
Time in OWL-S 

Feng Pan and Jerry R. Hobbs 

University of Southern California / Information Sciences Institute 
4676 Admiralty Way, Marina del Rey, CA 90292 

{pan, hobbs}@isi.edu 
 
 

Abstract 
To provide support for describing temporal properties for 
OWL-S (formerly DAML-S), in this paper we first 
introduce an “entry” sub-ontology of time, which is much 
simpler than the full ontology of DAML-Time1 (Hobbs 
2002) and provides the basic temporal concepts and 
relations that most simple applications would need, i.e., a 
vocabulary for expressing facts about topological relations 
among instants, intervals, and events, together with 
information about durations, and about dates and times. 
Then we demonstrate in detail, using the Congo.com and 
Bravo Air examples, how this entry sub-ontology of time 
can be used to support OWL-S, including use cases for 
defining input parameters and (conditional) output 
parameters. Segments of OWL encoding of the definitions 
are shown. 

Introduction 
OWL-S (formerly DAML-S) is an OWL-based Web 
service ontology that supplies Web service providers with 
a core set of markup language constructs for describing the 
properties and capabilities of their Web services in 
unambiguous, computer-intepretable form (The DAML 
Services Coalition 2003). The latest 0.9 draft release is 
expected to be the last one built on DAML+OIL (Connolly 
et al. 2001), and the later releases will be based on OWL 
(Dean et al. 2003). 
 Temporal information is so common that it’s hard to 
find a real world Web service without it. For example, 
whenever you place an online order, the order date is 
always part of your order. When you reserve a car at a car 
rental site, you have to specify the dates you need it. In 
response to this need, in conjunction with OWL-S, a 
temporal ontology, DAML-Time (Hobbs 2002), has been 
developed for describing the temporal content of Web 
pages and the temporal properties of Web services. Its 
development is being informed by temporal ontologies 
developed at a number of sites and is intended to capture 
the essential features of all of them and make them and 
their associated resources easily available to a large group 
of Web developers and users. 
                                                 
1 DAML-Time Homepage: 
http://www.cs.rochester.edu/~ferguson/daml/ 

 In Section 2 we introduce an entry sub-ontology2 of time 
in OWL, which is much simpler than the full DAML-Time 
and provides most of the basic temporal concepts and 
relations that most simple applications would need, i.e., a 
vocabulary for expressing facts about topological relations 
among instants, intervals, and events, together with 
information about durations, and about dates and times. 
The abstract characterization of the concepts and relations 
are expressed in first-order predicate calculus, and a subset 
of the ontology has been encoded in OWL. We also 
describe the time zone data for the entire world that we 
have developed in OWL. In Section 3 we use the 
Congo.com and Bravo Air examples to demonstrate in 
details how our entry sub-ontology of time can be used to 
support OWL-S. Finally, we discuss future work. 

An Entry Sub-Ontology of Time 
 DAML-Time is an abstract ontology of time intended to 
be a complete specification of a theory of time as required 
for Semantic Web (Berners-Lee et al. 2001) applications.  
Included in it is a rich collection of axioms that tightly 
constrain the interpretation of the predicates and functions 
of the theory.  But for most simple applications this is far 
more than is required, and its complexity constitutes a 
barrier to the use of the ontology.  The purpose of this 
entry sub-ontology of time is to provide quick access to the 
essential vocabulary in OWL for the basic temporal 
concepts and relations.  The OWL encoding of the entire 
entry sub-ontology can be found online3. 
 This entry sub-ontology of time covers topological 
relations among instants and intervals and instant-like and 
interval-like events (called instant events and interval 
events), such as “before” and “overlaps”.  It includes 
measures for durations so that we can say a meeting will 
last 1 hour and 30 minutes, and it also includes clock and 
calendar terms so that we can say a meeting starts at 
3:00pm PST on Monday, October  20, 2003.   
 A simple use case4 in OWL is presented for the sub-
ontology: “Suppose someone has a telecon scheduled for 
6:00pm EST on November 5, 2003. You would like to 
make an appointment with him for 2:00pm PST on the 
                                                 
2 http://www.isi.edu/~pan/damltime/time-entry-
documentation.txt 
3 http://www.isi.edu/~pan/damltime/time-entry.owl 
4 http://www.isi.edu/~pan/damltime/time-entry-case1.owl 



same day, and expect the meeting to last 45 minutes.  Will 
there be an overlap?” In this use case we specify the facts 
about the telecon and the meeting using our ontology in 
OWL that will allow a temporal reasoner to determine 
whether there is a conflict. We have been in contact with 
several sites about linking our ontology with their temporal 
reasoners. 

Topological Temporal Relations 
The most basic temporal concepts in the sub-ontology are 
Instant, Interval, Instant Event, and Interval Event. Instants 
are, intuitively, point-like in that they have no interior 
points, and intervals are, intuitively, things with extent. 
Instant events are events that are instantaneous, such as the 
occurrence of a car accident or the arrival of a package, 
and interval events are events that span some time interval, 
for example, a meeting from 2pm to 3pm. 
 Besides these four basic temporal concepts, there are 
five other more general temporal concepts/classes: 
Temporal Thing, Temporal Entity, Instant Thing, Interval 
Thing, and Event.  The subclass hierarchy of these 
temporal concepts/classes is shown in the Figure 1.  For 
example, Instant Thing has two subclasses: Instant and 
Instant Event.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure1: Subclass hierarchy of temporal concepts 

 
Their axiom definitions are straightforward. For example, 
the axiom to define that Temporal Entity has only two 
subclasses, Instant and Interval, are: 
 
TemporalEntity(T) <--> Instant(T) v Interval(T)5 
 
The above axioms can be expressed in OWL as: 
 
  <owl:Class rdf:ID="Instant">  
    <rdfs:subClassOf rdf:resource="#TemporalEntity"/> 
  </owl:Class> 
 
  <owl:Class rdf:ID="Interval">  
    <rdfs:subClassOf rdf:resource="#TemporalEntity"/> 

                                                 
5 A note on notation: conjunction (&) takes precedence 
over implication (-->) and equivalence (<-->).  Formulas 
are assumed to be universally quantified on the variables 
appearing in the antecedent of the highest-level 
implication. 

  </owl:Class> 
 
  <owl:Class rdf:ID="TemporalEntity"> 
    <owl:unionOf rdf:parseType="Collection"> 
      <owl:Class rdf:about="#Instant" /> 
      <owl:Class rdf:about="#Interval" /> 
    </owl:unionOf> 
  </owl:Class> 
 
Other temporal concepts and their relationships can be 
defined similarly.  
    begins and ends are relations between instant things 
and temporal things, and the beginnings and ends of 
temporal entities, if they exist, are unique. In some 
approach to infinite intervals, a positively infinite interval 
has no end, and a negatively infinite interval has no 
beginning.  Hence, we use the relations begins and ends in 
the ontology, rather than defining functions beginning-of 
and end-of, since the functions would not be total. The 
axioms that characterize begins, for example, are: 
 
begins(t,T)-->InstantThing(t) & TemporalThing(T) 
 
TemporalEntity(T) & begins(t1,T) & begins(t2,T)  
--> t1=t2 
 
These properties can be expressed in OWL as: 
 
  <owl:ObjectProperty rdf:ID="begins"> 
    <rdf:type rdf:resource="&owl;FunctionalProperty" /> 
    <rdfs:domain rdf:resource="#TemporalThing" /> 
    <rdfs:range  rdf:resource="#InstantThing" /> 
  </owl:ObjectProperty> 
 

inside is a relation between an instant thing and an 
interval thing, and it is not intended to include beginnings 
and ends of intervals.  
    We can define a proper-interval as one whose beginning 
and end are not identical: 
 

(∀  T)[ProperInterval(T)  
     <--> Interval(T)  

          & (∀  t1,t2)[begins(t1,T) & ends(t2,T) 
                       --> t1 =/= t2]] 
 
A half-infinite or infinite interval, by this definition, is 
proper. The ontology is silent about whether there are any 
intervals that are not proper intervals. 
    There is a before relation on temporal things, which 
gives directionality to time.  If a temporal thing T1 is 
before another temporal thing T2, then the end of T1 is 
before the beginning of T2. Thus, before can be 
considered to be basic to instant things and derived for 
interval things: 
 
 (∀  T1,T2)[before(T1,T2)  
    <--> (∃  t1,t2)[ends(t1,T1) & begins(t2,T2) 
                      & before(t1,t2)]] 
 
The before relation is anti-reflexive, anti-symmetric and 
transitive. 
Interval Relations. The relations between intervals 
defined in Allen's temporal interval calculus (Allen 1984) 

Instant Interval Instant Event Interval Event 

Instant Thing Interval Thing 

Event Temporal Entity 

Temporal Thing 



can be defined in a relatively straightforward fashion in 
terms of before and identity on the beginning and end 
points. The standard interval calculus assumes all intervals 
are proper, and we do that here too, but we generalize 
proper intervals to proper interval things.  

Axioms are defined for the interval relations: 
intEquals, intBefore, intMeets, intOverlaps, 
intStarts, intDuring, intFinishes, and their reverse 
interval relations: intAfter, intMetBy, 
intOverlappedBy, intStartedBy, intContains, 
intFinishedBy. For example, the definition of intEquals 
is: 
 

(∀  T1,T2)[intEquals(T1,T2)  
      <--> [ProperIntervalThing(T1)  

  & ProperIntervalThing(T2)  

  & (∀  t1)[begins(t1,T1) 
            <--> begins(t1,T2)] 

            & (∀  t2)[ends(t2,T1)  
                      <--> ends(t2,T2)]]] 

Duration Description 
The duration of an interval (or temporal sequence) can 
have many different descriptions.  An interval can be 1 day 
2 hours, or 26 hours, or 1560 minutes, and so on.  It is 
useful to be able to talk about these descriptions in a 
convenient way as independent objects, and to talk about 
their equivalences.  We do this first in terms of a predicate 
called "duration-of" that takes eight arguments, one for a 
temporal thing, and one each for years, months, weeks, 
days, hours, minutes, and seconds.  Then we will define a 
specific kind of individual called a "duration description", 
together with a number of functions relating the duration 
description to the values of each of the eight arguments.  
Thereby we convert the 8-ary predicate "duration-of" into 
eight binary relations that are more convenient for 
description logic-based markup languages, such as OWL. 
Here is the definition of the duration description: 
 

(∀  T,y,m,w,d,h,n,s)[duration-of(T,y,m,w,d,h,n,s) 
      <--> (∃  d1)[durationDescriptionOf(d1,T)  
                  & DurationDescription(d1)  
                  & years-of(d1) = y  

& months-of(d1) = m 
                 & weeks-of(d1) = w  

& days-of(d1) = d  
                  & hours-of(d1) = h  

& minutes-of(d1) = n 
                & seconds-of(d1) = s]] 
 
It can be expressed in OWL as: 
 
  <owl:Class rdf:ID="DurationDescription">  
    <owl:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#years" /> 
        <owl:maxCardinality 
      rdf:datatype="&xsd;nonNegativeInteger">1 

  </owl:maxCardinality> 
      </owl:Restriction> 
    </owl:subClassOf> 
 ... 
    <owl:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#seconds" /> 

        <owl:maxCardinality 
      rdf:datatype="&xsd;nonNegativeInteger">1 

  </owl:maxCardinality> 
      </owl:Restriction> 
    </owl:subClassOf> 
  </owl:Class> 

   
The axiom saying that instant things have 0 duration is: 
 

InstantThing(t) -->  
duration-of(t,0,0,0,0,0,0,0) 

 
There are two ways to specify the duration description of a 
temporal thing. The relation durationDescriptionOf uses 
DurationDescription as its range, while 
durationDescriptionDataType uses the XML Schema 
datatype duration6 as its range: 
 
  <owl:ObjectProperty 
     rdf:ID="durationDescriptionOf"> 
    <rdfs:domain rdf:resource="#TemporalThing" /> 
    <rdfs:range  rdf:resource="#DurationDescription" /> 
  </owl:ObjectProperty> 
 
  <owl:DatatypeProperty 
     rdf:ID="durationDescriptionDataType"> 
    <rdfs:domain rdf:resource="#TemporalThing" /> 
    <rdfs:range  rdf:resource="&xsd;duration" /> 
  </owl:DatatypeProperty> 
 
Using the XML Schema datatype duration is simpler and 
more standard.  But it can’t specify weeks, which can be 
specified by using DurationDescription. Using 
DurationDescription also makes it easier to extract 
values from any field for the later use. The user has the 
freedom to choose either of these two properties/relations 
to specify a duration description for a temporal thing. 

Time Zones 
What hour of the day an instant is in is relative to the time 
zone. This is also true of minutes, since there are regions in 
the world, e.g., central Australia, where the hours are not 
aligned with GMT hours, but are, e.g., offset half an hour.  
Probably seconds are not relative to the time zone. 
 Days, weeks, months and years are also relative to the 
time zone, since, e.g., 2003 began in the Eastern Standard 
time zone three hours before it began in the Pacific 
Standard time zone.  Thus, predications about all clock and 
calendar intervals except seconds are relative to a time 
zone.   
 We have been referring to time zones, but in fact it is 
more convenient to work in terms of what we might call 
the "time standard" that is used in a time zone.  That is, it 
is better to work with the Pacific Standard Time (PST) as a 
legal entity than with the PST zone as a geographical 
region. A time standard is a way of computing the time, 
relative to a world-wide system of computing time.  For 
each time standard, there is a zone, or geographical region, 
and a time of the year in which it is used for describing 
local times.  Where and when a time standard is used have 
                                                 
6 http://www.w3.org/TR/2001/REC-xmlschema-2 
20010502/#duration 
 



to be axiomatized, and this involves interrelating a time 
ontology and a geographical ontology.  These relations can 
be quite complex.  Only the entities like PST and EDT, the 
time standards, are part of the time ontology. 
 If we were to conflate time zones (i.e., geographical 
regions) and time standards, it would likely result in 
problems in several situations.  For example, the Eastern 
Standard zone and the Eastern Daylight zone are not 
identical, since most of Indiana is on Eastern Standard time 
all year.  The state of Arizona and the Navajo Indian 
Reservation, two overlapping geopolitical regions, have 
different time standards during the daylight saving times -- 
one is Pacific and the other is Mountain. 
 Time standards that seem equivalent, like Eastern 
Standard and Central Daylight, should be thought of as 
separate entities.  Whereas they function the same in the 
time ontology, they do not function the same in the 
ontology that articulates time and geography.  For 
example, it would be false to say those parts of Indiana 
shift in April from Eastern Standard to Central Daylight 
time. 

Time Zone Data in OWL.  
We have developed a time zone resource7 in OWL for not 
only the US but also the entire world, including three parts: 
the time ontology file8, the US time zone instance file9, and 
the world time zone instance file10.  

The time zone ontology links a preliminary geographic 
ontology with a time ontology. It defines the vocabulary 
about regions, political regions (countries, states, counties, 
reservations, and cities), time zones, daylight saving 
policies, and the relationships between these concepts. Its 
instances also link to other existing data on the Web, such 
as Terry Payne’s US states instances11, FIPS 55 county 
instances12, and ISO country instances13. 

It can handle all the usual time zone and daylight 
savings cases.  For example, Los Angles uses PST, the 
time offset from Greenwich Mean Time (GMT) is -8 
hours, and it observed daylight savings from April 6 to 
October 26 in 2003. But it handles unusual cases as well. 
For example, in Idaho the northern part is in the Pacific 
zone, the southern part in the Mountain.  The city of West 
Wendover, Nevada is in the Mountain time zone, while the 
rest of Nevada is in the Pacific.  

For the details, see the documentation14, which includes 
an outline of the ontology and the anticipated use. 
                                                 
7 http://www.isi.edu/~pan/timezonehomepage.html 
8 http://www.isi.edu/~pan/damltime/timezone-ont.owl 
9 http://www.isi.edu/~pan/damltime/timezone-us.owl 
10 http://www.isi.edu/~pan/damltime/timezone-world.owl 
11 http://www.daml.ri.cmu.edu/ont/USRegionState.daml 
12 http://www.daml.org/2003/02/fips55/ 
13 http://www.daml.org/2001/09/countries/iso 
14 http://www.isi.edu/~pan/damltime/time-zone 
documentation.txt 

Calendar and Clock Units 
The aim of this section is to explicate the various standard 
calendar and clock intervals.  A day as a calendar interval 
begins at and includes midnight and goes until but does not 
include the next midnight.  By contrast, a day as a duration 
is any interval that is 24 hours in length. This section deals 
with the day as a calendar interval. 
 Including the beginning but not the end of a calendar 
interval in the interval may strike some as arbitrary.  But 
we get a cleaner treatment if, for example, all times of the 
form 12:xx a.m., including 12:00 a.m. are part of the same 
hour and day, and all times of the form 10:15:xx, including 
10:15:00, are part of the same minute. 
For stating general properties about clock intervals, it is 
useful to have the following predication: 
 
        clock-int(y,n,u,x) 
 
This expression says that y is the nth clock interval of type 
u in x. For example, the proposition clock-int(10:03,3, 
*Minute*,[10:00,11:00)) holds. Here u can be a member 
of the set of clock units, that is, one of *Second*, 
*Minute*, or *Hour*. 
 In addition, there is a calendar unit function with similar 
structure: 
 
        cal-int(y,n,u,x) 
 
This says that y is the nth calendar interval of type u in x.  
For example, the proposition cal-int(12Mar2002,12, 
*Day*,Mar2002) holds. Here u can be one of the calendar 
units *Day*, *Week*, *Month*, and *Year*. 
 A distinction is made above between clocks and 
calendars because they differ in how they number their 
unit intervals.  The first minute of an hour is labeled with 
0; for example, the first minute of the hour [10:00,11:00) is 
10:00.  The first day of a month is labeled with 1; the first 
day of March is March 1.  We number minutes for the 
number just completed; we number days for the day we are 
working on.  Thus, if the larger unit has N smaller units, 
the argument n in clock-int runs from 0 to N-1, whereas 
in cal-int n runs from 1 to N.  To state properties true of 
both clock and calendar intervals, we can use the predicate 
cal-int and relate the two notions with the axiom: 
 
        cal-int(y,n,u,x) <--> clock-int(y,n-1,u,x)  
 
In cal-int(y,n,u,x) and clock-int(y,n,u,x), y is not 
an arbitrary interval; it has to be a calendar-clock interval 
which is a subclass of a proper interval: 
 

CalendarClockInterval(T) --> ProperInterval(T) 

Calendar-Clock Description 
To express cal-int(y,n,u,x) and clock-int(y,n,u,x) 
directly in OWL is inconvenient since x is itself a clock or 
calendar interval that requires description. So we defined a 



calendar-clock description in OWL for specifying both 
calendar and clock information for a calendar-clock 
interval. 
 A calendar-clock description has the following 
properties/fields: unitType, year, month, week, day, 
dayOfWeek, dayOfYear, hour, minute, second, and time 
zone. The property unitType specifies the temporal unit 
type of the calendar-clock description, and its domain is 
TemporalUnit: 
 
  <owl:Class rdf:ID="TemporalUnit">  

    <owl:oneOf rdf:parseType="Collection"> 

      <TemporalUnit rdf:about="#unitSecond" /> 

      <TemporalUnit rdf:about="#unitMinute" /> 

      <TemporalUnit rdf:about="#unitHour" /> 

      <TemporalUnit rdf:about="#unitDay" /> 

      <TemporalUnit rdf:about="#unitWeek" /> 

      <TemporalUnit rdf:about="#unitMonth" /> 

      <TemporalUnit rdf:about="#unitYear" /> 

    </owl:oneOf> 

  </owl:Class> 
 
For example, the temporal unit type of 10:30 is minute 
(unitMinute), and the temporal unit type of March 20, 
2003 is day (unitDay). The unit type is required.  With a 
given temporal unit type, all the fields/properties for 
smaller units will be ignored. For instance, if the temporal 
unit type is day (unitDay), the values of the field/property 
hour, minute, and second, if present, will be ignored.  
 Since calendar-clock description is for describing 
calendar-clock intervals, we defined a property, called 
calendarClockDescriptionOf with CalendarClock- 
Description as the range, for calendar-clock intervals. 
 To express cal-int(12Mar2002,12,*Day*,Mar2002),  
for example, using calendar-clock description, we need an 
instance of CalendarClock-Description that has values 
only for unitType (unitDay), year (2002), month (3), and 
day (12). clock-int(10:03,3,*Minute*,[10:00, 
11:00)) can be expressed similarly. 
 CalendarClockDescription and calendarClock- 
DescriptionOf are defined in OWL as: 
 
<owl:Class rdf:ID="CalendarClockDescription"> 

    <owl:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#unitType" /> 
        <owl:cardinality 
      rdf:datatype="&xsd;nonNegativeInteger">1 
      </owl:cardinality> 
      </owl:Restriction> 
    </owl:subClassOf>  
    <owl:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#year" /> 

<owl:maxCardinality 
  rdf:datatype="&xsd;nonNegativeInteger">1 
</owl:maxCardinality> 

      </owl:Restriction> 
    </owl:subClassOf> 
  ... 
    <owl:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#timeZone" /> 
        <owl:maxCardinality 
      rdf:datatype="&xsd;nonNegativeInteger">1 
      </owl:maxCardinality> 

      </owl:Restriction> 
    </owl:subClassOf> 
  </owl:Class> 

 
  <owl:ObjectProperty 

rdf:ID="calendarClockDescriptionOf"> 
<rdfs:domain  

rdf:resource="#CalendarClockInterval" /> 
    <rdfs:range  

  rdf:resource="#CalendarClockDescription" /> 
  </owl:ObjectProperty> 

 
In order to specify that an instant thing is in a calendar-
clock interval, an inCalendarClock property/relation is 
defined similarly to calendarClockDescriptionOf as 
follows: 
 
  <owl:ObjectProperty rdf:ID="inCalendarClock"> 
    <rdfs:domain rdf:resource="#InstantThing" /> 
    <rdfs:range 

rdf:resource="#CalendarClockDescription" /> 
  </owl:ObjectProperty> 

 
With this inCalendarClock relation, we can say that an 
instant thing is at a specific calendar-clock time. For 
example, the beginning of a meeting, which is an instant, is 
at 6:00pm which is actually in a calendar-clock interval of 
[6:00:00, 6:01:00). 
 We also defined in OWL two simpler relations, 
calendarClockDescriptionDatatype and inCalendar- 
ClockDatatype. Similar to durations, the only difference 
between these two relations and the above 
calendarClockDescriptionOf and inCalendarClock 
relations is their ranges: these two simpler relations use the 
XML Schema datatype dateTime15 as their ranges, while 
the above uses CalendarClockDescription: 
 
  <owl:DatatypeProperty 

   rdf:ID="calendarClockDescriptionDataType"> 
    <rdfs:domain rdf:resource="#IntervalThing" /> 
    <rdfs:range  rdf:resource="&xsd;dateTime" /> 
  </owl:DatatypeProperty> 
 
  <owl:DatatypeProperty 
     rdf:ID="inCalendarClockDataType"> 
    <rdfs:domain rdf:resource="#InstantThing" /> 
    <rdfs:range  rdf:resource="&xsd;dateTime" /> 
  </owl:DatatypeProperty> 
 
 To illustrate more clearly the difference between using 
CalendarClockDescription and using the XML datatype 
dateTime, let’s look at a concrete example: an instant, 
called "instantExample", at 10:30am EST on 01/01/2003 
can be expressed using both inCalendarClockDataType 
and inCalendarClock in OWL as: 
 
  <time:Instant  rdf:ID="instantExample"> 
     <time:inCalendarClock 
    rdf:resource="instantExampleDescription" /> 
     <time:inCalendarClockDataType 
       rdf:datatype="&xsd;dateTime"> 

2003-01-01T10:30:00-5:00 
  </time:inCalendarClockDataType> 
  </time:Instant> 
 
  <time:CalendarClockDescription 
    rdf:ID="instantExampleDescription"> 

                                                 
15 http://www.w3.org/TR/2001/REC-xmlschema-2-
20010502/#dateTime 



     <time:unitType  
rdf:resource="&time;unitMinute" /> 

     <time:year rdf:datatype="&xsd;gYear">2003 
  </time:year> 
     <time:month rdf:datatype="&xsd;gMonth">1 
  </time:month> 
     <time:week 
        rdf:datatype="&xsd;nonNegativeInteger">1 

</time:day> 
     <time:day rdf:datatype="&xsd;gDay">1 

</time:day> 
     <time:dayOfWeekField 
        rdf:datatype="&xsd;nonNegativeInteger">3 

</time:day> 
     <time:dayOfYearField 
        rdf:datatype="&xsd;nonNegativeInteger">1 

</time:day> 
     <time:hour 
        rdf:datatype="&xsd;nonNegativeInteger">10 
  </time:hour> 
     <time:minute 
        rdf:datatype="&xsd;nonNegativeInteger">30 
  </time:minute> 
     <time:timeZone rdf:resource="&tz-us;EST" /> 
  </time:CalendarClockDescription> 

 
We can see from this example that it’s much simpler to use 
the XML Schema datatype, dateTime. However, the 
advantage of using CalendarClockDescription is that it 
can express more information than dateTime, such as 
"week", "day of week" and "day of year", so in the above 
example, we can also know that 01/01/2003 is Wednesday, 
on the first day of the year, and in the first week of the 
year. The namespace “tz-us” points to our US time zone 
data16. Moreover, each field of CalendarClock- 
Description is separate so that it's easier to extract the 
value of some fields for the later use and easier to reason 
about. 

Time in OWL-S 
Congo.com and Bravo Air are the two examples being 
used in the latest OWL-S 0.9 draft release (The DAML 
Services Coalition 2003).  Congo.com is a fictitious book-
selling service site, and Bravo Air is a fictitious airline-
ticketing service site. We use these two examples to 
demonstrate in detail how our entry sub-ontology of time 
can be used to support OWL-S, including use cases for 
defining input parameters and (conditional) output 
parameters. Segments of OWL encoding of the definitions 
are shown. 

Use Cases for Input Parameters 
 In the profile of the Congo.com example (i.e. 
CongoProfile.owl), for example, our time ontology is 
currently used for describing the input parameter 
CreditCardExpirationDate: 
 
<profile:input>  
  <profile:ParameterDescription 
     rdf:ID="CreditCardExpirationDate">  
     <profile:parameterName> 

creditCardExpirationDate 
</profile:parameterName> 

     <profile:restrictedTo 
     rdf:resource="&time;#TemporalEntity"/> 

                                                 
16 http://www.isi.edu/~pan/damltime/timezone-us.owl 

      <profile:refersTo rdf:resource= 
 "&congoProcess;#creditCardExpirationDate"/> 

  </profile:ParameterDescription> 
</profile:input> 
 
The namespace “time” points to the location of the current 
OWL encoding of our entry sub-ontology of time17. In this 
example Instant, a subclass of TemporalEntity, would be 
a better class to use than TemporalEntity to describe 
CreditCardExpirationDate, because the expiration date is 
actually an instant -- the midnight, of the day the credit 
card expires. 
 In the Bravo Air example, our time ontology can be 
used to describe the existing input parameters, 
DepartureDate and ArrivalDate. We will change this to the 
more appropriate DepartureTime and ArrivalTime.  We 
can define DepartureTime in the profile of the Bravo Air 
example (i.e. BravoAirProfile.owl) as: 
 
<profile:input> 
  <profile:ParameterDescription  rdf:ID="DepartureTime">  
    <profile:parameterName>  

DepartureTime</profile:parameterName> 
    <profile:restrictedTo 
     rdf:resource="&time;#Instant"/> 
    <profile:refersTo 
     rdf:resource="&ba_process;#outboudDate_In"/> 
  </profile:ParameterDescription> 
</profile:input>   

 
DepartureTime is defined as an Instant. With this 
definition, as we discussed in the previous calendar-clock 
description section, an instance of DepartureTime can has 
either an inCalendarClockDataType property/relation 
pointing to a specific value of XML Schema datatype 
dateTime, say 2003-01-01T10:30:00-5:00, or an 
inCalendarClock object-property/relation pointing to an 
instance of CalendarClockDescription class specifying a 
specific time, say 10:30am EST on 01/01/2003, 
Wednesday. It would be the user’s decision to define the 
time in either way based on the trade-offs discussed in last 
section. 

Use Cases for (Conditional) Output Parameters 
 In fact, there is much more that our time ontology can 
do to support OWL-S. In the current Congo.com and 
Bravo Air examples, the time ontology is not used for any 
output parameters. However, in the real world many 
service outputs are time-related. For example, in the 
Congo.com example we can add two outputs that are very 
common in real world book-selling sites: process time and 
delivery duration. 
Adding a ProcessTime output parameter. ProcessTime 
is a conditional output parameter that specifies how long 
before the book will be ready for delivery, say, 24 hours, 
which depends on whether the book is in stock. In this use 
case, the process time is returned only if the book is in 
stock. It can be defined in the process model of the 
Congo.com example (i.e. CongoProcess.owl) as: 
 

                                                 
17 http://www.isi.edu/~pan/damltime/time-entry.owl 



<owl:Class rdf:ID="ProcessTime">    
  <rdfs:subClassOf rdf:resource="&time;#Interval"/> 
</owl:Class> 
 
<rdf:Property rdf:ID="fullCongoBuyProcessTime"> 
  <rdfs:subPropertyOf rdf:resource="&process;#output"/> 
  <rdfs:domain rdf:resource="#FullCongoBuy"/> 
  <rdfs:range> 
    <owl:Class> 
       <rdfs:subClassOf rdf:resource= 
       "&process;#ConditionalOutput"/> 
       <rdfs:subClassOf> 
          <owl:Restriction> 
            <owl:onProperty rdf:resource= 
       "&process;#coCondition"/> 
            <owl:allValuesFrom rdf:resource= 
       "#BookInStock"/> 
          </owl:Restriction> 
       </rdfs:subClassOf> 
       <rdfs:subClassOf> 
         <owl:Restriction> 
           <owl:onProperty rdf:resource= 
       "&process;#coOutput"/> 
           <owl:allValuesFrom rdf:resource= 
       "#ProcessTime"/> 
         </owl:Restriction> 
      </rdfs:subClassOf> 
    </owl:Class> 
 </rdfs:range> 
</rdf:Property> 

 
ProcessTime is defined as an Interval, rather than a 
duration.  As discussed previously, in our time ontology 
durations are properties of intervals. Thus to talk about a 
duration, i.e. a quantity of time, an interval must be defined 
first. This approach may look roundabout at first glance. 
However, the process time is not purely a quantity of time; 
it has a location on the time line. The beginning of the 
process time is the time the user places the order, and the 
end of the process time is the time the order is shipped out. 
An advantage of defining ProcessTime as an interval is 
that if the relationship among the order time, the shipping 
time, and the process time is known, any one of them (e.g. 
the shipping time) can be computed from the other two 
(e.g. the order time and the process time) by temporal 
arithmetic.  
Adding a DeliveryDuration output parameter. 
Delivery- Duration is a conditional output parameter that 
specifies how long it will take for the customer to receive 
the book safter it is shipped out, which depends on the 
delivery type the customer selects. As defined in the 
process model of the Congo.com example (i.e. 
CongoProcess.owl), the current delivery types are 
FedExOneDay, FedEx2-3day, UPS, and OrdinaryMail.  
 To add this output parameter may seem similar to the 
above ProcessTime example. However, since an instance 
of Condition is a logical formula that evaluates to true or 
false (see the comment with the definition of Condition18), 
DeliveryType cannot be directly used as a condition to 
determine the delivery duration. Thus one property and 
one condition are defined for each delivery type.  
 DeliveryDuration is defined with two boundaries: one 
minDeliveryDuration and one maxDeliveryDuration. For 
example, an order with the FedEx2-3day delivery type 
takes 2 to 3 days, so its min delivery duration is 2 days, 
and its max delivery duration is 3 days. For the delivery 
                                                 
18 http://www.daml.org/services/owl-s/0.9/Process.owl 

duration of the order with FedExOneDay delivery type, the 
min and max delivery duration will both be 1 day. We can 
define DeliveryDuration in the process model of the 
Congo.com example (i.e. CongoProcess.owl) as: 
 
<owl:Class rdf:ID="DeliveryDuration">    
  <rdfs:subClassOf> 
    <owl:Restriction owl:cardinality="1"> 
      <owl:onProperty 
      rdf:resource="#minDeliveryDuration"/> 
    </owl:Restriction> 
  </rdfs:subClassOf> 
  <rdfs:subClassOf> 
    <owl:Restriction owl:cardinality="1"> 
      <owl:onProperty 
      rdf:resource="#maxDeliveryDuration"/> 
    </owl:Restriction> 
  </rdfs:subClassOf> 
</owl:Class> 
 
<rdf:Property rdf:ID="minDeliveryDuration"> 
  <rdfs:domain rdf:resource="#DeliveryDuration"/> 
  <rdfs:range rdf:resource="&time;#Interval"/> 
</rdf:Property> 
 
<rdf:Property rdf:ID="maxDeliveryDuration"> 
  <rdfs:domain rdf:resource="#DeliveryDuration"/> 
  <rdfs:range rdf:resource="&time;#Interval"/> 
</rdf:Property> 
 
Both minDeliveryDuration and maxDeliveryDuration are 
defined as properties of DeliveryDuration. For the same 
reason discussed for the process time example, both 
properties use Interval as their ranges. The cardinality of 1 
for both properties in the definition of DeliveryDuration 
indicates that an instance of DeliveryDuration must have 
one and only one property value for minDeliveryDuration 
and maxDeliveryDuration respectively. 
 For example, in order to define delivery duration for 
FedEx2-3day, we have to first define a condition of 
FedEx2-3day being selected: 
 
<owl:Class rdf:ID="FedEx2-3dayCondition"> 
  <rdfs:subClassOf rdf:resource="&process;#Condition"/> 
</owl:Class> 

 
Then we define an output property, called deliverySelect- 
FedEx2-3day that is conditional on FedEx2-3dayCondition 
defined above: 
 
<rdf:Property rdf:ID="deliverySelectFedEx2-3day"> 
  <rdfs:subPropertyOf rdf:resource="&process;#output"/> 
  <rdfs:domain rdf:resource="#SpecifyDeliveryDetails"/> 
  <rdfs:range> 
    <owl:Class> 
       <rdfs:subClassOf rdf:resource= 
          "&process;#ConditionalOutput"/> 
       <rdfs:subClassOf> 
          <owl:Restriction> 
            <owl:onProperty 
        rdf:resource="&process;#coCondition"/> 
            <owl:allValuesFrom rdf:resource= 

"#FedEx2-3dayCondition"/> 
          </owl:Restriction> 
       </rdfs:subClassOf> 
       <rdfs:subClassOf> 
         <owl:Restriction> 
           <owl:onProperty 

      rdf:resource="&process;#coOutput"/> 
           <owl:allValuesFrom rdf:resource= 

"#FedEx2-3dayDuration"/> 
         </owl:Restriction> 
      </rdfs:subClassOf> 
    </owl:Class> 
 </rdfs:range> 
</rdf:Property> 



 
This definition says that deliverySelectFedEx2-3day is a 
conditional output, and if FedEx2-3dayCondition is true, 
an instance of FedEx2-3dayDuration class will be the 
output. However, FedEx2-3dayDuration is not defined yet. 
 In order to define it, we have to define its min delivery 
duration, i.e. 2 days, and max delivery duration, i.e. 3 days. 
Since the range of minDeliveryDuration and 
maxDeliveryDuration is Interval, intervals with specific 
durations need to be created first. For FedEx2-
3dayDuration, we need to define Interval2Days and 
Interval3Days first as follows: 
 
<owl:Class rdf:ID="Interval2Days">  
    <!-- intervals with a duration of 2 days -->  
    <rdfs:subClassOf rdf:resource="&time;#Interval"/> 
    <owl:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource= 
       "&time;#durationDescriptionDataType" /> 

     <owl:hasValue rdf:datatype="&xsd;duration"> 
   P2D</owl:hasValue> 

      </owl:Restriction> 
    </owl:subClassOf> 
</owl:Class> 
 
<owl:Class rdf:ID="Interval3Days">  
    <!-- intervals with a duration of 3 days -->  
    <rdfs:subClassOf rdf:resource="&time;#Interval"/> 
    <owl:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource= 
       "&time;#durationDescriptionDataType" /> 
        <owl:hasValue rdf:datatype="&xsd;duration"> 

P3D</owl:hasValue> 
      </owl:Restriction> 
    </owl:subClassOf> 
</owl:Class> 

 
These two definitions use durationDescriptionDataType, 
a relatively simpler duration property of Interval using the 
XML Schmea datatype duration as its range. P2D and 
P3D are values of the XML Schema datatype duration19, 
meaning 2 days and 3 days. 
 Finally, FedEx2-3dayDuration restricts the value of 
minDeliveryDuration and maxDeliveryDuration to class 
Interval2Days and Interval3Days respectively as follows: 
 
<owl:Class rdf:ID="FedEx2-3dayDuration">    
  <rdfs:subClassOf rdf:resource="#DeliveryDuration"/> 
  <rdfs:subClassOf> 
    <owl:Restriction> 
      <owl:onProperty 
      rdf:resource="#minDeliveryDuration"/> 
      <owl:allValuesFrom rdf:resource="#Interval2Days"/> 
    </owl:Restriction> 
  </rdfs:subClassOf> 
  <rdfs:subClassOf> 
    <owl:Restriction> 
      <owl:onProperty 
      rdf:resource="#maxDeliveryDuration"/> 
      <owl:allValuesFrom rdf:resource="#Interval3Days"/> 
    </owl:Restriction> 
  </rdfs:subClassOf> 
</owl:Class> 
 

Properties to output delivery durations when the user 
selects other delivery types (FedExOneDay, UPS, and 
OrdinaryMail) can be defined similarly. 
                                                 
19 http://www.w3.org/TR/2001/REC-xmlschema-2-
20010502/#duration 

Conclusion and Future Work 
In this paper, we have demonstrated how the entry sub-
ontology of time can support OWL-S. We believe it should 
be able to help describe most of the temporal properties of 
real world services, since they usually only require basic 
topological relations, and information about durations, 
dates and times.  
 In order to test our time ontology, it needs to be linked 
to a temporal reasoner that reasons about the query from 
the user using our ontology, and produces the result to the 
query.  
 We are currently axiomatizing temporal arithmetic for 
the time ontology, for example, adding a duration (e.g. one 
month and two days) to a date/time (e.g. January 30, 
2004). A  treatment of temporal aggregates will also be 
extracted from full DAML-Time to the entry sub-ontology, 
so that it can express something like “every other 
Wednesday”. 
 
Acknowledgements 
This research was funded in part by the Defense Advanced 
Research Projects Agency (DARPA) as part of the DAML 
program under Air Force Research Laboratory contract 
F30602-00-C-0168, and in part with funds from the 
Advanced Research and Development Agency (ARDA).  
The authors have profited from discussions with Ken 
Barker, Mike Dean, George Ferguson, Richard Fikes, Pat 
Hayes, Jessica Jenkins, David Martin, Drew McDermott, 
Ian Niles, James Pustejovsky, Tom Russ, James Zaiss. 

References 
Allen, J.F. 1984. Towards a general theory of action and 
time. Artificial Intelligence 23, pp. 123-154. 
 
Berners-Lee, T.; Hendler, J.; and Lassila, O. The Semantic 
Web. Scientific American, 284(5):34–43, 2001. 
 
Connolly D. et al., eds. 2001, DAML+OIL (March 2001) 
Reference Description, W3C Note 18, World Wide Web 
Consortium, Dec. 2001; 
http://www.daml.org/2001/03/reference 
 
The DAML Services Coalition 2003. DAML-S (and 
OWL-S) 0.9 Draft Release.  
http://www.daml.org/services/daml-s/0.9/ 
 
Dean, M.; Schreiber, G.; Bechhofer, S.; Harmelen, F.; 
Hendler, J.; Horrocks, I.; McGuinness, L. D.; Patel-
Schneider, F. P.; and Stein, A. L. 2003.  W3C Candidate 
Recommendation 18 August 2003. OWL Web Ontology 
Language Reference. 
http://www.w3.org/TR/2003/CR-owl-ref-20030818/ 
 
Hobbs, J. R. 2002. A DAML Ontology of Time.  
http://www.cs.rochester.edu/~ferguson/daml/daml-time-
nov2002.txt 
 


