type of March 20, 
2003 is day (unitDay). The unit type is required.  With a 
given temporal unit type, all the fields/properties for 
smaller units will be ignored. For instance, if the temporal 
unit type is day (unitDay), the values of the field/property 
hour, minute, and second, if present, will be ignored.  

Since calendar-clock description is for describing 
calendar-clock intervals, we defined a property, called 
calendarClockDescriptionOf with CalendarClock- 

Description as the range, for calendar-clock intervals: 
 
  <owl:ObjectProperty rdf:ID="calendarClockDescriptionOf"> 
    <rdfs:domain rdf:resource="#CalendarClockInterval" /> 
    <rdfs:range rdf:resource="#CalendarClockDescription" /> 
  </owl:ObjectProperty> 

 
In order to specify that an instant thing is in a calendar-

clock interval, an inCalendarClock property/ relation is 
defined similarly to calendarClock-DescriptionOf as 
follows: 

 

  <owl:ObjectProperty rdf:ID="inCalendarClock"> 
    <rdfs:domain rdf:resource="#InstantThing" /> 
    <rdfs:range rdf:resource="#CalendarClockDescription" /> 
  </owl:ObjectProperty> 

 
With this inCalendarClock relation, we can say that an 

instant thing is at a specific calendar-clock time. For 
example, the beginning of a meeting, which is an instant, is 
at 6:00pm which is actually in a calendar-clock interval of 
[6:00:00, 6:01:00). 

We also defined in OWL two simpler relations, 
calendarClockDescriptionDatatype and inCalen-

darClockDatatype. The only difference between these two 
relations and the above calendarClock-DescriptionOf 
and inCalendarClock relations is their ranges: these two 
simpler relations use the XSD dateTime as their ranges, 
while the above uses CalendarClockDescription: 
 
  <owl:DatatypeProperty 
   rdf:ID="calendarClockDescriptionDataType"> 
    <rdfs:domain rdf:resource="#IntervalThing" /> 
    <rdfs:range  rdf:resource="&xsd;dateTime" /> 
  </owl:DatatypeProperty> 
 
  <owl:DatatypeProperty rdf:ID="inCalendarClockDataType"> 
    <rdfs:domain rdf:resource="#InstantThing" /> 
    <rdfs:range  rdf:resource="&xsd;dateTime" /> 
  </owl:DatatypeProperty> 

 
It’s much simpler to use the XSD dateTime, however, the 
advantage of using Calendar-ClockDescription is that it 
can express more information than dateTime, such as 
"week", "day of week" and "day of year". Moreover, each 
field of CalendarClockDescription is separate so that it's 
easier to extract the value of some fields for the later use 
and easier to reason about. 

4. Temporal Aggregates Ontology 
The predicate everynthp says that a temporal sequence s 
consists of every nth element of the temporal sequence s0 
for which property p is true (see (Pan and Hobbs 2005) for 
its definition axiom): 
     everynthp(s,s0,p,n) 

 For example, everynthp(s,s0,Monday1,2) defines a 
temporal sequence s of “every other Monday”.  
 The context temporal sequence s0 is useful not only to 
constrain s in a particular segment of time, but also to 
express complex multiple-layered temporal aggregates. For 
example, “every 3rd Monday in every July in every other 
year” can be split into three (primitive) temporal 
sequences: “every 3rd Monday” (s1), “every July” (s2), and 
“every other year” (s3), and s1 is in the context of s2 which 
is in the context of s3. Such examples will be illustrated in 
detail in the next section.  
 In fact, the property p is not limited only to simple 
temporal properties. In theory it can be any temporal 
properties. For example, in conditional temporal 
aggregates “every 3rd rainy day that’s not a holiday”, p is 
the unary predicate name representing “rainy day that’s not 
a holiday”. 
 The concept of granularity in (Bettini et al.  2002) 
corresponds to the temporal sequence concept in our 
terminology. All of the examples they give are uniform 
temporal sequences. For example, their "hour" granularity 
within an interval T is the set s such that 
everynthp(s,T,hr1,1), where hr1 is to hr as Monday1 is 



to Monday (see (Pan and Hobbs 2005) for the definition of 
Monday and Monday1). 
 In order to map easily between OWL-Time and 
iCalendar (Dawson and Stenerson 1998), we have 
introduced the predicate byTulistRecurs which is a 
special predicate for handling temporal aggregates that 
only involve temporal units (see (Pan and Hobbs 2005) for 
its definition axiom): 
  byTulistRecurs (s,ls,s’,tu,tu’)     

 It says that a temporal sequence s consists of a list (ls) of 
elements with temporal unit tu of the temporal sequence s’ 
whose temporal unit is tu’. For example, byTulistRecurs 
(s,{1, 5, 20},s’,*Week*,*Year*) defines a temporal 
sequence s of “every 1st, 5th and 20th weeks of a sequence 
(s’) of years”. 

4.1. Temporal Sequences and Their Members 
In order to encode the temporal aggregates ontology in 
OWL, we first defined temporal sequence. It has only one 
optional property hasMemeber which maps from a temporal 
sequence to any temporal thing. A temporal sequence can 
have no (empty sequence) or many members:  
 
  <owl:Class rdf:ID="TemporalSeq">  
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#hasMember" /> 
             <owl:minCardinality 
   rdf:datatype="&xsd;nonNegativeInteger">0 
            </owl:minCardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
 
  <owl:ObjectProperty rdf:ID="hasMember"> 
    <rdfs:domain rdf:resource="#TemporalSeq" /> 
    <rdfs:range  rdf:resource="#TemporalThing" /> 
  </owl:ObjectProperty> 
 
 Since we also want to have a backward link pointing 
from the temporal sequence member to its associated 
sequence, a TemporalSeqMember class is defined. It’s a 
subclass of Temporal Thing, and has a required pair of 
properties: isMemberOf and hasPosition, so that it can not 
only point back to the associated sequence but also locate 
itself in the sequence: 
 
  <owl:Class rdf:ID="TemporalSeqMember">  
    <rdfs:subClassOf rdf:resource="#TemporalThing"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#isMemberOf" /> 
            <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1 
            </owl:cardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#hasPosition" /> 
            <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1 
            </owl:cardinality> 
      </owl:Restriction> 

    </rdfs:subClassOf> 
  </owl:Class> 
 
  <owl:ObjectProperty rdf:ID="isMemberOf"> 
    <rdfs:domain rdf:resource="#TemporalSeqMember" /> 
    <rdfs:range  rdf:resource="#TemporalSeq" /> 
  </owl:ObjectProperty> 
 
  <owl:DatatypeProperty rdf:ID="hasPosition"> 
    <rdfs:range  rdf:resource="&xsd;integer" /> 
  </owl:DatatypeProperty> 
 
 Since hasPosition is also used for other classes, as will 
see later, it only has a range of intergers. 
 For a  temporal sequence member that is associated 
with multiple sequences, multiple instances of 
TemporalSeqMember must be defined. The reason for 
defining it in this way is that for a given temporal sequence 
member instance, it will only have one pair of isMemberOf 
and hasPosition values, so that it’s not confusing which 
hasPosition value should be paired with which 
isMemberOf value. Moreover, different temporal sequences 
may apply different attributes to their members. 

4.2. Temporal Aggregate Description 
The most important class in the OWL encodings of the 
temporal aggregates ontology is the temporal aggregate 
description class. Analogous to the calendar-clock 
description, it specifies the temporal aggregate description 
for temporal sequences, and it’s associated with the 
temporal sequence class by hasTemporalAggregate-
Description property. 
 The temporal aggregate description has the following 
fields/properties: hasStart, hasEnd, hasContext-
TemporalSeq, hasithTemporalUnit, hasTemporalUnit, 
hasContextTemporalUnit, hasPosition, hasGap, and 
hasCount: 
 
  <owl:Class rdf:ID="TemporalAggregateDescription">  
    <rdfs:subClassOf> 
      <owl:Restriction> 
         <owl:onProperty rdf:resource="#hasStart" /> 
      <owl:maxCardinality 
      rdf:datatype="&xsd;nonNegativeInteger">1 
  </owl:maxCardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
 ... 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#hasCount" /> 
      <owl:maxCardinality 
      rdf:datatype="&xsd;nonNegativeInteger">1 
  </owl:maxCardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
 
  <owl:ObjectProperty 
   rdf:ID="hasTemporalAggregateDescription"> 
    <rdfs:domain rdf:resource="#TemporalSeq" /> 
    <rdfs:range  rdf:resource="#TemporalAggregateDescription" /> 
  </owl:ObjectProperty> 
 



  <owl:ObjectProperty rdf:ID="hasStart"> 
    <rdfs:domain rdf:resource="#TemporalAggregateDescription" /> 
    <rdfs:range  rdf:resource="#InstantThing" /> 
  </owl:ObjectProperty> 
 
 The optional properties hasStart and hasEnd map from 
the temporal aggregate description to the instant thing, 
specifying the start and the end instants of a temporal 
sequence. The calendar and clock properties described in 
Section 3 can then be used to specify the start and the end 
times or dates the instants are in. 
 
<owl:ObjectProperty rdf:ID="hasContextTemporalSeq"> 
    <rdfs:domain rdf:resource="#TemporalAggregateDescription" /> 
    <rdfs:range  rdf:resource="#TemporalSeq" /> 
  </owl:ObjectProperty> 
 
 The optional property hasContextTemporalSeq maps 
from the temporal aggregate description to the temporal 
sequence, specifying the context (super) temporal sequence 
of a given (sub) temporal sequence.  
 It corresponds to s0 in everynthp(s,s0,p,n) and s’ in 
byTulistRecurs(s,ls,s’,tu,tu’). When it’s not present, 
context-free temporal aggregates (e.g. “every Monday”) 
can be represented.  
 
  <owl:DatatypeProperty rdf:ID="hasithTemporalUnit"> 
    <rdfs:domain rdf:resource="#TemporalAggregateDescription" /> 
    <rdfs:range  rdf:resource="&xsd;positiveInteger" /> 
  </owl:DatatypeProperty> 
 
 The required property hasithTemporalUnit maps from 
the temporal aggregate description to positive integers, 
specifying the ith temporal unit elements in the temporal 
sequence.  
 It corresponds to ls in byTulistRecurs(s,ls,s’, 
tu,tu’). Thus it’s very possible to have many such 
property values for a given temporal sequence. For 
example, “every 3rd Monday, Tuesday, and Friday” (such 
examples will be illustrated in detail in the next section). 
  
  <owl:ObjectProperty rdf:ID="hasTemporalUnit"> 
    <rdfs:domain rdf:resource="#TemporalAggregateDescription" /> 
    <rdfs:range  rdf:resource="#TemporalUnit" /> 
  </owl:ObjectProperty> 
  </owl:ObjectProperty> 
 
 The required properties hasTemporalUnit and the 
optional hasContextTemporalUnit map from the temporal 
aggregate description to the temporal unit, as defined in 
Section 3.1. They specify the temporal unit of the given 
temporal sequence and the context temporal sequence 
respectively. They correspond to tu and tu’ in 
byTulistRecurs(s,ls,s’,tu,tu’). 
 The context temporal unit is associated with the context 
temporal sequence property. Thus if the context temporal 
sequence is not present, so is the context temporal unit, but 
not vice versa, since it’s possible that the temporal unit of 
the context temporal sequence is unknown or not relevant. 
 

  <owl:DatatypeProperty rdf:ID="hasPosition"> 
    <rdfs:range  rdf:resource="&xsd;integer" /> 
  </owl:DatatypeProperty> 
 
 The optional property hasPosition is a shared property 
with the TemporalSeqMember class. It specifies the position 
of the element in the temporal sequence. For example, “the 
first two Tuesdays in every May” would have hasPosition 
value of 2. It’s also possible to have negative positions. For 
example, “the last Thursday in every November” would 
have hasPosition value of -1. 
 If this property value is not present, all the positions will 
be included in the temporal sequence. For example, “the 
Thursday in every November” includes all the Thursdays 
in every November, while “the last Thursday in every 
November” only includes the last Thursday in every 
November. 
 
  <owl:DatatypeProperty rdf:ID="hasGap"> 
    <rdfs:domain rdf:resource="#TemporalAggregateDescription" /> 
    <rdfs:range  rdf:resource="&xsd;positiveInteger" /> 
  </owl:DatatypeProperty> 
 
 The optional property hasGap maps from the temporal 
aggregate description to positive integers, specifying the 
gap between the elements in the temporal sequence. If it’s 
not present, the default value of 1 will be used, for 
example, as in “every Monday”.  
 It corresponds to n in everynthp(s,s0,p,n). For 
example, “every 3rd Monday” would have hasGap value of 
3. 
 
  <owl:DatatypeProperty rdf:ID="hasCount"> 
    <rdfs:domain rdf:resource="#TemporalAggregateDescription" /> 
    <rdfs:range  rdf:resource="&xsd;positiveInteger" /> 
  </owl:DatatypeProperty> 
 
 The optional property hasCount maps from the temporal 
aggregate description to positive integers, specifying the 
cardinality or the size of the temporal sequence. For 
example, “four consecutive Sundays” would have 
hasCount value of 4. 

5. Temporal Aggregates Examples 
In this section, we will demonstrate how our temporal 
aggregates ontology can be used to represent different 
kinds of temporal aggregates examples in both FOL 
axioms and OWL encodings, including complex multiple-
layered temporal aggregates and conditional temporal 
aggregates.  
 
• Every other Monday in every 3rd month. 
 
FOL: 
   (∃ s,s1,s2) [everynthp(s2,s1,Month1,3)  
       ∧  everynthp(s,s2,Monday1,2)] 
          
  where  (∀ m) [Month1(m) ≡ (∃ n,x) [calInt(m,n,*Month*,x)]] 



    (∀ d) [Monday1(d) ≡ (∃ w) [Monday(d,w)2]] 
 
OWL: 
  <time-entry:TemporalSeq rdf:ID="tseq"> 

<time-entry:hasTemporalAggregateDescription 
    rdf:resource="#everyOtherMondayEvery3rdMonth" /> 

  </time-entry:TemporalSeq> 
 
  <time-entry:TemporalSeq rdf:ID="tseq-every3rdMonth"> 

<time-entry:hasTemporalAggregateDescription 
    rdf:resource="#every3rdMonth" /> 

  </time-entry:TemporalSeq> 
 
  <time-entry:TemporalAggregateDescription 
          rdf:ID="every3rdMonth"> 

<time-entry:hasTemporalUnit  
   rdf:resource="&time-entry;unitMonth" /> 
<time-entry:hasGap rdf:datatype="&xsd;positiveInteger">3 

  </time-entry:TemporalAggregateDescription> 
 
  <time-entry:TemporalAggregateDescription 
    rdf:ID="everyOtherMondayEvery3rdMonth"> 

<time-entry:hasContextTemporalSeq  
   rdf:resource="#tseq-every3rdMonth" /> 
<time-entry:hasithTemporalUnit 
   rdf:datatype="&xsd;positiveInteger">1 
</time-entry:hasithTemporalUnit> 
<time-entry:hasTemporalUnit  
   rdf:resource="&time-entry;unitDay" /> 
<time-entry:hasContextTemporalUnit  
   rdf:resource="&time-entry;unitMonth" /> 
<time-entry:hasGap rdf:datatype="&xsd;positiveInteger">2 
</time-entry:hasGap> 

  </time-entry:TemporalAggregateDescription> 
 
 The FOL axiom defines s as the set corresponding to the 
given temporal aggregate. The first part of the axiom 
defines s2 as the set corresponding to “every 3rd month”, 
and it serves as the context temporal sequence for the 
desired temporal sequence s. 
 The OWL encodings show how hasContext-
TemproalSeq is used to represent a two-layered temporal 
sequence (“every other Monday” in “every 3rd month”), 
and how hasGap is used to represent “every other” (with a 
gap of 2) and “every 3rd” (with a gap of 3).  
 In order to define a temporal sequence (i.e., tseq) for the 
given temporal aggregate, we need to first define a 
temporal description for that (i.e., 
everyOtherMondayEvery3rdMonth). To represent this two-
layered temporal sequence, we first define the outer layer 
temporal sequence (i.e., “every 3rd month”), and it serves 
as the context temporal sequence for the inner layer 
temporal sequence (i.e., “every other Monday”).  
 The same such embedding structure for multiple-layered 
temporal sequences is shown consistently in the above 
representations in both FOL axioms and OWL encodings. 
 
• Every other week on Monday, Wednesday and Friday 

until December 24, 1997, but starting on Tuesday, 
September 2, 1997.3  

                                                 
2 It says d is the Monday of the week w, see (Hobbs and Pan 2004) for its 
definition. 
3 This example is taken from iCalendar RFC 2445 page 120. 

FOL: 
   (∃ s,s’,T,t1,t2) [everynthp(s’,{T},Week1,2) 
  ∧ byTulistRecurs(s,{1, 3, 5},s’,*Day*,*Week*) 
  ∧ begins(t1,T) ∧ ends(t2,T) ∧ dateOf(t1,1997,9,2) 
  ∧ dateOf(t2,1997,12,24)] 
  
 where (∀ w) [Week1(w) ≡ (∃ n,x) [calInt(w,n,*Week*,x)]] 
 
OWL: 
  <time-entry:TemporalSeq rdf:ID="tseq"> 

<time-entry:hasTemporalAggregateDescription 
    rdf:resource="#MWFeveryOtherWeek" /> 

  </time-entry:TemporalSeq> 
 
  <time-entry:TemporalSeq rdf:ID="tseq-everyOtherWeek"> 

<time-entry:hasTemporalAggregateDescription 
    rdf:resource="#everyOtherWeek" /> 

  </time-entry:TemporalSeq> 
 
  <time-entry:TemporalAggregateDescription 
          rdf:ID="everyOtherWeek"> 

<time-entry:hasTemporalUnit  
    rdf:resource="&time-entry;unitWeek" /> 
<time-entry:hasGap rdf:datatype="&xsd;positiveInteger">2 
</time-entry:hasGap> 

  </time-entry:TemporalAggregateDescription> 
 
  <time-entry:TemporalAggregateDescription 
         rdf:ID="MWFeveryOtherWeek"> 
    <time-entry:hasStart rdf:resource="#tseqStart" /> 
    <time-entry:hasEnd rdf:resource="#tseqUntil" /> 

<time-entry:hasContextTemporalSeq 
    rdf:resource="#tseq-everyOtherWeek" /> 
<time-entry:hasithTemporalUnit 
    rdf:datatype="&xsd;positiveInteger">1 
</time-entry:hasithTemporalUnit> 
<time-entry:hasithTemporalUnit 
    rdf:datatype="&xsd;positiveInteger">3 
</time-entry:hasithTemporalUnit> 
<time-entry:hasithTemporalUnit 
    rdf:datatype="&xsd;positiveInteger">5 
</time-entry:hasithTemporalUnit> 
<time-entry:hasTemporalUnit  
    rdf:resource="&time-entry;unitDay" /> 
<time-entry:hasContextTemporalUnit  
    rdf:resource="&time-entry;unitWeek" /> 

  </time-entry:TemporalAggregateDescription> 
 
  <time-entry:Instant  rdf:ID="tseqStart"> 

<time-entry:inCalendarClock 
    rdf:resource="#tseqStartDescription" /> 

  </time-entry:Instant> 
 
  <time-entry:Instant  rdf:ID="tseqUntil"> 

<time-entry:inCalendarClockDataType 
    rdf:datatype="&xsd;dateTime">1997-12-24 
</time-entry:inCalendarClockDataType> 

  </time-entry:Instant> 
 
  <time-entry:CalendarClockDescription  
         rdf:ID="tseqStartDescription"> 
    <time-entry:unitType rdf:resource="&time-entry;unitDay" /> 

<time-entry:year rdf:datatype="&xsd;gYear">1997 
</time-entry:year> 
<time-entry:month rdf:datatype="&xsd;gMonth">9 
</time-entry:month> 

    <time-entry:day rdf:datatype="&xsd;gDay">2</time-entry:day> 
<time-entry:dayOfWeekField 
  rdf:datatype="&xsd;nonNegativeInteger">2 

 </time-entry:dayOfWeekField> 
  </time-entry:CalendarClockDescription> 



  
 The FOL axiom defines s as the set corresponding to the 
given temporal aggregate. The first part of the axiom 
defines s’ as the set corresponding to “every other week”, 
and it serves as the context temporal sequence for the 
desired temporal sequence s. Predicates begins and ends 
are used to represent the start and the end times of the 
given temporal aggregate.  
 Besides what is shown in the first example, the OWL 
encodings for this one show how hasithTemporalUnit is 
used to represent a list of temporal elements in the 
temporal sequence (i.e., “on Monday, Wednesday, and 
Friday”), and how hasStart and hasEnd are used and 
combined with the calendar and clock representations to 
represent the start and end dates of the given temporal 
aggregate. 
 This example also shows the tradeoffs of using XSD 
dateTime and the CalendarClockDescription class 
defined in OWL-Time, as mentioned in Section 3. In this 
example, the end date is represented using XSD dateTime, 
while the start date is represented using the 
CalendarClockDescription class. As we can see, XSD 
dateTime is simpler, but there’s some information it cannot 
represent, for example, the start date is Tuesday, and this is 
the reason why CalendarClock-Description class (with 
dayOfWeekField property) is used for the start date. In fact, 
CalendarClock-Description class can also represent 
other information that XSD dateTime cannot, such as 
“week” and “day of year”. Moreover, each field of the 
class is separate so that it’s easier to extract the values of 
some fields for the later use and easier to reason about. 
 
• Every Monday that's a holiday. 
 
FOL: 

(∃ s,s0) [everyp(s,s0,HolidayMonday)] 
 

   where  (∀ d) [HolidayMonday(d)  
       ≡ (∃ w) [Monday(d,w)] ∧ holiday(d)4] 
 
OWL: 
  <EveryHolidayMonday rdf:ID="tseq" /> 
 
  <owl:Class rdf:ID="EveryHolidayMonday">  
    <rdfs:subClassOf rdf:resource="&time-entry;TemporalSeq"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#hasMember" /> 
   <owl:allValuesFrom 
   rdf:resource="#EveryHolidayMondayMember" />  
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
 
  <owl:Class rdf:ID="EveryHolidayMondayMember">  

<rdfs:subClassOf  
  rdf:resource="&time-entry;TemporalSeqMember"/> 

    <rdfs:subClassOf rdf:resource="&time-entry;Holiday"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#isMemberOf" /> 

                                                 
4 It says d is a Holiday, see (Hobbs and Pan 2004) for its definition. 

   <owl:allValuesFrom rdf:resource="#EveryMonday" />  
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
 
  <owl:Class rdf:ID="EveryMonday">  
    <rdfs:subClassOf rdf:resource="&time-entry;TemporalSeq"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty 
   rdf:resource="#hasTemporalAggregateDescription" /> 
   <owl:hasValue rdf:resource="#everyMonday" />  
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
 
  <time-entry:TemporalAggregateDescription 
            rdf:ID="everyMonday"> 

<time-entry:hasithTemporalUnit 
  rdf:datatype="&xsd;positiveInteger">1 
</time-entry:hasithTemporalUnit> 
<time-entry:hasTemporalUnit  
  rdf:resource="&time-entry;unitDay" /> 

  </time-entry:TemporalAggregateDescription> 
 
 This example shows an important advantage of using 
our temporal aggregates ontology. It can represent 
conditional temporal aggregates which is hard or 
impossible in some other representations. For example, 
there is no way in iCalendar to express such conditional 
temporal aggregates or any temporal aggregates that are 
not in a form of standard temporal units, such as 
“holidays”, “voting dates”, “days with classes”, “months 
starting with a Monday”, and so on. 
 As we can see, the FOL axiom is much simpler than the 
corresponding OWL encodings. It defines s as the set 
corresponding to the given temporal aggregate, and a new 
predicate (i.e., HolidayMonday) for this conditional 
temporal aggregate. 
 The OWL encodings show how this kind of conditional 
temporal aggregates can be defined in our representation in 
OWL.  
 The most important class in this example is the 
EveryHolidayMondayMember class which defines a class 
for the members of the desired temporal sequence class 
(i.e., EveryHolidayMonday). This class is both a temporal 
sequence member and a holiday, and its associated 
temporal sequence class must be “every Monday” (i.e., 
EveryMonday class).  
 The desired temporal sequence is an instance of the 
EveryHolidayMonday class whose members are only from 
the EveryHolidayMondayMember class. 

6. Conclusion 
 In this paper, we have described our work of 
representing temporal aggregates in OWL-Time. The 
ontology was represented in both first-order logic axioms 
and OWL encodings. Examples have also been shown to 
illustrate how our ontology can be used to represent 
temporal aggregates information in FOL and OWL for the 
Semantic Web. 
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