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Preface

Preface
Introduction

This book describes the TCP/IP protocol suite, but from a different perspective than other 
texts on TCP/IP. Instead of just describing the protocols and what they do, we'll use a 
popular diagnostic tool to watch the protocols in action. Seeing how the protocols operate in 
varying circumstances provides a greater understanding of how they work and why certain 
design decisions were made. It also provides a look into the implementation of the protocols, 
without having to wade through thousands of lines of source code. 

When networking protocols were being developed in the 1960s through the 1980s, 
expensive, dedicated hardware was required to see the packets going "across the wire." 
Extreme familiarity with the protocols was also required to comprehend the packets 
displayed by the hardware. Functionality of the hardware analyzers was limited to that built 
in by the hardware designers. 

Today this has changed dramatically with the ability of the ubiquitous workstation to 
monitor a local area network [Mogul 1990]. Just attach a workstation to your network, run 
some publicly available software (described in Appendix A), and watch what goes by on the 
wire. While many people consider this a tool to be used for diagnosing network problems, it 
is also a powerful tool for understanding how the network protocols operate, which is the 
goal of this book. 

This book is intended for anyone wishing to understand how the TCP/IP protocols operate: 
programmers writing network applications, system administrators responsible for 
maintaining computer systems and networks utilizing TCP/IP, and users who deal with 
TCP/IP applications on a daily basis. 

Organization of the Book

The following figure shows the various protocols and applications that are covered. The 
italic number by each box indicates the chapter in which that protocol or application is 
described. 
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(Numerous fine points are missing from this figure that will be discussed in the appropriate 
chapter. For example, both the DNS and RPC use TCP, which we don't show.) 

We take a bottom-up approach to the TCP/IP protocol suite. After providing a basic 
introduction to TCP/IP in Chapter 1, we will start at the link layer in Chapter 2 and work our 
way up the protocol stack. This provides the required background for later chapters for 
readers who aren't familiar with TCP/IP or networking in general. 

This book also uses a functional approach instead of following a strict bottom-to-top order. 
For example, Chapter 3 describes the IP layer and the IP header. But there are numerous 
fields in the IP header that are best described in the context of an application that uses or is 
affected by a particular field. Fragmentation, for example, is best understood in terms of 
UDP (Chapter 11), the protocol often affected by it. The time-to-live field is fully described 
when we look at the Traceroute program in Chapter 8, because this field is the basis for the 
operation of the program. Similarly, many features of ICMP are described in the later 
chapters, in terms of how a particular ICMP message is used by a protocol or an application. 

We also don't want to save all the good stuff until the end, so we describe TCP/IP 
applications as soon as we have the foundation to understand them. Ping and Trace-route are 
described after IP and ICMP have been discussed. The applications built on UDP 
(multicasting, the DNS, TFTP, and BOOTP) are described after UDP has been examined. 
The TCP applications, however, along with network management, must be saved until the 
end, after we've thoroughly described TCP. This text focuses on how these applications use 
the TCP/IP protocols. We do not provide all the details on running these applications. 
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Readers

This book is self-contained and assumes no specific knowledge of networking or TCP/IP. 
Numerous references are provided for readers interested in additional details on specific 
topics. 

This book can be used in many ways. It can be used as a self-study reference and covered 
from start to finish by someone interested in all the details on the TCP/IP protocol suite. 
Readers with some TCP/IP background might want to skip ahead and start with Chapter 7, 
and then focus on the specific chapters in which they're interested. Exercises are provided at 
the end of the chapters, and most solutions are in Appendix D. This is to maximize the 
usefulness of the text as a self-study reference. 

When used as part of a one- or two-semester course in computer networking, the focus 
should be on IP (Chapters 3 and 9), UDP (Chapter 11), and TCP (Chapters 17-24), along 
with some of the application chapters. 

Many forward and backward references are provided throughout the text, along with a 
thorough index, to allow individual chapters to be studied by themselves. A list of all the 
acronyms used throughout the text, along with the compound term for the acronym, appears 
on the inside back covers. 

If you have access to a network you are encouraged to obtain the software used in this book 
(Appendix F) and experiment on your own. Hands-on experimentation with the protocols 
will provide the greatest knowledge (and make it more fun). 

Systems Used for Testing

Every example in the book was run on an actual network and the resulting output saved in a 
file for inclusion in the text. Figure 1.11 shows a diagram of the different hosts, routers, and 
networks that are used. (This figure is also duplicated on the inside front cover for easy 
reference while reading the book.) This collection of networks is simple enough that the 
topology doesn't confuse the examples, and with four systems acting as routers, we can see 
the error messages generated by routers. 

Most of the systems have a name that indicates the type of software being used: bsdi, 
svr4, sun, solaris, aix, slip, and so on. In this way we can identify the type of 
software that we're dealing with by looking at the system name in the printed output. 

A wide range of different operating systems and TCP/IP implementations are used: 

●     BSD/386 Version 1.0 from Berkeley Software Design, Inc., on the hosts named 
bsdi and slip. This system is derived from the BSD Networking Software, 
Release 2.0. (We show the lineage of the various BSD releases in Figure 1.10.) 
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●     Unix System V/386 Release 4.0 Version 2.0 from U.H. Corporation, on the host 
named svr4. This is vanilla SVR4 and contains the standard implementation of 
TCP/IP from Lachman Associates used with most versions of SVR4. 

●     SunOS 4.1.3 from Sun Microsystems, on the host named sun. The SunOS 4.1.x 
systems are probably the most widely used TCP/IP implementations. The TCP/IP 
code is derived from 4.2BSD and 4.3BSD. 

●     Solaris 2.2 from Sun Microsystems, on the host named solaris. The Solaris 2.x 
systems have a different implementation of TCP/IP from the earlier SunOS 4.1.x 
systems, and from SVR4. (This operating system is really SunOS 5.2, but is 
commonly called Solaris 2.2.) 

●     AIX 3.2.2 from IBM on the host named aix. The TCP/IP implementation is based on 
the 4.3BSD Reno release. 

●     4.4BSD from the Computer Systems Research Group at the University of California 
at Berkeley, on the host vangogh. cs.berkeley.edu. This system has the 
latest release of TCP/IP from Berkeley. (This system isn't shown in the figure on the 
inside front cover, but is reachable across the Internet.) 

Although these are all Unix systems, TCP/IP is operating system independent, and is 
available on almost every popular non-Unix system. Most of this text also applies to these 
non-Unix implementations, although some programs (such as Traceroute) may not be 
provided on all systems. 

Typographical Conventions

When we display interactive input and output we'll show our typed input in a bold font, 
and the computer output like this. Comments are added in italics. 

bsdi % telnet svr4 discard 
Trying 140.252.13.34... 
Connected to svr4. 

connect to the discard server 
this line and next output by Telnet client 

Also, we always include the name of the system as part of the shell prompt (bsdi in this 
example) to show on which host the command was run. 

Throughout the text we'll use indented, parenthetical notes such as this to describe historical points or 
implementation details. 

We sometimes refer to the complete description of a command in the Unix manual as in 
ifconfig(8). This notation, the name of the command followed by a number in 
parentheses, is the normal way of referring to Unix commands. The number in parentheses is 
the section number in the Unix manual of the "manual page" for the command, where 
additional information can be located. Unfortunately not all Unix systems organize their 
manuals the same, with regard to the section numbers used for various groupings of 
commands. We'll use the BSD-style section numbers (which is the same for BSD-derived 
systems such as SunOS 4.1.3), but your manuals may be organized differently. 

Acknowledgments
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Chapter 1. Introduction

Introduction
1.1 Introduction

The TCP/IP protocol suite allows computers of all sizes, from many different computer vendors, 
running totally different operating systems, to communicate with each other. It is quite amazing 
because its use has far exceeded its original estimates. What started in the late 1960s as a 
government-financed research project into packet switching networks has, in the 1990s, turned 
into the most widely used form of networking between computerrs. It is truly an open system in 
that the definition of the protocol suite and many of its implementations are publicly available at 
little or no charge. It forms the basis for what is called the worldwide Internet, or the Internet, a 
wide area network (WAN) of more than one million computers that literally spans the globe. 

This chapter provides an overview of the TCP/IP protocol suite, to establish an adequate 
background for the remaining chapters. For a historical perspective on the early development of 
TCP/IP see [Lynch 1993]. 

1.2 Layering

Networking protocols are normally developed in layers, with each layer responsible for a 
different facet of the communications. A protocol suite, such as TCP/IP, is the combination of 
different protocols at various layers. TCP/IP is normally considered to be a 4-layer system, as 
shown in Figure 1.1. 

Application Telnet, FTP, e-mail, etc. 

Transport TCP, UDP 

Network IP, ICMP, IGMP 

Link device driver and interface card 

Figure 1.1 The four layers of the TCP/IP protocol suite.

Each layer has a different responsibility. 

1.  The link layer, sometimes called the data-link layer or network interface layer, normally 
includes the device driver in the operating system and the corresponding network 
interface card in the computer. Together they handle all the hardware details of physically 
interfacing with the cable (or whatever type of media is being used). 

2.  The network layer (sometimes called the internet layer) handles the movement of packets 
around the network. Routing of packets, for example, takes place here. IP (Internet 
Protocol), ICMP (Internet Control Message Protocol), and IGMP (Internet Group 
Management Protocol) provide the network layer in the TCP/IP protocol suite. 

3.  The transport layer provides a flow of data between two hosts, for the application layer 
above. In the TCP/IP protocol suite there are two vastly different transport protocols: 
TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). 
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TCP provides a reliable flow of data between two hosts. It is concerned with things such 
as dividing the data passed to it from the application into appropriately sized chunks for 
the network layer below, acknowledging received packets, setting timeouts to make 
certain the other end acknowledges packets that are sent, and so on. Because this reliable 
flow of data is provided by the transport layer, the application layer can ignore all these 
details. 

UDP, on the other hand, provides a much simpler service to the application layer. It just 
sends packets of data called datagrams from one host to the other, but there is no 
guarantee that the datagrams reach the other end. Any desired reliability must be added 
by the application layer. 

There is a use for each type of transport protocol, which we'll see when we look at the 
different applications that use TCP and UDP. 

4.  The application layer handles the details of the particular application. There are many 
common TCP/IP applications that almost every implementation provides: 

❍     Telnet for remote login, 
❍     FTP, the File Transfer Protocol, 
❍     SMTP, the Simple Mail Transfer protocol, for electronic mail, 
❍     SNMP, the Simple Network Management Protocol, 

and many more, some of which we cover in later chapters. 

If we have two hosts on a local area network (LAN) such as an Ethernet, both running FTP, 
Figure 1.2 shows the protocols involved. 

Figure 1.2 Two hosts on a LAN running FTP.

We have labeled one application box the FTP client and the other the FTP server. Most network 
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applications are designed so that one end is the client and the other side the server. The server 
provides some type of service to clients, in this case access to files on the server host. In the 
remote login application, Telnet, the service provided to the client is the ability to login to the 
server's host. 

Each layer has one or more protocols for communicating with its peer at the same layer. One 
protocol, for example, allows the two TCP layers to communicate, and another protocol lets the 
two IP layers communicate. 

On the right side of Figure 1.2 we have noted that normally the application layer is a user 
process while the lower three layers are usually implemented in the kernel (the operating 
system). Although this isn't a requirement, it's typical and this is the way it's done under Unix. 

There is another critical difference between the top layer in Figure 1.2 and the lower three 
layers. The application layer is concerned with the details of the application and not with the 
movement of data across the network. The lower three layers know nothing about the application 
but handle all the communication details. 

We show four protocols in Figure 1.2, each at a different layer. FTP is an application layer 
protocol, TCP is a transport layer protocol, IP is a network layer protocol, and the Ethernet 
protocols operate at the link layer. The TCP/IP protocol suite is a combination of many 
protocols. Although the commonly used name for the entire protocol suite is TCP/IP, TCP and 
IP are only two of the protocols. (An alternative name is the Internet Protocol Suite.) 

The purpose of the network interface layer and the application layer are obvious-the former 
handles the details of the communication media (Ethernet, token ring, etc.) while the latter 
handles one specific user application (FTP, Telnet, etc.). But on first glance the difference 
between the network layer and the transport layer is somewhat hazy. Why is there a distinction 
between the two? To understand the reason, we have to expand our perspective from a single 
network to a collection of networks. 

One of the reasons for the phenomenal growth in networking during the 1980s was the 
realization that an island consisting of a stand-alone computer made little sense. A few stand-
alone systems were collected together into a network. While this was progress, during the 1990s 
we have come to realize that this new, bigger island consisting of a single network doesn't make 
sense either. People are combining multiple networks together into an internetwork, or an 
internet. An internet is a collection of networks that all use the same protocol suite. 

The easiest way to build an internet is to connect two or more networks with a router. This is 
often a special-purpose hardware box for connecting networks. The nice thing about routers is 
that they provide connections to many different types of physical networks: Ethernet, token ring, 
point-to-point links, FDDI (Fiber Distributed Data Interface), and so on. 

These boxes are also called IP routers, but we'll use the term router. 

Historically these boxes were called gateways, and this term is used throughout much of the TCP/IP literature. 
Today the term gateway is used for an application gateway: a process that connects two different protocol suites 
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(say, TCP/IP and IBM's SNA) for one particular application (often electronic mail or file transfer). 

Figure 1.3 shows an internet consisting of two networks: an Ethernet and a token ring, connected 
with a router. Although we show only two hosts communicating, with the router connecting the 
two networks, any host on the Ethernet can communicate with any host on the token ring. 

In Figure 1.3 we can differentiate between an end system (the two hosts on either side) and an 
intermediate system (the router in the middle). The application layer and the transport layer use 
end-to-end protocols. In our picture these two layers are needed only on the end systems. The 
network layer, however, provides a hop-by-hop protocol and is used on the two end systems and 
every intermediate system. 

Figure 1.3 Two networks connected with a router.

In the TCP/IP protocol suite the network layer, IP, provides an unreliable service. That is, it does 
its best job of moving a packet from its source to its final destination, but there are no 
guarantees. TCP, on the other hand, provides a reliable transport layer using the unreliable 
service of IP To provide this service, TCP performs timeout and retransmission, sends and 
receives end-to-end acknowledgments, and so on. The transport layer and the network layer have 
distinct responsibilities. 

A router, by definition, has two or more network interface layers (since it connects two or more 
networks). Any system with multiple interfaces is called multihomed. A host can also be 
multihomed but unless it specifically forwards packets from one interface to another, it is not 
called a router. Also, routers need not be special hardware boxes that only move packets around 
an internet. Most TCP/IP implementations allow a multihomed host to act as a router also, but 
the host needs to be specifically configured for this to happen. In this case we can call the system 
either a host (when an application such as FTP or Telnet is being used) or a router (when it's 
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forwarding packets from one network to another). We'll use whichever term makes sense given 
the context. 

One of the goals of an internet is to hide all the details of the physical layout of the internet from 
the applications. Although this isn't obvious from our two-network internet in Figure 1.3, the 
application layers can't care (and don't care) that one host is on an Ethernet, the other on a token 
ring, with a router between. There could be 20 routers between, with additional types of physical 
interconnections, and the applications would run the same. This hiding of the details is what 
makes the concept of an internet so powerful and useful. 

Another way to connect networks is with a bridge. These connect networks at the link layer, 
while routers connect networks at the network layer. Bridges makes multiple LANs appear to the 
upper layers as a single LAN. 

TCP/IP internets tend to be built using routers instead of bridges, so we'll focus on routers. 
Chapter 12 of [Perlman 1992] compares routers and bridges. 

1.3 TCP/IP Layering

There are more protocols in the TCP/IP protocol suite. Figure 1.4 shows some of the additional 
protocols that we talk about in this text. 
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Figure 1.4 Various protocols at the different layers in the TCP/IP protocol suite.

TCP and UDP are the two predominant transport layer protocols. Both use IP as the network 
layer. 

TCP provides a reliable transport layer, even though the service it uses (IP) is unreliable. 
Chapters 17 through 22 provide a detailed look at the operation of TCP. We then look at some 
TCP applications: Telnet and Riogin in Chapter 26, FTP in Chapter 27, and SMTP in Chapter 
28. The applications are normally user processes. 

UDP sends and receives datagrams for applications. A datagram is a unit of information (i.e., a 
certain number of bytes of information that is specified by the sender) that travels from the 
sender to the receiver. Unlike TCP, however, UDP is unreliable. There is no guarantee that the 
datagram ever gets to its final destination. Chapter 11 looks at UDP, and then Chapter 14 (the 
Domain Name System), Chapter 15 (the Trivial File Transfer Protocol), and Chapter 16 (the 
Bootstrap Protocol) look at some applications that use UDP. SNMP (the Simple Network 
Management Protocol) also uses UDP, but since it deals with many of the other protocols, we 
save a discussion of it until Chapter 25. 

IP is the main protocol at the network layer. It is used by both TCP and UDP. Every piece of 
TCP and UDP data that gets transferred around an internet goes through the IP layer at both end 
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systems and at every intermediate router. In Figure 1.4 we also show an application accessing IP 
directly. This is rare, but possible. (Some older routing protocols were implemented this way. 
Also, it is possible to experiment with new transport layer protocols using this feature.) Chapter 
3 looks at IP, but we save some of the details for later chapters where their discussion makes 
more sense. Chapters 9 and 10 look at how IP performs routing. 

ICMP is an adjunct to IP. It is used by the IP layer to exchange error messages and other vital 
information with the IP layer in another host or router. Chapter 6 looks at ICMP in more detail. 
Although ICMP is used primarily by IP, it is possible for an application to also access it. Indeed 
we'll see that two popular diagnostic tools, Ping and Traceroute (Chapters 7 and 8), both use 
ICMP. 

IGMP is the Internet Group Management Protocol. It is used with multicasting: sending a UDP 
datagram to multiple hosts. We describe the general properties of broadcasting (sending a UDP 
datagram to every host on a specified network) and multicasting in Chapter 12, and then 
describe IGMP itself in Chapter 13. 

ARP (Address Resolution Protocol) and RARP (Reverse Address Resolution Protocol) are 
specialized protocols used only with certain types of network interfaces (such as Ethernet and 
token ring) to convert between the addresses used by the IP layer and the addresses used by the 
network interface. We examine these protocols in Chapters 4 and 5, respectively. 

1.4 Internet Addresses

Every interface on an internet must have a unique Internet address (also called an IP address). 
These addresses are 32-bit numbers. Instead of using a flat address space such as 1, 2, 3, and so 
on, there is a structure to Internet addresses. Figure 1.5 shows the five different classes of 
Internet addresses. 

These 32-bit addresses are normally written as four decimal numbers, one for each byte of the 
address. This is called dotted-decimal notation. For example, the class B address of the author's 
primary system is 140.252.13.33. 

The easiest way to differentiate between the different classes of addresses is to look at the first 
number of a dotted-decimal address. Figure 1.6 shows the different classes, with the first number 
in boldface. 
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Figure 1.5 The five different classes of Internet addresses.

Class Range

A 0.0.0.0 to 127.255.255.255 

B 128.0.0.0 to 191.255.255.255 

C 192.0.0.0 to 223.255.255.255 

D 224.0.0.0 to 239.255.255.255 

E 240.0.0.0 to 247.255.255.255 

Figure 1.6 Ranges for different classes of IP addresses.

It is worth reiterating that a multihomed host will have multiple IP addresses: one per interface. 

Since every interface on an internet must have a unique IP address, there must be one central 
authority for allocating these addresses for networks connected to the worldwide Internet. That 
authority is the Internet Network Information Center, called the InterNIC. The InterNIC assigns 
only network IDs. The assignment of host IDs is up to the system administrator. 

Registration services for the Internet (IP addresses and DNS domain names) used to be handled by the NIC, at 
nic.ddn.mil. On April 1, 1993, the InterNIC was created. Now the NIC handles these requests only for the 
Defense Data Network (DDN). All other Internet users now use the InterNIC registration services, at 
rs.internic.net. 

There are actually three parts to the InterNIC: registration services (rs.internic.net), directory and 
database services (ds.internic.net), and information services (is.internic.net). See Exercise 1.8 
for additional information on the InterNIC. 

There are three types of IP addresses: unicast (destined for a single host), broadcast (destined 
for all hosts on a given network), and multicast (destined for a set of hosts that belong to a 
multicast group). Chapters 12 and 13 look at broadcasting and multicasting in more detail. 

In Section 3.4 we'll extend our description of IP addresses to include subnetting, after describing 
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IP routing. Figure 3.9 shows the special case IP addresses: host IDs and network IDs of all zero 
bits or all one bits. 

1.5 The Domain Name System

Although the network interfaces on a host, and therefore the host itself, are known by IP 
addresses, humans work best using the name of a host. In the TCP/IP world the Domain Name 
System (DNS) is a distributed database that provides the mapping between IP addresses and 
hostnames. Chapter 14 looks into the DNS in detail. 

For now we must be aware that any application can call a standard library function to look up 
the IP address (or addresses) corresponding to a given hostname. Similarly a function is 
provided to do the reverse lookup-given an IP address, look up the corresponding hostname. 

Most applications that take a hostname as an argument also take an IP address. When we use the 
Telnet client in Chapter 4, for example, one time we specify a host-name and another time we 
specify an IP address. 

1.6 Encapsulation

When an application sends data using TCP, the data is sent down the protocol stack, through 
each layer, until it is sent as a stream of bits across the network. Each layer adds information to 
the data by prepending headers (and sometimes adding trailer information) to the data that it 
receives. Figure 1.7 shows this process. The unit of data that TCP sends to IP is called a TCP 
segment. The unit of data that IP sends to the network interface is called an IP datagram. The 
stream of bits that flows across the Ethernet is called a frame. 

The numbers at the bottom of the headers and trailer of the Ethernet frame in Figure 1.7 are the 
typical sizes of the headers in bytes. We'll have more to say about each of these headers in later 
sections. 

A physical property of an Ethernet frame is that the size of its data must be between 46 and 1500 
bytes. We'll encounter this minimum in Section 4.5 and we cover the maximum in Section 2.8. 

All the Internet standards and most books on TCP/IP use the term octet instead of byte. The use of this cute, but 
baroque term is historical, since much of the early work on TCP/IP was done on systems such as the DEC-10, 
which did not use 8-bit bytes. Since almost every current computer system uses 8-bit bytes, we'll use the term 
byte in this text. 

To be completely accurate in Figure 1.7 we should say that the unit of data passed between IP and the network 
interface is a packet. This packet can be either an IP datagram or a fragment of an IP datagram. We discuss 
fragmentation in detail in Section 11.5. 

We could draw a nearly identical picture for UDP data. The only changes are that the unit of 
information that UDP passes to IP is called a UDP datagram, and the size of the UDP header is 
8 bytes. 
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Figure 1.7 Encapsulation of data as it goes down the protocol stack.

Recall from Figure 1.4 that TCP, UDP, ICMP, and IGMP all send data to IP. IP must add some 
type of identifier to the IP header that it generates, to indicate the layer to which the data 
belongs. IP handles this by storing an 8-bit value in its header called the protocol field. A value 
of 1 is for ICMP, 2 is for IGMP, 6 indicates TCP, and 17 is for UDP. 

Similarly, many different applications can be using TCP or UDP at any one time. The transport 
layer protocols store an identifier in the headers they generate to identify the application. Both 
TCP and UDP use 16-bit port numbers to identify applications. TCP and UDP store the source 
port number and the destination port number in their respective headers. 

The network interface sends and receives frames on behalf of IP, ARP, and RARP. There must 
be some form of identification in the Ethernet header indicating which network layer protocol 
generated the data. To handle this there is a 16-bit frame type field in the Ethernet header. 

1.7 Demultiplexing

When an Ethernet frame is received at the destination host it starts its way up the protocol stack 
and all the headers are removed by the appropriate protocol box. Each protocol box looks at 
certain identifiers in its header to determine which box in the next upper layer receives the data. 
This is called demultiplexing. Figure 1.8 shows how this takes place. 
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Figure 1.8 The demultiplexing of a received Ethernet frame.

Positioning the protocol boxes labeled "ICMP" and "IGMP" is always a challenge. In Figure 1.4 we showed 
them at the same layer as IP, because they really are adjuncts to IP. But here we show them above IP, to reiterate 
that ICMP messages and IGMP messages are encapsulated in IP datagrams. 

We have a similar problem with the boxes "ARP" and "RARP." Here we show them above the Ethernet device 
driver because they both have their own Ethernet frame types, like IP datagrams. But in Figure 2.4 we'll show 
ARP as part of the Ethernet device driver, beneath IP, because that's where it logically fits. 

Realize that these pictures of layered protocol boxes are not perfect. 

When we describe TCP in detail we'll see that it really demultiplexes incoming segments using 
the destination port number, the source IP address, and the source port number. 

1.8 Client-Server Model

Most networking applications are written assuming one side is the client and the other the server. 
The purpose of the application is for the server to provide some defined service for clients. 

We can categorize servers into two classes: iterative or concurrent. An iterative server iterates 
through the following steps. 

I1. Wait for a client request to arrive. 

I2. Process the client request. 
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I3. Send the response back to the client that sent the request. 

I4. Go back to step I1. 

The problem with an iterative server is when step I2 takes a while. During this time no other 
clients are serviced. A concurrent server, on the other hand, performs the following steps. 

Cl. Wait for a client request to arrive. 

C2. Start a new server to handle this client's request. This may involve creating a new process, 
task, or thread, depending on what the underlying operating system supports. How this step is 
performed depends on the operating system. 

This new server handles this client's entire request. When complete, this new server terminates. 

C3. Go back to step Cl. 

The advantage of a concurrent server is that the server just spawns other servers to handle the 
client requests. Each client has, in essence, its own server. Assuming the operating system 
allows multiprogramming, multiple clients are serviced concurrently. 

The reason we categorize servers, and not clients, is because a client normally can't tell whether 
it's talking to an iterative server or a concurrent server. 

As a general rule, TCP servers are concurrent, and UDP servers are iterative, but there are a few 
exceptions. We'll look in detail at the impact of UDP on its servers in Section 11.12, and the 
impact of TCP on its servers in Section 18.11. 

1.9 Port Numbers

We said that TCP and UDP identify applications using 16-bit port numbers. How are these port 
numbers chosen? 

Servers are normally known by their well-known port number. For example, every TCP/IP 
implementation that provides an FTP server provides that service on TCP port 21. Every Telnet 
server is on TCP port 23. Every implementation of TFTP (the Trivial File Transfer Protocol) is 
on UDP port 69. Those services that can be provided by any implementation of TCP/IP have 
well-known port numbers between 1 and 1023. The well-known ports are managed by the 
Internet Assigned Numbers Authority (IANA). 

Until 1992 the well-known ports were between I and 255. Ports between 256 and 1023 were normally used by 
Unix systems for Unix-specific services-that is, services found on a Unix system, but probably not found on 
other operating systems. The IANA now manages the ports between 1 and 1023. 

An example of the difference between an Internet-wide service and a Unix-specific service is the difference 
between Telnet and Riogin. Both allow us to login across a network to another host. Telnet is a TCP/IP standard 
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with a well-known port number of 23 and can be implemented on almost any operating system. Rlogin, on the 
other hand, was originally designed for Unix systems (although many non-Unix systems now provide it also) so 
its well-known port was chosen in the early 1980s as 513. 

A client usually doesn't care what port number it uses on its end. All it needs to be certain of is 
that whatever port number it uses be unique on its host. Client port numbers are called 
ephemeral ports (i.e., short lived). This is because a client typically exists only as long as the 
user running the client needs its service, while servers typically run as long as the host is up. 

Most TCP/IP implementations allocate ephemeral port numbers between 1024 and 5000. The 
port numbers above 5000 are intended for other servers (those that aren't well known across the 
Internet). We'll see many examples of how ephemeral ports are allocated in the examples 
throughout the text. 

Solaris 2.2 is a notable exception. By default the ephemeral ports for TCP and UDP start at 32768. Section E.4 

details the configuration options that can be modified by the system administrator to change these defaults. 

The well-known port numbers are contained in the file /etc/services on most Unix systems. To 
find the port numbers for the Telnet server and the Domain Name System, we can execute 

sun % grep telnet /etc/services 
telnet 23/tcp 

says it uses TCP port 23

sun % grep domain /etc/services
domain 53/udp
domain 53/tcp 

says it uses UDP port 53 
and TCP port 53

Reserved Ports

Unix systems have the concept of reserved ports. Only a process with superuser privileges can 
assign itself a reserved port. 

These port numbers are in the range of 1 to 1023, and are used by some applications (notably 
Rlogin, Section 26.2), as part of the authentication between the client and server. 

1.10 Standardization Process

Who controls the TCP/IP protocol suite, approves new standards, and the like? There are four 
groups responsible for Internet technology. 

1.  The Internet Society (ISOC) is a professional society to facilitate, support, and promote 
the evolution and growth of the Internet as a global research communications 
infrastructure. 

2.  The Internet Architecture Board (IAB) is the technical oversight and coordination body. 
It is composed of about 15 international volunteers from various disciplines and serves as 
the final editorial and technical review board for the quality of Internet standards. The 
IAB falls under the ISOC. 
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3.  The Internet Engineering Task Force (IETF) is the near-term, standards-oriented group, 
divided into nine areas (applications, routing and addressing, security, etc.). The IETF 
develops the specifications that become Internet standards. An additional Internet 
Engineering Steering Group (IESG) was formed to help the IETF chair. 

4.  The Internet Research Task Force (IRTF) pursues long-term research projects. 

Both the IRTF and the IETF fall under the IAB. [Crocker 1993] provides additional details on 
the standardization process within the Internet, as well as some of its early history. 

1.11 RFCs

All the official standards in the internet community are published as a Request for Comment, or 
RFC. Additionally there are lots of RFCs that are not official standards, but are published for 
informational purposes. The RFCs range in size from I page to almost 200 pages. Each is 
identified by a number, such as RFC 1122, with higher numbers for newer RFCs. 

All the RFCs are available at no charge through electronic mail or using FTP across the Internet. 
Sending electronic mail as shown here: 

To: rfc-info@OISI.EDU 
Subject: getting rfcs 

help: ways_to_get_rfcs 

returns a detailed listing of various ways to obtain the RFCs. 

The latest RFC index is always a starting point when looking for something. This index specifies 
when a certain RFC has been replaced by a newer RFC, and if a newer RFC updates some of the 
information in that RFC. There are a few important RFCs. 

1.  The Assigned Numbers RFC specifies all the magic numbers and constants that are used 
in the Internet protocols. At the time of this writing the latest version of this RFC is 1340 
[Reynolds and Postel 1992]. All the Internet-wide well-known ports are listed here. 

When this RFC is updated (it is normally updated at least yearly) the index listing for 
1340 will indicate which RFC has replaced it. 

2.  The Internet Official Protocol Standards, currently RFC 1600 [Postel 1994]. This RFC 
specifies the state of standardization of the various Internet protocols. Each protocol has 
one of the following states of standardization: standard, draft standard, proposed 
standard, experimental, informational, or historic. Additionally each protocol has a 
requirement level: required, recommended, elective, limited use, or not recommended. 

Like the Assigned Numbers RFC, this RFC is also reissued regularly. Be sure you're 
reading the current copy. 

3.  The Host Requirements RFCs, 1122 and 1123 [Braden 1989a, 1989b]. RFC 1122 handles 
the link layer, network layer, and transport layer, while RFC 1123 handles the application 
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layer. These two RFCs make numerous corrections and interpretations of the important 
earlier RFCs, and are often the starting point when looking at any of the finer details of a 
given protocol. They list the features and implementation details of the protocols as either 
"must," "should," "may," "should not," or "must not." 

[Borman 1993b] provides a practical look at these two RFCs, and RFC 1127 [Braden 
1989c] provides an informal summary of the discussions and conclusions of the working 
group that developed the Host Requirements RFCs. 

4.  The Router Requirements RFC. The official version of this is RFC 1009 [Braden and 
Postel 1987], but a new version is nearing completion [Almquist 1993]. This is similar to 
the host requirements RFCs, but specifies the unique requirements of routers. 

1.12 Standard, Simple Services

There are a few standard, simple services that almost every implementation provides. We'll use 
some of these servers throughout the text, usually with the Telnet client. Figure 1.9 describes 
these services. We can see from this figure that when the same service is provided using both 
TCP and UDP, both port numbers are normally chosen to be the same. 

If we examine the port numbers for these standard services and other standard TCP/IP services (Telnet, FTP, 
SMTP, etc.), most are odd numbers. This is historical as these port numbers are derived from the NCP port 
numbers. (NCP, the Network Control Protocol, preceded TCP as a transport layer protocol for the ARPANET.) 
NCP was simplex, not full-duplex, so each application required two connections, and an even-odd pair of port 
numbers was reserved for each application. When TCP and UDP became the standard transport layers, only a 
single port number was needed per application, so the odd port numbers from NCP were used. 

Name
TCP 
port

UDP 
port

RFC Description

echo 7 7 862 Server returns whatever the client sends.

discard 9 9 863 Server discards whatever the client sends. 

daytime 13 13 867
Server returns the time and date in a human-readable 
format. 

chargen 19 19 864

TCP server sends a continual stream of characters, 
until the connection is terminated by the client. UDP 
server sends a datagram containing a random number 
of characters each time the client sends a datagram. 

time 37 37 868
Server returns the time as a 32-bit binary number. This 
number represents the number of seconds since 
midnight January 1, 1900, UTC. 

Figure 1.9 Standard, simple services provided by most implementations.

1.13 The Internet

In Figure 1.3 we showed an internet composed of two networks - an Ethernet and a token ring. 
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In Sections 1.4 and 1.9 we talked about the worldwide Internet and the need to allocate IP 
addresses centrally (the InterNIC) and the well-known port numbers (the IANA). The word 
internet means different things depending on whether it's capitalized or not. 

The lowercase internet means multiple networks connected together, using a common protocol 
suite. The uppercase Internet refers to the collection of hosts (over one million) around the world 
that can communicate with each other using TCP/IP. While the Internet is an internet, the 
reverse is not true. 

1.14 Implementations

The de facto standard for TCP/IP implementations is the one from the Computer Systems 
Research Group at the University of California at Berkeley. Historically this has been distributed 
with the 4.x BSD system (Berkeley Software Distribution), and with the "BSD Networking 
Releases." This source code has been the starting point for many other implementations. 

Figure 1.10 shows a chronology of the various BSD releases, indicating the important TCP/IP 
features. The BSD Networking Releases shown on the left side are publicly available source 
code releases containing all of the networking code: both the protocols themselves and many of 
the applications and utilities (such as Telnet and FTP). 

Throughout the text we'll use the term Berkeley-derived implementation to refer to vendor 
implementations such as SunOS 4.x, SVR4, and AIX 3.2 that were originally developed from 
the Berkeley sources. These implementations have much in common, often including the same 
bugs! 
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Figure 1.10 Various BSD releases with important TCP/IP features.

Much of the original research in the Internet is still being applied to the Berkeley system-new 
congestion control algorithms (Section 21.7), multicasting (Section 12.4), "long fat pipe" 
modifications (Section 24.3), and the like. 

1.15 Application Programming Interfaces

Two popular application programming interfaces (APIs) for applications using the TCP/IP 
protocols are called sockets and TLI (Transport Layer Interface). The former is sometimes called 
"Berkeley sockets," indicating where it was originally developed. The latter, originally 
developed by AT&T, is sometimes called XTI (X/Open Transport Interface), recognizing the 
work done by X/Open, an international group of computer vendors that produce their own set of 
standards. XTI is effectively a superset of TLI. 

This text is not a programming text, but occasional reference is made to features of TCP/IP that 
we look at, and whether that feature is provided by the most popular API (sockets) or not. All 
the programming details for both sockets and TLI are available in [Stevens 1990]. 

1.16 Test Network
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Figure 1.11 shows the test network that is used for all the examples in the text. This figure is 
also duplicated on the inside front cover for easy reference while reading the book. 

Figure 1.11 Test network used for all the examples in the text. All IP addresses begin with 
140.252.

Most of the examples are run on the lower four systems in this figure (the author's subnet). All 
the IP addresses in this figure belong to the class B network ID 140.252. All the hostnames 
belong to the .tuc.noao.edu domain.(noao stands for "National Optical Astronomy 
Observatories" and tuc stands for Tucson.) For example, the lower right system has a complete 
hostname of svr4.tuc.noao.edu and an IP address of 140.252.13.34. The notation at the 
top of each box is the operating system running on that system. This collection of systems and 
networks provides hosts and routers running a variety of TCP/IP implementations. 

It should be noted that there are many more networks and hosts in the noao.edu domain than 
we show in Figure 1.11. All we show here are the systems that we'll encounter throughout the 
text. 

In Section 3.4 we describe the form of subnetting used on this network, and in Section 4.6 we'll 
provide more details on the dial-up SLIP connection between sun and netb. Section 2.4 
describes SLIP in detail. 

1.17 Summary
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Chapter 1. Introduction

This chapter has been a whirlwind tour of the TCP/IP protocol suite, introducing many of the 
terms and protocols that we discuss in detail in later chapters. 

The four layers in the TCP/IP protocol suite are the link layer, network layer, transport layer, and 
application layer, and we mentioned the different responsibilities of each. In TCP/IP the 
distinction between the network layer and the transport layer is critical: the network layer (IP) 
provides a hop-by-hop service while the transport layers (TCP and UDP) provide an end-to-end 
service. 

An internet is a collection of networks. The common building block for an internet is a router 
that connects the networks at the IP layer. The capital-l Internet is an internet that spans the 
globe and consists of more than 10,000 networks and more than one million computers. 

On an internet each interface is identified by a unique IP address, although users tend to use 
hostnames instead of IP addresses. The Domain Name System provides a dynamic mapping 
between hostnames and IP addresses. Port numbers are used to identify the applications 
communicating with each other and we said that servers use well-known ports while clients use 
ephemeral ports. 

Exercises

1.1 Calculate the maximum number of class A, B, and C network IDs. 

1.2 Fetch the file nsfnet/statistics/history.netcount using anonymous FTP 
(Section 27.3) from the host nic.merit.edu. This file contains the number of domestic and 
foreign networks announced to the NSFNET infrastructure. Plot these values with the year on 
the x-axis and a logarithmic y-axis with the total number of networks. The maximum value for 
the y-axis should be the value calculated in the previous exercise. If the data shows a visual 
trend, extrapolate the values to estimate when the current addressing scheme will run out of 
network IDs. (Section 3.10 talks about proposals to correct this problem.) 

1.3 Obtain a copy of the Host Requirements RFC [Braden 1989a] and look up the robustness 
principle that applies to every layer of the TCP/IP protocol suite. What is the reference for this 
principle? 

1.4 Obtain a copy of the latest Assigned Numbers RFC. What is the well-known port for the 
"quote of the day" protocol? Which RFC defines the protocol? 

1.5 If you have an account on a host that is connected to a TCP/IP internet, what is its primary IP 
address? Is the host connected to the worldwide Internet? Is it multihomed? 

1.6 Obtain a copy of RFC 1000 to learn where the term RFC originated. 

1.7 Contact the Internet Society, isoc@isoc.org or +1 703 648 9888, to find out about 
joining. 
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1.8 Fetch the fileabout-internic/information-about-the-internic using 
anonymous FTP from the host is.internic.net. 
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Link Layer
2.1 Introduction

From Figure 1.4 we see that the purpose of the link layer in the TCP/IP protocol suite is to send 
and receive (1) IP datagrams for the IP module, (2) ARP requests and replies for the ARP module, 
and (3) RARP requests and replies for the RARP module. TCP/IP supports many different link 
layers, depending on the type of networking hardware being used: Ethernet, token ring, FDDI 
(Fiber Distributed Data Interface), RS-232 serial lines, and the like. 

In this chapter we'll look at some of the details involved in the Ethernet link layer, two specialized 
link layers for serial interfaces (SLIP and PPP), and the loopback driver that's part of most 
implementations. Ethernet and SLIP are the link layers used for most of the examples in the book. 
We also talk about the MTU (Maximum Transmission Unit), a characteristic of the link layer that 
we encounter numerous times in the remaining chapters. We also show some calculations of how 
to choose the MTU for a serial line. 

2.2 Ethernet and IEEE 802 Encapsulation

The term Ethernet generally refers to a standard published in 1982 by Digital Equipment Corp., 
Intel Corp., and Xerox Corp. It is the predominant form of local area network technology used 
with TCP/IP today. It uses an access method called CSMA/CD, which stands for Carrier Sense, 
Multiple Access with Collision Detection. It operates at 10 Mbits/sec and uses 48-bit addresses. 

A few years later the IEEE (Institute of Electrical and Electronics Engineers) 802 Committee 
published a sightly different set of standards. 802.3 covers an entire set of 

CSMA/CD networks, 802.4 covers token bus networks, and 802.5 covers token ring networks. 
Common to all three of these is the 802.2 standard that defines the logical link control (LLC) 
common to many of the 802 networks. Unfortunately the combination of 802.2 and 802.3 defines 
a different frame format from true Ethernet. ([Stallings 1987] covers all the details of these IEEE 
802 standards.) 

In the TCP/IP world, the encapsulation of IP datagrams is defined in RFC 894 [Hornig 1984] for 
Ethernets and in RFC 1042 [Postel and Reynolds 1988] for IEEE 802 networks. The Host 
Requirements RFC requires that every Internet host connected to a 10 Mbits/sec Ethernet cable: 

1.  Must be able to send and receive packets using RFC 894 (Ethernet) encapsulation. 
2.  Should be able to receive RFC 1042 (IEEE 802) packets intermixed with RFC 894 packets. 
3.  May be able to send packets using RFC 1042 encapsulation. If the host can send both types 

of packets, the type of packet sent must be configurable and the configuration option must 
default to RFC 894 packets. 

RFC 894 encapsulation is most commonly used. Figure 2.1 shows the two different forms of 
encapsulation. The number below each box in the figure is the size of that box in bytes. 
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Both frame formats use 48-bit (6-byte) destination and source addresses. (802.3 allows 16-bit 
addresses to be used, but 48-bit addresses are normal.) These are what we call hardware addresses 
throughout the text. The ARP and RARP protocols (Chapters 4 and 5) map between the 32-bit IP 
addresses and the 48-bit hardware addresses. 

The next 2 bytes are different in the two frame formats. The 802 length field says how many bytes 
follow, up to but not including the CRC at the end. The Ethernet type field identifies the type of 
data that follows. In the 802 frame the same type field occurs later in the SNAP (Sub-network 
Access Protocol) header. Fortunately none of the valid 802 length values is the same as the 
Ethernet type values, making the two frame formats distinguishable. 

In the Ethernet frame the data immediately follows the type field, while in the 802 frame format 3 
bytes of 802.2 LLC and 5 bytes of 802.2 SNAP follow. The DSAP (Destination Service Access 
Point) and SSAP (Source Service Access Point) are both set to 0xaa. The Ctrl field is set to 3. 
The next 3 bytes, the org code are all 0. Following this is the same 2-byte type field that we had 
with the Ethernet frame format. (Additional type field values are given in RFC 1340 [Reynolds 
and Postel 1992].) 

The CRC field is a cyclic redundancy check (a checksum) that detects errors in the rest of the 
frame. (This is also called the FCS or frame check sequence.) 

There is a minimum size for 802.3 and Ethernet frames. This minimum requires that the data 
portion be at least 38 bytes for 802.3 or 46 bytes for Ethernet. To handle this, pad bytes are 
inserted to assure that the frame is long enough. We'll encounter this minimum when we start 
watching packets on the wire. 

In this text we'll display the Ethernet encapsulation when we need to, because this is the most 
commonly used form of encapsulation. 
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Figure 2.1 IEEE 802.2/802.3 encapsulation (RFC 1042) and Ethernet encapsulation (RFC 894).

2.3 Trailer Encapsulation

RFC 893 [Leffler and Karels 1984] describes another form of encapsulation used on Ethernets, 
called trailer encapsulation. It was an experiment with early BSD systems on DEC VAXes that 
improved performance by rearranging the order of the fields in the IP datagram. "The variable-
length fields at the beginning of the data portion of the Ethernet frame (the IP header and the TCP 
header) were moved to the end (right before the CRC). This allows the data portion of the frame to 
be mapped to a hardware page, saving a memory-to-memory copy when the data is copied in the 
kernel. TCP data that is a multiple of 512 bytes in size can be moved by just manipulating the 
kernel's page tables. Two hosts negotiated the use of trailer encapsulation using an extension of 
ARP. Different Ethernet frame type values are defined for these frames. 

Nowadays trailer encapsulation is deprecated, so we won't show any examples of it. Interested 
readers are referred to RFC 893 and Section 11.8 of [Leffler et al. 1989] for additional details. 

2.4 SLIP: Serial Line IP
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SLIP stands for Serial Line IP. It is a simple form of encapsulation for IP datagrams on serial 
lines, and is specified in RFC 1055 [Rornkey 1988]. SLIP has become popular for connecting 
home systems to the Internet, through the ubiquitous RS-232 serial port found on almost every 
computer and high-speed modems. The following rules specify the framing used by SLIP. 

1.  The IP datagram is terminated by the special character called END (0xc0). Also, to 
prevent any line noise before this datagram from being interpreted as part of this datagram, 
most implementations transmit an END character at the beginning of the datagram too. (If 
there was some line noise, this END terminates that erroneous datagram, allowing the 
current datagram to be transmitted. That erroneous datagram will be thrown away by a 
higher layer when its contents are detected to be garbage.) 

2.  If a byte of the IP datagram equals the END character, the 2-byte sequence 0xdb, 0xdc is 
transmitted instead. This special character, 0xdb, is called the SLIP ESC character, but its 
value is different from the ASCII ESC character (0xib). 

3.  If a byte of the IP datagram equals the SLIP ESC character, the 2-byte sequence 0xdb, 
0xdd is transmitted instead. 

Figure 2.2 shows an example of this framing, assuming that one END character and one ESC 
character appear in the original IP datagram. In this example the number of bytes transmitted 
across the serial line is the length of the IP datagram plus 4. 

Figure 2.2 SLIP encapsulation

SLIP is a simple framing method. It has some deficiencies that are worth noting. 

1.  Each end must know the other's IP address. There is no method for one end to inform the 
other of its IP address. 

2.  There is no type field (similar to the frame type field in Ethernet frames). If a serial line is 
used for SLIP, it can't be used for some other protocol at the same time. 

3.  There is no checksum added by SLIP (similar to the CRC field in Ethernet frames). If a 
noisy phone line corrupts a datagram being transferred by SLIP, it's up to the higher layers 
to detect this. (Alternately, newer modems can detect and correct corrupted frames.) This 
makes it essential that the upper layers provide some form of CRC. In Chapters 3 and 17 
we'll see that there is always a checksum for the IP header, and for the TCP header and the 
TCP data. But in Chapter 11 we'll see that the checksum that covers the UDP header and 
UDP data is optional. 
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Despite these shortcomings, SLIP is a popular protocol that is widely used. 

The history of SLIP dates back to 1984 when Rick Adams implemented it in 4.2BSD. Despite its self-description 
as a nonstandard, it is becoming more popular as the speed and reliability of modems increase. Publicly available 
implementations abound, and many vendors support it today. 

2.5 Compressed SLIP

Since SLIP lines are often slow (19200 bits/sec or below) and frequently used for interactive 
traffic (such as Telnet and Rlogin, both of which use TCP), there tend to be many small TCP 
packets exchanged across a SLIP line. To carry I byte of data requires a 20-byte IP header and a 
20-byte TCP header, an overhead of 40 bytes. (Section 19.2 shows the flow of these small packets 
when a simple command is typed during an Rlogin session.) 

Recognizing this performance drawback, a newer version of SLIP, called CSLIP (for compressed 
SLIP), is specified in RFC 1144 [Jacobson 1990a]. CSLIP normally reduces the 40-byte header to 
3 or 5 bytes. It maintains the state of up to 16 TCP connections on each end of the CSLIP link and 
knows that some of the fields in the two headers for a given connection normally don't change. Of 
the fields that do change, most change by a small positive amount. These smaller headers greatly 
improve the interactive response time. 

Most SLIP implementations today support CSLIP. Both SLIP links on the author's subnet (see inside front cover) 
are CSLIP links. 

2.6 PPP: Point-to-Point

Protocol

PPP, the Point-to-Point Protocol, corrects all the deficiencies in SLIP. PPP consists of three 
components. 

1.  A way to encapsulate IP datagrams on a serial link. PPP supports either an asynchronous 
link with 8 bits of data and no parity (i.e., the ubiquitous serial interface found on most 
computers) or bit-oriented synchronous links. 

2.  A link control protocol (LCP) to establish, configure, and test the data-link connection. 
This allows each end to negotiate various options. 

3.  A family of network control protocols (NCPs) specific to different network layer protocols. 
RFCs currently exist for IP, the OSI network layer, DECnet, and AppleTalk. The IP NCP, 
for example, allows each end to specify if it can perform header compression, similar to 
CSLIP. (The acronym NCP was also used for the predecessor to TCP.) 

RFC 1548 [Simpson 1993] specifies the encapsulation method and the link control protocol. RFC 
1332 [McGregor 1992] specifies the network control protocol for IP. 

The format of the PPP frames was chosen to look like the ISO HDLC standard (high-level data 
link control). Figure 2.3 shows the format of PPP frames. 
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Figure 2.3 Format of PPP frames.

Each frame begins and ends with a flag byte whose value is 0x7e. This is followed by an address 
byte whose value is always 0xff, and then a control byte, with a value of 0x03. 

Next comes the protocol field, similar in function to the Ethernet type field. A value of 0x0021 
means the information field is an IP datagram, a value of 0xc021 means the information field is 
link control data, and a value of 0x8021 is for network control data. 

The CRC field (or FCS, for frame check sequence) is a cyclic redundancy check, to detect errors 
in the frame. 

Since the byte value 0x7e is the flag character, PPP needs to escape this byte when it appears in 
the information field. On a synchronous link this is done by the hardware using a technique called 
bit stuffing [Tanenbaum 1989]. On asynchronous links the special byte 0x7d is used as an escape 
character. Whenever this escape character appears in a PPP frame, the next character in the frame 
has had its sixth bit complemented, as follows: 

1.  The byte 0x7e is transmitted as the 2-byte sequence 0x7d, 0x5e. This is the escape of 
the flag byte. 

2.  The byte 0x7d is transmitted as the 2-byte sequence 0x7d, 0x5d. This is the escape of 
the escape byte. 

3.  By default, a byte with a value less than 0x20 (i.e., an ASCII control character) is also 
escaped. For example, the byte 0x01 is transmitted as the 2-byte sequence 0x7d, 0x21. 
(In this case the complement of the sixth bit turns the bit on, whereas in the two previous 
examples the complement turned the bit off.) 

The reason for doing this is to prevent these bytes from appearing as ASCII control 
characters to the serial driver on either host, or to the modems, which sometimes interpret 
these control characters specially. It is also possible to use the link control protocol to 
specify which, if any, of these 32 values must be escaped. By default, all 32 are escaped. 

Since PPP, like SLIP, is often used across slow serial links, reducing the number of bytes per 
frame reduces the latency for interactive applications. Using the link control protocol, most 
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implementations negotiate to omit the constant address and control fields and to reduce the size of 
the protocol field from 2 bytes to 1 byte. If we then compare the framing overhead in a PPP frame, 
versus the 2-byte framing overhead in a SLIP frame (Figure 2.2), we see that PPP adds three 
additional bytes: I byte for the protocol field, and 2 bytes for the CRC. Additionally, using the IP 
network control protocol, most implementations then negotiate to use Van Jacobson header 
compression (identical to CSLIP compression) to reduce the size of the IP and TCP headers. 

In summary, PPP provides the following advantages over SLIP: (1) support for multiple protocols 
on a single serial line, not just IP datagrams, (2) a cyclic redundancy check on every frame, (3) 
dynamic negotiation of the IP address for each end (using the IP network control protocol), (4) 
TCP and IP header compression similar to CSLIP, and (5) a link control protocol for negotiating 
many data-link options. The price we pay for all these features is 3 bytes of additional overhead 
per frame, a few frames of negotiation when the link is established, and a more complex 
implementation. 

Despite all the added benefits of PPP over SLIP, today there are more SLIP users than PPP users. As 
implementations become more widely available, and as vendors start to support PPP, it should (eventually) replace 
SLIP. 

2.7 Loopback Interface

Most implementations support a loopback interface that allows a client and server on the same 
host to communicate with each other using TCP/IP. The class A network ID 127 is reserved for 
the loopback interface. By convention, most systems assign the IP address of 127.0.0.1 to this 
interface and assign it the name localhost. An IP datagram sent to the loopback interface must 
not appear on any network. 

Although we could imagine the transport layer detecting that the other end is the loopback 
address, and short circuiting some of the transport layer logic and all of the network layer logic, 
most implementations perform complete processing of the data in the transport layer and network 
layer, and only loop the IP datagram back to itself when the datagram leaves the bottom of the 
network layer. 

Figure 2.4 shows a simplified diagram of how the loopback interface processes IP datagrams. 
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Figure 2.4 Processing of IP datagrams by loopback interface.

The key points to note in this figure are as follows: 

1.  Everything sent to the loopback address (normally 127.0.0.1) appears as IP input. 
2.  Datagrams sent to a broadcast address or a multicast address are copied to the loopback 

interface and sent out on the Ethernet. This is because the definition of broadcasting and 
multicasting (Chapter 12) includes the sending host. 

3.  Anything sent to one of the host's own IP addresses is sent to the loopback interface. 

While it may seem inefficient to perform all the transport layer and IP layer processing of the 
loopback data, it simplifies the design because the loopback interface appears as just another link 
layer to the network layer. The network layer passes a datagram to the loopback interface like any 
other link layer, and it happens that the loopback interface then puts the datagram back onto IP's 
input queue. 

Another implication of Figure 2.4 is that IP datagrams sent to the one of the host's own IP 
addresses normally do not appear on the corresponding network. For example, on an Ethernet, 
normally the packet is not transmitted and then read back. Comments in some of the BSD Ethernet 
device drivers indicate that many Ethernet interface cards are not capable of reading their own 
transmissions. Since a host must process IP datagrams that it sends to itself, handling these 

file:///D|/Documents%20and%20Settings/bigini/Docum.../homenet2run/tcpip/tcp-ip-illustrated/link_lay.htm (8 of 11) [12/09/2001 14.46.33]



file:///D|/Documents%20and%20Settings/bigini/Documenti/homenet2run/tcpip/tcp-ip-illustrated/link_lay.htm

packets as shown in Figure 2.4 is the simplest way to accomplish this. 

The 4.4BSD implementation defines the variable useloopback and initializes it to 1. If this variable is set to 0, 
however, the Ethernet driver sends local packets onto the network instead of sending them to the loopback driver. 
This may or may not work, depending on your Ethernet interface card and device driver. 

2.8 MTU

As we can see from Figure 2.1, there is a limit on the size of the frame for both Ethernet 
encapsulation and 802.3 encapsulation. This limits the number of bytes of data to 1500 and 1492, 
respectively. This characteristic of the link layer is called the MTU, its maximum transmission 
unit. Most types of networks have an upper limit. 

If IP has a datagram to send, and the datagram is larger than the link layer's MTU, IP performs 
fragmentation, breaking the datagram up into smaller pieces (fragments), so that each fragment is 
smaller than the MTU. We discuss IP fragmentation in Section 11.5. 

Figure 2.5 lists some typical MTU values, taken from RFC 1191 [Mogul and Deering 1990]. The 
listed MTU for a point-to-point link (e.g., SLIP or PPP) is not a physical characteristic of the 
network media. Instead it is a logical limit to provide adequate response time for interactive use. 
In the Section 2.10 we'll see where this limit comes from. 

In Section 3.9 we'll use the netstat command to print the MTU of an interface. 

Network MTU (bytes)

Hyperchannel 
16 Mbits/sec token ring (IBM)
4 Mbits/sec token ring (IEEE 802.5)
FDDI
Ethernet
IEEE 802.3/802.2
X.25
Point-to-Point (low delay) 

65535
17914
4464
4352
1500
1492
576
296

Figure 2.5 Typical maximum transmission units (MTUs).

2.9 Path MTU

When two hosts on the same network are communicating with each other, it is the MTU of the 
network that is important. But when two hosts are communicating across multiple networks, each 
link can have a different MTU. The important numbers are not the MTUs of the two networks to 
which the two hosts connect, but rather the smallest MTU of any data link that packets traverse 
between the two hosts. This is called the path MTU. 

The path MTU between any two hosts need not be constant. It depends on the route being used at 
any time. Also, routing need not be symmetric (the route from A to B may not be the reverse of 
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the route from B to A), hence the path MTU need not be the same in the two directions. 

RFC 1191 [Mogul and Deering 1990] specifies the "path MTU discovery mechanism," a way to 
determine the path MTU at any time. We'll see how this mechanism operates after we've described 
ICMP and IP fragmentation. In Section 11.6 we'll examine the ICMP unreachable error that is 
used with this discovery mechanism and in Section 11.7 we'll show a version of the 
traceroute program that uses this mechanism to determine the path MTU to a destination. 
Sections 11.8 and 24.2 show how UDP and TCP operate when the implementation supports path 
MTU discovery. 

2.10 Serial Line Throughput Calculations

If the line speed is 9600 bits/sec, with 8 bits per byte, plus I start bit and I stop bit, the line speed is 
960 bytes/sec. Transferring a 1024-byte packet at this speed takes 1066 ms. If we're using the 
SLIP link for an interactive application, along with an application such as FTP that sends or 
receives 1024-byte packets, we have to wait, on the average, half of this time (533 ms) to send our 
interactive packet. 

This assumes that our interactive packet will be sent across the link before any further "big" 
packets. Most SLIP implementations do provide this type-of-service queuing, placing interactive 
traffic ahead of bulk data traffic. The interactive traffic is normally Telnet, Rlogin, and the control 
portion (the user commands, not the data) of FTP. 

This type of service queuing is imperfect. It cannot affect noninteractive traffic that is already 
queued downstream (e.g., at the serial driver). Also newer modems have large buffers so 
noninteractive traffic may already be buffered in the modem. 

Waiting 533 ms is unacceptable for interactive response. Human factors studies have found that an 
interactive response time longer than 100-200 ms is perceived as bad [Jacobson 1990a]. This is the 
round-trip time for an interactive packet to be sent and something to be returned (normally a 
character echo). 

Reducing the MTU of the SLIP link to 256 means the maximum amount of time the link can be 
busy with a single frame is 266 ms, and half of this (our average wait) is 133 ms. This is better, 
but still not perfect. The reason we choose this value (as compared to 64 or 128) is to provide 
good utilization of the line for bulk data transfers (such as large file transfers). Assuming a 5-byte 
CSLIP header, 256 bytes of data in a 261-byte frame gives 98.1% of the line to data and 1.9% to 
headers, which is good utilization. Reducing the MTU below 256 reduces the maximum 
throughput that we can achieve for bulk data transfers. 

The MTU value listed in Figure 2.5, 296 for a point-to-point link, assumes 256 bytes of data and 
the 40-byte TCP and IP headers. Since the MTU is a value that IP queries the link layer for, the 
value must include the normal TCP and IP headers. This is how IP makes its fragmentation 
decision. IP knows nothing about the header compression that CSLIP performs. 

Our average wait calculation (one-half the time required to transfer a maximum sized frame) only 
applies when a SLIP link (or PPP link) is used for both interactive traffic and bulk data transfer. 
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When only interactive traffic is being exchanged, 1 byte of data in each direction (assuming 5-byte 
compressed headers) takes around 12.5 ms for the round trip at 9600 bits/sec. This is well within 
the 100-200 ms range mentioned earlier. Also notice that compressing the headers from 40 bytes 
to 5 bytes reduces the round-trip time for the I byte of data from 85 to 12.5 ms. 

Unfortunately these types of calculations are harder to make when newer error correcting, 
compressing modems are being used. The compression employed by these modems reduces the 
number of bytes sent across the wire, but the error correction may increase the amount of time to 
transfer these bytes. Nevertheless, these calculations give us a starting point to make reasonable 
decisions. 

In later chapters we'll use these serial line calculations to verify some of the timings that we see 
when watching packets go across a serial link. 

2.11 Summary

This chapter has examined the lowest layer in the Internet protocol suite, the link layer. We looked 
at the difference between Ethernet and IEEE 802.2/802.3 encapsulation, and the encapsulation 
used by SLIP and PPP. Since both SLIP and PPP are often used on slow links, both provide a way 
to compress the common fields that don't often change. This provides better interactive response. 

The loopback interface is provided by most implementations. Access to this interface is either 
through the special loopback address, normally 127.0.0.1, or by sending IP datagrams to one of 
the host's own IP addresses. Loopback data has been completely processed by the transport layer 
and by IP when it loops around to go up the protocol stack. 

We described an important feature of many link layers, the MTU, and the related concept of a path 
MTU. Using the typical MTUs for serial lines, we calculated the latency involved in SLIP and 
CSLIP links. 

This chapter has covered only a few of the common data-link technologies used with TCP/IP 
today. One reason for the success of TCP/IP is its ability to work on top of almost any data-link 
technology. 

Exercises

2.1 If your system supports the netstat(1) command (see Section 3.9 also), use it to determine 
the interfaces on your system and their MTUs. 
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IP: Internet Protocol
3.1 Introduction

IP is the workhorse protocol of the TCP/IP protocol suite. All TCP, UDP, ICMP, and IGMP data 
gets transmitted as IP datagrams (Figure 1.4). A fact that amazes many newcomers to TCP/IP, 
especially those from an X.25 or SNA background, is that IP provides an unreliable, connectionless 
datagram delivery service. 

By unreliable we mean there are no guarantees that an IP datagram successfully gets to its 
destination. IP provides a best effort service. When something goes wrong, such as a router 
temporarily running out of buffers, IP has a simple error handling algorithm: throw away the 
datagram and try to send an ICMP message back to the source. Any required reliability must be 
provided by the upper layers (e.g., TCP). 

The term connectionless means that IP does not maintain any state information about successive 
datagrams. Each datagram is handled independently from all other datagrams. This also means that 
IP datagrams can get delivered out of order. If a source sends two consecutive datagrams (first A, 
then B) to the same destination, each is routed independently and can take different routes, with B 
arriving before A. 

In this chapter we take a brief look at the fields in the IP header, describe IP routing, and cover 
subnetting. We also look at two useful commands: ifconfig and netstat. We leave a detailed 
discussion of some of the fields in the IP header for later when we can see exactly how the fields 
are used. RFC 791 [Postel 1981a] is the official specification of IP. 

3.2 IP Header

Figure 3.1 shows the format of an IP datagram. The normal size of the IP header is 20 bytes, unless 
options are present. 
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Figure 3.1 IP datagram, showing the fields in the IP header.

We will show the pictures of protocol headers in TCP/IP as in Figure 3.1. The most significant bit 
is numbered 0 at the left, and the least significant bit of a 32-bit value is numbered 31 on the right. 

The 4 bytes in the 32-bit value are transmitted in the order: bits 0-7 first, then bits 8-15, then 16-23, 
and bits 24-31 last. This is called big endian byte ordering, which is the byte ordering required for 
all binary integers in the TCP/IP headers as they traverse a network. This is called the network byte 
order. Machines that store binary integers in other formats, such as the little endian format, must 
convert the header values into the network byte order before transmitting the data. 

The current protocol version is 4, so IP is sometimes called IPv4. Section 3.10 discusses some 
proposals for a new version of IP. 

The header length is the number of 32-bit words in the header, including any options. Since this is 
a 4-bit field, it limits the header to 60 bytes. In Chapter 8 we'll see that this limitation makes some 
of the options, such as the record route option, useless today. The normal value of this field (when 
no options are present) is 5. 

The type-of-service field (TOS) is composed of a 3-bit precedence field (which is ignored today), 4 
TOS bits, and an unused bit that must be 0. The 4 TOS bits are: minimize delay, maximize 
throughput, maximize reliability, and minimize monetary cost. 

Only 1 of these 4 bits can be turned on. If all 4 bits are 0 it implies normal service. RFC 1340 
[Reynolds and Postel 1992] specifies how these bits should be set by all the standard applications. 
RFC 1349 [Almquist 1992] contains some corrections to this RFC, and a more detailed description 
of the TOS feature. 
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Figure 3.2 shows the recommended values of the TOS field for various applications. In the final 
column we show the hexadecimal value, since that's what we'll see in the tcpdump output later in 
the text. 

Application
Minimize 

delay
Maximize 
throughput

Maximize 
reliability

Minimize 
monetary cost

Hex 
value

Telnet/Rlogin 1 0 0 0 0x10

FTP 
control
data

1
0

0
1

0
0

0
0

0x10
0x08

any bulk data 0 1 0 0 0x08

TFTP 1 0 0 0 0x10

SMTP 
command phase
data phase

1
0

0
1

0
0

0
0

0x10
0x08

DNS 
UDP query
TCP query
zone transfer 

1
0
0

0
0
1

0
0
0

0
0
0

0x10
0x00
0x08

ICMP
error
query

0
0

0
0

0
0

0
0

0x00
0x00

any IGP 0 0 1 0 0x04

SNMP 0 0 1 0 0x04

BOOTP 0 0 0 0 0x00

NNTP 0 0 0 1 0x02

Figure 3.2 Recommended values for type-of-service field.

The interactive login applications, Telnet and Rlogin, want a minimum delay since they're used 
interactively by a human for small amounts of data transfer. File transfer by FTP, on the other 
hand, wants maximum throughput. Maximum reliability is specified for network management 
(SNMP) and the routing protocols. Usenet news (NNTP) is the only one shown that wants to 
minimize monetary cost. 

The TOS feature is not supported by most TCP/IP implementations today, though newer systems 
starting with 4.3BSD Reno are setting it. Additionally, new routing protocols such as OSPF and IS-
IS are capable of making routing decisions based on this field. 

In Section 2.10 we mentioned that SLIP drivers normally provide type-of-service queuing, allowing interactive 
traffic to be handled before bulk data. Since most implementations don't use the TOS field, this queuing is done ad 
hoc by SLIP, with the driver looking at the protocol field (to determine whether it's a TCP segment or not) and then 
checking the source and destination TCP port numbers to see if the port number corresponds to an interactive 
service. One driver comments that this "disgusting hack" is required since most implementations don't allow the 
application to set the TOS field. 
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The total length field is the total length of the IP datagram in bytes. Using this field and the header 
length field, we know where the data portion of the IP datagram starts, and its length. Since this is a 
16-bit field, the maximum size of an IP datagram is 65535 bytes. (Recall from Figure 2.5 that a 
Hyperchannel has an MTU of 65535. This means there really isn't an MTU-it uses the largest IP 
datagram possible.) This field also changes when a datagram is fragmented, which we describe in 
Section 11.5. 

Although it's possible to send a 65535-byte IP datagram, most link layers will fragment this. 
Furthermore, a host is not required to receive a datagram larger than 576 bytes. TCP divides the 
user's data into pieces, so this limit normally doesn't affect TCP. With UDP we'll encounter 
numerous applications in later chapters (RIP, TFTP, BOOTP, the DNS, and SNMP) that limit 
themselves to 512 bytes of user data, to stay below this 576-byte limit. Realistically, however, most 
implementations today (especially those that support the Network File System, NFS) allow for just 
over 8192-byte IP datagrams. 

The total length field is required in the IP header since some data links (e.g., Ethernet) pad small 
frames to be a minimum length. Even though the minimum Ethernet frame size is 46 bytes (Figure 
2.1), an IP datagram can be smaller. If the total length field wasn't provided, the IP layer wouldn't 
know how much of a 46-byte Ethernet frame was really an IP datagram. 

The identification field uniquely identifies each datagram sent by a host. It normally increments by 
one each time a datagram is sent. We return to this field when we look at fragmentation and 
reassembly in Section 11.5. Similarly, we'll also look at the flags field and the fragmentation offset 
field when we talk about fragmentation. 

RFC 791 [Postel 1981a] says that the identification field should be chosen by the upper layer that is having IP send 
the datagram. This implies that two consecutive IP datagrams, one generated by TCP and one generated by UDP, 
can have the same identification field. While this is OK (the reassembly algorithm handles this), most Berkeley-
derived implementations have the IP layer increment a kernel variable each time an IP datagram is sent, regardless 
of which layer passed the data to IP to send. This kernel variable is initialized to a value based on the time-of-day 
when the system is bootstrapped. 

The time-to-live field, or TTL, sets an upper limit on the number of routers through which a 
datagram can pass. It limits the lifetime of the datagram. It is initialized by the sender to some 
value (often 32 or 64) and decremented by one by every router that handles the datagram. When 
this field reaches 0, the datagram is thrown away, and the sender is notified with an ICMP message. 
This prevents packets from getting caught in routing loops forever. We return to this field in 
Chapter 8 when we look at the Trace-route program. 

We talked about the protocol field in Chapter 1 and showed how it is used by IP to demultiplex 
incoming datagrams in Figure 1.8. It identifies which protocol gave the data for IP to send. 

The header checksum is calculated over the IP header only. It does not cover any data that follows 
the header. ICMP, IGMP, UDP, and TCP all have a checksum in their own headers to cover their 
header and data. 

To compute the IP checksum for an outgoing datagram, the value of the checksum field is first set 
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to 0. Then the 16-bit one's complement sum of the header is calculated (i.e., the entire header is 
considered a sequence of 16-bit words). The 16-bit one's complement of this sum is stored in the 
checksum field. When an IP datagram is received, the 16-bit one's complement sum of the header is 
calculated. Since the receiver's calculated checksum contains the checksum stored by the sender, 
the receiver's checksum is all one bits if nothing in the header was modified. If the result is not all 
one bits (a checksum error), IP discards the received datagram. No error message is generated. It is 
up to the higher layers to somehow detect the missing datagram and retransmit. 

ICMP, IGMP, UDP, and TCP all use the same checksum algorithm, although TCP and UDP 
include various fields from the IP header, in addition to their own header and data. RFC 1071 
[Braden, Borman, and Partridge 1988] contains implementation techniques for computing the 
Internet checksum. Since a router often changes only the TTL field (decrementing it by 1), a router 
can incrementally update the checksum when it forwards a received datagram, instead of 
calculating the checksum over the entire IP header again. RFC 1141 [Mallory and Kullberg 1990] 
describes an efficient way to do this. 

The standard BSD implementation, however, does not use this incremental update feature when forwarding a 
datagram. 

Every IP datagram contains the source IP address and the destination IP address. These are the 32-
bit values that we described in Section 1.4. 

The final field, the options, is a variable-length list of optional information for the datagram. The 
options currently defined are: 

●     security and handling restrictions (for military applications, refer to RFC 1108 [Kent 1991] 
for details), 

●     record route (have each router record its IP address. Section 7.3), 
●     timestamp (have each router record its IP address and time. Section 7.4), 
●     loose source routing (specifying a list of IP addresses that must be traversed by the 

datagram. Section 8.5), and 
●     strict source routing (similar to loose source routing but here only the addresses in the list 

can be traversed. Section 8.5). 

These options are rarely used and not all host and routers support all the options. 

The options field always ends on a 32-bit boundary. Pad bytes with a value of 0 are added if 
necessary. This assures that the IP header is always a multiple of 32 bits (as required for the header 
length field). 

3.3 IP Routing

Conceptually, IP routing is simple, especially for a host. If the destination is directly connected to 
the host (e.g., a point-to-point link) or on a shared network (e.g., Ethernet or token ring), then the 
IP datagram is sent directly to the destination. Otherwise the host sends the datagram to a default 
router, and lets the router deliver the datagram to its destination. This simple scheme handles most 
host configurations. 
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In this section and in Chapter 9 we'll look at the more general case where the IP layer can be 
configured to act as a router in addition to acting as a host. Most multiuser systems today, including 
almost every Unix system, can be configured to act as a router. We can then specify a single 
routing algorithm that both hosts and routers can use. The fundamental difference is that a host 
never forwards datagrams from one of its interfaces to another, while a router forwards datagrams. 
A host that contains embedded router functionality should never forward a datagram unless it has 
been specifically configured to do so. We say more about this configuration option in Section 9.4. 

In our general scheme, IP can receive a datagram from TCP, UDP, ICMP, or IGMP (that is, a 
locally generated datagram) to send, or one that has been received from a network interface (a 
datagram to forward). The IP layer has a routing table in memory that it searches each time it 
receives a datagram to send. When a datagram is received from a network interface, IP first checks 
if the destination IP address is one of its own IP addresses or an IP broadcast address. If so, the 
datagram is delivered to the protocol module specified by the protocol field in the IP header. If the 
datagram is not destined for this IP layer, then (1) if the IP layer was configured to act as a router 
the packet is forwarded (that is, handled as an outgoing datagram as described below), else (2) the 
datagram is silently discarded. 

Each entry in the routing table contains the following information: 

●     Destination IP address. This can be either a complete host address or a network address, as 
specified by the flag field (described below) for this entry. A host address has a nonzero 
host ID (Figure 1.5) and identifies one particular host, while a network address has a host ID 
of 0 and identifies all the hosts on that network (e.g., Ethernet, token ring). 

●     IP address of a next-hop router, or the IP address of a directly connected network. A next-
hop router is one that is on a directly connected network to which we can send datagrams 
for delivery. The next-hop router is not the final destination, but it takes the datagrams we 
send it and forwards them to the final destination. 

●     Flags. One flag specifies whether the destination IP address is the address of a network or 
the address of a host. Another flag says whether the next-hop router field is really a next-
hop router or a directly connected interface. (We describe each of these flags in Section 
9.2.) 

●     Specification of which network interface the datagram should be passed to for transmission. 

IP routing is done on a hop-by-hop basis. As we can see from this routing table information, IP 
does not know the complete route to any destination (except, of course, those destinations that are 
directly connected to the sending host). All that IP routing provides is the IP address of the next-
hop router to which the datagram is sent. It is assumed that the next-hop router is really "closer" to 
the destination than the sending host is, and that the next-hop router is directly connected to the 
sending host. 

IP routing performs the following actions: 

1.  Search the routing table for an entry that matches the complete destination IP address 
(matching network ID and host ID). If found, send the packet to the indicated next-hop 
router or to the directly connected interface (depending on the flags field). Point-to-point 
links are found here, for example, since the other end of such a link is the other host's 
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complete IP address. 

2.  Search the routing table for an entry that matches just the destination network ID. If found, 
send the packet to the indicated next-hop router or to the directly connected interface 
(depending on the flags field). All the hosts on the destination network can be handled with 
this single routing table entry All the hosts on a local Ethernet, for example, are handled 
with a routing table entry of this type. 

This check for a network match must take into account a possible subnet mask, which we 
describe in the next section. 

3.  Search the routing table for an entry labeled "default." If found, send the packet to the 
indicated next-hop router. 

If none of the steps works, the datagram is undeliverable. If the undeliverable datagram was 
generated on this host, a "host unreachable" or "network unreachable" error is normally returned to 
the application that generated the datagram. 

A complete matching host address is searched for before a matching network ID. Only if both of 
these fail is a default route used. Default routes, along with the ICMP redirect message sent by a 
next-hop router (if we chose the wrong default for a datagram), are powerful features of IP routing 
that we'll come back to in Chapter 9. 

The ability to specify a route to a network, and not have to specify a route to every host, is another 
fundamental feature of IP routing. Doing this allows the routers on the Internet, for example, to 
have a routing table with thousands of entries, instead of a routing table with more than one million 
entries. 

Examples

First consider a simple example: our host bsdi has an IP datagram to send to our host sun. Both 
hosts are on the same Ethernet (see inside front cover). Figure 3.3 shows the delivery of the 
datagram. 

When IP receives the datagram from one of the upper layers it searches its routing table and finds 
that the destination IP address (140.252.13.33) is on a directly connected network (the Ethernet 
140.252.13.0). A matching network address is found in the routing table. (In the next section we'll 
see that because of subnetting the network address of this Ethernet is really 140.252.13.32, but that 
doesn't affect this discussion of routing.) The datagram is passed to the Ethernet device driver, and 
sent to sun as an Ethernet frame (Figure 2.1). The destination address in the IP datagram is Sun's IP 
address (140.252.13.33) and the destination address in the link-layer header is the 48-bit Ethernet 
address of sun's Ethernet interface. This 48-bit Ethernet address is obtained using ARP, as we 
describe in the next chapter. destination network = 140.252.13.0
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Figure 3.3 Delivery of IP datagram from bsdi to sun.

Now consider another example: bsdi has an IP datagram to send to the host ftp.uu.net, 
whose IP address is 192.48.96.9. Figure 3.4 shows the path of the datagram through the first three 
routers. First bsdi searches its routing table but doesn't find a matching host entry or a matching 
network entry. It uses its default entry, which tells it to send datagrams to sun, the next-hop router. 
When the datagram travels from bsdi to sun the destination IP address is the final destination 
(192.48.96.9) but the link-layer address is the 48-bit Ethernet address of sun's Ethernet interface. 
Compare this datagram with the one in Figure 3.3, where the destination IP address and the 
destination link-layer address specified the same host (sun). 

When sun receives the datagram it realizes that the datagram's destination IP address is not one of 
its own, and sun is configured to act as a router, so it forwards the datagram. Its routing table is 
searched and the default entry is used. The default entry on sun tells it to send datagrams to the 
next-hop router netb, whose IP address is 140.252.1.183. The datagram is sent across the point-to-
point SLIP link, using the minimal encapsulation we showed in Figure 2.2. We don't show a link-
layer header, as we do on the Ethernets, because there isn't one on a SLIP link. 

When netb receives the datagram it goes through the same steps that sun just did: the datagram is 
not destined for one of its own IP addresses, and netb is configured to act as a router, so the 
datagram is forwarded. The default routing table entry is used, sending the datagram to the next-
hop router gateway (140.252.1.4). ARP is used by netb on the Ethernet 140.252.1 to obtain the 
48-bit Ethernet address corresponding to 140.252.1.4, and that Ethernet address is the destination 
address in the link-layer header. 

gateway goes through the same steps as the previous two routers and its default routing table 
entry specifies 140.252.104.2 as the next-hop router. (We'll verify that this is the next-hop router 
for gateway using Traceroute in Figure 8.4.) 
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Figure 3.4 Initial path of datagram from bsdi to ftp.uu.net (192.48.96.9).

A few key points come out in this example. 

1.  All the hosts and routers in this example used a default route. Indeed, most hosts and some 
routers can use a default route for everything other than destinations on local networks. 

2.  The destination IP address in the datagram never changes. (In Section 8.5 we'll see that this 
is not true only if source routing is used, which is rare.) All the routing decisions are based 
on this destination address. 

3.  A different link-layer header can be used on each link, and the link-layer destination address 
(if present) always contains the link-layer address of the next hop. In our example both 
Ethernets encapsulated a link-layer header containing the next-hop's Ethernet address, but 
the SLIP link did not. The Ethernet addresses are normally obtained using ARP. 

In Chapter 9 we'll look at IP routing again, after describing ICMP. We'll also look at some sample 
routing tables and how they're used for routing decisions. 

3.4 Subnet Addressing

All hosts are now required to support subnet addressing (RFC 950 [Mogul and Postel 1985]). 
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Instead of considering an IP address as just a network ID and host ID, the host ID portion is divided 
into a subnet ID and a host ID. 

This makes sense because class A and class B addresses have too many bits allocated for the host 
ID: 224-2 and 216-2, respectively. People don't attach that many hosts to a single network. (Figure 
1.5 shows the format of the different classes of IP addresses.) We subtract 2 in these expressions 
because host IDs of all zero bits or all one bits are invalid. 

After obtaining an IP network ID of a certain class from the InterNIC, it is up to the local system 
administrator whether to subnet or not, and if so, how many bits to allocate to the subnet ID and 
host ID. For example, the internet used in this text has a class B network address (140.252) and of 
the remaining 16 bits, 8 are for the subnet ID and 8 for the host ID. This is shown in Figure 3.5. 

16 bits 8 bits 8 bits

Class B netid = 140.252 subnetid hostid

Figure 3.5 Subnetting a class B address.

This division allows 254 subnets, with 254 hosts per subnet. 

Many administrators use the natural 8-bit boundary in the 16 bits of a class B host ID as the subnet 
boundary. This makes it easier to determine the subnet ID from a dotted-decimal number, but there 
is no requirement that the subnet boundary for a class A or class B address be on a byte boundary. 

Most examples of subnetting describe it using a class B address. Subnetting is also allowed for a 
class C address, but there are fewer bits to work with. Subnetting is rarely shown with a class A 
address because there are so few class A addresses. (Most class A addresses are, however, 
subnetted.) 

Subnetting hides the details of internal network organization (within a company or campus) to 
external routers. Using our example network, all IP addresses have the class B network ID of 
140.252. But there are more than 30 subnets and more than 400 hosts distributed over those 
subnets. A single router provides the connection to the Internet, as shown in Figure 3.6. 

In this figure we have labeled most of the routers as Rn, where n is the subnet number. We show 
the routers that connect these subnets, along with the nine systems from the figure on the inside 
front cover. The Ethernets are shown as thicker lines, and the point-to-point links as dashed lines. 
We do not show all the hosts on the various subnets. For example, there are more than 50 hosts on 
the 140.252.3 subnet, and more than 100 on the 140.252.1 subnet. 

The advantage to using a single class B address with 30 subnets, compared to 30 class C addresses, 
is that subnetting reduces the size of the Internet's routing tables. The fact that the class B address 
140.252 is subnetted is transparent to all Internet routers other than the ones within the 140.252 
subnet. To reach any host whose IP 
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Figure 3.6 Arrangement of most of the noao.edu 140.252 subnets.

address begins with 140.252, the external routers only need to know the path to the IP address 
140.252.104.1. This means that only one routing table entry is needed for all the 140.252 networks, 
instead of 30 entries if 30 class C addresses were used. Subnetting, therefore, reduces the size of 
routing tables. (In Section 10.8 we'll look at a new technique that helps reduce the size of routing 
tables even if class C addresses are used.) 

To show that subnetting is not transparent to routers within the subnet, assume in Figure 3.6 that a 
datagram arrives at gateway from the Internet with a destination address of 140.252.57.1. The 
router gateway needs to know that the subnet number is 57, and that datagrams for this subnet are 
sent to kpno. Similarly kpno must send the datagram to R55, who then sends it to R57. 

3.5 Subnet Mask

Part of the configuration of any host that takes place at bootstrap time is the specification of the 
host's IP address. Most systems have this stored in a disk file that's read at bootstrap time, and we'll 
see in Chapter 5 how a diskless system can also find out its IP address when it's bootstrapped. 

In addition to the IP address, a host also needs to know how many bits are to be used for the subnet 
ID and how many bits are for the host ID. This is also specified at bootstrap time using a subnet 
mask. This mask is a 32-bit value containing one bits for the network ID and subnet ID, and zero 
bits for the host ID. Figure 3.7 shows the formation of the subnet mask for two different partitions 
of a class B address. The top example is the partitioning used at noao.edu, shown in Figure 3.5, 
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where the subnet ID and host ID are both 8 bits wide. The lower example shows a class B address 
partitioned for a 10-bit subnet ID and a 6-bit host ID. 

Figure 3.7 Example subnet mask for two different class B subnet arrangements.

Although IP addresses are normally written in dotted-decimal notation, subnet masks are often 
written in hexadecimal, especially if the boundary is not a byte boundary, since the subnet mask is 
a bit mask. 

Given its own IP address and its subnet mask, a host can determine if an IP datagram is destined for 
(1) a host on its own subnet, (2) a host on a different subnet on its own network, or (3) a host on a 
different network. Knowing your own IP address tells you whether you have a class A, B, or C 
address (from the high-order bits), which tells you where the boundary is between the network ID 
and the subnet ID. The subnet mask then tells you where the boundary is between the subnet ID 
and the host ID. 

Example

Assume our host address is 140.252.1.1 (a class B address) and our subnet mask is 255.255.255.0 
(8 bits for the subnet ID and 8 bits for the host ID). 

●     If a destination IP address is 140.252.4.5, we know that the class B network IDs are the 
same (140.252), but the subnet IDs are different (1 and 4). Figure 3.8 shows how this 
comparison of two IP addresses is done, using the subnet mask. 

●     If the destination IP address is 140.252.1.22, the class B network IDs are the same 
(140.252), and the subnet IDs are the same (1). The host IDs, however, are different. 

●     If the destination IP address is 192.43.235.6 (a class C address), the network IDs are 
different. No further comparisons can be made against this address. 

Figure 3.8 Comparison of two class B addresses using a subnet mask.
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The IP routing function makes comparisons like this all the time, given two IP addresses and a 
subnet mask. 

3.6 Special Case IP Addresses

Having described subnetting we now show the seven special case IP addresses in Figure 3.9. In this 
figure, 0 means a field of all zero bits, -1 means a field of all one bits, and netid, subnetid, and 
hostid mean the corresponding field that is neither all zero bits nor all one bits. A blank subnet ID 
column means the address is not subnetted. 

IP address Can appear as Description

net ID
subnet 

ID
host ID source? destination?

0 
0

0
hostid

OK
OK

never
never

this host on this net (see restrictions below)
specified host on this net (see restrictions 
below) 

127 anything OK OK loopback address (Section 2.7) 

-1 
netid
netid
netid

subnetid
1

-1 
-1
-1
-1

never
never
never
never

OK
OK
OK
OK

limited broadcast (never forwarded)
net-directed broadcast to netid
subnet-directed broadcast to netid, subnetid
all-subnets-directed broadcast to netid 

Figure 3.9 Special case IP addresses.

We have divided this table into three sections. The first two entries are special case source 
addresses, the next one is the special loopback address, and the final four are the broadcast 
addresses. 

"The first two entries in the table, with a network ID of 0, can only appear as the source address as 
part of an initialization procedure when a host is determining its own IP address, for example, when 
the BOOTP protocol is being used (Chapter 16). In Section 12.2 we'll examine the four types of 
broadcast addresses in more detail. 

3.7 A Subnet Example

This example shows the subnet used in the text, and how two different subnet masks are used. 
Figure 3.10 shows the arrangement. 
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Figure 3.10 Arrangement of hosts and networks for author's subnet.

If you compare this figure with the one on the inside front cover, you'll notice that we've omitted 
the detail that the connection from the router sun to the top Ethernet in Figure 3.10 is really a dialup 
SLIP connection. This detail doesn't affect our description of subnetting in this section. We'll return 
to this detail in Section 4.6 when we describe proxy ARP. 

The problem is that we have two separate networks within subnet 13: an Ethernet and a point-to-
point link (the hardwired SLIP link). (Point-to-point links always cause problems since each end 
normally requires an IP address.) There could be more hosts and networks in the future, but not 
enough hosts across the different networks to justify using another subnet number. Our solution is 
to extend the subnet ID from 8 to II bits, and decrease the host ID from 8 to 5 bits. This is called 
variable-length subnets since most networks within the 140.252 network use an 8-bit subnet mask 
while our network uses an 11-bit subnet mask. 

RFC 1009 [Braden and Postel 1987] allows a subnetted network to use more than one subnet mask. The new Router 
Requirements RFC [Almquist 1993] requires support for this. 

The problem, however, is that not all routing protocols exchange the subnet mask along with the destination 
network ID. We'll see in Chapter 10 that RIP does not support variable-length subnets, while RIP Version 2 and 

OSPF do. We don't have a problem with our example, since RIP isn't required on the author's subnet. 

Figure 3.11 shows the IP address structure used within the author's subnet. The first 8 bits of the 11-
bit subnet ID are always 13 within the author's subnet. For the remaining 3 bits of the subnet ID, 
we use binary 001 for the Ethernet, and binary 010 for 

Figure 3.11 Using variable-length subnets.
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the point-to-point SLIP link. This variable-length subnet mask does not cause a problem for other 
hosts and routers in the 140.252 network-as long as all datagrams destined for the subnet 
140.252.13 are sent to the router sun (IP address 140.252.1.29) in Figure 3.10, and if sun knows 
about the 11-bit subnet ID for the hosts on its subnet 13, everything is fine. 

The subnet mask for all the interfaces on the 140.252.13 subnet is 255.255.255.224, or 
0xffffffe0. This indicates that the rightmost 5 bits are for the host ID, and the 27 bits to the left 
are the network ID and subnet ID. 

Figure 3.12 shows the allocation of IP addresses and subnet masks for the interfaces shown in 
Figure 3.10. 

Host IP address Subnet mask
Net ID/Subnet 

ID
Host 
ID

Comment

sun
140.252.1.29 
140.252.13.33 

255.255.255.0 
255.255.255.224 

140.252.1 
140.252.13.32 

29 
1

on subnet 1
on author's Ethernet 

svr4 140.252.13.34 255.255.255.224 140.252.13.32 2

bsdi
140.252.13.35 
140.252.13.66 

255.255.255.224 
255.255.255.224 

140.252.13.32 
140.252.13.64 

3 
2

on Ethernet
point-to-point 

slip 140.252.13.65 255.255.255.224 140.252.13.64 1 point-to-point

140.252.13.63 255.255.255.224 140.252.13.32 31
broadcast addr on 
Ethernet

Figure 3.12 IP addresses on author's subnet.

The first column is labeled "Host," but both sun and bsdi also act as routers, since they are 
multihomed and route packets from one interface to another. 

The final row in this table notes that the broadcast address for the Ethernet in Figure 3.10 is 
140.252.13.63: it is formed from the subnet ID of the Ethernet (140.252.13.32) and the low-order 5 
bits in Figure 3.11 set to 1 (16+8+4+2+1 = 31). (We'll see in Chapter 12 that this address is called 
the subnet-directed broadcast address.) 

3.8 ifconfig Command

Now that we've described the link layer and the IP layer we can show the command used to 
configure or query a network interface for use by TCP/IP. The ifconfig(8) command is 
normally run at bootstrap time to configure each interface on a host. 

For dialup interfaces that may go up and down (such as SLIP links), ifconfig must be run 
(somehow) each time the line is brought up or down. How this is done each time the SLIP link is 
brought up or down depends on the SLIP software being used. 

The following output shows the values for the author's subnet. Compare these values with the 
values in Figure 3.12. 

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/ip_inter.htm (15 of 19) [12/09/2001 14.46.37]



Chapter 3. IP: Internet Protocol

sun % /usr/etc/ifconfig -a SunOS -a option says report on all interfaces 

leO : flags=63<UP, BROADCAST, NOTRAILERS, RUNNING> 
inet 140.252.13.33 netmask ffffffe0 broadcast 140.252.13.63 

slO : flags=105KUP, POINTOPOINT, RUNNING, LINKO>
inet 140.252.1.29 -> 140.252.1.183 netmask ffffff00 

loO: flags=49<UP,LOOPBACK,RUNNING>
inet 127.0.0.1 netmask ff000000 

The loopback interface (Section 2.7) is considered a network interface. Its class A address is not 
subnetted. 

Other things to notice are that trailer encapsulation (Section 2.3) is not used on the Ethernet, and 
that the Ethernet is capable of broadcasting, while the SLIP link is a point-to-point link. 

The flag LINK0 for the SLIP interface is the configuration option that enables compressed slip 
(CSLIP, Section 2.5). Other possible options are LINK1, which enables CSLIP if a compressed 
packet is received from the other end, and LINK2, which causes all outgoing ICMP packets to be 
thrown away. We'll look at the destination address of this SLIP link in Section 4.6. 

A comment in the installation instructions gives the reason for this last option: "This shouldn't have 
to be set, but some cretin pinging you can drive your throughput to zero." 

bsdi is the other router. Since the -a option is a SunOS feature, we have to execute ifconfig 
multiple times, specifying the interface name as an argument: 

bsdi % /sbin/ifconfig weO 

we0: flags=863<UP, BROADCAST, NOTRAILERS, RUNNING, SIMPLEX> 
inet 140.252.13.35 netmask ffffffe0 broadcast 140.252.13.63 

bsdi % /sbin/ifconfig slO 

sl0 : flags=1011<UP, POINTOPOINT, LINKO 
inet 140.252.13.66 -> 140.252.13.65 netmask ffffffe0 

Here we see a new option for the Ethernet interface (we0): SIMPLEX. This 4.4BSD flag specifies 
that the interface can't hear its own transmissions. It is set in BSD/386 for all the Ethernet 
interfaces. When set, if the interface is sending a frame to the broadcast address, a copy is made for 
the local host and sent to the loopback address. (We show an example of this feature in Section 
6.3.) 

On the host slip the configuration of the SLIP interface is nearly identical to the output shown 
above on bsdi, with the exception that the IP addresses of the two ends are swapped: 

slip % /sbin/ifconfig slO 

sl0 : flags=1011<UP, POINTOPOINT, LINK0 
inet 140.252.13.65 --> 140.252.13.66 netmask ffffffe0 
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The final interface is the Ethernet interface on the host svr4. It is similar to the Ethernet output 
shown earlier, except that SVR4's version of ifconfig doesn't print the RUNNING flag: 

svr4 % /usr/sbin/ifconfig emdO 

emdO: flags=23<UP, BROADCAST, NOTRAILERS> 
inet 140.252.13.34 netmask ffffffe0 broadcast 140.252.13.63 

The ifconfig command normally supports other protocol families (other than TCP/IP) and has 
numerous additional options. Check your system's manual for these details. 

3.9 netstat Command

The netstat(l) command also provides information about the interfaces on a system. The -i 
flag prints the interface information, and the -n flag prints IP addresses instead of hostnames. 

sun % netstat -in 

Name Mtu Net/Dest Address lpkts lerrs Opkts Oerrs Collis Queue 

leO 1500 140.252.13.32 140.252.13.33 67719 0 92133 0 1 0 

slO 552 140.252.1.183 140.252.1.29 48035 0 54963 0 0 0 

loO 1536 127.0.0.0 127.0.0.1 15548 0 15548 0 0 0 

This command prints the MTU of each interface, the number of input packets, input errors, output 
packets, output errors, collisions, and the current size of the output queue. 

We'll return to the netstat command in Chapter 9 when we use it to examine the routing table, 
and in Chapter 13 when we use a modified version to see active multicast groups. 

3.10 IP Futures

There are three problems with IP. They are a result of the phenomenal growth of the Internet over 
the past few years. (See Exercise 1.2 also.) 

1.  Over half of all class B addresses have already been allocated. Current estimates predict 
exhaustion of the class B address space around 1995, if they continue to be allocated as they 
have been in the past. 

2.  32-bit IP addresses in general are inadequate for the predicted long-term growth of the 
Internet. 

3.  The current routing structure is not hierarchical, but flat, requiring one routing table entry 
per network. As the number of networks grows, amplified by the allocation of multiple class 
C addresses to a site with multiple networks, instead of a single class B address, the size of 
the routing tables grows. 

CIDR (Classless Interdomain Routing) proposes a fix to the third problem that will extend the 
usefulness of the current version of IP (IP version 4) into the next century. We discuss it in more 
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detail in Section 10.8. 

Four proposals have been made for a new version of IP, often called IPng, for the next generation 
of IP. The May 1993 issue of IEEE Network (vol. 7, no. 3) contains overviews of the first three 
proposals, along with an article on CIDR. RFC 1454 [Dixon 1993] also compares the first three 
proposals. 

1.  SIP, the Simple Internet Protocol. It proposes a minimal set of changes to IP that uses 64-bit 
addresses and a different header format. (The first 4 bits of the header still contain the 
version number, with a value other than 4.) 

2.  PIP. This proposal also uses larger, variable-length, hierarchical addresses with a different 
header format. 

3.  TUBA, which stands for "TCP and UDP with Bigger Addresses," is based on the OSI 
CLNP (Connectionless Network Protocol), an OSI protocol similar to IP. It provides much 
larger addresses: variable length, up to 20 bytes. Since CLNP is an existing protocol, 
whereas SIP and PIP are just proposals, documentation already exists on CLNP. RFC 1347 
[Gallon 1992] provides details on TUBA. Chapter 7 of [Periman 1992] contains a 
comparison of IPv4 and CLNP. Many routers already support CLNP, but few hosts do. 

4.  TP/IX, which is described in RFC 1475 [Ullmann 1993]. As with SIP, it uses 64 bits for IP 
addresses, but it also changes the TCP and UDP headers: 32-bit port number for both 
protocols, along with 64-bit sequence numbers, 64-bit acknowledgment numbers, and 32-bit 
windows for TCP. 

The first three proposals use basically the same versions of TCP and UDP as the transport layers. 

Since only one of these four proposals will be chosen as the successor to IPv4, and since the 
decision may have been made by the time you read this, we won't say any more about them. With 
the forthcoming implementation of CIDR to handle the short-term problem, it will take many years 
to implement the successor to IPv4. 

3.11 Summary

We started this chapter with a description of the IP header and briefly described all the fields in this 
header. We also gave an introduction to IP routing, and saw that host routing can be simple: the 
destination is either on a directly connected network, in which case the datagram is sent directly to 
the destination, or a default router is chosen. 

Hosts and routers have a routing table that is used for all routing decisions. There are three types of 
routes in the table: host specific, network specific, and optional default routes. There is a priority to 
the entries in a routing table. A host route will be chosen over a network router, and a default route 
is used only when no other route exists to the destination. 

IP routing is done on a hop-by-hop basis. The destination IP address never changes as the datagram 
proceeds through all the hops, but the encapsulation and destination link-layer address can change 
on each hop. Most hosts and many routers use a default next-hop router for all nonlocal traffic. 

Class A and B addresses are normally subnetted. The number of bits used for the subnet ID is 
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specified by the subnet mask. We gave a detailed example of this, using the author's subnet, and 
introduced variable-length subnets. The use of subnetting reduces the size of the Internet routing 
tables, since many networks can often be accessed through a single point. Information on the 
interfaces and networks is available through the ifconfig and netstat commands. This 
includes the IP address of the interface, its subnet mask, broadcast address, and MTU. 

We finished the chapter with a discussion of potential changes to the Internet protocol suite-the 
next generation of IP. 

Exercises

3.1 Must the loopback address be 127.0.0.1? 

3.2 Identify the routers in Figure 3.6 with more than two network interfaces. 

3.3 What's the difference in the subnet mask for a class A address with 16 bits for the subnet ID 
and a class B address with 8 bits for the subnet ID? 

3.4 Read RFC 1219 [Tsuchiya 1991] for a recommended technique for assigning subnet IDs and 
host IDs. 

3.5 Is the subnet mask 255.255.0.255 valid for a class A address? 

3.6 Why do you think the MTU of the loopback interface printed in Section 3.9 is set to 1536? 

3.7 The TCP/IP protocol suite is built on a datagram network technology, the IP layer. Other 
protocol suites are built on a connection-oriented network technology. Read [dark 1988] to
discover the three advantages the datagram network layer provides. 
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ARP: Address Resolution Protocol
4.1 Introduction

The problem that we deal with in this chapter is that IP addresses only make sense to the TCP/IP 
protocol suite. A data link such as an Ethernet or a token ring has its own addressing scheme 
(often 48-bit addresses) to which any network layer using the data link must conform. A network 
such as an Ethernet can be used by different network layers at the same time. For example, a 
collection of hosts using TCP/IP and another collection of hosts using some PC network software 
can share the same physical cable. 

When an Ethernet frame is sent from one host on a LAN to another, it is the 48-bit Ethernet 
address that determines for which interface the frame is destined. The device driver software 
never looks at the destination IP address in the IP datagram. 

Address resolution provides a mapping between the two different forms of addresses: 32-bit IP 
addresses and whatever type of address the data link uses. RFC 826 [Plummer 1982] is the 
specification of ARP. 

Figure 4.1 shows the two protocols we talk about in this chapter and the next: ARP (address 
resolution protocol) and RARP (reverse address resolution protocol). 

Figure 4.1 Address resolution protocols: ARP and RARP.

ARP provides a dynamic mapping from an IP address to the corresponding hardware address. We 
use the term dynamic since it happens automatically and is normally not a concern of either the 
application user or the system administrator. 

RARP is used by systems without a disk drive (normally diskless workstations or X terminals) 
but requires manual configuration by the system administrator. We describe it in Chapter 5. 

4.2 An Example

Whenever we type a command of the form 

% ftp bsdi 

the following steps take place. These numbered steps are shown in Figure 4.2. 

1.  The application, the FTP client, calls the function gethostbyname(3) to convert the 
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hostname (bsdi) into its 32-bit IP address. This function is called a resolver in the DNS 
(Domain Name System), which we describe in Chapter 14. This conversion is done using 
the DNS, or on smaller networks, a static hosts file (/etc/hosts). 

2.  The FTP client asks its TCP to establish a connection with that IP address. 
3.  TCP sends a connection request segment to the remote host by sending an IP datagram to 

its IP address. (We'll see the details of how this is done in Chapter 18.) 
4.  If the destination host is on a locally attached network (e.g., Ethernet, token ring, or the 

other end of a point-to-point link), the IP datagram can be sent directly to that host. If the 
destination host is on a remote network, the IP routing function determines the Internet 
address of a locally attached next-hop router to send the IP datagram to. In either case the 
IP datagram is sent to a host or router on a locally attached network. 

5.  Assuming an Ethernet, the sending host must convert the 32-bit IP address into a 48-bit 
Ethernet address. A translation is required from the logical Internet address to its 
corresponding physical hardware address. This is the function of ARP. 

ARP is intended for broadcast networks where many hosts or routers are connected to a 
single network. 

6.  ARP sends an Ethernet frame called an ARP request to every host on the network. This is 
called a broadcast. We show the broadcast in Figure 4.2 with dashed lines. The ARP 
request contains the IP address of the destination host (whose name is bsdi) and is the 
request "if you are the owner of this IP address, please respond to me with your hardware 
address." 
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Figure 4.2 Operation of ARP when user types "ftp hostname".
7.  The destination host's ARP layer receives this broadcast, recognizes that the sender is 

asking for its hardware address, and replies with an ARP reply. This reply contains the IP 
address and the corresponding hardware address. 

8.  The ARP reply is received and the IP datagram that forced the ARP request-reply to be 
exchanged can now be sent. 

9.  The IP datagram is sent to the destination host. 

The fundamental concept behind ARP is that the network interface has a hardware address (a 48-
bit value for an Ethernet or token ring interface). Frames exchanged at the hardware level must be 
addressed to the correct interface. But TCP/IP works with its own addresses: 32-bit IP addresses. 
Knowing a host's IP address doesn't let the kernel send a frame to that host. The kernel (i.e., the 
Ethernet driver) must know the destination's hardware address to send it data. The function of 
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ARP is to provide a dynamic mapping between 32-bit IP addresses and the hardware addresses 
used by various network technologies. 

Point-to-point links don't use ARP. When these links are configured (normally at bootstrap time) 
the kernel must be told of the IP address at each end of the link. Hardware addresses such as 
Ethernet addresses are not involved. 

4.3 ARP Cache

Essential to the efficient operation of ARP is the maintenance of an ARP cache on each host. This 
cache maintains the recent mappings from Internet addresses to hardware addresses. The normal 
expiration time of an entry in the cache is 20 minutes from the time the entry was created. 

We can examine the ARP cache with the arp(8) command. The -a option displays all entries in 
the cache: 

bsdi % arp -a
sun (140.252.13.33) at 8:0:20:3:f6:42
svr4 (140.252.13.34) at 0:0:c0:c2:9b:26 

The 48-bit Ethernet addresses are displayed as six hexadecimal numbers separated by colons. We 
discuss additional features of the arp command in Section 4.8. 

4.4 ARP Packet Format

Figure 4.3 shows the format of an ARP request and an ARP reply packet, when used on an 
Ethernet to resolve an IP address. (ARP is general enough to be used on other networks and can 
resolve addresses other than IP addresses. The first four fields following the frame type field 
specify the types and sizes of the final four fields.) 

Figure 4.3 Format of ARP request or reply packet when used on an Ethernet.

The first two fields in the Ethernet header are the source and destination Ethernet addresses. The 
special Ethernet destination address of all one bits means the broadcast address. All Ethernet 
interfaces on the cable receive these frames. 

The 2-byte Ethernet frame type specifies the type of data that follows. For an ARP request or an 
ARP reply, this field is 0x0806. 

The adjectives hardware and protocol are used to describe the fields in the ARP packets. For 
example, an ARP request asks for the protocol address (an IP address in this case) corresponding 
to a hardware address (an Ethernet address in this case). 

The hard type field specifies the type of hardware address. Its value is 1 for an Ethernet. Prot 
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type specifies the type of protocol address being mapped. Its value is 0x0800 for IP addresses. 
This is purposely the same value as the type field of an Ethernet frame containing an IP 
datagram. (See Figure 2.1.) 

The next two 1-byte fields, hard size and prot size, specify the sizes in bytes of the hardware 
addresses and the protocol addresses. For an ARP request or reply for an IP address on an 
Ethernet they are 6 and 4, respectively. 

The op field specifies whether the operation is an ARP request (a value of 1), ARP reply (2), 
RARP request (3), or RARP reply (4). (We talk about RARP in Chapter 5.) This field is required 
since the frame type field is the same for an ARP request and an ARP reply 

The next four fields that follow are the sender's hardware address (an Ethernet address in this 
example), the sender's protocol address (an IP address), the target hardware address, and the 
target protocol address. Notice there is some duplication of information: the sender's hardware 
address is available both in the Ethernet header and in the ARP request. 

For an ARP request all the fields are filled in except the target hardware address. When a system 
receives an ARP request directed to it, it fills in its hardware address, swaps the two sender 
addresses with the two target addresses, sets the op field to 2, and sends the reply. 

4.5 ARP Examples

In this section we'll use the tcpdump command to see what really happens with ARP when we 
execute normal TCP utilities such as Telnet. Appendix A contains additional details on the 
tcpdump program. 

Normal Example

To see the operation of ARP we'll execute the telnet command, connecting to the discard server. 

bsdi % arp -a verify ARP cache is empty 

bsdi % telnet svr4 discard 
Trying 140.252.13.34...
Connected to svr4.
Escape character is '^]'. 

connect to the discard server 

^] 

telnet> quit 
Connection closed. 

type Control, right bracket to get Telnet client 
prompt and terminate 

While this is happening we run the tcpdump command on another system (sun) with the -e 
option. This displays the hardware addresses (which in our examples are 48-bit Ethernet 
addresses). 
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1 0.0
0:0:c0:6f:2d:40 ff:ff:ff:ff:ff:ff arp 60: 
arp who-has svr4 tell bsdi 

2 
0.002174 
(0.0022) 

0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 arp 60: 
arp reply svr4 is-at 0:0:c0:c2:9b:26 

3 
0.002831 
(0.0007) 

0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60: 
bsdi.1030 > svr4.discard: S 
596459521:596459521(0)
win 4096 <mss 1024> [tos 0x10] 

4 
0.007834 
(0.0050) 

0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 ip 60: 
svr4.discard > bsdi.1030: S 
3562228225:3562228225(0)
ack 596459522 win 4096 <mss 1024> 

5 
0.009615 
(0.0018) 

0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60: 
bsdi.1030 > svr4.discard: . ack 1 win 4096 
[tos 0x10] 

Figure 4.4 ARP request and ARP reply generated by TCP connection request.

Figure A.3 in Appendix A contains the raw output from tcpdump used for Figure 4.4. Since this 
is the first example of tcpdump output in the text, you should review that appendix to see how 
we've beautified the output. 

We have deleted the final four lines of the tcpdump output that correspond to the termination of 
the connection (which we cover in Chapter 18), since they're not relevant to the discussion here. 

In line 1 the hardware address of the source (bsdi) is 0:0:c0:6f:2d:40. The destination 
hardware address is ff:ff:ff:ff:ff:ff, which is the Ethernet broadcast address. Every 
Ethernet interface on the cable will receive the frame and process it, as shown in Figure 4.2. 

The next output field on line 1, arp, means the frame type field is 0x0806, specifying either an 
ARP request or an ARP reply. 

The value 60 printed after the words arp and ip on each of the five lines is the length of the 
Ethernet frame. Since the size of an ARP request and ARP reply is 42 bytes (28 bytes for the 
ARP message, 14 bytes for the Ethernet header), each frame has been padded to the Ethernet 
minimum: 60 bytes. 

Referring to Figure 1.7, this minimum of 60 bytes starts with and includes the 14-byte Ethernet 
header, but does not include the 4-byte Ethernet trailer. Some books state the minimum as 64 
bytes, which includes the Ethernet trailer. We purposely did not include the 14-byte Ethernet 
header in the minimum of 46 bytes shown in Figure 1.7, since the corresponding maximum (1500 
bytes) is what's referred to as the MTU-maximum transmission unit (Figure 2.5). We use the 
MTU often, because it limits the size of an IP datagram, but are normally not concerned with the 
minimum. Most device drivers or interface cards automatically pad an Ethernet frame to the 
minimum size. The IP datagrams on lines 3,4, and 5 (containing the TCP segments) are all 
smaller than the minimum, and have also been padded to 60 bytes. 

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/arp_addr.htm (6 of 12) [12/09/2001 14.46.39]



Chapter 4. ARP: Address Resolution Protocol

The next field on line 1, arp who-has, identifies the frame as an ARP request with the IP 
address of svr4 as the target IP address and the IP address of bsdi as the sender IP address, 
tcpdump prints the hostnames corresponding to the IP address by default. (We'll use the -n 
option in Section 4.7 to see the actual IP addresses in an ARP request.) 

From line 2 we see that while the ARP request is broadcast, the destination address of the ARP 
reply is bsdi (0:0:c0:6f:2d:40). The ARP reply is sent directly to the requesting host; it is 
not broadcast. 

tcpdump prints arp reply for this frame, along with the hostname and hardware address of 
the responder. 

Line 3 is the first TCP segment requesting that a connection be established. Its destination 
hardware address is the destination host (svr4). We'll cover the details of this segment in 
Chapter 18. 

The number printed after the line number on each line is the time (in seconds) when the packet 
was received by tcpdump. Each line other than the first also contains the time difference (in 
seconds) from the previous line, in parentheses. We can see in this figure that the time between 
sending the ARP request and receiving the ARP reply is 2.2 ms. The first TCP segment is sent 
0.7 ms after this. The overhead involved in using ARP for dynamic address resolution in this 
example is less than 3 ms. 

A final point from the tcpdump output is that we don't see an ARP request from svr4 before it 
sends its first TCP segment (line 4). While it's possible that svr4 already had an entry for bsdi 
in its ARP cache, normally when a system receives an ARP request, in addition to sending the 
ARP reply it also saves the requestor's hardware address and IP address in its own ARP cache. 
This is on the logical assumption that if the requestor is about to send it an IP datagram, the 
receiver of the datagram will probably send a reply. 

ARP Request to a Nonexistent Host

What happens if the host being queried for is down or nonexistent? To see this we specify a 
nonexistent Internet address-the network ID and subnet ID are that of the local Ethernet, but there 
is no host with the specified host ID. From Figure 3.10 we see the host IDs 36 through 62 are 
nonexistent (the host ID of 63 is the broadcast address). We'll use the host ID 36 in this example. 

bsdi % date ; telnet 140.252.13.36 ; date
Sat Jan 30 06:46:33 MST 1993
Trying 140.252.13.36...
telnet: Unable to connect to remote host: 
Connection timed out
Sat Jan 30 06:47:49 MST 1993 

telnet to an address 
this time, not a 
hostname

76 seconds after 
previous date output 

bsdi % arp -a
? (140.252.13.36) at (incomplete) 

check the ARP cache 

Figure 4.5 shows the tcpdump output. 
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1 0.0 arp who has 140.252.13.36 tell bsdi 

2 5.509069 (5.5091) arp who has 140.252.13.36 tell bsdi 

3 29.509745 (24.0007) arp who has 140.252.13.36 tell bsdi 

Figure 4.5 ARP requests to a nonexistent host.

This time we didn't specify the -e option since we already know that the ARP requests are 
broadcast. 

What's interesting here is to see the frequency of the ARP requests: 5.5 seconds after the first 
request, then again 24 seconds later. (We examine TCP's timeout and retransmission algorithms 
in more detail in Chapter 21.) The total time shown in the tcpdump output is 29.5 seconds. But 
the output from the date commands before and after the telnet command shows that the 
connection request from the Telnet client appears to have given up after about 75 seconds. 
Indeed, we'll see later that most BSD implementations set a limit of 75 seconds for a TCP 
connection request to complete. 

In Chapter 18 when we see the sequence of TCP segments that is sent to establish the connection, 
we'll see that these ARP requests correspond one-to-one with the initial TCP SYN (synchronize) 
segment that TCP is trying to send. 

Note that on the wire we never see the TCP segments. All we can see are the ARP requests. Until 
an ARP reply comes back, the TCP segments can't be sent, since the destination hardware address 
isn't known. If we ran tcpdump in a filtering mode, looking only for TCP data, there would have 
been no output at all. 

ARP Cache Timeout

A timeout is normally provided for entries in the ARP cache. (In Section 4.8 we'll see that the 
arp command allows an entry to be placed into the cache by the administrator that will never 
time out.) Berkeley-derived implementations normally have a timeout of 20 minutes for a 
completed entry and 3 minutes for an incomplete entry (We saw an incomplete entry in our 
previous example where we forced an ARP to a nonexistent host on the Ethernet.) These 
implementations normally restart the 20-minute timeout for an entry each time the entry is used. 

The Host Requirements RFC says that this timeout should occur even if the entry is in use, but most Berkeley-
derived implementations do not do this-they restart the timeout each time the entry is referenced. 

4.6 Proxy ARP

Proxy ARP lets a router answer ARP requests on one of its networks for a host on another of its networks. This 
fools the sender of the ARP request into thinking that the router is the destination host, when in fact the 
destination host is "on the other side" of the router. The router is acting as a proxy agent for the destination host, 
relaying packets to it from other hosts. 

An example is the best way to describe proxy ARP. In Figure 3.10 we showed that the system sun was connected 
to two Ethernets. But we also noted that this wasn't really true, if you compare that figure with the one on the 
inside front cover. There is in fact a router between sun and the subnet 140.252.1, and this router performs proxy 
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ARP to make it appear as though sun is actually on the subnet 140.252.1. Figure 4.6 shows the arrangement, 
with a Telebit NetBlazer, named netb, between the subnet and the host sun. 

Figure 4.6 Example of proxy ARP.

When some other host on the subnet 140.252.1 (say, gemini) has an IP datagram to send to sun at address 
140.252.1.29, gemini compares the network ID (140.252) and subnet ID (1) and since they are equal, issues an 
ARP request on the top Ethernet in Figure 4.6 for IP address 140.252.1.29. The router netb recognizes this IP 
address as one belonging to one of its dialup hosts, and responds with the hardware address of its Ethernet 
interface on the cable 140.252.1. The host gemini sends the IP datagram to netb across the Ethernet, and 
netb forwards the datagram to sun across the dialup SLIP link. This makes it transparent to all the hosts on the 
140.252.1 subnet that host sun is really configured "behind" the router netb. 

If we execute the arp command on the host gemini, after communicating with the host sun, we see that both 
IP addresses on the 140.252.1 subnet, netb and sun, map to the same hardware address. This is often a clue that 
proxy ARP is being used. 

gemini % arp -a many lines for other hosts on the 
140.252.1 subnet 

netb (140.252.1.183) at 
0:80:ad:3:6a:80
sun (140.252.1.29) at 0:80:ad:3:6a:80 

Another detail in Figure 4.6 that we need to explain is the apparent lack of an IP address at the bottom of the 
router netb (the SLIP link). That is, why don't both ends of the dialup SLIP link have an IP address, as do both 
ends of the hardwired SLIP link between bsdi and slip? We noted in Section 3.8 that the destination address 
of the dialup SLIP link, as shown by the ifconfig command, was 140.252.1.183. The Net-Blazer doesn't 
require an IP address for its end of each dialup SLIP link. (Doing so would use up more IP addresses.) Instead, it 
determines which dialup host is sending it packets by which serial interface the packet arrives on, so there's no 
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need for each dialup host to use a unique IP address for its link to the router. All the dialup hosts use 
140.252.1.183 as the destination address for their SLIP link. 

Proxy ARP handles the delivery of datagrams to the router sun, but how are the other hosts on the subnet 
140.252.13 handled? Routing must be used to direct datagrams to the other hosts. Specifically, routing table 
entries must be made somewhere on the 140.252 network that point all datagrams destined to either the subnet 
140.252.13, or the specific hosts on that subnet, to the router netb. This router then knows how to get the 
datagrams to their final destination, by sending them through the router sun. 

Proxy ARP is also called promiscuous ARP or the ARP hack. These names are from another use of proxy ARP: to 
hide two physical networks from each other, with a router between the two. In this case both physical networks 
can use the same network ID as long as the router in the middle is configured as a proxy ARP agent to respond to 
ARP requests on one network for a host on the other network. This technique has been used in the past to "hide" a 
group of hosts with older implementations of TCP/IP on a separate physical cable. Two common reasons for 
separating these older hosts are their inability to handle subnetting and their use of the older broadcasting address 
(a host ID of all zero bits, instead of the current standard of a host ID with all one bits). 

4.7 Gratuitous ARP

Another feature of ARP that we can watch is called gratuitous ARP. It occurs when a host sends an ARP request 
looking for its own IP address. This is usually done when the interface is configured at bootstrap time. 

In our internet, if we bootstrap the host bsdi and run tcpdump on the host sun, we see the packet shown in 
Figure 4.7. 

1 0.0
0:0:c0:6f:2d:40 ff:ff:ff:ff:ff:ff arp 60: 
arp who has 140.252.13.35 tell 140.252.13.35 

Figure 4.7 Example of gratuitous ARP.

(We specified the -n flag for tcpdump to print numeric dotted-decimal addresses, instead of hostnames.) In 
terms of the fields in the ARP request, the sender's protocol address and the target's protocol address are identical: 
140.252.13.35 for host bsdi. Also, the source address in the Ethernet header, 0:0:c0:6f:2d:40 as shown by 
tcpdump, equals the sender's hardware address (from Figure 4.4). Gratuitous ARP provides two features. 

1.  It lets a host determine if another host is already configured with the same IP address. The host bsdi is 
not expecting a reply to this request. But if a reply is received, the error message "duplicate IP address 
sent from Ethernet address: a:b:c:d:e:f" is logged on the console. This is a warning to the system 
administrator that one of the systems is misconfigured. 

2.  If the host sending the gratuitous ARP has just changed its hardware address (perhaps the host was shut 
down, the interface card replaced, and then the host was rebooted), this packet causes any other host on 
the cable that has an entry in its cache for the old hardware address to update its ARP cache entry 
accordingly. A little known fact of the ARP protocol [Plummer 1982] is that if a host receives an ARP 
request from an IP address that is already in the receiver's cache, then that cache entry is updated with the 
sender's hardware address (e.g., Ethernet address) from the ARP request. This is done for any ARP 
request received by the host. (Recall that ARP requests are broadcast, so this is done by all hosts on the 
network each time an ARP request is sent.) 

[Bhide, Einozahy, and Morgan 1991] describe an application that can use this feature of ARP to allow a 
backup file server to take over from a failed server by issuing a gratuitous ARP request with the backup's 
hardware address and the failed server's IP address. This causes all packets destined for the failed server 
to be sent to the backup instead, without the client applications being aware that the original server has 
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failed. 

Unfortunately the authors then decided against this approach, since it depends on the correct 
implementation of ARP on all types of clients. They obviously encountered client implementations that 
did not implement ARP according to its specification. 

Monitoring all the systems on the author's subnet shows that SunOS 4.1.3 and 4.4BSD both issue 
gratuitous ARPs when bootstrapping, but SVR4 does not. 

4.8 arp Command

We've used this command with the -a flag to display all the entries in the ARP cache. Other options are 
provided. 

The superuser can specify the -d option to delete an entry from the ARP cache. (This was used before running a 
few of the examples, to let us see the ARP exchange.) 

Entries can also be added using the -s option. It requires a hostname and an Ethernet address: the IP address 
corresponding to the hostname, and the Ethernet address are added to the cache. This entry is made permanent 
(i.e., it won't time out from the cache) unless the keyword temp appears at the end of the command line. 

The keyword pub at the end of a command line with the -s option causes the system to act as an ARP agent for 
that host. The system will answer ARP requests for the IP address corresponding to the hostname, replying with 
the specified Ethernet address. If the advertised address is the system's own, then this system is acting as a proxy 
ARP agent for the specified hostname. 

4.9 Summary

ARP is a basic protocol in almost every TCP/IP implementation, but it normally does its work without the 
application or the system administrator being aware. The ARP cache is fundamental to its operation, and we've 
used the arp command to examine and manipulate the cache. Each entry in the cache has a timer that is used to 
remove both incomplete and completed entries. "The arp command displays and modifies entries in the ARP 
cache. 

We followed through the normal operation of ARP along with specialized versions: proxy ARP (when a router 
answers ARP requests for hosts accessible on another of the router's interfaces) and gratuitous ARP (sending an 
ARP request for your own IP address, normally when bootstrapping). 

Exercises

4.1 In the commands we typed to generate the output shown in Figure 4.4, what would happen if, after verifying 
that the local ARP cache was empty, we type the command 

bsdi % rsh svr4 arp -a 
to verify that the ARP cache is also empty on the destination host? (This command causes the arp -a command 
to be executed on the host svr4.) 

4.2 Describe a test to determine if a given host handles a received gratuitous ARP request correctly 
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4.3 Step 7 in Section 4.2 can take a while (milliseconds) because a packet is sent and ARP then waits for the 
response. How do you think ARP handles multiple datagrams that arrive from IP for the same destination address 
during this period? 

4.4 At the end of Section 4.5 we mentioned that the Host Requirements RFC and Berkeley-derived 
implementations differ in their handling of the timeout of an active ARP entry. What happens if we're on a 
Berkeley-derived client and keep trying to contact a server host that's been taken down to replace its Ethernet 
board? Does this change if the server issues a gratuitous ARP when it bootstraps? 
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RARP: Reverse Address 
Resolution Protocol
5.1 Introduction

When a system with a local disk is bootstrapped it normally obtains its IP address from a 
configuration file that's read from a disk file. But a system without a disk, such as an X 
terminal or a diskless workstation, needs some other way to obtain its IP address. 

Each system on a network has a unique hardware address, assigned by the manufacturer 
of the network interface. The principle of RARP is for the diskless system to read its 
unique hardware address from the interface card and send an RARP request (a broadcast 
frame on the network) asking for someone to reply with the diskless system's IP address 
(in an RARP reply). 

While the concept is simple, the implementation is often harder than ARP for reasons 
described later in this chapter. The official specification of RARP is RFC 903 [Finlayson 
et al. 1984]. 

5.2 RARP Packet Format

The format of an RARP packet is almost identical to an ARP packet (Figure 4.3). The 
only differences are that the frame type is 0x8035 for an RARP request or reply, and the 
op field has a value of 3 for an RARP request and 4 for an RARP reply. 

As with ARP, the RARP request is broadcast and the RARP reply is normally unicast. 

5.3 RARP Examples

In our internet we can force the host sun to bootstrap from the network, instead of its 
local disk. If we run an RARP server and tcpdump on the host bsdi we get the output 
shown in Figure 5.1. We use the -e flag to have tcpdump print the hardware addresses: 

1 0.0
8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff 
rarp 60: rarp who-is 8:0:20:3:f6:42 tell 
8:0:20:3:f6:42 

2 
0.13 
(0.13) 

0:0:c0:6f:2d:40 8:0:20:3:f6:42 rarp 42: 
rarp reply 8:0:20:3:f6:42 at sun 
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3 
0.14 
(0.01)

8:0:20:3:f6:42 0:0:c0:6f:2d:40 ip 65: 
>sun.26999 > bsdi.tftp: 23 RRQ 
"8CFCOD21.SUN4C" 

Figure 5.1 RARP request and reply.

The RARP request is broadcast (line 1) and the RARP reply on line 2 is unicast. The 
output on line 2, at sun, means the RARP reply contains the IP address for the host sun 
(140.252.13.33). 

On line 3 we see that once sun receives its IP address, it issues a TFTP read-request 
(RRQ) for the file 8CFCOD21.SUN4C. (TFTP is the Trivial File Transfer Protocol. We 
describe it in more detail in Chapter 15.) The eight hexadecimal digits in the filename are 
the hex representation of the IP address 140.252.13.33 for the host sun. This is the IP 
address that was returned in the RARP reply. The remainder of the filename, SUN4C, 
indicates the type of system being bootstrapped. 

tcpdump says that line 3 is an IP datagram of length 65, and not a UDP datagram 
(which it really is), because we are running tcpdump with the -e flag, to see the 
hardware-level addresses. Another point to notice in Figure 5.1 is that the length of the 
Ethernet frame on line 2 appears to be shorter than the minimum (which we said was 60 
bytes in Section 4.5.) The reason is that we are running tcpdump on the system that is 
sending this Ethernet frame (bsdi). The application, rarpd, writes 42 bytes to the BSD 
Packet Filter device (14 bytes for the Ethernet header and 28 bytes for the RARP reply) 
and this is what tcpdump receives a copy of. But the Ethernet device driver pads this 
short frame to the minimum size for transmission (60). Had we been running tcpdump on 
another system, the length would have been 60. 

We can see in this example that when this diskless system receives its IP address in an 
RARP reply, it issues a TFTP request to read a bootstrap image. At this point we won't 
go into additional detail about how diskless systems bootstrap themselves. (Chapter 16 
describes the bootstrap sequence of a diskless X terminal using RARP, BOOTP, and 
TFTP.) 

Figure 5.2 shows the resulting packets if there is no RARP server on the network. The 
destination address of each packet is the Ethernet broadcast address. The Ethernet 
address following who-is is the target hardware address, and the Ethernet address 
following tell is the sender's hardware address. 

1 0.0

8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 
60: 
rarp who-is 8:0:20:3:f6:42 tell 
8:0:20:3;f6:42 
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2 6.55 ( 6.55) 

8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 
60: 
rarp who-is 8:0:20:3:f6:42 tell 
8:0:20:3:f6:42 

3 15.52 ( 8.97) 

8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 
60: 
rarp who-is 8:0:20:3:f6:42 tell 
8:0:20:3:f6:42 

4 29.32 (13.80) 

8:0:20:3:f6:42 ff:ff:ff;ff:ff:ff rarp 
60: 
rarp who-is 8:0:20:3:f6:42 tell 
8:0:20:3:f6:42 

5 52.78 (23.46) 

8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 
60: 
rarp who-is 8:0:20:3:f6:42 tell 
8:0:20:3:f6:42 

6 95.58 (42.80) 

8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 
60: 
rarp who-is 8:0:20:3:f6:42 tell 
8:0;20:3:f6:42 

7
100.92 ( 
5.34) 

8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 
60: 
rarp who-is 8:0:20:3;f6:42 tell 
8:0:20:3:f6:42 

8
107.47 ( 
6.55) 

8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 
60: 
rarp who-is 8:0:20:3:f6:42 tell 
8:0:20:3:f6:42 

9
116.44 ( 
8.97) 

8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 
60: 
rarp who-is 8:0:20:3:f6:42 tell 
8:0:20:3:f6:42 

10
130.24 
(13.80) 

8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 
60: 
rarp who-is 8:0:20:3:f6:42 tell 
8:0:20:3:f6:42 

11
153.70 
(23.46) 

8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 
60: 
rarp who-is 8:0:20:3:f6:42 tell 
8:0:20:3:f6:42 
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12
196.49 
(42.79) 

8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 
60: 
rarp who-is 8:0;20:3:f6:42 tell 
8:0:20:3:f6:42 

Figure 5.2 RARP requests with no RARP server on the network.

Note the frequency of the retransmissions. The first retransmission occurs after 6.55 
seconds and then increases to 42.80 seconds, then goes down to 5.34 seconds, then 6.55, 
and then works its way back to 42.79 seconds. This continues indefinitely. If we calculate 
the differences between each timeout interval we see a doubling effect: from 5.34 to 6.55 
is 1.21 seconds, from 6.55 to 8.97 is 2.42 seconds, from 8.97 to 13.80 is 4.83 seconds, 
and so on. When the timeout interval reaches some limit (greater than 42.80 seconds) it's 
reset to 5.34 seconds. 

Increasing the timeout value like this is a better approach than using the same value each 
time. In Figure 6.8 we'll see one wrong way to perform timeout and retransmission, and 
in Chapter 21 we'll see TCP's method. 

5.4 RARP Server Design

While the concept of RARP is simple, the design of an RARP server is system dependent 
and complex. Conversely, providing an ARP server is simple, and is normally part of the 
TCP/IP implementation in the kernel. Since the kernel knows its IP addresses and 
hardware addresses, when it receives an ARP request for one of its IP addresses, it just 
replies with the corresponding hardware address. 

RARP Servers as User Processes

The complication with an RARP server is that the server normally provides the mapping 
from a hardware address to an IP address for many hosts (all the diskless systems on the 
network). This mapping is contained in a disk file (normally /etc/ethers on Unix 
systems). Since kernels normally don't read and parse disk files, the function of an RARP 
server is provided as a user process, not as part of the kernel's TCP/IP implementation. 

To further complicate matters, RARP requests are transmitted as Ethernet frames with a 
specific Ethernet frame type field (0x8035 from Figure 2.1.) This means an RARP 
server must have some way of sending and receiving Ethernet frames of this type. In 
Appendix A we describe how the BSD Packet Filter, Sun's Network Interface Tap, and 
the SVR4 Data Link Provider Interface can be used to receive these frames. Since the 
sending and receiving of these frames is system dependent, the implementation of an 
RARP server is tied to the system. 
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Multiple RARP Servers per Network

Another complication is that RARP requests are sent as hardware-level broadcasts, as 
shown in Figure 5.2. This means they are not forwarded by routers. To allow diskless 
systems to bootstrap even when the RARP server host is down, multiple RARP servers 
are normally provided on a single network (e.g., a single cable). 

As the number of servers increases (to provide redundancy), the network traffic 
increases, since every server sends an RARP reply for every RARP request. The diskless 
system that sent the RARP request normally uses the first RARP reply that it receives. 
(We never had this problem with ARP, because only a single host sends an ARP reply.) 
Furthermore, there is a chance that each RARP server can try to respond at about the 
same time, increasing the probability of collisions on an Ethernet. 

5.5 Summary

RARP is used by many diskless systems to obtain their IP address when bootstrapped. 
The RARP packet format is nearly identical to the ARP packet. An RARP request is 
broadcast, identifying the sender's hardware address, asking for anyone to respond with 
the sender's IP address. The reply is normally unicast. 

Problems with RARP include its use of a link-layer broadcast, preventing most routers 
from forwarding an RARP request, and the minimal information returned: just the 
system's IP address. In Chapter 16 we'll see that BOOTP returns more information for the 
diskless system that is bootstrapping: its IP address, the name of a host to bootstrap from, 
and so on. 

While the RARP concept is simple, the implementation of an RARP server is system 
dependent. Hence not all TCP/IP implementations provide an RARP server. 

Exercises

5.1 Is a separate frame type field required for RARP? Could the same value be used for 
ARP and RARP 0x0806? 

5.2 With multiple RARP servers on a network, how can they prevent their responses 
from colliding with each on the network? 
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ICMP: Internet Control Message 
Protocol
6.1 Introduction

ICMP is often considered part of the IP layer. It communicates error messages and other 
conditions that require attention. ICMP messages are usually acted on by either the IP layer 
or the higher layer protocol (TCP or UDP). Some ICMP messages cause errors to be 
returned to user processes. 

ICMP messages are transmitted within IP datagrams, as shown in Figure 6.1. 

Figure 6.1 ICMP messages encapsulated within an IP datagram.

RFC 792 [Postel 1981b] contains the official specification of ICMP. 

Figure 6.2 shows the format of an ICMP message. The first 4 bytes have the same format 
for all messages, but the remainder differs from one message to the next. We'll show the 
exact format of each message when we describe it. 

There are 15 different values for the type field, which identify the particular ICMP message. 
Some types of ICMP messages then use different values of the code field to further specify 
the condition. 

The checksum field covers the entire ICMP message. The algorithm used is the same as we 
described for the IP header checksum in Section 3.2. The ICMP checksum is required. 
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Figure 6.2 ICMP message.

In this chapter we talk about ICMP messages in general and a few in detail: address mask 
request and reply, timestamp request and reply, and port unreachable. We discuss the echo 
request and reply messages in detail with the Ping program in Chapter 7, and we discuss the 
ICMP messages dealing with IP routing in Chapter 9. 

6.2 ICMP Message Types

Figure 6.3 lists the different ICMP message types, as determined by the type field and code 
field in the ICMP message. 

The final two columns in this figure specify whether the ICMP message is a query message 
or an error message. We need to make this distinction because ICMP error messages are 
sometimes handled specially. For example, an ICMP error message is never generated in 
response to an ICMP error message. (If this were not the rule, we could end up with 
scenarios where an error generates an error, which generates an error, and so on, 
indefinitely) 

When an ICMP error message is sent, the message always contains the IP header and the 
first 8 bytes of the IP datagram that caused the ICMP error to be generated. This lets the 
receiving ICMP module associate the message with one particular protocol (TCP or UDP 
from the protocol field in the IP header) and one particular user process (from the TCP or 
UDP port numbers that are in the TCP or UDP header contained in the first 8 bytes of the IP 
datagram). We'll show an example of this in Section 6.5. An ICMP error message is never 
generated in response to 

1.  An ICMP error message. (An ICMP error message may, however, be generated in 
response to an ICMP query message.) 

2.  A datagram destined to an IP broadcast address (Figure 3.9) or an IP multicast 
address (a class D address, Figure 1.5). 

3.  A datagram sent as a link-layer broadcast. 
4.  A fragment other than the first. (We describe fragmentation in Section 11.5.) 
5.  A datagram whose source address does not define a single host. This means the 
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source address cannot be a zero address, a loopback address, a broadcast address, or 
a multicast address. 

type code Description Query Error

0 0 echo reply (Ping reply. Chapter 7) *

3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

destination unreachable:
network unreachable (Section 9.3)
host unreachable (Section 9.3)
protocol unreachable
port unreachable (Section 6.5)
fragmentation needed but don't-fragment bit set 
(Section 11.6)
source route failed (Section 8.5)
destination network unknown
destination host unknown
source host isolated (obsolete)
destination network administratively prohibited
destination host administratively prohibited
network unreachable for TOS (Section 9.3)
host unreachable for TOS (Section 9.3)
communication administratively prohibited by filtering
host precedence violation
precedence cutoff in effect 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

4 0 source quench (elementary flow control. Section 11.11) *

5
0
1
2
3

redirect (Section 9.5): 
redirect for network
redirect for host
redirect for type-of-service and network
redirect for type-of-service and host 

*
*
*
*

8 0 echo request (Ping request. Chapter 7) *

9 
10

0
0

router advertisement (Section 9.6) 
router solicitation (Section 9.6) 

*
*

11 0
1

time exceeded:
time-to-live equals 0 during transit (Traceroute, Chapter 
8)
time-to-live equals 0 during reassembly (Section 11.5) 

*
*

12 0
1

parameter problem:
IP header bad (catchall error)
required option missing 

*
*
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13
14

0
0

timestamp request (Section 6.4)
timestamp reply (Section 6.4) 

*
*

15
16

0
0

information request (obsolete)
information reply (obsolete) 

*
*

17
18

0
0

address mask request (Section 6.3)
address mask reply (Section 6.3) 

*
*

Figure 6.3 ICMP message types.

These rules are meant to prevent the broadcast storms that have occurred in the past when 
ICMP errors were sent in response to broadcast packets. 

6.3 ICMP Address Mask Request and Reply

The ICMP address mask request is intended for a diskless system to obtain its subnet mask 
(Section 3.5) at bootstrap time. The requesting system broadcasts its ICMP request. (This is 
similar to a diskless system using RARP to obtain its IP address at bootstrap time.) An 
alternative method for a diskless system to obtain its subnet mask is the BOOTP protocol, 
which we describe in Chapter 16. Figure 6.4 shows the format of the ICMP address mask 
request and reply messages. 

Figure 6.4 ICMP address mask request and reply messages.

The identifier and sequence number fields in the ICMP message can be set to anything the 
sender chooses, and these values are returned in the reply This allows the sender to match 
replies with requests. 

We can write a simple program (named icmpaddrmask) that issues an ICMP address 
mask request and prints all replies. Since normal usage is to send the request to the 
broadcast address, that's what we'll do. The destination address (140.252.13.63) is the 
broadcast address for the subnet 140.252.13.32 (Figure 3.12). 
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sun % icmpaddnnask 140.252.13.63
received mask = ffffffeO, from 
140.252.13.33
received mask = ffffffeO, from 
140.252.13.35
received mask = ffff0000, from 
140.252.13.34 

from ourself
from bsdi
from svr4 

The first thing we note in this output is that the returned value from svr4 is wrong. It 
appears that SVR4 is returning the general class B address mask, assuming no subnets, even 
though the interface on svr4 has been configured with the correct subnet mask: 

svr4 % ifconfig emd0 
emd0: flags=23<UP, BROADCAST ,NOTRAILERS>
inet 140.252.13.34 netmask ffffffe0 broadcast 140.252.13.63 

There is a bug in the SVR4 handling of the ICMP address mask request. 

We'll watch this exchange on the host bsdi using tcpdump. The output is shown in 
Figure 6.5. We specify the -e option to see the hardware addresses. 

1 0.0 
8:0:20:3:f6:42 ff;ff:ff:ff:ff:ff ip 60: 
sun > 140.252.13.63: icmp: address mask request 

2 0.00 (0.00) 
0:0:c0:6f:2d:40 ff;ff:ff:ff:ff:ff ip 46: 
bsdi > sun: icmp: address mask is 0xffffffe0 

3 0.01 (0.01) 
0:0:c0:c2:9b:26 8:0:20:3:f6:42 ip 60: 
svr4 > sun: icmp: address mask is 0xffff0000 

Figure 6.5 ICMP address mask request sent to broadcast address.

Note that the sending host, sun, receives an ICMP reply (the output line with the comment 
from ourself shown earlier), even though nothing is seen on the wire. This is a general 
characteristic of broadcasting: the sending host receives a copy of the broadcast packet 
through some internal loopback mechanism. Since by definition the term "broadcast" means 
all the hosts on the local network, it should include the sending host. (Referring to Figure 
2.4 what is happening is that when the Ethernet driver recognizes that the destination 
address is the broadcast address, the packet is sent onto the network and a copy is made and 
passed to the loopback interface.) 

Next, bsdi broadcasts the reply, while svr4 sends the reply only to the requestor. 
Normally the reply should be unicast unless the source IP address of the request is 0.0.0.0, 
which it isn't in this example. Therefore, sending the reply to the broadcast address is a 
BSD/386 bug. 
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The Host Requirements RFC says that a system must not send an address mask reply unless 
it is an authoritative agent for address masks. (To be an authoritative agent it must be 
specifically configured to send these replies. See Appendix E.) As we can see from this 
example, however, most host implementations send a reply if they get a request. Some hosts 
even send the wrong reply! 

The final point is shown by the following example. We send an address mask request to our 
own IP address and to the loopback address: 

sun % icmpaddrmask sun 
received mask = ff000000, from 140.252.13.33 

sun % icmpaddrmask localhost
received mask = ff000000, from 127.0.0.1 

In both cases the returned address mask corresponds to the loopback address, the class A 
address 127.0.0.1. Again, referring to Figure 2.4 we see that IP datagrams sent to the host's 
own IP address (140.252.13.33 in this example) are actually sent to the loop-back interface. 
The ICMP address mask reply must correspond to the subnet mask of the interface on 
which the request was received (since a multihomed host can have different subnet masks 
for each interface), and in both cases the request is received from the loopback interface. 

6.4 ICMP Timestamp Request and Reply

The ICMP timestamp request allows a system to query another for the current time. The 
recommended value to be returned is the number of milliseconds since midnight, 
Coordinated Universal Time (UTC). (Older manuals refer to UTC as Greenwich Mean 
Time.) The nice feature of this ICMP message is that it provides millisecond resolution, 
whereas some other methods for obtaining the time from another host (such as the rdate 
command provided by some Unix systems) provide a resolution of seconds. The drawback 
is that only the time since midnight is returned-the caller must know the date from some 
other means. Figure 6.6 shows the format of the ICMP timestamp request and reply 
messages. 

Figure 6.6 ICMP timestamp request and reply messages.

The requestor fills in the originate timestamp and sends the request. The replying system 
fills in the receive timestamp when it receives the request, and the transmit time-stamp 
when it sends the reply. In actuality, however, most implementations set the latter two fields 
to the same value. (The reason for providing the three fields is to let the sender compute the 
time for the request to be sent, and separately compute the time for the reply to be sent.) 

We can write a simple program (named icmptime) that sends an ICMP timestamp request 
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to a host and prints the returned reply. We try it first on our small internet: 

sun % icmptime bsdi 
orig = 83573336, recv = 83573330, xmit = 83573330, rtt = 2 
ms
difference = -6 ms 

sun % icmptime bsdi 
orig = 83577987, recv = 83577980, xmit = 83577980, rtt = 2 
ms
difference = -7 ms 

The program prints the three timestamps in the ICMP message: the originate (orig), 
receive (recv), and transmit (xmit) timestamps. As we can see in this and the following 
examples, all the hosts set the receive and transmit timestamps to the same value. 

We also calculate the round-trip time (rtt), which is the time the reply is received minus 
the time the request was sent. The difference is the received timestamp minus the 
originate timestamp. Figure 6.7 shows the relationship between these values. 

Figure 6.7 Relationship between values printed by our icmptime program.

If we believe the RTT and assume that one-half of the RTT is for the request, and the other 
half for the reply, then the sender's clock needs to be adjusted by difference minus one-
half the RTT, to have the same time as the host being queried. In the preceding example, 
the clock on bsdi was 7 and 8 ms behind the clock on sun. 

Since the timestamp values are the number of milliseconds past midnight, UTC, they should 
always be less than 86,400,000 (24 x 60 x 60 x 1000). These examples were run just before 
4:00 P.M. in a time zone that is 7 hours behind UTC, so the values being greater than 
82,800,000 (2300 hours) makes sense. 

If we run this program several times to the host bsdi we see that the final digit in the 
receive and transmit timestamp is always 0. This is because the software release (Version 
0.9.4) only provides a 10-ms clock. (We describe this in Appendix B.) 

If we run the program twice to the host svr4 we see that the low-order three digits of the 
SVR4 timestamp are always 0: 

sun % icmptime svr4
orig = 83588210, recv = 83588000, xmit = 83588000, rtt = 4 
ms
difference = -210 ms 
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sun % icmptime svr4 
orig = 83591547, recv = 83591000, xmit = 83591000, rtt = 4 
ms
difference = -547 ms 

For some reason SVR4 doesn't provide any millisecond resolution using the ICMP time-
stamp. This imprecision makes the calculated differences useless for subsecond 
adjustments. 

If we try two other hosts on the 140.252.1 subnet, the results show that one clock differs 
from sun's by 3.7 seconds, and the other by nearly 75 seconds: 

sun % icmptime gemini 
orig = 83601883, recv = 83598140, xmit = 83598140, rtt = 247 
ms
difference = -3743 ms 

sun % icmptime aix 
orig = 83606768, recv = 83532183, xmit = 83532183, rtt = 253 
ms
difference = -74585 ms 

Another interesting example is to the router gateway (a Cisco router). It shows that when 
a system returns a nonstandard timestamp value (something other than milliseconds past 
midnight, UTC), it is supposed to turn on the high-order bit of the 32-bit timestamp. Our 
program detects this, and prints the receive and transmit timestamps in angle brackets (after 
turning off the high-order bit). Also, we can't calculate the difference between the originate 
and receive timestamps, since they're not the same units. 

sun % icmptime gateway 
orig = 83620811, recv = <4871036>, xmit = <4871036>, rtt = 
220 ms 

sun % icmptime gateway
orig = 83641007, recv = <4891232>, xmit = <4891232>, rtt = 
213 ms 

If we run our program to this host a few times it becomes obvious that the values do contain 
millisecond resolution and do count the number of milliseconds past some starting point, 
but the starting point is not midnight, UTC. (It could be a counter that's incremented every 
millisecond since the router was bootstrapped, for example.) 

As a final example we'll compare sun's clock with a system whose clock is known to be 
accurate-an NTP stratum 1 server. (We say more about NTP, the Network Time Protocol, 
below.) 
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sun % icmptime clock.llnl.gov
orig = 83662791, recv = 83662919, xmit = 83662919, rtt = 359 
ms
difference = 128 ms 

sun % icmptime clock.llnl.gov 
orig = 83670425, recv = 83670559, xmit = 83670559, rtt = 345 
ms
difference = 134 ms 

If we calculate the difference minus one-half the RTT, this output indicates that the clock 
on sun is between 38.5 and 51.5 ms fast. 

Alternatives

There are other ways to obtain the time and date. 

1.  We described the daytime service and time service in Section 1.12. The former 
returns the current time and date in a human readable form, a line of ASCII 
characters. We can test this service using the telnet command: 

sun % telnet bsdi daytime 
Trying 140.252.13.35 ...
Connected to bsdi.
Escape character is "^]"
Wed Feb 3 16:38:33 1993
Connection closed by 
foreign host. 

first three lines output are from the Telnet 
client
here's the daytime service output
this is also from the Telnet client 

The time server, on the other hand, returns a 32-bit binary value with the number of 
seconds since midnight January 1, 1900, UTC. While this provides the date, the time 
value is in units of a second. (The rdate command that we mentioned earlier uses 
the TCP time service.) 

2.  Serious timekeepers use the Network Time Protocol (NTP) described in RFC 1305 
[Mills 1992]. This protocol uses sophisticated techniques to maintain the clocks for a 
group of systems on a LAN or WAN to within millisecond accuracy. Anyone 
interested in precise timekeeping on computers should read this RFC. 

3.  The Open Software Foundation's (OSF) Distributed Computing Environment (DCE) 
defines a Distributed Time Service (DTS) that also provides clock synchronization 
between computers. [Rosenberg, Kenney, and Fisher 1992] provide additional 
details on this service. 
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4.  Berkeley Unix systems provide the daemon timed(8) to synchronize the clocks of 
systems on a local area network. Unlike NTP and DTS, timed does not work across 
wide area networks. 

6.5 ICMP Port Unreachable Error

The last two sections looked at ICMP query messages-the address mask and time-stamp 
queries and replies. We'll now examine an ICMP error message, the port unreachable 
message, a subcode of the ICMP destination unreachable message, to see the additional 
information returned in an ICMP error message. We'll watch this using UDP (Chapter 11). 

One rule of UDP is that if it receives a UDP datagram and the destination port does not 
correspond to a port that some process has in use, UDP responds with an ICMP port 
unreachable. We can force a port unreachable using the TFTP client. (We describe TFTP in 
Chapter 15.) 

The well-known UDP port for the TFTP server to be reading from is 69. But most TFTP 
client programs allow us to specify a different port using the connect command. We use this 
to specify a port of 8888: 

bsdi % tftp
tftp> connect svr4 8888
tftp> get temp.foo
Transfer timed out.
tftp> quit 

specify the hostname and port number
try to fetch a file
about 15 seconds later 

The connect command saves the name of the host to contact and the port number on that 
host, for when we later issue the get command. After typing the get command a UDP 
datagram is sent to port 8888 on host svr4. Figure 6.8 shows the tcpdump output for the 
exchange of packets that takes place. 

Before the UDP datagram can be sent to svr4 an ARP request is sent to determine its 
hardware address (line 1). The ARP reply (line 2) is returned and then the UDP datagram is 
sent (line 3). (We have left the ARP request-reply in this tcpdump output to remind us that 
this exchange may be required before the first IP datagram is sent from one host to the 
other. In future output we'll delete this exchange if it's not relevant to the topic being 
discussed.) 

1
2

0.0
0.002050 (0.0020) 

arp who-has svr4 tell bsdi
arp reply svr4 is-at 0:0:c0:c2:9b:26 

3
4

0.002723 (0.0007) 
0.006399 (0.0037) 

bsdi.2924 > svr4.8888: udp 20
svr4 > bsdi: icmp: svr4 udp port 8888 
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5
6

5.000776 (4.9944)
5.004304 (0.0035) 

bsdi. 2924 > svr4.8888: udp 20
svr4 > bsdi: icmp: svr4 udp port 8888 

7
8

10.000887 
(4.9966)
10.004416 
(0.0035) 

bsdi. 2924 > svr4.8888: udp 20
svr4 > bsdi: icmp: svr4 udp port 8888 

9
10

15.001014 
(4.9966)
15.004574 
(0.0036) 

bsdi.2924 > svr4.8888: udp 20
svr4 > bsdi: icmp: svr4 udp port 8888 

11
12

20.001177 
(4.9966)
20.004759 
(0.0036) 

bsdi.2924 > svr4.8888: udp 20 
svr4 > bsdi: icmp: svr4 udp port 8888 

Figure 6.8 ICMP port unreachable generated by TFTP request.

An ICMP port unreachable is immediately returned (line 4). But the TFTP client appears to 
ignore the ICMP message, sending another UDP datagram about 5 seconds later (line 5). 
This continues three more times before the client gives up. 

Notice that the ICMP messages are exchanged between hosts, without a port number 
designation, while each 20-byte UDP datagram is from a specific port (2924) and to a 
specific port (8888). 

The number 20 at the end of each UDP line is the length of the data in the UDP datagram. 
In this example 20 is the sum of the TFTP's 2-byte opcode, the 9-byte null terminated name 
temp.foo, and the 9-byte null terminated string netascii. (See Figure 15.1 for the 
details of the TFTP packet layout.) 

If we run this same example using the -e option of tcpdump we see the exact length of 
each ICMP port unreachable message that's returned to the sender. This length is 70 bytes, 
and is allocated as shown in Figure 6.9. 

Figure 6.9 ICMP message returned for our "UDP port unreachable" example.
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One rule of ICMP is that the ICMP error messages (see the final column of Figure 6.3) 
must include the IP header (including any options) of the datagram that generated the error 
along with at least the first 8 bytes that followed this IP header. In our example, the first 8 
bytes following the IP header contain the UDP header (Figure 11.2). 

The important fact is that contained in the UDP header are the source and destination port 
numbers. It is this destination port number (8888) that caused the ICMP port unreachable to 
be generated. The source port number (2924) can be used by the system receiving the ICMP 
error to associate the error with a particular user process (the TFTP client in this example). 

One reason the IP header of the datagram that caused the error is sent back is because in 
this IP header is the protocol field that lets ICMP know how to interpret the 8 bytes that 
follow (the UDP header in this example). When we look at the TCP header (Figure 17.2) 
we'll see that the source and destination port numbers are contained in the first 8 bytes of 
the TCP header. The general format of the ICMP unreachable messages is shown in Figure 
6.10. 

Figure 6.10 ICMP unreachable message.

In Figure 6.3 we noted that there are 16 different ICMP unreachable messages, codes 0 
through 15. The ICMP port unreachable is code 3. Also, although Figure 6.10 indicates that 
the second 32-bit word in the ICMP message must be 0, the Path MTU Discovery 
mechanism (Section 2.9) allows a router to place the MTU of the outgoing interface in the 
low-order 16 bits of this 32-bit value, when code equals 4 ("fragmentation needed but the 
don't fragment bit is set"). We show an example of this error in Section 11.6. 

Although the rules of ICMP allow a system to return more than the first 8 bytes of the data portion of the 
IP datagram that caused the ICMP error, most Berkeley-derived implementations return exactly 8 bytes. 
The Solaris 2.2 ip_icmp_return_data_bytes option returns the first 64 bytes of data by default 
(Section E.4). 

tcpdump Time Line

Throughout the text we'll also display the tcpdump output in a time line diagram as shown 
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in Figure 6.11. 

Figure 6.11 Time line of TFTP request to an invalid port.

Time increases down the page and the labels on the far left of the figure are the same time 
values as in our tcpdump output (Figure 6.8). The labels at the top are the hostnames and 
port numbers for each side of the time line. Be aware that the y-axis down the page is not 
exactly proportional to the time value. When there is a significant time lag, as between each 
5-second retransmission in this example, we'll designate that with a squiggle on both sides 
of the time line. When UDP or TCP data is being transmitted, we show that packet with a 
thicker line. 

Why does the TFTP client keep retransmitting its request when the ICMP messages are 
being returned? An element of network programming is occurring in which BSD systems 
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don't notify user processes using UDP of ICMP messages that are received for that socket 
unless the process has issued a connect on that socket. The standard BSD TFTP client does 
not issue the connect, so it never receives the ICMP error notification. 

Another point to notice here is the poor retransmission timeout algorithm used by this TFTP 
client. It just assumes that 5 seconds is adequate and retransmits every 5 seconds, for a total 
of 25 seconds. We'll see later that TCP has a much better algorithm. 

This old-fashioned timeout and retransmission algorithm used by the TFTP client is forbidden by the Host 
Requirements RFC. Nevertheless, all three systems on the author's subnet, and Solaris 2.2 still use it. AIX 
3.2.2 applies an exponential backoff to its timeout, sending packets at 0, 5, 15, and 35 seconds, which is the 
recommended way We talk much more about timeouts in Chapter 21. 

Finally note that the ICMP messages are returned about 3.5 ms after the UDP datagram is 
sent, which we'll see in Chapter 7 is similar to the round-trip times for Ping replies. 

6.6 4.4BSD Processing of ICMP Messages

Since ICMP covers such a wide range of conditions, from fatal errors to informational 
messages, each ICMP message is handled differently, even within a given implementation. 
Figure 6.12 is a redo of Figure 6.3, showing the handling performed by 4.4BSD for each of 
the possible ICMP messages. 

If the final column specifies the kernel, that ICMP message is handled by the kernel. If the 
final column specifies "user process", then that message is passed to all user processes that 
have registered with the kernel to read received ICMP messages. If there are none of these 
user processes, the message is silently discarded. (These user processes also receive a copy 
of all the other ICMP messages, even those handled by the kernel, but only after the kernel 
has processed the message.) Some messages are completely ignored. Finally, if the final 
column is a string in quotes, that is the Unix error message corresponding to that condition. 
Some of these errors, such as TCP's handling of a source quench, we'll cover in later 
chapters. 

type code Description Handled by

0 0 echo reply user process
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3 

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

destination unreachable:
network unreachable
host unreachable
protocol unreachable
port unreachable
fragmentation needed but DF bit set
source route failed
destination network unknown
destination host unknown
source host isolated (obsolete)
dest. network administratively prohibited
dest. host administratively prohibited
network unreachable for TOS
host unreachable for TOS
communication administratively 
prohibited
host precedence violation
precedence cutoff in effect 

"No route to host"
"No route to host"
"Connection refused"
"Connection refused"
"Message too long"
"No route to host"
"No route to host"
"No route to host"
"No route to host"
"No route to host"
"No route to host"
"No route to host"
"No route to host"
(ignored)
(ignored)
(ignored) 

4 0 source quench
kernel for TCP, ignored by 
UDP 

5
0
1
2
3

redirect:
redirect for network
redirect for host
redirect for type-of-service and network
redirect for type-of-service and host 

kernel updates routing table
kernel updates routing table
kernel updates routing table
kernel updates routing table 

8 0 echo request kernel generates reply 

9
10 

0
0

router advertisement
router solicitation 

user process
user process

11 0
1

time exceeded:
TTL equals 0 during transit
TTL equals 0 during reassembly 

user process
user process

12 0
1

parameter problem:
IP header bad (catchall error)
required option missing 

"Protocol not available"
"Protocol not available" 

13
14

0
0

timestamp request
timestamp reply

kernel generates reply
user process

15
16 

0
0

information request (obsolete)
information reply (obsolete) 

(ignored)
user process

17
18

0
0

address mask request
address mask reply 

kernel generates reply
user process

Figure 6.12 Handling of the ICMP message types by 4.4BSD.
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6.7 Summary

This chapter has been a look at the Internet Control Message Protocol, a required part of 
every implementation. Figure 6.3 lists all the ICMP message types, most of which we'll 
discuss later in the text. 

We looked at the ICMP address mask request and reply and the timestamp request and 
reply in detail. These are typical of the request-reply messages. Both have an identifier and 
sequence number in the ICMP message. The sending application stores a unique value in 
the identifier field, to distinguish between replies for itself and replies for other processes. 
The sequence number field lets the client match replies with requests. 

We also saw the ICMP port unreachable error, a common ICMP error. This let us examine 
the information returned in an ICMP error: the IP header and the next 8 bytes of the IP 
datagram that caused the error. This information is required by the receiver of the ICMP 
error, to know more about the cause of the error. Both TCP and UDP store the source and 
destination port numbers in the first 8 bytes of their headers for this reason. 

Finally, we presented our first time line of tcpdump output, a presentation format we'll use 
in later chapters. 

Exercises

6.1 At the end of Section 6.2 we listed five special conditions under which an ICMP error 
message is not sent. What would happen if these five conditions weren't followed and we 
sent a broadcast UDP datagram to an unlikely port on the local cable? 

6.2 Read the Host Requirements RFC [Braden 1989a] to see if the generation of an ICMP 
port unreachable is a "must," "should," or "may." What section and page is this found on? 

6.3 Read RFC 1349 [Almquist 1992] to see how the IP type-of-service field (Figure 3.2) 
should be set by ICMP. 

6.4 If your system provides the netstat command, use it to see what types of ICMP 
messages are received and sent. 
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Ping Program
7.1 Introduction

The name "ping" is taken from the sonar operation to locate objects. The Ping program was 
written by Mike Muuss and it tests whether another host is reachable. The program sends an 
ICMP echo request message to a host, expecting an ICMP echo reply to be returned. (Figure 6.3 
lists all the ICMP message types.) 

Normally if you can't Ping a host, you won't be able to Telnet or FTP to that host. Conversely, if 
you can't Telnet to a host. Ping is often the starting point to determine what the problem is. Ping 
also measures the round-trip time to the host, giving us some indication of how "far away" that 
host is. 

In this chapter we'll use Ping as a diagnostic tool and to further explore ICMP. Ping also gives 
us an opportunity to examine the IP record route and timestamp options. Chapter II of [Stevens 
1990] provides the source code for the Ping program. 

Years ago we could make the unqualified statement that if we can't Ping a host, we can't Telnet or FTP to that 
host. With the increased awareness of security on the Internet, routers that provide access control lists, and 
firewall gateways, unqualified statements like this are no longer true. Reachability ol a given host may depend 
not only on reachability at the IP layer, but also on what protocol is being used, and the port numbers involved. 
Ping may show a host as being unreachable, yet we might be able to Telnet to port 25 (the mail server). 

7.2 Ping Program

We call the ping program that sends the echo requests the client, and the host being pinged the 
server. Most TCP/IP implementations support the Ping server directly in the kernel-the server is 
not a user process. (The two ICMP query services that we described in Chapter 6, the address 
mask and timestamp requests, are also handled directly by the kernel.) 

Figure 7.1 Format of ICMP message for echo request and echo reply.

As with other ICMP query messages, the server must echo the identifier and sequence number 
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fields. Also, any optional data sent by the client must be echoed. These are presumably of 
interest to the client. 

Unix implementations of ping set the identifier field in the ICMP message to the process ID of 
the sending process. This allows ping to identify the returned responses if there are multiple 
instances of ping running at the same time on the same host. 

The sequence number starts at 0 and is incremented every time a new echo request is sent. ping 
prints the sequence number of each returned packet, allowing us to see if packets are missing, 
reordered, or duplicated. IP is a best effort datagram delivery service, so any of these three 
conditions can occur. 

Historically the ping program has operated in a mode where it sends an echo request once a 
second, printing each echo reply that is returned. Newer implementations, however, require the -
s option to operate this way. By default, these newer implementations send only a single echo 
request and output "host is alive" if an echo reply is received, or "no answer" if no reply is 
received within 20 seconds. 

LAN Output

ping output on a LAN normally looks like the following: 

bsdi % ping svr4
PING svr4 (140.252.13.34): 56 data bytes
64 bytes from 140.252.13.34: icmp_seq=0 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=l ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=2 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=3 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=4 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=5 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=6 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=7 ttl=255 time=0 ms
^? type interrupt key to stop 
--- svr4 ping statistics ---
8 packets transmitted, 8 packets received, 0% packet loss
round-trip min/avg/max = 0/0/0 ms 

When the ICMP echo reply is returned, the sequence number is printed, followed by the TTL, 
and the round-trip time is calculated. (TTL is the time-to-live field in the IP header. The current 
BSD ping program prints the received TTL each time an echo reply is received-some 
implementations don't do this. We examine the usage of the TTL in Chapter 8 with the 
traceroute program.) 

As we can see from the output above, the echo replies were returned in the order sent (0, 1,2, 
and so on). 
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ping is able to calculate the round-trip time by storing the time at which it sends the echo 
request in the data portion of the ICMP message. When the reply is returned it subtracts this 
value from the current time. Notice that on the sending system, bsdi, the round-trip times are 
all calculated as 0 ms. This is because of the low-resolution timer available to the program. The 
BSD/386 Version 0.9.4 system only provides a IO-ms timer. (We talk more about this in 
Appendix B.) We'll see later that when looking at the tcpdump output from this ping example 
on a system with a finer resolution clock (the Sun) the time difference between the ICMP echo 
request and its echo reply is just under 4 ms. 

The first line of output contains the IP address of the destination host, even though we specified 
its name (svr4). This implies that the name has been converted to the IP address by a resolver. 
We examine resolvers and the DNS in Chapter 14. For now realize that if we type a ping 
command, and a few seconds pass before the first line of output with the IP address is printed, 
this is the time required for the DNS to determine the IP address corresponding to the hostname. 
Figure 7.2 shows the tcpdump output for this example. 

1 
2

0.0
0.003733 
(0.0037) 

bsdi > svr4: icmp: echo request 
svr4 > bsdi: icmp: echo reply 

3
4

0.998045 
(0.9943)
1.001747 
(0.0037) 

bsdi > svr4: icmp: echo request 
svr4 > bsdi: icmp: echo reply 

5
6

1.997818 
(0.9961)
2.001542 
(0.0037) 

bsdi > svr4: icmp: echo request 
svr4 > bsdi: icmp: echo reply 

7
8

2.997610 
(0.9961)
3.001311 
(0.0037) 

bsdi > svr4: icmp: echo request 
svr4 > bsdi: icmp: echo reply 

9
10

3.997390 
(0.9961)
4.001115 
(0.0037) 

bsdi > svr4: icmp: echo request 
svr4 > bsdi: icmp: echo reply 

11
12

4.997201 
(0.9961)
5.000904 
(0.0037) 

bsdi > svr4: icmp: echo request 
svr4 > bsdi: icmp: echo reply 

13
14

5.996977 
(0.9961)
6.000708 
(0.0037) 

bsdi > svr4: icmp: echo request 
svr4 > bsdi: icmp: echo reply 
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15
16

6.996764 
(0.9961)
7.000479 
(0.0037) 

bsdi > svr4: icmp: echo request 
svr4 > bsdi: icmp: echo reply 

Figure 7.2 ping output across a LAN.

The time between sending the echo request and receiving the echo reply is always 3.7 ms. We 
can also see that echo requests are sent approximately 1 second apart. 

Often the first round-trip time is larger than the rest. This occurs if the destination's hardware 
address isn't in the ARP cache of the sender. As we saw in Chapter 4, sending an ARP request 
and getting the ARP reply can take a few milliseconds before the first echo request can be sent. 
The following example shows this: 

sun % arp -a make sun ARP cache is empty 

sun % ping svr4
PING svr4: 56 data bytes
64 bytes from svr4 (140.252.13,34): icmp_seq=0. time=7. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=1. time=4. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=2. time=4. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=3. time=4. ms
^? type interrupt key to stop
---svr4 PING Statistics---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 4/4/7 

The additional 3 ms in the first RTT is probably for the ARP request and reply 

This example was run on the host sun, which provides a timer with microsecond resolution, but 
the ping program prints the round-trip times with only millisecond resolution. The earlier 
example, run under BSD/386 Version 0.9.4, printed the round-trip times as 0 ms, since the 
available timer provided only IO-ms accuracy. The following output is from BSD/386 Version 
1.0, which provides a timer with microsecond resolution and a version of ping that prints the 
higher resolution. 

bsdi % ping svr4
PING svr4 (140.252.13.34): 56 data bytes
64 bytes from 140.252.13.34: icmp_seq=0 ttl=255 time=9.304 ms
64 bytes from 140.252.13.34: icmp_seq=1 ttl=255 time=6.089 ms 
64 bytes from 140.252.13.34: icmp_seq=2 ttl=255 time=6.079 ms 
64 bytes from 140.252.13.34: icmp_seq=3 ttl=255 time=6.096 ms 
^? type interrupt key to stop 
--- svr4 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 6.079/6.880/9.304 ms 
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WAN Output

On a wide area network the results can be quite different. The following example was captured 
on a weekday afternoon, a time when the Internet is normally busy: 

gemini % ping vangogh.cs.berkeley.edu 
PING vangogh.cs.berkeley.edu: 56 data bytes
64 bytes from (128.32.130.2): icmp_seq=0. time=660. ms
64 bytes from (128.32.130.2): icmp_seq=5. time=1780. ms
64 bytes from (128.32.130.2): icmp_seq=7. time=380. ms
64 bytes from (128.32.130.2): icmp_seq=8. time=420. ms
64 bytes from (128.32.130.2): icmp_seq=9. time=390. ms
64 bytes from (128.32.130.2): icmp_seq=14. time=110. ms
64 bytes from (128.32.130.2): icmp_seq=15. time=170. ms
64 bytes from (128.32.130.2): icmp_seq=16. time=100. ms
^? type interrupt key to stop 
----vangogh.CS.Berkeley.EDU PING Statistics----
17 packets transmitted, 8 packets received, 52% packet loss
round-trip (ms) min/avg/max = 100/501/1780 

Either the echo requests or the echo replies for sequence numbers 1, 2, 3, 4, 6, 10, II, 12, and 13 
were lost somewhere. Note also the large variance in the round-trip times. (This high packet loss 
rate of 52% is an anomaly. This is not normal for the Internet, even on a weekday afternoon.) 

It is also possible across WANs to see packets duplicated (the same sequence number printed 
two or more times), and to see packets reordered (sequence number N +1 printed before 
sequence number N). 

Hardwired SLIP Links

Let's look at the round-trip times encountered over SLIP links, since they often run at slow 
asynchronous speeds, such as 9600 bits/sec or less. Recall our serial line throughput calculations 
in Section 2.10. For this example we'll set the speed of the hardwired SLIP link between hosts 
bsdi and slip to 1200 bits/sec. 

We can estimate the round-trip time as follows. First, notice from the example Ping output 
shown earlier that by default it sends 56 bytes of data in the ICMP message. With a 20-byte IP 
header and an 8-byte ICMP header this gives a total IP datagram size of 84 bytes. (We can 
verify this by running tcpdump -e and seeing the Ethernet frame sizes.) Also, from Section 2.4 
we know that at least two additional bytes are added: the END byte at the beginning and end of 
the datagram. It's also possible for additional bytes to be added by the SLIP framing, but that 
depends on the value of each byte in the datagram. At 1200 bits/sec with 8 bits per byte, I start 
bit, and I stop bit, the rate is 120 bytes per second, or 8.33 ms per byte. Our estimate is then (86 
x 8.33 x 2), or 1433 ms. (The multiplier of 2 is because we are calculating the round-trip time.) 

The following output verifies our calculation: 
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svr4 % ping -a slip
PING slip: 56 data bytes
64 bytes from slip (140.252.13.65): icmp_seq=0. time=1480. Ms
64 bytes from slip (140.252.13.65): icmp_seq=1. time=1480. Ms 
64 bytes from slip (140.252.13.65): icmp_seq=2. time=1480. Ms 
64 bytes from slip (140.252.13.65): icmp_seq=3. time=1480. Ms 
^?
----slip PING Statistics----
5 packets transmitted, 4 packets received, 20% packet loss
round-trip (ms) min/avg/max = 1480/1480/1480 

(The -s option is required for SVR4 to send one request every second.) The round-trip time is 
almost 1.5 seconds but the program is still sending out each ICMP echo request at 1-second 
intervals. This means there are two outstanding echo requests (sent at time 0 and time 1) before 
the first reply comes back (at time 1.480). That's also why the summary line says one packet has 
been lost. It really hasn't been lost, it's probably still on its way back. 

We'll return to this slow SLIP link in Chapter 8 when we examine the traceroute program. 

Dialup SLIP Links

The conditions change with a dialup SLIP link since we now have modems on each end of the 
link. The modems being used between the systems sun and netb provide what is called V.32 
modulation (9600 bits/sec), V.42 error control (also called LAP-M), and V.42bis data 
compression. This means that our simple calculations, which were fairly accurate for a 
hardwired link where we knew all the parameters, become less accurate. 

Numerous factors are at work. The modems introduce some latency. The size of the packets 
may decrease with the data compression, but the size may then increase to a multiple of the 
packet size used by the error control protocol. Also the receiving modem can't release received 
data bytes until the cyclic redundancy character (the checksum) has been verified. Finally, we're 
dealing with a computer's asynchronous serial interface on each end, and many operating 
systems read these interfaces only at fixed intervals, or when a certain number of characters 
have been received. 

As an example, we ping the host gemini from the host sun: 

sun % ping gemini
PING gemini: 56 data bytes
64 bytes from gemini (140.252.1.11): icmp_seq=0. time=373. ms
64 bytes from gemini (140.252.1.11): icmp_seq=l. time=360. ms 
64 bytes from gemini (140.252.1.11): icmp_seq=2. time=340. ms 
64 bytes from gemini (140.252.1.11): icmp_seq=3. time-320. ms 
64 bytes from gemini (140.252.1.11): icmp_seq=4. time=330. ms 
64 bytes from gemini (140.252.1.11): icmp seq=5. time=310. ms 
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64 bytes from gemini (140.252.1.11): icmp seq=6. time==290. ms 
64 bytes from gemini (140.252.1.11): icmp_seq-7. time=300. ms 
64 bytes from gemini (140.252.1.11): icmp_seq=8. time=280. ms 
64 bytes from gemini (140.252.1.11): icmp_seq=9. time=290. ms 
64 bytes from gemini (140.252.1.11): icmp_seq=10. time=300. ms 
64 bytes from gemini (140.252.1.11): icmp_seq=ll. time=280. ms 
--gemini PING Statistics--
12 packets transmitted, 12 packets received, 0% packet loss
round-trip (ms) min/avg/max = 280/314/373 

Note that the first RTT is not a multiple of 10 ms, but every other line is. If we run this 
numerous times, we see this property every time. (This is not caused by the resolution of the 
clock on the host sun, because we know that its clock provides millisecond resolution from the 
tests we run in Appendix B.) 

Also note that the first RTT is larger than the next, and they keep decreasing, and then they 
range between 280 and 300 ms. If we let it run for a minute or two, the RTTs stay in this range, 
never going below 260 ms. If we calculate the expected RTT at 9600 bits/sec (Exercise 7.2) we 
get 180 ms, so our observed values are about 1.5 times the expected value. 

If we run ping for 60 seconds and look at the average RTT it calculates, we find that with V.42 
and V.42bis our average is 277 ms. (This is better than the average printed for our preceding 
example, because we ran it longer to amortize the longer RTTs at the beginning.) If we turn off 
just the V.42bis data compression our average is 330 ms. If we turn off the V.42 error control 
(which also turns off the V.42bis data compression) our average is 300 ms. These modem 
parameters do affect the RTTs, and using the error control and data compression appears to be 
the best. 

7.3 IP Record Route Option

The ping program gives us an opportunity to look at the IP record route (RR) option. Most 
versions of ping provide the -R option that enables the record route feature. It causes ping to set 
the IP RR option in the outgoing IP datagram (which contains the ICMP echo request message). 
This causes every router that handles the datagram to add its IP address to a list in the options 
field. When the datagram reaches the final destination, the list of IP addresses should be copied 
into the outgoing ICMP echo reply, and all the routers on the return path also add their IP 
addresses to the list. When ping receives the echo reply it prints the list of IP addresses. 

As simple as this sounds, there are pitfalls. Generation of the RR option by the source host, 
processing of the RR option by the intermediate routers, and reflection of the incoming RR list 
in an ICMP echo request into the outgoing ICMP echo reply are all optional features. 
Fortunately, most systems today do support these optional features, but some systems don't 
reflect the IP list. 

The biggest problem, however, is the limited room in the IP header for the list of IP addresses. 
We saw in Figure 3.1 that the header length in the IP header is a 4-bit field, limiting the entire 
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IP header to 15 32-bit words (60 bytes). Since the fixed size of the IP header is 20 bytes, and the 
RR option uses 3 bytes for overhead (which we describe below), this leaves 37 bytes (60-20-3) 
for the list, allowing up to nine IP addresses. In the early days of the ARPANET, nine IP 
addresses seemed like a lot, but since this is a round-trip list (in the case of the -R option for 
ping), it's of limited use today. (In Chapter 8 we'll look at the Traceroute tool for determining 
the route followed by a datagram.) Despite these shortcomings, the record route option works 
and provides an opportunity to look in detail at the handling of IP options. Figure 7.3 shows the 
general format of the RR option in the IP datagram. 

Figure 7.3 General format of record route option in IP header.

Code is a I-byte field specifying the type of IP option. For the RR option its value is 7. Len is 
the total number of bytes of the RR option, which in this case is 39. (Although it's possible to 
specify an RR option with less than the maximum size, ping always provides a 39-byte option 
field, to record up to nine IP addresses. Given the limited room in the IP header for options, it 
doesn't make sense to specify a size less than the maximum.) 

Ptr is called the pointer field. It is a 1-based index into the 39-byte option of where to store the 
next IP address. Its minimum value is 4, which is the pointer to the first IP address. As each IP 
address is recorded into the list, the value of ptr becomes 8, 12, 16, up to 36. After the ninth 
address is recorded ptr becomes 40, indicating the list is full. 

When a router (which by definition is multihomed) records its IP address in the list, which IP 
address is recorded? It could be the address of the incoming interface or the outgoing interface. 
RFC 791 [Postel 1981a] specifies that the router records the outgoing IP address. We'll see that 
when the originating host (the host running ping) receives the ICMP echo reply with the RR 
option enabled, it also records its incoming IP address in the list. 

Normal Example

Let's run an example of the RR option with the ping program. We'll run ping on the host svr4 
to the host slip. One intermediate router (bsdi) will handle the datagram. The following 
output is from svr4: 

svr4 % ping -R slip
PING slip (140.252.13.65): 56 data bytes
64 bytes from 140.252.13.65: icmp_seq=0 ttl=254 time=280 ms
RR: bsdi (140.252.13.66)
slip (140.252.13.65)
bsdi (140.252.13.35)
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svr4 (140.252.13.34)
64 bytes from 140.252.13.65: icmp_seq=1 ttl=254 time=280 ms 
(same route)
64 bytes from 140.252.13.65: icmp_seq=2 ttl=254 time=270 ms 
(same route)
^?
--- slip ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 270/276/280 ms 

Figure 7.4 shows the four hops that the packets take (two in each direction), and which hop adds 
which IP address to the RR list. 

Figure 7.4 ping with record route option.

The router bsdi adds a different IP address to the list in each direction. It always adds the IP 
address of the outgoing interface. We can also see that when the ICMP echo reply reaches the 
originating system (svr4) it adds the IP address of the incoming interface to the list. 

We can also watch this exchange of packets from the host sun, running tcpdump with its -v 
option (to see the IP options). Figure 7.5 shows the output. 

1 0.0 

svr4 > slip: icmp: echo request (ttl 32, id 
35835,
optlen=40 RR{39}=RR(#0.0.0.0/0.0.0.0/0.0.0.0/
0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0} 
EOL) 

2
0.267746 
(0.2677) 

slip > svr4: icmp: echo reply (ttl 254, id 1976,
optlen=40 RR{39}= 
RR(140.252.13.66/140.252.13.65/
140.252.13.35/#0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0/
0.0.0.0/0.0.0.0} EOL) 

Figure 7.5 tcpdump output of record route option.

The output optlen=40 indicates there are 40 bytes of option space in the IP header. (Recall 
that the length of the IP header must be a multiple of 4 bytes.) RR{39} means the record route 
option is present, and its length field is 39. The list of nine IP addresses is then shown, with a 
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pound sign (#) indicating which IP address is pointed to by the ptr field in the RR option header. 
Since we are watching these packets on the host sun (see Figure 7.4) we only see the ICMP 
echo request with the empty list, and the ICMP echo reply with three addresses in the list. We 
have deleted the remaining lines in the tcpdump output, since they are nearly identical to what 
we show in Figure 7.5. 

The notation EOL at the end of the record route information indicates the IP option "end of list" 
value appeared. The EOL option has a value of 0. What's happening is that 39 bytes of RR data 
are in the 40 bytes of option space in the IP header. Since the option space is set to 0 before the 
datagram is sent, this final byte of 0 that follows the 39 bytes of RR data is interpreted as an 
EOL. That is what we want to have happen. If there are multiple options in the option field of 
the IP header, and pad bytes are needed before the next option starts, the other special character 
NOP ("no operation"), with a value of 1, can be used. 

In Figure 7.5, SVR4 sets the TTL field of the echo request to 32, and BSD/386 sets it to 255. (It prints as 254 
since the router bsdi has already decremented it by one.) Newer systems are setting the TTL of ICMP messages 
to the maximum (255). 

It turns out that of the three TCP/IP implementations used by the author, both BSD/386 and SVR4 support the 
record route option. That is, they correctly update the RR list when forwarding a datagram, and they correctly 
reflect the RR list from an incoming ICMP echo request to the outgoing ICMP echo reply. SunOS 4.1.3, 
however, updates the RR list when forwarding a datagram, but does not reflect the RR list. Solaris 2.x corrects 
this problem. 

Abnormal Output

The following example was seen by the author and provides a starting point for our description 
of the ICMP redirect message in Chapter 9. We ping the host aix on the 140.252.1 subnet 
(accessible through the dialup SLIP connection on the host sun) with the record route option. 
We get the following output, when run on the host slip: 

slip % ping -R aix
PING aix (140.252.1.92): 56 data bytes
64 bytes from 140.252.1.92: icmp_seq-0 ttl=-251 time-650 ms
RR: bsdi (140.252.13.35)
sun (140.252.1.29)
netb (140.252.1.183)
aix (140.252.1.92)
gateway (140.252.1.4) why is this router used?
netb (140.252.1.183)
sun (140.252.13.33)
bsdi (140.252.13.66)
slip (140.252.13.65)
64 bytes from aix: icmp_seq=l ttl=251 time=610 ms (same route) 
64 bytes from aix: icmp_seq=2 ttl=251 time"600 ms (same route) 
^?
-- aix ping statistics -
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4 packets transmitted, 3 packets received, 25% packet loss
round-trip min/avg/max = 600/620/650 ms 

We could have run this example from the host bsdi. We chose to run it from slip to see all 
nine IP addresses in the RR list used. 

The puzzle in this output is why the outgoing datagram (the ICMP echo request) went directly 
from netb to aix, but the return (the ICMP echo reply) went from aix, through the router 
gateway, before going to netb. What we're seeing here is a feature of IP routing that we 
describe below. Figure 7.6 shows the path of the datagrams. 

Figure 7.6 ping with record route, showing IP routing feature.

The problem is that aix does not know to send IP datagrams destined for the subnet 140.252.13 
to netb. Instead, aix has a default entry in its routing table that tells it to send all datagrams to 
the router gateway if it doesn't have a particular route for the destination. The router 
gateway has more routing knowledge than any of the hosts on the 140.252.1 subnet. (There 
are more than 150 hosts on this Ethernet and instead of running a routing daemon on every one, 
each has a "default" entry that points to the router gateway.) 

An unanswered question here is why doesn't gateway send an ICMP redirect (Section 9.5) to 
aix to update its routing table? For some reason (perhaps that the datagram generating the 
redirect is an ICMP echo request message) the redirect is not generated. But if we use Telnet 
and connect to the daytime server on aix, the ICMP redirect is generated, and the routing table 
on aix is updated. If we then execute ping with the record route option enabled, the route 
shows that the datagrams go from netb to aix and back to netb, without the extra hop to the 
router gateway. We'll look at these ICMP redirects in more detail in Section 9.5. 
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7.4 IP Timestamp Option

The IP timestamp option is similar to the record route option. Figure 7.7 shows the format of the 
IP timestamp option (compare with Figure 7.3). 

Figure 7.7 General format of timestamp option in IP header.

The code field is 0x44 for the timestamp option. The two fields len and ptr are the same as for 
the record route option: the total length of the option (normally 36 or 40) and a pointer to the 
next available entry (5,9, 13, etc.). 

The next two fields are 4-bit values: OF is the overflow field and FL is a flags field. The 
operation of the timestamp option is driven by the flags field, as shown in Figure 7.8. 

flags Description

0 Record only timestamps. This is what we show in Figure 7.7. 

1
Each router records its IP address and its timestamp. There is room for only four of 
these pairs in the options list. 

3
The sender initializes the options list with up to four pairs of IP addresses and a 0 
timestamp. A router records its timestamp only if the next IP address in the list 
matches the router's. 

Figure 7.8 Meaning of the flags value for timestamp option.

If a router can't add a timestamp because there's no room left, it just increments the overflow 
field. 

The preferred value for the timestamps is the number of milliseconds past midnight, UTC, 
similar to the ICMP timestamp request and reply (Section 6.4). If this format is not available to 
a router, it can insert whatever time representation that it uses, but must then turn on the high-
order bit of the timestamp to indicate the nonstandard value. 

Given the limitations that we encountered with the record route option, things get worse with 
the timestamp option. If we record both IP addresses and timestamps (a flags of 1), we can store 
only four of these pairs. Recording only timestamps is next to useless because we have no 
indication regarding which timestamp corresponds to which router (unless we have a fixed 
topology that never changes). A flags of 3 is better, as we can then select which routers insert 
their timestamp. A more fundamental problem is that you probably have no control over how 
accurate the timestamp is at any given router. This makes it fruitless to try to measure hop times 
between routers using this IP option. We'll see that the traceroute program (Chapter 8) provides 
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a better way of measuring hop times between routers. 

7.5 Summary

The ping program is the basic connectivity test between two systems running TCP/IP. It uses 
the ICMP echo request and echo reply messages and does not use a transport layer (TCP or 
UDP). The Ping server is normally part of the kernel's ICMP implementation. 

We looked at the normal ping output for a LAN, WAN, and SLIP links (dialup and 
hardwired), and performed some serial line throughput calculations for a dedicated SLIP link. 
ping also let us examine and use the IP record route option. We used this IP option to see how 
default routes are often used, and will return to this topic in Chapter 9. We also looked at the IP 
timestamp option, but it is of limited practical use. 

Exercises

7.1 Draw a time line for the ping output for the SLIP link in Section 7.2. 

7.2 Calculate the RTT if the SLIP link between bsdi and slip is set to 9600 bits/sec. Assume 
the default of 56 bytes of data. 

7.3 The current BSD ping program allows us to specify a pattern for the data portion of the 
ICMP message. (The first 8 bytes of the data portion are not filled with the pattern, since the 
time at which the packet is sent is stored here.) If we specify a pattern of 0xc0, recalculate the 
answer to the previous exercise. (Hint: Reread Section 2.4.) 

7.4 Does the use of compressed SLIP (CSLIP, Section 2.5) affect the ping times that we 
observed in Section 7.2? 

7.5 Examine Figure 2.4. Do you expect any difference between a ping of the loopback address, 
versus a ping of the host's Ethernet address? 
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Traceroute Program
8.1 Introduction

The Traceroute program, written by Van Jacobson, is a handy debugging tool that allows us 
to further explore the TCP/IP protocols. Although there are no guarantees that two 
consecutive IP datagrams from the same source to the same destination follow the same 
route, most of the time they do. Traceroute lets us see the route that IP datagrams follow 
from one host to another. Traceroute also lets us use the IP source route option. 

The manual page states: "Implemented by Van Jacobson from a suggestion by Steve 
Deering. Debugged by a cast of thousands with particularly cogent suggestions or fixes 
from C. Philip Wood, Tim Seaver, and Ken Adelman." 

8.2 Traceroute Program Operation

In Section 7.3 we described the IP record route option (RR). Why wasn't this used instead 
of developing a new application? There are three reasons. First, historically not all routers 
have supported the record route option, making it unusable on certain paths. (Traceroute 
doesn't require any special or optional features at any intermediate routers.) 

Second, record route is normally a one-way option. The sender enables the option and the 
receiver has to fetch all the values from the received IP header and somehow return them to 
the sender. In Section 7.3 we saw that most implementations of the Ping server (the ICMP 
echo reply function within the kernel) reflect an incoming RR list, but this doubles the 
number of IP addresses recorded (the outgoing path and the return path), which runs into the 
limit described in the next paragraph. (Traceroute requires only a working UDP module at 
the destination-no special server application is required.) 

The third and major reason is that the room allocated for options in the IP header isn't large 
enough today to handle most routes. There is room for only nine IP addresses in the IP 
header options field. In the old days of the ARPANET this was adequate, but it is far too 
small nowadays. 

Traceroute uses ICMP and the TTL field in the IP header. The TTL field (time-to-live) is an 
8-bit field that the sender initializes to some value. The recommended initial value is 
specified in the Assigned Numbers RFC and is currently 64. Older systems would often 
initialize it to 15 or 32. We saw in some of the Ping examples in Chapter 7 that ICMP echo 
replies are often sent with the TTL set to its maximum value of 255. 

Each router that handles the datagram is required to decrement the TTL by either one or the 
number of seconds that the router holds onto the datagram. Since most routers hold a 
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datagram for less than a second, the TTL field has effectively become a hop counter, 
decremented by one by each router. 

RFC 1009 [Braden and Postel 1987] required a router that held a datagram for more than 1 
second to decrement the TTL by the number of seconds. Few routers implemented this 
requirement. The new Router Requirements RFC [Almquist 1993] makes this optional, 
allowing a router to treat the TTL as just a hop count. 

The purpose of the TTL field is to prevent datagrams from ending up in infinite loops, 
which can occur during routing transients. For example, when a router crashes or when the 
connection between two routers is lost, it can take the routing protocols some time (from 
seconds to a few minutes) to detect the lost route and work around it. During this time 
period it is possible for the datagram to end up in routing loops. The TTL field puts an 
upper limit on these looping datagrams. 

When a router gets an IP datagram whose TTL is either 0 or 1 it must not forward the 
datagram. (A destination host that receives a datagram like this can deliver it to the 
application, since the datagram does not have to be routed. Normally, however, no system 
should receive a datagram with a TTL of 0.) Instead the router throws away the datagram 
and sends back to the originating host an ICMP "time exceeded" message. The key to 
Traceroute is that the IP datagram containing this ICMP message has the router's IP address 
as the source address. 

We can now guess the operation of Traceroute. It sends an IP datagram with a TTL of 1 to 
the destination host. The first router to handle the datagram decrements the TTL, discards 
the datagram, and sends back the ICMP time exceeded. This identifies the first router in the 
path. Traceroute then sends a datagram with a TTL of 2, and we find the IP address of the 
second router. This continues until the datagram reaches the destination host. But even 
though the arriving IP datagram has a TTL of 1, the destination host won't throw it away 
and generate the ICMP time exceeded, since the datagram has reached its final destination. 
How can we determine when we've reached the destination? 

Traceroute sends UDP datagrams to the destination host, but it chooses the destination UDP 
port number to be an unlikely value (larger than 30,000), making it improbable that an 
application at the destination is using that port. This causes the destination host's UDP 
module to generate an ICMP "port unreachable" error (Section 6.5) when the datagram 
arrives. All Traceroute needs to do is differentiate between the received ICMP messages-
time exceeded versus port unreachable-to know when it's done. 

The Traceroute program must be able to set the TTL field in the outgoing datagram. Not all 
programming interfaces to TCP/IP support this, and not all implementations support the 
capability, but most current systems do, and are able to run Traceroute. This programming 
interface normally requires the user to have superuser privilege, meaning it may take special 
privilege to run it on your host. 
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8.3 LAN Output

We're now ready to run traceroute and see the output. We'll use our simple internet (see the 
figure on the inside front cover) going from svr4 to slip, through the router bsdi. The 
hardwired SLIP link between bsdi and slip is 9600 bits/sec. 

svr4 % traceroute slip 
traceroute to slip (140.252.13.65), 30 hops max. 40 byte 
packets
1 bsdi (140.252.13.35) 20 ms 10 ms 10 ms 
2 slip (140.252.13.65) 120 ms 120 ms 120 ms 

The first unnumbered line of output gives the name and IP address of the destination and 
indicates that traceroute won't increase the TTL beyond 30. The datagram size of 40 bytes 
allows for the 20-byte IP header, the 8-byte UDP header, and 12 bytes of user data. (The 12 
bytes of user data contain a sequence number that is incremented each time a datagram is 
sent, a copy of the outgoing TTL, and the time at which the datagram was sent.) 

The next two lines in the output begin with the TTL, followed by the name of the host or 
router, and its IP address. For each TTL value three datagrams are sent. For each returned 
ICMP message the round-trip time is calculated and printed. If no response is received 
within 5 seconds for any of the three datagrams, an asterisk is printed instead and the next 
datagram is sent. In this output the first three datagrams had a TTL of 1 and the ICMP 
messages were returned in 20, 10, and 10 ms. The next three datagrams were sent with a 
TTL of 2 and the ICMP messages were returned 120 ms later. Since the TTL of 2 reached 
the final destination, the program then stopped. 

The round-trip times are calculated by the traceroute program on the sending host. 
They are the total RTTs from the traceroute program to that router. If we're interested 
in the per-hop time we have to subtract the value printed for TTL N from the value printed 
for TTL N+1. 

Figure 8.1 shows the tcpdump output for this run. As we might have guessed, the reason 
that the first probe packet to bsdi had an RTT of 20 ms and the next two had an RTT of 10 
ms was because of an ARP exchange, tcpdump shows this is indeed the case. 

The destination UDP port starts at 33435 and is incremented by one each time a datagram is 
sent. This starting port number can be changed with a command-line option. The UDP 
datagram contains 12 bytes of user data, which we calculated earlier when traceroute 
output that it was sending 40-byte datagrams. 

Next, tcpdump prints the comment [ttl 1] when the IP datagram has a TTL of 1. It 
prints a message like this when the TTL is 0 or 1, to warn us that something looks funny in 
the datagram. Here we expect to see the TTL of 1, but with some other application it could 
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be a warning that the datagram might not get to its final destination. We should never see a 
datagram passing by with a TTL of 0, unless the router that put it on the wire is broken. 

1 0.0 arp who-has bsdi tell svr4

2
0.000586 
(0.0006) 

arp reply bsdi is-at 0:0:c0:6f:2d:40 

3
0.003067 
(0.0025) 

svr4.42804 > slip.33435; udp 12 [ttl 1] 

4
0.004325 
(0.0013) 

bsdi > svr4: icmp: time exceeded in-
transit 

5
0.069810 
(0.0655) 

svr4.42804 > slip.33436: udp 12 [ttl 1] 

6
0.071149 
(0.0013) 

bsdi > svr4: icmp: time exceeded in-
transit 

7
0.085162 
(0.0140) 

svr4.42804 > slip.33437: udp 12 [ttl 1] 

8
0.086375 
(0.0012) 

bsdi > svr4: icmp: time exceeded in-
transit 

9
0.118608 
(0.0322) 

svr4.42804 > slip.33438: udp 12 

10
0.226464 
(0.1079) 

slip > svr4: icmp: slip udp port 33438 
unreachable 

11
0.287296 
(0.0608) 

svr4.42804 > slip.33439: udp 12 

12
0.395230 
(0.1079) 

slip > svr4: icmp: slip udp port 33439 
unreachable 

13
0.409504 
(0.0143) 

svr4.42804 > slip.33440: udp 12 

14
0.517430 
(0.1079) 

slip > svr4: icmp: slip udp port 33440 
unreachable 

Figure 8.1 tcpdump output for traceroute example from svr4 to slip.

The ICMP message "time exceeded in transit" is what we expect to see from the router 
bsdi, since it will decrement the TTL to 0. The ICMP message comes from the router even 
though the IP datagram that was thrown away was going to slip. 

There are two different ICMP "time exceeded" messages (Figure 6.3), each with a different 
code field in the ICMP message. Figure 8.2 shows the format of this ICMP error message. 
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Figure 8.2 ICMP time exceeded message.

The one we've been describing is generated when the TTL reaches 0, and is specified by a 
code of 0. 

It's also possible for a host to send an ICMP "time exceeded during reassembly" when it 
times out during the reassembly of a fragmented datagram. (We talk about fragmentation 
and reassembly in Section 11.5.) This error is specified by a code of 1. 

Lines 9-14 in Figure 8.1 correspond to the three datagrams sent with a TTL of 2. These 
reach the final destination and generate an ICMP port unreachable message. 

It is worthwhile to calculate what the round-trip times should be for the SLIP link, similar to 
what we did in Section 7.2 when we set the link to 1200 bits/sec for the Ping example. The 
outgoing UDP datagram contains 12 bytes of data, 8 bytes of UDP header, 20 bytes of IP 
header, and 2 bytes (at least) of SLIP framing (Section 2.4) for a total of 42 bytes. Unlike 
Ping, however, the size of the return datagrams changes. Recall from Figure 6.9 that the 
returned ICMP message contains the IP header of the datagram that caused the error and the 
first 8 bytes of data that followed that IP header (which is a UDP header in the case of 
traceroute). This gives us a total of 20+8+20+8+2, or 58 bytes. With a data rate of 960 
bytes/sec the expected RTT is (42 + 58/960) or 104 ms. This corresponds to the IIO-ms 
value measured on svr4. 

The source port number in Figure 8.1 (42804) seems high. traceroute sets the source 
port number of the UDP datagrams that it sends to the logical-OR of its Unix process ID 
with 32768. In case traceroute is being run multiple times on the same host, each 
process looks at the source port number in the UDP header that's returned by ICMP, and 
only handles those messages that are replies to probes that it sent. 

There are several points to note with traceroute. First, there is no guarantee that the 
route today will be in use tomorrow, or even that two consecutive IP datagrams follow the 
same route. If a route changes while the program is running you'll see it occur because 
traceroute prints the new IP address for the given TTL if it changes. 
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Second, there is no guarantee that the path taken by the returned ICMP message retraces the 
path of the UDP datagram sent by traceroute. This implies that the round-trip times 
printed may not be a true indication of the outgoing and returning datagram times. (If it 
takes 1 second for the UDP datagram to travel from the source to a router, but 3 seconds for 
the ICMP message to travel a different path back to the source, the printed round-trip time 
is 4 seconds.) 

Third, the source IP address in the returned ICMP message is the IP address of the interface 
on the router on which the UDP datagram arrived. This differs from the IP record route 
option (Section 7.3), where the IP address recorded was the outgoing interface's address. 
Since every router by definition has two or more interfaces, running traceroute from 
host A to host B can generate different output than from host B to host A. Indeed, if we run 
traceroute from host slip to svr4 the output becomes: 

slip % traceroute svr4 
traceroute to svr4 (140.252.13.34), 30 hops max, 40 byte 
packets
1 bsdi (140.252.13.66) 110 ms 110 ms 110 ms
2 svr4 (140.252.13.34) 110 ms 120 ms 110 ms 

This time the IP address printed for host bsdi is 140.252.13.66, the SLIP interface, while 
previously it was 140.252.13.35, the Ethernet interface. Since traceroute also tries to 
print the name associated with an IP address, the names can change. (In our example both 
interfaces on bsdi have the same name.) 

Consider Figure 8.3. It shows two local area networks with a router connected to each LAN. 
The two routers are connected with a point-to-point link. If we run traceroute from a 
host on the left LAN to a host on the right LAN, the IP addresses found for the routers will 
be if1 and if3. But going the other way will print the IP addresses if4 and if2. The two 
interfaces if2 and if3 share the same network ID, while the other two interfaces have 
different network IDs. 

Figure 8.3 Identification of interfaces printed by traceroute.

Finally, across wide area networks the traceroute output is much easier to comprehend 
if the IP addresses are printed as readable domain names, instead of as IP addresses. But 
since the only piece of information traceroute has when it receives the ICMP message 
is an IP address, it does a "reverse name lookup" to find the name, given the IP address. 
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This requires the administrator responsible for that router or host to configure their reverse 
name lookup function correctly (which isn't always the case). We describe how an IP 
address is converted to a name using the DNS in Section 14.5. 

8.4 WAN Output

The output shown earlier for our small internet is adequate for examining the protocols in 
action, but more a realistic use of traceroute involves larger internets such as the worldwide 
Internet. Figure 8.4 is from the host sun to the Network Information Center, the NIC. 

sun % traceroute nic.ddn.mil 
traceroute to nic.ddn.mil (192.112.36.5), 30 hops max, 40 
byte packets 

1 netb.tuc.noao.edu (140.252.1.183) 218 ms 227 ms 233 ms
2 gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 204 ms 

3 butch.telcom.arizona.edu (140.252.104.2) 204 ms 228 ms 234 
ms
4 Gabby.Telcom.Arizona.EDU (128.196.128.1) 234 ms 228 ms 204 
ms
5 NSIgate.Telcom.Arizona.EDU (192.80.43.3) 233 ms 228 ms 234 
ms 

6 JPLI.NSN.NASA.GOV (128.161.88.2) 234 ms 590 ms 262 ms
7 JPL3.NSN.NASA.GOV (192.100.15.3) 238 ms 223 ms 234 ms
8 GSFC3.NSN.NASA.GOV (128.161.3.33) 293 ms 318 ms 324 ms
9 GSFC8.NSN.NASA.GOV (192.100.13.8) 294 ms 318 ms 294 ms
10 SURA2.NSN.NASA.GOV (128.161.166.2) 323 ms 319 ms 294 ms
11 nsn-FIX-pe.sura.net (192.80.214.253) 294 ms 318 ms 294 ms
12 GSI.NSN.NASA.GOV (128.161.252.2) 293 ms 318 ms 324 ms 

13 NIC.DDN.MIL (192.112.36.5) 324 ms 321 ms 324 ms 

Figure 8.4 traceroute from host sun to nic.ddn.mil.

Since running this example for inclusion in the text, the NIC for non-DDN sites (i.e., 
nonmilitary) has moved from nic.ddn.mil to rs.internic.net, the new 
"InterNIC." 

Once the datagrams leave the tuc.noao.edu network they enter the 
telcom.arizona.edu network. They then enter the NASA Science Internet, 
nsn.nasa.gov. The routers for TTLs 6 and 7 are at the Jet Propulsion Laboratory (JPL). The 
network sura. net in the output for TTL II is the Southeastern Universities Research 
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Association Network. The name GSI at TTL 12 is Government Systems, Inc., the operator 
of the NIC. 

The second RTT for the TTL of 6 (590) is almost double the other two RTTs (234 and 262). 
This illustrates the dynamics of IP routing. Something happened somewhere between the 
sending host and this router that slowed down this datagram. Also, we can't tell if it was the 
outbound datagram that got held up or the return ICMP error. 

The RTT for the first probe with a TTL of 3 (204) is less than the RTT for the first probe 
with a TTL of 2 (233). Since each printed RTT is the total time from the sending host to that 
router, this can (and does) happen. The example in Figure 8.5 is from the host sun to the 
author's publisher. 

sun % traceroute aw.com 
traceroute to aw.com (192.207.117.2), 30 hops max, 40 byte 
packets 

1 netb.tuc.noao.edu (140.252.1.183) 227 ms 227 ms 234 ms
2 gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 234 ms
3 butch.telcom.arizona.edu (140.252.104.2) 233 ms 229 ms 234 
ms 
4 Gabby.Telcom.Arizona. EDU (128.196.128.1) 264 ms 228 ms 234 
ms
5 Westgate.Telcom.Arizona. EDO (192.80.43.2) 234 ms 228 ms 
234 ms
6 uu-ua.AZ.westnet.net (192.31.39.233) 263 ms 258 ms 264 ms
7 enssl42.UT.westnet.net (192.31.39.21) 263 ms 258 ms 264 ms
8 t3-2.Denver-cnss97.t3.ans.net (140.222.97.3) 293 ms 288 ms 
275 ms
9 t3-3.Denver-cnss96.t3.ans.net (140.222.96.4) 283 ms 263 ms 
261 ms
10 t3-1.St-Louis-cnss80.t3.ans.net (140.222.80.2) 282 ms 288 
ms 294 ms
11 t3-1.Chicago-cnss24.t3.ans.net (140.222.24.2) 293 ms 288 
ms 294 ms
12 t3-2.Cleveland-cnss40.t3.ans.net (140.222.40.3) 294 ms 288 
ms 294 ms
13 t3-1.New-York-cnss32.t3.ans.net (140.222.32.2) 323 ms 318 
ms 324 ms
14 t3-1.Washington-DC-cnss56.t3.ans.net (140.222.56.2) 323 ms 
318 ms 324 ms
15 t3-0.Washington-DC-cnss58.t3.ans.net (140.222.58.1) 324 ms 
318 ms 324 ms
16 t3-0.enssl36.t3.ans.net (140.222.136.1) 323 ms 318 ms 324 
ms 
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17 Washington.DC.ALTER.NET (192.41.177.248) 323 ms 377 ms 324 
ms
18 Boston.MA.ALTER.NET (137.39.12.2) 324 ms 347 ms 324 ms
19 AW-gw.ALTER.NET (137.39.62.2) 353 ms 378 ms 354 ms
20 aw.com (192.207.117.2) 354 ms 349 ms 354 ms 

Figure 8.5 traceroute from host sun.tuc.noao.edu to aw.com.

This time the datagrams enter the regional network westnet.net (TTLs 6 and 7) after 
leaving the telcom.arizona.edu network. They then enter the NSFNET backbone, 
t3.ans.net, which is run by Advanced Network & Services. (T3 is the common 
abbreviation for the 45 Mbits/sec phone lines used by the backbone.) The final network is 
alter.net, the connection point to the Internet for aw.corn. 

8.5 IP Source Routing Option

Normally IP routing is dynamic with each router making a decision about which next-hop 
router to send the datagram to. Applications have no control of this, and are normally not 
concerned with it. It takes tools such as Traceroute to figure out what the route really is. 

The idea behind source routing is that the sender specifies the route. Two forms are 
provided: 

●     Strict source routing. The sender specifies the exact path that the IP datagram must 
follow. If a router encounters a next hop in the source route that isn't on a directly 
connected network, an ICMP "source route failed" error is returned. 

●     Loose source routing. The sender specifies a list of IP address that the datagram must 
traverse, but the datagram can also pass through other routers between any two 
addresses in the list. 

Traceroute provides a way to look at source routing, as we can specify an option allowing 
us to force a source route, and see what happens. 

Some of the publicly available Traceroute source code packages contain patches to specify 
loose source routing. But the standard versions normally don't include this option. A 
comment in the patches is that "Van Jacobson's original traceroute (spring 1988) supported 
this feature, but he removed it due to pressure from people with broken gateways." For the 
examples shown in this section, the author installed these patches and modified them to 
allow both loose and strict source routing. 

Figure 8.6 shows the format of the source route option. 
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Figure 8.6 General format of the source route option in the IP header.

This format is nearly identical to the format of the record route option that we showed in 
Figure 7.3. But with source routing we have to fill in the list of IP addresses before sending 
the IP datagram, while with the record route option we allocate room and zero out the list of 
IP addresses, letting the routers fill in the next entry in the list. Also, with source routing we 
only allocate room for and initialize the number of IP addresses required, normally fewer 
than nine. With the record route option we allocated as much room as we could, for up to 
nine addresses. 

The code is 0x83 for loose source routing, and 0x89 for strict source routing. The len and 
ptr fields are identical to what we described in Section 7.3. 

The source route options are actually called "source and record route" (LSRR and SSRR, 
for loose and strict) since the list of IP addresses is updated as the datagram passes along the 
path. What happens is as follows: 

●     The sending host takes the source route list from the application, removes the first 
entry (it becomes the destination address of the datagram), moves all the remaining 
entries left by one entry (where left is as in Figure 8.6), and places the original 
destination address as the final entry in the list. The pointer still points to the first 
entry in the list (e.g., the value of the pointer is 4). 

●     Each router that handles the datagram checks whether it is the destination address of 
the datagram. If not, the datagram is forwarded as normal. (In this case loose source 
routing must have been specified, or we wouldn't have received the datagram.) 

●     If the router is the destination, and the pointer is not greater than the length, then (1) 
the next address in the list (where ptr points) becomes the destination address of the 
datagram, (2) the IP address corresponding to the outgoing interface replaces the 
source address just used, and (3) the pointer is incremented by 4. 

This is best explained with an example. In Figure 8.7 we assume that the sending 
application on host S sends a datagram to D, specifying a source route of R1, R2, and R3. 
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Figure 8.7 Example of IP source routing.

In this figure the pound sign (#) denotes the pointer field, which assumes the values of 4, 8, 
12, and 16. The length field will always be 15 (three IP addresses plus 3 bytes of overhead). 
Notice how the destination address of the IP datagram changes on every hop. 

When an application receives data that was source routed, it should fetch the value of the 
received route and supply a reversed route for sending replies. 

The Host Requirements RFC specifies that a TCP client must be able to specify a source 
route, and that a TCP server must be able to receive a source route, and use the reverse route 
for all segments on that TCP connection. If the TCP server later receives a different source 
route, that newer source route overrides the earlier one. 

traceroute Examples with Loose Source Routing

The -g option to traceroute lets us specify intermediate routers to be used with loose 
source routing. This option can be specified up to eight times. (The reason this is eight and 
not nine is that the programming interface being used requires that the final entry be the 
destination.) 

Recall from Figure 8.4 that the route to the NIC, nic.ddn.mil, was through the NASA 
Science Internet. In Figure 8.8 we force the datagrams to pass through the NSFNET instead 
by specifying the router enssl42.UT.westnet.net (192.31.39.21) as an intermediate 
router: 

sun % traceroute -g 192.31.39.21 nic.ddn.mil 
traceroute to nic.ddn.mil (192.112.36.5), 30 hops max, 40 
byte packets 

1 netb.tuc.noao.edu (140.252.1.183) 259 ms 256 ms 235 ms
2 butch.telcom.arizona.edu (140.252.104.2) 234 ms 228 ms 234 
ms 
3 Gabby.Telcom.Arizona.EDU (128.196.128.1) 234 ms 257 ms 233 
ms 
4 enssl42.UT.westnet.net (192.31.39.21) 294 ms 288 ms 295 ms
5 t3-2.Denver-cnss97.t3.ans.net (140.222.97.3) 294 ms 286 ms 
293 ms
6 t3-3.Denver-cnss96.t3.ans.net (140.222.96.4) 293 ms 288 ms 
294 ms
7 t3-1.St-Louis-cnss80.t3.ans.net (140.222.80.2) 294 ms 318 
ms 294 ms
8 * t3-1.Chicago-cnss24.t3.ans.net (140.222.24.2) 318 ms 295 
ms 
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9 t3-2.Cleveland-cnss40.t3.ans.net (140.222.40.3) 319 ms 318 
ms 324 ms
10 t3-1.New-York-cnss32.t3.ans.net (140.222.32.2) 324 ms 318 
ms 324 ms
11 t3-1.Washington-DC-cnss56.t3.ans.net (140.222.56.2) 353 ms 
348 ms 325 ms
12 t3-0.Washington-DC-cnss58.t3.ans.net (140.222.58.1) 348 ms 
347 ms 325 ms
13 13-0. enssl45.t3.ans. net (140.222.145.1) 353 ms 348 ms 
325 ms
14 nsn-FIX-pe.sura.net (192.80.214.253) 353 ms 348 ms 325 ms
15 GSI.NSN.NASA.GOV (128.161.252.2) 353 ms 348 ms 354 ms
16 NIC.DDN.MIL (192.112.36.5) 354 ms 347 ms 354 ms 

Figure 8.8 traceroute to nic.ddn.mil with a loose source route through the 
NSFNET.

This time there appear to be 16 hops with an average RTT of around 350 ms, while the 
normal route shown in Figure 8.4 had only 13 hops and an average RTT of around 322 ms. 
The default route appears better. (There are also other decisions made when routes are 
established. Some are made on the basis of the organizational and political boundaries of 
the networks involved.) 

But we said there appear to be 16 hops, because a comparison of this output with our 
previous example through the NSFNET (Figure 8.5) shows three missing routers in this 
example using loose source routing. (These are probably caused by bugs in the router's 
generation of ICMP time exceeded errors in response to source routed datagrams.) The 
router gateway.tuc.noao.edu is missing between netb and butch, and the routers 
Westgate.Telcom.Arizona.edu and uu-ua.AZ.westnet.net are also missing 
between Gabby and enssl42.UT.westnet.net. There is probably a software problem in these 
missing routers related to incoming datagrams with the loose source routing option. There 
are really 19 hops between the source and the NIC, when using the NSFNET. Exercise 8.5 
continues the discussion of these missing routers. 

This example also illustrates another problem. On the command line we have to specify the 
dotted-decimal IP address of the router enssl42.UT.westnet.net instead of its 
name. This is because the reverse name lookup (return the name, given the IP address. 
Section 14.5), associates the name with the IP address, but the forward lookup (given the 
name, return the IP address) fails. The forward mapping and reverse mapping are two 
separate files in the DNS (Domain Name System) and not all administrators keep the two 
synchronized with each other. It's not uncommon to have one direction work and the other 
direction fail. 

Something that we haven't seen before is the asterisk (*) printed for the first RTT for the 
TTL of 8. This indicates that a timeout occurred and no response was received within 5 
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seconds for this probe. 

Another point that we can infer from a comparison of this figure and Figure 8.4 is that the 
router nsn-FIX-pe.sura.net is connected to both the NSFNET and the NASA 
Science Internet. 

traceroute Examples with Strict Source Routing

The -G option in the author's version of traceroute is identical to the -g option 
described earlier, but the source route is strict instead of loose. We can use this to see what 
happens when an invalid strict source route is specified. Recall from Figure 8.5 that the 
normal sequence of routers for datagrams from the author's subnet to the NSFNET is 
through netb, gateway, butch, and gabby. (We've omitted the domain suffixes, .tuc.noao.edu 
and .telcom.arizona.edu, in all the output below to make it easier to read.) We specify a 
strict source route that omits butch, trying to go directly from gateway to gabby. We expect 
this to fail, as shown in Figure 8.9. 

sun % traceroute -G netb -G gateway -G gabby westgate 
traceroute to westgate (192.80.43.2), 30 hops max. 40 byte 
packets 

1 netb (140.252.1.183) 272 ms 257 ms 261 ms
2 gateway (140.252.1.4) 263 ms 259 ms 234 ms
3 gateway (140.252.1.4) 263 ms !S * 235 ms !S 

Figure 8.9 traceroute with a strict source route that fails.

The key here is the notation ! s following the RTTs for the TTL of 3. This indicates that 
traceroute received an ICMP "source route failed" error message: a type of 3 and a 
code of 5 from Figure 6.3. The asterisk for the second RTT for the TTL of 3 indicates no 
response was received for that probe. This is what we expect, since it's impossible for 
gateway to send the datagram directly to gabby, because they're not directly connected. 

The reason that both TTLs 2 and 3 are from gateway is that the values for the TTL of 2 
are from gateway when it receives the datagram with an incoming TTL of 1. It discovers 
that the TTL has expired before it looks at the (invalid) strict source route, and sends back 
the ICMP time exceeded. The line with a TTL of 3 is received by gateway with an 
incoming TTL of 2, so it looks at the strict source route, discovers that it's invalid, and 
sends back the ICMP source route failed error. 

Figure 8.10 shows the tcpdump output corresponding to this example. This output was 
collected on the SLIP link between sun and netb. We had to specify the -v option for 
tcpdump to display the source route information. This produces other output that we don't 
need, such as the datagram ID, which we've deleted. Also, the notation SSRR stands for 
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"strict source and record route." 

1 0.0
sun.33593 > netb.33435: udp 12 [ttl 1] 
(optlen=16 SSRR{#gateway gabby westgate} 
EOL) 

2
0.270278 
(0.2703) 

netb > sun: icmp: time exceeded in-
transit 

3
0.284784 
(0.0145) 

sun.33593 > netb.33436: udp 12 [ttl 1] 
(optlen=16 SSRR{#gateway gabby westgate} 
EOL) 

4
0.540338 
(0.2556) 

netb > sun: icmp: time exceeded in-
transit 

5
0.550062 
(0.0097) 

sun.33593 > netb.33437: udp 12 [ttl 1] 
(optlen=16 SSRR(#gateway gabby westgate} 
EOL) 

6
0.810310 
(0.2602) 

netb > sun: icmp: time exceeded in-
transit 

7
0.818030 
(0.0077) 

sun.33593 > netb.33438: udp 12 (ttl 2, 
optlen=16 SSRR(#gateway gabby westgate} 
EOL) 

8
1.080337 
(0.2623) 

gateway > sun: icmp: time exceeded in-
transit 

9
1.092564 
(0.0122) 

sun.33593 > netb.33439: udp 12 (ttl 2, 
optlen=16 SSRR{#gateway gabby westgate} 
EOL) 

10
1.350322 
(0.2578) 

gateway > sun: icmp: time exceeded in-
transit 

11
1.357382 
(0.0071) 

sun.33593 > netb.33440: udp 12 (ttl 2, 
optlen=16 SSRR(#gateway gabby westgate} 
EOL) 

12
1.590586 
(0.2332) 

gateway > sun: icmp: time exceeded in-
transit 

13
1.598926 
(0.0083) 

sun.33593 > netb.33441: udp 12 (ttl 3, 
optlen=16 SSRR{#gateway gabby westgate} 
EOL) 

14
1.860341 
(0.2614) 

gateway > sun: 
icmp: gateway unreachable - source route 
failed 

15
1.875230 
(0.0149) 

sun.33593 > netb.33442: udp 12 (ttl 3, 
optlen=16 SSRR{#gateway gabby westgate} 
EOL) 
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16
6.876579 
(5.0013) 

sun.33593 > netb.33443: udp 12 (ttl 3, 
optlen=16 SSRR{#gateway gabby westgate} 
EOL) 

17
7.110518 
(0.2339) 

gateway > sun: 
icmp: gateway unreachable - source route 
failed 

Figure 8.10 tcpdump output of traceroute with failed strict source route.

First note that each UDP datagram sent by sun has a destination of netb, not the destination 
host (westgate). We described this with the example shown in Figure 8.7. Similarly, the 
other two routers specified with the -G option (gateway and gabby) and the final 
destination (westgate) become the SSRR option list on the first hop. 

We can also see from this output that the timeout used by traceroute (the time 
difference between lines 15 and 16) is 5 seconds. 

traceroute Round Trips with Loose Source Routing

Earlier we said that there is no guarantee that the route from A to Bis the same as the route 
from B to A. Other than having a login on both systems and running traceroute on each 
end, it's hard to find out if there is a difference in the two paths. Using loose source routing, 
however, we can determine the route in both directions. 

The trick is to specify loose source routing with the destination as the loose route, and the 
sending host as the final destination. For example, on the host sun we can find the paths to 
and from the host bruno.cs.colorado.edu (Figure 8.11) . 

sun % traceroute -g bruno.cs.colorado.edu sun
traceroute to sun (140.252.13.33), 30 hops max, 40 byte 
packets 

1 netb.tuc.noao.edu (140.252.1.183) 230 ms 227 ms 233 ms
2 gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 234 ms
3 butch.telcom.arizona.edu (140.252.104.2) 234 ms 229 ms 234 
ms 
4 Gabby.Telcom.Arizona.EDU (128.196.128.1) 233 ms 231 ms 234 
ms 
5 NSIgate.Telcom.Arizona.EDU (192.80.43.3) 294 ms 258 ms 234 
ms 
6 JPLI.NSN.NASA.GOV (128.161.88.2) 264 ms 258 ms 264 ms
7 JPL2.NSN.NASA.GOV (192.100.15.2) 264 ms 258 ms 264 ms
8 NCAR.NSN.NASA.GOV (128.161.97.2) 324 ms * 295 ms
9 cu-gw.ucar.edu (192.43.244.4) 294 ms 318 ms 294 ms
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10 engr-gw.Colorado.EDU (128.138.1.3) 294 ms 288 ms 294 ms
11 bruno.cs.Colorado.edu (128.138.243.151) 293 ms 317 ms 294 
ms 
12 engr-gw-ot.cs.Colorado.edu (128.138.204.1) 323 ms 317 ms 
384 ms
13 cu-gw.Colorado.EDU (128.138.1.1) 294 ms 318 ms 294 ms
14 enss.ucar.edu (192.43.244.10) 323 ms 318 ms 294 ms
15 t3-1.Denver-cnss97.t3.ans.net (140.222.97.2) 294 ms 288 ms 
384 ms
16 t3-0.enssl42.t3.ans.net (140.222.142.1) 293 ms 288 ms 294 
ms 
17 Gabby.Telcom.Arizona.EDU (192.80.43.1) 294 ms 288 ms 294 
ms 
18 Butch.Telcom.Arizona.EDU (128.196.128.88) 293 ms 317 ms 
294 ms
19 gateway.tuc.noao.edu (140.252.104.1) 294 ms 289 ms 294 ms
20 netb.tuc.noao.edu (140.252.1.183) 324 ms 321 ms 294 ms
21 sun.tuc.noao.edu (140.252.13.33) 534 ms 529 ms 564 ms 

Figure 8.11 traceroute example showing unsymmetrical routing path.

The outbound path (TTLs 1-11) differs from the return path (TTLs 11-21), a good 
illustration that Internet routing need not be symmetrical. 

This output also illustrates the point we discussed with Figure 8.3. Compare the output for 
TTLs 2 and 19: both are for the router gateway.tuc.noao.edu, but the two IP 
addresses are different. Since traceroute identifies the incoming interface, and since 
we're passing through the router in two different directions, once on the outbound path 
(TTL 2) and then on the return path (TTL 19), we expect this. We see the same effect 
comparing TTLs 3 and 18, and TTLs 4 and 17. 

8.6 Summary

Traceroute is an indispensable tool when working with a TCP/IP network. Its operation is 
simple: send UDP datagrams starting with a TTL of 1, increasing the TTL by 1, to locate 
each router in the path. An ICMP time exceeded is returned by each router when it discards 
the UDP datagram, and an ICMP port unreachable is generated by the final destination. 

We ran examples of traceroute on both LANs and WANs, and used it to examine IP 
source routing. We used loose source routing to see if the route to a destination is the same 
as the return route from that destination. 

Exercises
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8.1 What can happen if an IP implementation decrements the incoming TTL and then tests 
for equal to 0? 

8.2 How does traceroute calculate the RTT? Compare this to the RTT calculation done 
by ping. 

8.3 (This exercise and the next one are based on actual problems determined when 
traceroute was being developed, and are from comments in the traceroute source 
code.) Assume there are three routers (Rl, R2, and R3) between the source and destination 
and that the middle router (R2) decrements the TTL but incorrectly forwards the IP 
datagram when the incoming TTL was 1. Describe what happens. How can you see this 
occur when running traceroute? 

8.4 Again assume there are three routers between the source and destination. This time the 
destination host has a bug whereby it always uses the incoming TTL as the outgoing TTL of 
an ICMP message. Describe what happens and how you would see this. 

8.5 We can run tcpdump on the SLIP link between sun and netb when running the 
example from Figure 8.8. If we specify the -v option we can see the TTL value of the 
returned ICMP messages. Doing this shows the incoming TTL from netb to be 255, from 
butch it's 253, from Gabby it's 252, and from enssl42.UT.westnet.net it's 249. 
Does this give any additional information about whether there really are some missing 
routers? 

8.6 Both SunOS and SVR4 provide a version of ping with a -l option that provides a loose 
source route. The manual pages state that it's intended to be used with the -R option (which 
specifies the record route option). If you have access to either of these systems, try these 
two options together. What's happening? If you can watch the datagrams with tcpdump, 
describe what's going on. 

8.7 Compare the ways ping and traceroute handle multiple instances of the client on 
the same host. 

8.8 Compare the ways ping and traceroute measure the round-trip time. 

8.9 We said traceroute picks the starting UDP destination port number at 33435 and 
increments this by one for each packet sent. In Section 1.9 we said ephemeral port numbers 
are normally between 1024 and 5000, making it unlikely that Traceroute's destination port 
is in use on the destination host. Is this still true under Solaris 2.2? (Hint: Read Section E.4.) 

8.10 Read RFC 1393 [Malkin 1993b] for a proposed alternative way of determining the 
path to a destination. What are its advantages and disadvantages?
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IP Routing
9.1 Introduction

Routing is one of the most important functions of IP. Figure 9.1 shows a simplified view of 
the processing done at the IP layer. Datagrams to be routed can be generated either on the 
local host or on some other host. In the latter case this host must be configured to act as a 
router, or datagrams received through the network interfaces that are not ours are dropped 
(i.e., silently discarded). 

In Figure 9.1 we also show a routing daemon, which is normally a user process. The most 
common daemons used on Unix systems are the programs routed and gated. (The term 
daemon means the process is running "in the background," carrying out operations on 
behalf of the whole system. Daemons are normally started when the system is bootstrapped 
and run as long as the system is up.) The topics of which routing protocol to use on a given 
host, how to exchange routing information with adjacent routers, and how the routing 
protocols work are complex and can fill an entire book of their own. (Interested readers are 
referred to [Periman 1992] for many of the details.) We'll look briefly at dynamic routing 
and the Routing Information Protocol (RIP) in Chapter 10. Our main interest in the current 
chapter is how a single IP layer makes its routing decisions. 

The routing table that we show in Figure 9.1 is accessed frequently by IP (on a busy host 
this could mean hundreds of times a second) but is updated much less frequently by a 
routing daemon (possibly about once every 30 seconds). The routing table can also be 
updated when ICMP "redirect" messages are received, something we'll look at in Section 
9.5, and by the route command. This command is often executed when the system is 
bootstrapped, to install some initial routes. We'll also use the netstat command in this 
chapter to display the routing table. 
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Figure 9.1 Processing done at the IP layer.

9.2 Routing Principles

The place to start our discussion of IP routing is to understand what is maintained by the 
kernel in its routing table. The information contained in the routing table drives all the 
routing decisions made by IP. 

In Section 3.3 we listed the steps that IP performs when it searches its routing table. 

1.  Search for a matching host address. 
2.  Search for a matching network address. 
3.  Search for a default entry. (The default entry is normally specified in the routing 

table as a network entry, with a network ID of 0.) 

A matching host address is always used before a matching network address. 

The routing done by IP, when it searches the routing table and decides which interface to 
send a packet out, is a routing mechanism. This differs from a routing policy, which is a set 
of rules that decides which routes go into the routing table. IP performs the routing 
mechanism while a routing daemon normally provides the routing policy. 
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Simple Routing Table

Let's start by looking at some typical host routing tables. On the host svr4 we execute the 
netstat command with the -r option to list the routing table and the -n option, which 
prints IP addresses in numeric format, rather than as names. (We do this because some of 
the entries in the routing table are for networks, not hosts. Without the -n option, the 
netstat command searches the file /etc/networks for the network names. This 
confuses the discussion by adding another set of names-network names in addition to 
hostnames.) 

svr4 % netstat -
rn 

Routing tables

Destination 
140.252.13.65
127.0.0.1
default
140.252.13.32 

Gateway
140.252.13.35
127.0.0.1
140.252.13.33
140.252.13.34 

Flags
UGH
UH
UG
U 

Refcnt
0
1
0
4 

Use
0
0
0
25043 

Interface
emd0
lo0
emd0
emd0 

The first line says for destination 140.252.13.65 (host slip) the gateway (router) to send 
the packet to is 140.252.13.35 (bsdi). This is what we expect, since the host slip is 
connected to bsdi with a SLIP link, and bsdi is on the same Ethernet as this host. There 
are five different flags that can be printed for a given route. 

U The route is up.
G The route is to a gateway (router). If this flag is not set, the destination is directly 
connected. 
H The route is to a host, that is, the destination is a complete host address. If this flag is not 
set, the route is to a network, and the destination is a network address: a net ID, or a 
combination of a net ID and a subnet ID. 
D The route was created by a redirect (Section 9.5).
M The route was modified by a redirect (Section 9.5). 

The G flag is important because it differentiates between an indirect route and a direct 
route. (The G flag is not set for a direct route.) The difference is that a packet going out a 
direct route has both the IP address and the link-layer address specifying the destination 
(Figure 3.3). When a packet is sent out an indirect route, the IP address specifies the final 
destination but the link-layer address specifies the gateway (that is, the next-hop router). 
We saw an example of this in Figure 3.4. In this routing table example we have an indirect 
route (the G flag is set) so the IP address of a packet using this route is the final destination 
(140.252.13.65), but the link-layer address must correspond to the router 140.252.13.35. 

It's important to understand the difference between the G and H flags. The G flag 
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differentiates between a direct and an indirect route, as described above. The H flag, 
however, specifies that the destination address (the first column of netstat output) is a 
complete host address. The absence of the H flag means the destination address is a network 
address (the host ID portion will be 0). When the routing table is searched for a route to a 
destination IP address, a host address entry must match the destination address completely, 
while a network address only needs to match the network ID and any subnet ID of the 
destination address. Also, some versions of the netstat command print all the host 
entries first, followed by the network entries. 

The reference count column gives the number of active uses for each route. A connection-
oriented protocol such as TCP holds on to a route while the connection is established. If we 
established a Telnet connection between the two hosts svr4 and slip, we would see the 
reference count go to 1. With another Telnet connection the reference count would go to 2, 
and so on. 

The next column ("use") displays the number of packets sent through that route. If we are 
the only users of the route and we run the ping program to send 5 packets, the count goes 
up by 5. The final column, the interface, is the name of the local interface. 

The second line of output is for the loopback interface (Section 2.7), always named lo0. 
The G flag is not set, since the route is not to a gateway. The H flag indicates that the 
destination address (127.0.0.1) is a host address, and not a network address. When the G 
field is not set, indicating a direct route, the gateway column gives the IP address of the 
outgoing interface. 

The third line of output is for the default route. Every host can have one or more default 
routes. This entry says to send packets to the router 140.252.13.33 (sun) if a more specific 
route can't be found. This means the current host (svr4) can access other systems across 
the Internet through the router sun (and its SLIP link), using this single routing table entry. 
Being able to establish a default route is a powerful concept. The flags for this route (UG) 
indicate that it's a route to a gateway, as we expect. 

Here we purposely call sun a router and not a host because when it's used as a default 
router, its IP forwarding function is being used, not its host functionality. 

The Host Requirements RFC specifically states that the IP layer must support multiple 
default routes. Many implementations, however, don't support this. When multiple default 
routes exist, a common technique is to round robin among them. This is what Solaris 2.2 
does, for example. 

The final line of output is for the attached Ethernet. The H flag is not set, indicating that the 
destination address (140.252.13.32) is a network address with the host portion set to 0. 
Indeed, the low-order 5 bits are 0 (Figure 3.11). Since this is a direct route (the G flag is not 
set) the gateway column specifies the IP address of the outgoing interface. 
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Implied in this final entry, but not shown by the netstat output, is the mask associated 
with this destination address (140.252.13.32). If this destination is being compared against 
the IP address 140.252.13.33, the address is first logically ANDed with the mask associated 
with the destination (the subnet mask of the interface, 0xffffffe0, from Section 3.7) 
before the comparison. For a network route to a directly connected network, the routing 
table mask defaults to the subnet mask of the interface. But in general the routing table 
mask can assume any 32-bit value. A value other than the default can be specified as an 
option to the route command. 

The complexity of a host's routing table depends on the topology of the networks to which 
the host has access. 

1.  The simplest (but least interesting) case is a host that is not connected to any 
networks at all. The TCP/IP protocols can still be used on the host, but only to 
communicate with itself! The routing table in this case consists of a single entry for 
the loopback interface. 

2.  Next is a host connected to a single LAN, only able to access hosts on that LAN. 
The routing table consists of two entries: one for the loopback interface and one for 
the LAN (such as an Ethernet). 

3.  The next step occurs when other networks (such as the Internet) are reachable 
through a single router. This is normally handled with a default entry pointing to that 
router. 

4.  The final step is when other host-specific or network-specific routes are added. In 
our example the route to the host slip, through the router bsdi, is an example of 
this. 

Let's follow through the steps IP performs when using this routing table to route some 
example packets on the host svr4. 

1.  Assume the destination address is the host sun, 140.252.13.33. A search is first 
made for a matching host entry. The two host entries in the table (slip and 
localhost) don't match, so a search is made through the routing table again for a 
matching network address. A match is found with the entry 140.252.13.32 (the 
network IDs and subnet IDs match), so the emd0 interface is used. This is a direct 
route, so the link-layer address will be the destination address. 

2.  Assume the destination address is the host slip, 140.252.13.65. The first search 
through the table, for a matching host address, finds a match. This is an indirect 
route so the destination IP address remains 140.252.13.65, but the link-layer address 
must be the link-layer address of the gateway 140.252.13.35, and the interface is 
emd0. 

3.  This time we're sending a datagram across the Internet to the host aw.com 
(192.207.117.2). The first search of the routing table for a matching host address 
fails, as does the second search for a matching network address. The final step is a 
search for a default entry, and this succeeds. The route is an indirect route through 
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the gateway 140.252.13.33 using the interface emd0. 
4.  In our final example we send a datagram to our own host. There are four ways to do 

this, using either the hostname, the host IP address, the loopback name, or the 
loopback IP address: 

ftp svr4 ftp
140.252.13.34 

ftp localhost
ftp 127.0.0.1 

In the first two cases, the second search of the routing table yields a network match 
with 140.252.13.32, and the packet is sent down to the Ethernet driver. As we 
showed in Figure 2.4 it will be seen that this packet is destined for the host's own IP 
address, and the packet is sent to the loopback driver, which sends it to the IP input 
queue. 

In the latter two cases, specifying the name of the loopback interface or its IP 
address, the first search of the routing table finds the matching host address entry, 
and the packet is sent to the loopback driver, which sends it to the IP input queue. 

In all four cases the packet is sent to the loopback driver, but two different routing 
decisions are made. 

Initializing a Routing Table

We never said how these routing table entries are created. Whenever an interface is 
initialized (normally when the interface's address is set by the ifconfig command) a 
direct route is automatically created for that interface. For point-to-point links and the 
loopback interface, the route is to a host (i.e., the H flag is set). For broadcast interfaces 
such as an Ethernet, the route is to that network. 

Routes to hosts or networks that are not directly connected must be entered into the routing 
table somehow. One common way is to execute the route command explicitly from the 
initialization files when the system is bootstrapped. On the host svr4 the following two 
commands were executed to add the entries that we showed earlier: 

route add default sun 1
route add slip bsdi 1 

The third arguments (default and slip) are the destinations, the fourth argument is the 
gateway (router), and the final argument is a routing metric. All that the route command 
does with this metric is install the route with the G flag set if the metric is greater than 0, or 
without the G flag if the metric is 0. 
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Unfortunately, few systems agree on which start-up file contains the route commands. Under 4.4BSD and 
BSD/386 it is /etc/netstart, under SVR4 it is /etc/inet/rc.inet, under Solaris 2.x it is 
/etc/rc2.d/S69inet, SunOS 4.1.x uses /etc/rc.local, and AIX 3.2.2 uses /etc/rc.net. 

Some systems allow a default router to be specified in a file such as 
/etc/defaultrouter, and this default is added to the routing table on every reboot. 

Other ways to initialize a routing table are to run a routing daemon (Chapter 10) or to use 
the newer router discovery protocol (Section 9.6). 

A More Complex Routing Table

The host sun is the default router for all the hosts on our subnet, since it has the dialup 
SLIP link that connects to the Internet (see the figure on the inside front cover). 

sun % netstat -rn 

Routing tables

Destination Gateway Flags Refcnt Use Interface 

140.252.13.65 140.252.13.35 UGH 0 171 le0

127.0.0.1 127.0.0.1 UH 1 766 lo0

140.252.1.183 140.252.1.29 UH 0 0 sl0

default 140.252.1.183 UG 1 2955 sl0

140.252.13.32 140.252.13.33 U 8 99551 le0

The first two entries are identical to the first two for the host svr4: a host-specific route to 
slip through the router bsdi, and the loopback route. 

The third line is new. It is a direct route (the G flag is not set) to a host (the H flag is set) and 
corresponds to our point-to-point link, the SLIP interface. If we compare it to the output 
from the ifconfig command, 

sun % ifconfig sl0
sl0: flags=1051<UP,POINTOPOINT,RUNNING>
inet 140.252.1.29 -> 140.252.1.183 netmask ffffff00 

we see that the destination address in the routing table is the other end of the point-to-point 
link (the router netb) and the gateway address is really the local IP address of the outgoing 
interface (140.252.1.29). (We said earlier that the gateway address printed by netstat for 
a direct route is the local IP address of the interface to use.) 

The default entry is an indirect route (G flag) to a network (no H flag), as we expect. The 
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gateway address is the address of the router (140.252.1.183, the other end of the SLIP link) 
and not the local IP address of the SLIP link (140.252.1.29). Again, this is because it is an 
indirect route, not a direct route. 

We should also note that the third and fourth lines output by netstat (the ones with an 
interface of sl0) are created by the SLIP software being used when the SLIP line is 
brought up, and deleted when the SLIP link is brought down. 

No Route to Destination

All our examples so far have assumed that the search of the routing table finds a match, 
even if the match is the default route. What if there is no default route, and a match isn't 
found for a given destination? 

The answer depends on whether the IP datagram being routed was generated on the host or 
is being forwarded (e.g., we're acting as a router). If the datagram was generated on this 
host, an error is returned to the application that sent the datagram, either "host unreachable" 
or "network unreachable." If the datagram was being forwarded, an ICMP host unreachable 
error is sent back to original sender. We examine this error in the following section. 

9.3 ICMP Host and Network Unreachable Errors

The ICMP "host unreachable" error message is sent by a router when it receives an IP 
datagram that it cannot deliver or forward. (Figure 6.10 shows the format of the ICMP 
unreachable messages.) We can see this easily on our network by taking down the dialup 
SLIP link on the router sun, and trying to send a packet through the SLIP link from any of 
the other hosts that specify sun as the default router. 

Older implementations of the BSD TCP/IP software generated either a host unreachable, or a network 
unreachable, depending on whether the destination was on a local subnet or not. 4.4BSD generates only the 
host unreachable. 

Recall from the netstat output for the router sun shown in the previous section that the 
routing table entries that use the SLIP link are added when the SLIP link is brought up, and 
deleted when the SLIP link is brought down. This means that when the SLIP link is down, 
there is no default route on sun. But we don't try to change all the other host's routing 
tables on our small network, having them also remove their default route. Instead we count 
on the ICMP host unreachable generated by sun for any packets that it gets that it cannot 
forward. 

We can see this by running ping on svr4, for a host on the other side of the dialup SLIP 
link (which is down): 

svr4 % ping gemini
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ICMP Host Unreachable from gateway sun (140.252.13.33) 
ICMP Host Unreachable from gateway sun (140.252.13.33)
^? type interrupt key to stop 

Figure 9.2 shows the tcpdump output for this example, run on the host bsdi. 

1 
2 

0.0
0.00 (0.00) 

svr4 > gemini: icmp: echo request
sun > svr4: icmp: host gemini unreachable 

3
4 

0.99 (0.99)
0.99 (0.00) 

svr4 > gemini: icmp: echo request
sun > svr4: icmp: host gemini unreachable 

Figure 9.2 ICMP host unreachable in response to ping.

When the router sun finds no route to the host gemini, it responds to the echo request 
with a host unreachable. 

If we bring the SLIP link to the Internet up, and try to ping an IP address that is not 
connected to the Internet, we expect an error. What is interesting is to see how far the 
packet gets into the Internet, before the error is returned: 

sun % ping 192.82.148.1 this IP address is not connected to 
the Internet
PING 192.82.148.1: 56 data bytes
ICMP Host Unreachable from gateway enss142.UT.westnet.net 
(192.31.39.21) for icmp from sun (140.252.1.29) to 
192.82.148.1 

Looking at Figure 8.5 we see that the packet made it through six routers before detecting 
that the IP address was invalid. Only when it got to the border of the NSFNET backbone 
was the error detected. This implies that the six routers that forwarded the packet were 
doing so because of default entries, and only when it reached the NSFNET backbone did a 
router have complete knowledge of every network connected to the Internet. This illustrates 
that many routers can operate with just partial knowledge of the big picture. 

[Ford, Rekhter, and Braun 1993] define a top-level routing domain as one that maintains 
routing information to most Internet sites and does not use default routes. They note that 
five of these top-level routing domains exist on the Internet: the NFSNET backbone, the 
Commercial Internet Exchange (CIX), the NASA Science Internet (NSI), SprintLink, and 
the European IP Backbone (EBONE). 

9.4 To Forward or Not to Forward

We've mentioned a few times that hosts are not supposed to forward IP datagrams unless 
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they have been specifically configured as a router. How is this configuration done? 

Most Berkeley-derived implementations have a kernel variable named ipforwarding, or 
some similar name. (See Appendix E.) Some systems (BSD/386 and SVR4, for example) 
only forward datagrams if this variable is nonzero. SunOS 4.1.x allows three values for the 
variable: -1 means never forward and never change the value of the variable, 0 means don't 
forward by default but set this variable to 1 when two or more interfaces are up, and 1 
means always forward. Solaris 2.x changes the three values to be 0 (never forward), 1 
(always forward), and 2 (only forward when two or more interfaces are up). 

Older 4.2BSD hosts forwarded datagrams by default, which caused lots of problems for 
systems configured improperly. That's why this kernel option must always default to "never 
forward" unless the system administrator specifically enables forwarding. 

9.5 ICMP Redirect Errors

The ICMP redirect error is sent by a router to the sender of an IP datagram when the 
datagram should have been sent to a different router. The concept is simple, as we show in 
the three steps in Figure 9.3. The only time we'll see an ICMP redirect is when the host has 
a choice of routers to send the packet to. (Recall the earlier example of this we saw in 
Figure 7.6.) 

Figure 9.3 Example of an ICMP redirect.

1.  We assume that the host sends an IP datagram to Rl. This routing decision is often 
made because Rl is the default router for the host. 

2.  Rl receives the datagram and performs a lookup in its routing table and determines 
that R2 is the correct next-hop router to send the datagram to. When it sends the 
datagram to R2, Rl detects that it is sending it out the same interface on which the 
datagram arrived (the LAN to which the host and the two routers are attached). This 
is the clue to a router that a redirect can be sent to the original sender. 
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3.  Rl sends an ICMP redirect to the host, telling it to send future datagrams to that 
destination to R2, instead of Rl. 

A common use for redirects is to let a host with minimal routing knowledge build up a 
better routing table over time. The host can start with only a default route (either Rl or R2 
from our example in Figure 9.3) and anytime this default turns out to be wrong, it'll be 
informed by that default router with a redirect, allowing the host to update its routing table 
accordingly. ICMP redirects allow TCP/IP hosts to be dumb when it comes to routing, with 
all the intelligence in the routers. Obviously Rl and R2 in our example have to know more 
about the topology of the attached networks, but all the hosts attached to the LAN can start 
with a default route and learn more as they receive redirects. 

An Example

We can see ICMP redirects in action on our network (inside front cover). Although we 
show only three hosts (aix, solaris, and gemini) and two routers (gateway and 
netb) on the top network, there are more than 150 hosts and 10 other routers on this 
network. Most of the hosts specify gateway as the default router, since it provides access 
to the Internet. 

How is the author's subnet (the bottom four hosts in the figure) accessed from the hosts on 
the 140.252.1 subnet? First recall that if only a single host is at the end of the SLIP link, 
proxy ARP is used (Section 4.6). This means nothing special is required for hosts on the top 
network (140.252.1) to access the host sun (140.252.1.29). The proxy ARP software in 
netb handles this. 

When a network is at the other end of the SLIP link, however, routing becomes involved. 
One solution is for every host and router to know that the router netb is the gateway for 
the network 140.252.13. This could be done by either a static route in each host's routing 
table, or by running a routing daemon in each host. A simpler way (and the method actually 
used) is to utilize ICMP redirects. 

Let's run the ping program from the host solaris on the top network to the host bsdi 
(140.252.13.35) on the bottom network. Since the subnet IDs are different, proxy ARP can't 
be used. Assuming a static route has not been installed, the first packet sent will use the 
default route to the router gateway. Here is the routing table before we run ping: 

solaris % netstat -rn
Routing Table: 

Destination Gateway Flags Ref Use Interface
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127.0.0.1 
140.252.1.0
224.0.0.0
default 

127.0.0.1
140.252.1.32
140.252.1.32
140.252.1.4 

UH
U
U
UG 

0
3
3
0 

848
15042
0
5747 

lo0
le0
le0

(The entry for 224.0.0.0 is for IP multicasting. We describe it in Chapter 12.) If we specify 
the -v option to ping, we'll see any ICMP messages received by the host. We need to 
specify this to see the redirect message that's sent. 

solaris % ping -sv bsdi 
PING bsdi: 56 data bytes
ICMP Host redirect from gateway gateway (140.252.1.4)
to netb (140.252.1.183) for bsdi (140.252.13.35)
64 bytes from bsdi (140.252.13.35): icmp_seq=0. time=383. Ms
64 bytes from bsdi (140.252.13.35): icmp_seq=l. time=364. Ms
64 bytes from bsdi (140.252.13.35): icmp_seq=2. time=353. Ms
^? type interrupt key to stop 
--bsdi PING Statistics--
4 packets transmitted, 3 packets received, 25% packet loss
round-trip (ms) min/avg/max = 353/366/383 

Before we receive the first ping response, the host receives an ICMP redirect from the 
default router gateway. If we then look at the routing table, we'll see that the new route to 
the host bsdi has been inserted. (This new entry is shown in a bolder font.) 

Solaris % netstat -rn
Routing Table: 

Destination Gateway Flags Ref Use Interface 

127.0.0.1 
140.252.13.35
140.252.1.0
224.0.0.0
default 

127.0.0.1
140.252.1.183
140.252.1.32
140.252.1.32
140.252.1.4 

UH
HGHD
U
U
UG 

0
0
3
3
0 

848
2
15045
0
5747 

lo0

le0
le0

This is the first time we've seen the D flag, which means the route was installed by an ICMP 
redirect. The G flag means it's an indirect route to a gateway (netb), and the H flag means 
it's a host route (as we expect), not a network route. 

Since this is a host route, added by a host redirect, it handles only the host bsdi. If we then 
access the host svr4, another redirect is generated, creating another host route. Similarly, 
accessing the host slip creates another host route. The point here is that each redirect is 
for a single host, causing a host route to be added. All three hosts on the author's subnet 
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(bsdi, svr4, and slip) could also be handled by a single network route pointing to the 
router sun. But ICMP redirects create host routes, not network routes, because the router 
generating the redirect in this example (gateway) has no knowledge of the subnet 
structure on the 140.252.13 network. 

More Details

Figure 9.4 shows the format of the ICMP redirect message. 

Figure 9.4 ICMP redirect message.

There are four different redirect messages, with different code values, as shown in Figure 
9.5. 

code Description

0 
1
2
3 

redirect for network
redirect for host
redirect for type-of-service and 
network
redirect for type-of-service and host 

Figure 9.5 Different code values for ICMP redirect.

There are three IP addresses that the receiver of an ICMP redirect must look at: (1) the IP 
address that caused the redirect (which is in the IP header returned as the data portion of the 
ICMP redirect), (2) the IP address of the router that sent the redirect (which is the source IP 
address of the IP datagram containing the redirect), and (3) the IP address of the router that 
should be used (which is in bytes 4-7 of the ICMP message). 

There are numerous rules about ICMP redirects. First, redirects are generated only by 
routers, not by hosts. Also, redirects are intended to be used by hosts, not routers. It is 
assumed that routers participate in a routing protocol with other routers, and the routing 
protocol should obviate the need for redirects. (This means that in Figure 9.1 the routing 
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table should be updated by either a routing daemon or redirects, but not by both.) 

4.4BSD, when acting as a router, performs the following checks, all of which must be true 
before an ICMP redirect is generated. 

1.  The outgoing interface must equal the incoming interface. 
2.  The route being used for the outgoing datagram must not have been created or 

modified by an ICMP redirect, and must not be the router's default route. 
3.  The datagram must not be source routed. 
4.  The kernel must be configured to send redirects. 

The kernel variable is named ip_sendredirects, or something similar. (See Appendix E.) 
Most current systems (4.4BSD, SunOS 4.1.x, Solaris 2.x, and AIX 3.2.2, for example) enable this 
variable by default. Other systems such as SVR4 disable it by default. 

Additionally, a 4.4BSD host that receives an ICMP redirect performs some checks before 
modifying its routing table. These are to prevent a misbehaving router or host, or a 
malicious user, from incorrectly modifying a system's routing table. 

1.  The new router must be on a directly connected network. 
2.  The redirect must be from the current router for that destination. 
3.  The redirect cannot tell the host to use itself as the router. 
4.  The route that's being modified must be an indirect route. 

Our final point about redirects is that routers should send only host redirects (codes 1 or 3 
from Figure 9.5) and not network redirects. Subnetting makes it hard to specify exactly 
when a network redirect can be sent instead of a host redirect. Some hosts treat a received 
network redirect as a host redirect, in case a router sends the wrong type. 

9.6 ICMP Router Discovery Messages

We mentioned earlier in this chapter that one way to initialize a routing table is with static 
routes specified in configuration files. This is often used to set a default entry. A newer way 
is to use the ICMP router advertisement and solicitation messages. 

The general concept is that after bootstrapping, a host broadcasts or multicasts a router 
solicitation message. One or more routers respond with a router advertisement message. 
Additionally, the routers periodically broadcast or multicast their router advertisements, 
allowing any hosts that are listening to update their routing table accordingly. 

RFC 1256 [Deering 1991] specifies the format of these two ICMP messages. Figure 9.6 
shows the format of the ICMP router solicitation message. Figure 9.7 shows the format of 
the ICMP router advertisement message sent by routers. 
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Figure 9.6 Format of ICMP router solicitation message.

Figure 9.7 Format of ICMP router advertisement message.

Multiple addresses can be advertised by a router in a single message. Number of addresses 
is the number. Address entry size is the number of 32-bit words for each router address, and 
is always 2. Lifetime is the number of seconds that the advertised addresses can be 
considered valid. 

One or more pairs of an IP address and a preference then follow. The IP address must be 
one of the sending router's IP addresses. The preference level is a signed 32-bit integer 
indicating the preference of this address as a default router address, relative to other router 
addresses on the same subnet. Larger values imply more preferable addresses. The 
preference level 0x80000000 means the corresponding address, although advertised, is 
not to be used by the receiver as a default router address. The default value of the 
preference is normally 0. 

Router Operation
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When a router starts up it transmits periodic advertisements on all interfaces capable of 
broadcasting or multicasting. These advertisements are not exactly periodic, but are 
randomized, to reduce the probability of synchronization with other routers on the same 
subnet. The normal time interval between advertisements is between 450 and 600 seconds. 
The default lifetime for a given advertisement is 30 minutes. 

Another use of the lifetime field occurs when an interface on a router is disabled. In that 
case the router can transmit a final advertisement on the interface with the lifetime set to 0. 

In addition to the periodic, unsolicited advertisements, a router also listens for solicitations 
from hosts. It responds to these solicitations with a router advertisement. 

If there are multiple routers on a given subnet, it is up to the system administrator to 
configure the preference level for each router as appropriate. For example, the primary 
default router would have a higher preference than a backup. 

Host Operation

Upon bootstrap a host normally transmits three router solicitations, 3 seconds apart. As 
soon as a valid advertisement is received, the solicitations stop. 

A host also listens for advertisements from adjacent routers. These advertisements can 
cause the host's default router to change. Also, if an advertisement is not received for the 
current default, that default can time out. 

As long as the normal default router stays up, that router will send advertisements every 10 
minutes, with a lifetime of 30 minutes. This means the host's default entry won't time out, 
even if one or two advertisements are lost. 

Implementation

The router discovery messages are normally generated by and processed by a user process 
(a daemon). This adds yet another program updating the routing table in Figure 9.1, 
although it would only add or delete a default entry. The daemon would have to be 
configured to act as a router or a host. 

These two ICMP messages are new and not supported by all systems. Solaris 2.x is the only system in our 
network that supports these messages (the in.rdisc.daemon). Although the RFC recommends using 
IP multicasting whenever possible, router discovery can work using broadcast messages also. 

9.7 Summary

The operation of IP routing is fundamental to a system running TCP/IP, be it a host or 
router. The routing table entries are simple: up to 5 flag bits, a destination IP address (host, 
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network, or default), a next-hop router IP address (for an indirect route) or a local interface 
IP address (for a direct route), and a pointer to a local interface to use. Host entries have 
priority over network entries, which have priority over default entries. 

A search of this routing table is made for every IP datagram that the system generates or 
forwards, and can be updated by either a routing daemon or ICMP redirects. By default a 
system should never forward a datagram unless it has specifically been configured to do so. 
Static routes can be entered using the route command, and the newer ICMP router 
discovery messages can be used to initialize and dynamically update default entries. Hosts 
can start with a simple routing table that is updated dynamically by ICMP redirects from its 
default router. 

Our discussion in this chapter has focused on how a single system uses its routing table. In 
the next chapter we examine how routers exchange routing information with each other. 

Exercises

9.1 Why do you think both types of ICMP redirects-network and host-exist? 

9.2 In the routing table for svr4 shown at the beginning of Section 9.2, is a specific route 
to the host slip (140.252.13.65) necessary? What would change if this entry were 
removed from the routing table? 

9.3 Consider a cable with both 4.2BSD hosts and 4.3BSD hosts. Assume the network ID is 
140.1. The 4.2BSD hosts only recognize a host ID of all zero bits as the broadcast address 
(140.1.0.0), while the 4.3BSD hosts normally send a broadcast using a host ID of all one 
bits (140.1.255.255). Also, the 4.2BSD hosts by default will try to forward incoming 
datagrams, even if they have only a single interface. 

Describe the events that happen when the 4.2BSD hosts receives an IP datagram with the 
destination address of 140.1.255.255. 

9.4 Continue the previous exercise, assuming someone corrects this problem by adding an 
entry to the ARP cache on one system on the 140.1 subnet (using the arp command) 
saying that the IP address 140.1.255.255 has a corresponding Ethernet address of all one 
bits (the Ethernet broadcast). Describe what happens now. 

9.5 Examine your system's routing table and describe each entry. 
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Dynamic Routing Protocols
10.1 Introduction

Our discussion in the previous chapter dealt with static routing. The routing table entries 
were created by default when an interface was configured (for directly connected interfaces), 
added by the route command (normally from a system bootstrap file), or created by an 
ICMP redirect (usually when the wrong default was used). 

This is fine if the network is small, there is a single connection point to other networks, and 
there are no redundant routes (where a backup route can be used if a primary route fails). If 
any of these three conditions is false, dynamic routing is normally used. 

This chapter looks at the dynamic routing protocols used by routers to communicate with 
each other. We concentrate on RIP, the Routing Information Protocol, a widely used protocol 
that is provided with almost every TCP/IP implementation. We then look at two newer 
routing protocols, OSPF and BGP. The chapter finishes with an examination of a new 
routing technique, called classless interdomain routing, that is starting to be implemented 
across the Internet to conserve class B network numbers. 

10.2 Dynamic Routing

Dynamic routing occurs when routers talk to adjacent routers, informing each other of what 
networks each router is currently connected to. The routers must communicate using a 
routing protocol, of which there are many to choose from. The process on the router that is 
running the routing protocol, communicating with its neighbor routers, is usually called a 
routing daemon. As shown in Figure 9.1, the routing daemon updates the kernel's routing 
table with information it receives from neighbor routers. 

The use of dynamic routing does not change the way the kernel performs routing at the IP 
layer, as we described in Section 9.2. We called this the routing mechanism. "The kernel still 
searches its routing table in the same way, looking for host routes, network routes, and 
default routes. What changes is the information placed into the routing table-instead of 
coming from route commands in bootstrap files, the routes are added and deleted 
dynamically by a routing daemon, as routes change over time. 

As we mentioned earlier, the routing daemon adds a routing policy to the system, choosing 
which routes to place into the kernel's routing table. If the daemon finds multiple routes to a 
destination, the daemon chooses (somehow) which route is best, and which one to insert into 
the kernel's table. If the daemon finds that a link has gone down (perhaps a router crashed or 
a phone line is out of order), it can delete the affected routes or add alternate routes that 
bypass the problem. 
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In a system such as the Internet, many different routing protocols are currently used. The 
Internet is organized into a collection of autonomous systems (ASs), each of which is 
normally administered by a single entity. A corporation or university campus often defines 
an autonomous system. The NSFNET backbone of the Internet forms an autonomous system, 
because all the routers in the backbone are under a single administrative control. 

Each autonomous system can select its own routing protocol to communicate between the 
routers in that autonomous system. This is called an interior gateway protocol (IGP) or 
intradomain routing protocol. The most popular IGP has been the Routing Information 
Protocol (RIP). A newer IGP is the Open Shortest Path First protocol (OSPF). It is intended 
as a replacement for RIP. An older IGP that has fallen out of use is HELLO-the IGP used on 
the original NSFNET backbone in 1986. 

The new Router Requirements RFC [Almquist 1993] states that a router that implements any dynamic 
routing protocol must support both OSPF and RIP, and may support other IGPs. 

Separate routing protocols called exterior gateway protocols (EGPs) or interdomain routing 
protocols are used between the routers in different autonomous systems. Historically (and 
confusingly) the predominant EGP has been a protocol of the same name: EGP A newer 
EGP is the Border Gateway Protocol (BGP) that is currently used between the NSFNET 
backbone and some of the regional networks that attach to the backbone. BGP is intended to 
replace EGP. 

10.3 Unix Routing Daemons

Unix systems often run the routing daemon named routed. It is provided with almost every 
implementation of TCP/IP This program communicates using only RIP, which we describe 
in the next section. It is intended for small to medium-size networks. 

An alternative program is gated. It supports both IGPs and EGPs. [Fedor 1988] describes the 
early development of gated. Figure 10.1 compares the various routing protocols supported 
by routed and two different versions of gated. Most systems that run a routing daemon 
run routed, unless they need support for the other protocols supported by gated. 

Daemon Interior Gateway Protocol Exterior Gateway Protocol

HELLO RIP OSPF EGP BGP

routed V1

gated, Version 2 * V1 * V1

gated, Version 3 * V1, V2 V2 * V2, V3

Figure 10.1 Routing protocols supported by routed and gated.

We describe RIP Version I in the next section, the differences with RIP Version 2 in Section 
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10.5, OSPF in Section 10.6, and BGP in Section 10.7. 

10.4 RIP: Routing Information Protocol

This section provides an overview of RIP, because it is the most widely used (and most often 
maligned) routing protocol. The official specification for RIP is RFC 1058 [Hedrick 1988a], 
but this RFC was written years after the protocol was widely implemented. 

Message Format

RIP messages are carried in UDP datagrams, as shown in Figure 10.2. (We talk more about 
UDP in Chapter 11.) 

Figure 10.2 RIP message encapsulated within a UDP datagram.

Figure 10.3 shows the format of the RIP message, when used with IP addresses. 

A command of 1 is a request, and 2 is a reply. There are two other obsolete commands (3 and 
4), and two undocumented ones: poll (5) and poll-entry (6). A request asks the other system 
to send all or part of its routing table. A reply contains all or part of the sender's routing table. 

The version is normally 1, although RIP Version 2 (Section 10.5) sets this to 2. 

The next 20 bytes specify the address family (which is always 2 for IP addresses), an IP 
address, and an associated metric. We'll see later in this section that RIP metrics are hop 
counts. 

Up to 25 routes can be advertised in a RIP message using this 20-byte format. The limit of 25 
is to keep the total size of the RIP message, 20 x 25+4 = 504, less than 512 bytes. With this 
limit of 25 routes per message, multiple messages are often required to send an entire routing 
table. 
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Figure 10.3 Format of a RIP message.

Normal Operation

Let's look at the normal operation of routed, using RIP. The well-known port number for 
RIP is UDP port 520. 

●     Initialization. When the daemon starts it determines all the interfaces that are up and 
sends a request packet out each interface, asking for the other router's complete 
routing table. On a point-to-point link this request is sent to the other end. The request 
is broadcast if the network supports it. The destination UDP port is 520 (the routing 
daemon on the other router). 
This request packet has a command of 1 but the address family is set to 0 and the 
metric is set to 16. This is a special request that asks for a complete routing table from 
the other end. 

●     Request received. If the request is the special case we just mentioned, then the entire 
routing table is sent to the requestor. Otherwise each entry in the request is processed: 
if we have a route to the specified address, set the metric to our value, else set the 
metric to 16. (A metric of 16 is a special value called "infinity" and means we don't 
have a route to that destination.) The response is returned. 

●     Response received. The response is validated and may update the routing table. New 
entries can be added, existing entries can be modified, or existing entries can be 
deleted. 

●     Regular routing updates. Every 30 seconds, all or part of the router's entire routing 
table is sent to every neighbor router. The routing table is either broadcast (e.g., on an 
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Ethernet) or sent to the other end of a point-to-point link. 
●     Triggered updates. These occur whenever the metric for a route changes. The entire 

routing table need not be sent - only those entries that have changed must be 
transmitted. 

Each route has a timeout associated with it. If a system running RIP finds a route that has not 
been updated for 3 minutes, that route's metric is set to infinity (16) and marked for deletion. 
This means we have missed six of the 30-second updates from the router that advertised that 
route. The deletion of the route from the local routing table is delayed for another 60 seconds 
to ensure the invalidation is propagated. 

Metrics

The metrics used by RIP are hop counts. The hop count for all directly connected interfaces 
is 1. Consider the routers and networks shown in Figure 10.4. The four dashed lines we show 
are broadcast RIP messages. 

Figure 10.4 Example routers and networks.

Router Rl advertises a route to N2 with a hop count of 1 by sending a broadcast on Nl. (It 
makes no sense to advertise a route to Nl in the broadcast sent on Nl.) It also advertises a 
route to Nl with a hop count of 1 by sending a broadcast on N2. Similarly, R2 advertises a 
route to N2 with a metric of 1, and a route to N3 with a metric of 1. 

If an adjacent router advertises a route to another network with a hop count of 1, then our 
metric for that network is 2, since we have to send a packet to that router to get to the 
network. In our example, the metric to Nl for R2 is 2, as is the metric to N3 for Rl. 

As each router sends its routing tables to its neighbors, a route can be determined to each 
network within the AS. If there are multiple paths within the AS from a router to a network, 
the router selects the path with the smallest hop count and ignores the other paths. 

The hop count is limited to 15, meaning RIP can be used only within an AS where the 
maximum number of hops between hosts is 15. The special metric of 16 indicates that no 
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route exists to the IP address. 

Problems

As simple as this sounds, there are pitfalls. First, RIP has no knowledge of subnet addressing. 
If the normal 16-bit host ID of a class B address is nonzero, for example, RIP can't tell if the 
nonzero portion is a subnet ID or if the IP address is a complete host address. Some 
implementations use the subnet mask of the interface through which the RIP information 
arrived, which isn't always correct. 

Next, RIP takes a long time to stabilize after the failure of a router or a link. The time is 
usually measured in minutes. During this settling time routing loops can occur. There are 
many subtle details in the implementation of RIP that must be followed to help prevent 
routing loops and to speed convergence. RFC 1058 [Hedrick 1988a] contains many details 
on how RIP should be implemented. 

The use of the hop count as the routing metric omits other variables that should be taken into 
consideration. Also, a maximum of 15 for the metric limits the sizes of networks on which 
RIP can be used. 

Example

We'll use the program ripquery, which is available from the gated distribution, to query 
some routers for their routing table, ripquery tries to send one of the undocumented 
requests (named "poll," a command of 5 from Figure 10.3) to the router, asking for its entire 
routing table. If no response is received in 5 seconds, the standard RIP request is issued 
(command of 1). (Earlier we said a request with the family set to 0 and the metric set to 16 
asks the other router for its entire routing table.) 

Figure 10.5 shows the two routers that we'll query for their routing table from the host sun. If 
we execute ripquery from sun, fetching the routing information from its next-hop router, 
netb, we get the following: 

sun % ripquery -n netb 
504 bytes from netb 
(140.252.1.183): 

140.252.1.0, metric 1
140.252.13.0, metric 1 
244 bytes from netb 
(140.252.1.183): 

first message contains 504 bytes
lots of other lines deleted
the top Ethernet in Figure 10.5
the bottom Ethernet in Figure 10.5
second message with remaining 244 bytes
lots of other lines deleted 

As we expect, the metric for our subnet that is announced by netb is 1. Additionally, the top 
Ethernet that netb is also attached to (140.252.1.0) has a metric of 1. (The -n flag says to 
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print the IP addresses numerically instead of trying to look up the names.) In this example 
netb has been configured to consider all the hosts on the subnet 140.252.13 as directly 
connected to it - that is, netb knows nothing about which hosts are actually on the 
140.252.13 subnet. Since there is only one connection point to the 140.252.13 subnet, 
advertising different metrics for each host makes little practical sense. 

Figure 10.5 Two routers netb and gateway that we'll query for their routing tables.

Figure 10.6 shows the packet exchange using tcpdump. We specify the SLIP interface with 
the -i sl0 option. 

sun % tcpdump s600 i sl0 

1 0.0
sun.2879 > netb.route: rip-poll 
24

2 5.014702 (5.0147) 
sun.2879 > netb.route: rip-req 
24 

3 5.560427 (0.5457) 
netb.route > sun.2879: rip-resp 
25: 

4 5.710251 (0.1498) 
netb.route > sun.2879: rip-resp 
12: 

Figure 10.6 tcpdump output while running ripquery program.

The first request issued is the RIP poll command (line 1). This times out after 5 seconds and 
a normal RIP request is issued (line 2). The number 24 at the end of lines 1 and 2 is the size 
of the request packets in bytes: the 4-byte RIP header (with the command and version) 
followed by a single 20-byte address and metric. 

Line 3 is the first reply message. The number 25 at the end indicates that 25 address and 
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metric pairs are in the message, which we calculated earlier to be 504 bytes. This is what 
ripquery printed above. We specified the -s600 option to tcpdump telling it to read 600 
bytes from the network. This allows it to receive the entire UDP datagram (instead of just the 
first portion of it) and it then prints the contents of the RIP response. We've omitted that 
output. 

Line 4 is the second response message from the router, with the next 12 address and metric 
pairs. We can calculate the size of this message to be 12 x 20 + 4 = 244, which is what 
ripquery printed earlier. 

If we go one router beyond netb, to gateway, we expect the metric to our subnet 
(140.252.13.0) to be 2. We can check this by executing: 

sun % ripquery -n gateway 
504 bytes from gateway 
(140.252.1.4):

140.252.1.0, metric 1
10.5 140.252.13.0, metric 2 

lots of other lines deleted
the top Ethernet in Figure 10.5
the bottom Ethernet in Figure 10.5 

Here the metric for the top Ethernet in Figure 10.5 (140.252.1.0) stays at 1, since that 
Ethernet is directly connected to both gateway and netb. Our subnet 140.252.13.0, 
however, now has the expected metric of 2. 

Another Example

We'll now watch all the unsolicited RIP updates on an Ethernet and see just what RIP sends 
on a regular basis to its neighbors. Figure 10.7 shows the arrangement of many of the 
noao.edu networks. We have named the routers Rn for simplicity, where n is the subnet 
number, except for the ones we use elsewhere in the text. We show the point-to-point links 
with dashed lines and the IP address at each end of these links. 
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Figure 10.7 Many of the noao.edu 140.252 networks.

We'll run the Solaris 2.x program snoop, which is similar to tcpdump, on the host 
solaris. We can run this program without superuser privileges, but only to capture 
broadcast packets, multicast packets, or packets sent to the host. Figure 10.8 shows the 
packets captured during a 60-second period. We have replaced most of the official host-
names with our notation Rn. 

solaris % snoop -P -tr udp port 520 

0.00000 R6.tuc.noao.edu -> 140.252.1.255 RIP R (1 
destinations) 
4.49708 R4.tuc.noao.edu -> 140.252.1.255 RIP R (1 
destinations)
6.30506 R2.tuc.noao.edu -> 140.252.1.255 RIP R (1 
destinations) 
11.68317 R7.tuc.noao.edu -> 140.252.1.255 RIP R (1 
destinations) 
16.19790 R8.tuc.noao.edu -> 140.252.1.255 RIP R (1 
destinations) 
16.87131 R3.tuc.noao.edu -> 140.252.1.255 RIP R (1 
destinations) 
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17.02187 gateway.tuc.noao.edu -> 140.252.1.255 RIP R (15 
destinations) 
20.68009 R10.tuc.noao.edu -> BROADCAST RIP R (4 destinations) 

29.87848 R6.tuc.noao.edu -> 140.252.1.255 RIP R (1 
destinations) 
34.50209 R4.tuc.noao.edu -> 140.252.1.255 RIP R (1 
destinations)
36.32385 R2.tuc.noao.edu -> 140.252.1.255 RIP R (1 
destinations) 
41.34565 R7.tuc.noao.edu ~> 140.252.1.255 RIP R (1 
destinations) 
46.19257 R8.tuc.noao.edu -> 140.252.1.255 RIP R (1 
destinations) 
46.52199 R3.tuc.noao.edu -> 140.252.1.255 RIP R (1 
destinations) 
47.01870 gateway.tuc.noao.edu -> 140.252.1.255 RIP R (15 
destinations) 
50.66453 R10.tuc.noao.edu -> BROADCAST RIP R (4 destinations) 

Figure 10.8 RIP broadcasts captured at solaris over a 60-second period.

The -P flag captures packets in nonpromiscuous mode, -tr prints the relative time-stamps, 
and udp port 520 captures only UDP datagrams with a source or destination port of 
520. 

The first six packets, from R6, R4, R2, R7, R8, and R3, each advertise just one network. If 
we looked at the packets we would see that R6 advertises a route to 140.252.6.0 with a hop 
count of 1, R4 advertises a route to 140.252.4.0 with a hop count of 1, and so on. 

The router gateway, however, advertises 15 routes. We can run snoop with the -v flag 
and see the entire contents of the RIP message. (This flag outputs the entire contents of the 
entire packet: the Ethernet header, the IP header, the UDP header, and the RIP message. 
We've deleted everything except the RIP information.) Figure 10.9 shows the output. 

Compare these advertised hop counts on the 140.252.1 network with the topology shown in 
Figure 10.7. 

A puzzle in the output in Figure 10.8 is why R10 is advertising four networks when Figure 
10.7 shows only three. If we look at the RIP packet with snoop we see the following 
advertised routes: 
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RIP:
RIP:
RIP:
RIP:
RIP: 

Address
140.251.0.0
140.252.9.0
140.252.10.0
140.252.11.0 

Metric
16 (not reachable)
1
1
1 

The route to the class B network 140.251 is bogus and should not be advertised. (It belongs 
to another institution, not noao.edu.) 

solaris % snoop -P -v -tr udp port 520 host gateway 

many lines deleted 

RIP: 
RIP: 

0pcode = 2 (route 
response) 
Version = 1 

RIP: Address Metric

RIP: 
RIP: 

140.252.101.0
140.252.104.0 

1
1 

RIP:
RIP:
RIP:
RIP: 

140.252.51.0
140.252.81.0
140.252.105.0
140.252.106.0 

2
2
2
2 

RIP:
RIP:
RIP:
RIP:
RIP:
RIP:
RIP:
RIP: 

140.252.52.0
140.252.53.0
140.252.54.0
140.252.55.0
140.252.58.0 3
140.252.60.0 3
140.252.82.0 3
192.68.189.0 

3
3
3
3
3
3
3
3 

RIP: 140.252.57.0 4

Figure 10.9 RIP response from gateway.

The notation "BROADCAST" output by snoop in Figure 10.8 for the RIP packet sent by R10 
means the destination IP address is the limited broadcast address 255.255.255.255 (Section 
12.2), instead of the subnet-directed broadcast address (140.252.1.255) that the other routers 
use. 

10.5 RIP Version 2

RFC 1388 [Malkin 1993a] defines newer extensions to RIP, and the result is normally called 
RIP-2. These extensions don't change the protocol, but pass additional information in the 
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fields labeled "must be zero" in Figure 10.3. RIP and RIP-2 can interoperate if RIP ignores 
the fields that must be zero. 

Figure 10.10 is a redo of that figure, as defined by RIP-2. The version is 2 for RIP-2. The 
routing domain is an identifier of the routing daemon to which this packet belongs. In a Unix 
implementation this could be the daemon's process ID. This field allows an administrator to 
run multiple instances of RIP on a single router, each operating within one routing domain. 

The route tag exists to support exterior gateway protocols. It carries an autonomous system 
number for EGP and BGP. 

The subnet mask for each entry applies to the corresponding IP address. The next-hop IP 
address is where packets to the corresponding destination IP address should be sent. A value 
of 0 in this field means packets to the destination should be sent to the system sending the 
RIP message. 

Figure 10.10 Format of a RIP-2 message.

A simple authentication scheme is provided with RIP-2. The first 20-byte entry in a RIP 
message can specify an address family of 0xffff, with a route tag value of 2. The 
remaining 16 bytes of the entry contain a cleartext password. 

Finally, RIP-2 supports multicasting in addition to broadcasting (Chapter 12). This can 
reduce the load on hosts that are not listening for RIP-2 messages. 

10.6 OSPF: Open Shortest Path First

OSPF is a newer alternative to RIP as an interior gateway protocol. It overcomes all the 
limitations of RIP. OSPF Version 2 is described in RFC 1247 [Moy 1991]. 

OSPF is a link-state protocol, as opposed to RIP, which is a distance-vector protocol. The 
term distance-vector means the messages sent by RIP contain a vector of distances (hop 
counts). Each router updates its routing table based on the vector of these distances that it 
receives from its neighbors. 

In a link-state protocol a router does not exchange distances with its neighbors. Instead each 
router actively tests the status of its link to each of its neighbors, sends this information to its 
other neighbors, which then propagate it throughout the autonomous system. Each router 
takes this link-state information and builds a complete routing table. 

From a practical perspective, the important difference is that a link-state protocol will always 
converge faster than a distance-vector protocol. By converge we mean stabilizing after 
something changes, such as a router going down or a link going down. Section 9.3 of 
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[Periman 1992] compares other issues between the two types of routing protocols. 

OSPF is different from RIP (and many other routing protocols) in that OSPF uses IP directly. 
That is, it does not use UDP or TCP. OSPF has its own value for the protocol field in the IP 
header (Figure 3.1). 

Besides being a link-state protocol instead of a distance-vector protocol, OSPF has many 
other features that make it superior to RIP. 

1.  OSPF can calculate a separate set of routes for each IP type-of-service (Figure 3.2). 
This means that for any destination there can be multiple routing table entries, one for 
each IP type-of-service. 

2.  Each interface is assigned a dimensionless cost. This can be assigned based on 
throughput, round-trip time, reliability, or whatever. A separate cost can be assigned 
for each IP type-of-service. 

3.  When several equal-cost routes to a destination exist, OSPF distributes traffic equally 
among the routes. This is called load balancing. 

4.  OSPF supports subnets: a subnet mask is associated with each advertised route. This 
allows a single IP address of any class to be broken into multiple subnets of various 
sizes. (We showed an example of this in Section 3.7 and called it variable-length 
subnets.) Routes to a host are advertised with a subnet mask of all one bits. A default 
route is advertised as an IP address of 0.0.0.0 with a mask of all zero bits. 

5.  Point-to-point links between routers do not need an IP address at each end. These are 
called unnumbered networks. This can save IP addresses - a scarce resource these 
days! 

6.  A simple authentication scheme can be used. A cleartext password can be specified, 
similar to the RIP-2 scheme (Section 10.5). 

7.  OSPF uses multicasting (Chapter 12), instead of broadcasting, to reduce the load on 
systems not participating in OSPF. 

With most router vendors supporting OSPF, it will start replacing RIP in many networks. 

10.7 BGP: Border Gateway Protocol

BGP is an exterior gateway protocol for communication between routers in different 
autonomous systems. BGP is a replacement for the older EGP that was used on the 
ARPANET. BGP Version 3 is defined in RFC 1267 [Lougheed and Rekhter 1991]. 

RFC 1268 [Rekhter and Gross 1991] describes the use of BGP in the Internet. Much of the 
following description comes from these two RFCs. Also, during 1993 BGP Version 4 was 
under development (see RFC 1467 [Topolcic 1993]) to support CIDR, which we describe in 
Section 10.8. 

A BGP system exchanges network reachability information with other BGP systems. This 

file:///D|/Documents%20and%20Settings/bigini/Docu.../homenet2run/tcpip/tcp-ip-illustrated/dynamic.htm (13 of 17) [12/09/2001 14.46.53]



Chapter 10. Dynamic Routing Protocols

information includes the full path of autonomous systems that traffic must transit to reach 
these networks. This information is adequate to construct a graph of AS connectivity. 
Routing loops can then be pruned from this graph and routing policy decisions can be 
enforced. 

We first categorize an IP datagram in an AS as either local traffic or transit traffic. Local 
traffic in an AS either originates or terminates in that AS. That is, either the source IP 
address or the destination IP address identifies a host in that AS. Anything else is called 
transit traffic. A major goal of BGP usage in the Internet is to reduce transit traffic. An AS 
can be categorized as one of the following: 

1.  A stub AS has only a single connection to one other AS. A stub AS carries only local 
traffic. 

2.  A multihomed AS has connections to more than one other AS, but refuses to carry 
transit traffic. 

3.  A transit AS has connections to more than one other AS and is designed, under certain 
policy restrictions, to carry both local and transit traffic. 

The overall topology of the Internet is then viewed as an arbitrary interconnection of transit, 
multihomed, and stub ASs. Stub and multihomed ASs need not use BGP - they can run EGP 
to exchange reachability information with transit ASs. 

BGP allows for policy-based routing. Policies are determined by the AS administrator and 
specified to BGP in configuration files. Policy decisions are not part of the protocol, but 
policy specifications allow a BGP implementation to choose between paths when multiple 
alternatives exist and to control the redistribution of information. Routing policies are related 
to political, security, or economic considerations. 

BGP is different from RIP and OSPF in that BGP uses TCP as its transport protocol. Two 
systems running BGP establish a TCP connection between themselves and then exchange the 
entire BGP routing table. From that point on, incremental updates are sent as the routing 
table changes. 

BGP is a distance vector protocol, but unlike RIP (which announces hops to a destination), 
BGP enumerates the route to each destination (the sequence of AS numbers to the 
destination). This removes some of the problems associated with distance-vector protocols. 
An AS is identified by a 16-bit number. 

BGP detects the failure of either the link or the host on the other end of the TCP connection 
by sending a keepalive message to its neighbor on a regular basis. The recommended time 
between these messages is 30 seconds. This application-level keepalive message is 
independent of the TCP keepalive option (Chapter 23). 

10.8 CIDR: Classless Interdomain Routing
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In Chapter 3 we said there is a shortage of class B addresses, requiring sites with multiple 
networks to now obtain multiple class C network IDs, instead of a single class B network ID. 
Although the allocation of these class C addresses solves one problem (running out of class 
B addresses) it introduces another problem: every class C network requires a routing table 
entry. Classless Interdomain Routing (CIDR) is a way to prevent this explosion in the size of 
the Internet routing tables. It is also called supernetting and is described in RFC 1518 
[Rekhter and Li 1993] and RFC 1519 [Fuller et al. 1993], with a overview in [Ford, Rekhter, 
and Braun 1993]. CIDR has the Internet Architecture Board's blessing [Huitema 1993]. RFC 
1467 [Topolcic 1993] summarizes the state of deployment of CIDR in the Internet. 

The basic concept in CIDR is to allocate multiple IP addresses in a way that allows 
summarization into a smaller number of routing table entries. For example, if a single site is 
allocated 16 class C addresses, and those 16 are allocated so that they can be summarized, 
then all 16 can be referenced through a single routing table entry on the Internet. Also, if 
eight different sites are connected to the same Internet service provider through the same 
connection point into the Internet, and if the eight sites are allocated eight different IP 
addresses that can be summarized, then only a single routing table entry need be used on the 
Internet for all eight sites. 

Three features are needed to allow this summarization to take place. 

1.  Multiple IP addresses to be summarized together for routing must share the same high-
order bits of their addresses. 

2.  The routing tables and routing algorithms must be extended to base their routing 
decisions on a 32-bit IP address and a 32-bit mask. 

3.  The routing protocols being used must be extended to carry the 32-bit mask in 
addition to the 32-bit address. OSPF (Section 10.6) and RIP-2 (Section 10.5) are both 
capable of carrying the 32-bit mask, as is the proposed BGP Version 4. 

As an example, RFC 1466 [Gerich 1993] recommends that new class C addresses in Europe 
be in the range 194.0.0.0 through 195.255.255.255. In hexadecimal these addresses are from 
0xc2000000 through 0xc3ffffff. This represents 65536 different class C network IDs, 
but they all share the same high-order 7 bits. In countries other than Europe a single routing 
table entry with an IP address of 0xc2000000 and a 32-bit mask of 0xfe000000 
(254.0.0.0) could be used to route all of these 65536 class C network IDs to a single point. 
Subsequent bits of the class C address (that is, the bits following 194 or 195) can also be 
allocated hierarchically, perhaps by country or by service provider, to allow additional 
summarization within the European routers using additional bits beyond the 7 high-order bits 
of the 32-bit mask. 

CIDR also uses a technique whereby the best match is always the one with the longest 
match: the one with the greatest number of one bits in the 32-bit mask. Continuing the 
example from the previous paragraph, perhaps one service provider in Europe needs to use a 
different entry point router than the rest of Europe. If that provider has been allocated the 
block of addresses 194.0.16.0 through 194.0.31.255 (16 class C network IDs), routing table 
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entries for just those networks would have an IP address of 194.0.16.0 and a mask of 
255.255.240.0 (0xfffff000). A datagram being routed to the address 194.0.22.1 would 
match both this routing table entry and the one for the rest of the European class C networks. 
But since the mask 255.255.240 is "longer" than the mask 254.0.0.0, the routing table entry 
with the longer mask is used. 

The term "classless" is because routing decisions are now made based on masking operations 
of the entire 32-bit IP address. Whether the IP address is class A, B, or C makes no 
difference. 

The initial deployment of CIDR is proposed for new class C addresses. Making just this 
change will slow down the growth of the Internet routing tables, but does nothing for all the 
existing routes. This is the short-term solution. As a long-term solution, if CIDR were 
applied to all IP addresses, and if existing IP addresses were reallocated (and all existing 
hosts renumbered!) according to continental boundaries and service providers, [Ford, 
Rekhter, and Braun 1993] claim that the current routing table consisting of 10,000 network 
entries could be reduced to 200 entries. 

10.9 Summary

There are two basic types of routing protocols: interior gateway protocols (IGPs), for routers 
within an autonomous system, and exterior gateway protocols (EGPs), for routers to 
communicate with routers in other autonomous systems. 

The most popular IGP is the Routing Information Protocol (RIP) with OSPF being a newer 
IGP that is gaining widespread use. A new and popular EGP is the Border Gateway Protocol 
(BGP). In this chapter we looked at RIP and the types of messages that it exchanges. RIP 
Version 2 is a recent enhancement that supports subnetting and other minor improvements. 
We also described OSPF, BGP, and classless interdomain routing (CIDR), a newer technique 
being deployed to reduce the size of the Internet routing tables. 

There are a two other OSI routing protocols that you may encounter. Interdomain Routing 
Protocol (IDRP) started out as a version of BGP modified for use with OSI addresses instead 
of 1P. Intermediate System to Intermediate System Protocol (IS-IS) is the OSI standard IGP. 
It is used for routing CLNP (Connectionless Network Protocol), an OSI protocol similar to 
IP. IS-IS and OSPF are similar. 

Dynamic routing is still a fertile area of internetworking research. The choice of which 
routing protocol to use, and which routing daemon to run, is complex. [Periman 1992] 
provides many of the details. 

Exercises

10.1 In Figure 10.9 which of the routes came to gateway from the router kpno? 

file:///D|/Documents%20and%20Settings/bigini/Docu.../homenet2run/tcpip/tcp-ip-illustrated/dynamic.htm (16 of 17) [12/09/2001 14.46.53]



Chapter 10. Dynamic Routing Protocols

10.2 Assume a router has 30 routes to advertise using RIP, requiring one datagram with 25 
routes and another with the remaining 5. What happens if once an hour the first datagram 
with 25 routes is lost? 

10.3The OSPF packet format has a checksum field, but the RIP packet does not. Why? 

10.4 What effect does load balancing, as done by OSPF, have on a transport layer? 

10.5 Read RFC 1058 for additional details on the implementation of RIP. In Figure 10.8 each 
router advertises only the routes that it provides, and none of the other routes that it learned 
about through the other router's broadcasts on the 140.252.1 network. What is this technique 
called? 

10.6 In Section 3.4 we said there are more than 100 hosts on the 140.252.1 subnet in addition 
to the eight routers we show in Figure 10.7. What do these 100 hosts do with the eight 
broadcasts that arrive every 30 seconds (Figure 10.8)? 
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UDP: User Datagram Protocol
11.1 Introduction

UDP is a simple, datagram-oriented, transport layer protocol: each output operation by a 
process produces exactly one UDP datagram, which causes one IP datagram to be sent. This is 
different from a stream-oriented protocol such as TCP where the amount of data written by an 
application may have little relationship to what actually gets sent in a single IP datagram. Figure 
11.1 shows the encapsulation of a UDP datagram as an IP datagram. 

Figure 11.1 UDP encapsulation.

RFC 768 [Postel 1980] is the official specification of UDP. 

UDP provides no reliability: it sends the datagrams that the application writes to the IP layer, 
but there is no guarantee that they ever reach their destination. Given this lack of reliability, we 
are tempted to think we should avoid UDP and always use a reliable protocol such as TCP. 
After we describe TCP in Chapter 17 we'll return to this topic and see what types of 
applications can utilize UDP. 

The application needs to worry about the size of the resulting IP datagram. If it exceeds the 
network's MTU (Section 2.8), the IP datagram is fragmented. This applies to each network that 
the datagram traverses from the source to the destination, not just the first network connected to 
the sending host. (We defined this as the path MTU in Section 2.9.) We examine IP 
fragmentation in Section 11.5. 

11.2 UDP Header

Figure 11.2 shows the fields in the UDP header. 
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Figure 11.2 UDP header.

The port numbers identify the sending process and the receiving process. In Figure 1.8 we 
showed that TCP and UDP use the destination port number to demultiplex incoming data from 
IP. Since IP has already demultiplexed the incoming IP datagram to either TCP or UDP (based 
on the protocol value in the IP header), this means the TCP port numbers are looked at by TCP, 
and the UDP port numbers by UDP. The TCP port numbers are independent of the UDP port 
numbers. 

Despite this independence, if a well-known service is provided by both TCP and UDP, the port 
number is normally chosen to be the same for both transport layers. This is purely for 
convenience and is not required by the protocols. 

The UDP length field is the length of the UDP header and the UDP data in bytes. The minimum 
value for this field is 8 bytes. (Sending a UDP datagram with 0 bytes of data is OK.) This UDP 
length is redundant. The IP datagram contains its total length in bytes (Figure 3.1), so the length 
of the UDP datagram is this total length minus the length of the IP header (which is specified by 
the header length field in Figure 3.1). 

11.3 UDP Checksum

The UDP checksum covers the UDP header and the UDP data. Recall that the checksum in the 
IP header only covers the IP header-it does not cover any data in the IP datagram. Both UDP 
and TCP have checksums in their headers to cover their header and their data. With UDP the 
checksum is optional, while with TCP it is mandatory. 

Although the basics for calculating the UDP checksum are similar to what we described in 
Section 3.2 for the IP header checksum (the ones complement sum of 16-bit words), there are 
differences. First, the length of the UDP datagram can be an odd number of bytes, while the 
checksum algorithm adds 16-bit words. The solution is to append a pad byte of 0 to the end, if 
necessary, just for the checksum computation. (That is, this possible pad byte is not 
transmitted.) 

Next, both UDP and TCP include a 12-byte pseudo-header with the UDP datagram (or TCP 
segment) just for the checksum computation. This pseudo-header includes certain fields from 
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the IP header. The purpose is to let UDP double-check that the data has arrived at the correct 
destination (i.e., that IP has not accepted a datagram that is not addressed to this host, and that 
IP has not given UDP a datagram that is for another upper layer). Figure 11.3 shows the pseudo-
header along with a UDP datagram. 

Figure 11.3 Fields used for computation of UDP checksum.

In this figure we explicitly show a datagram with an odd length, requiring a pad byte for the 
checksum computation. Notice that the length of the UDP datagram appears twice in the 
checksum computation. 

If the calculated checksum is 0, it is stored as all one bits (65535), which is equivalent in ones-
complement arithmetic. If the transmitted checksum is 0, it indicates that the sender did not 
compute the checksum. 

If the sender did compute a checksum and the receiver detects a checksum error, the UDP 
datagram is silently discarded. No error message is generated. (This is what happens if an IP 
header checksum error is detected by IP.) 

This UDP checksum is an end-to-end checksum. It is calculated by the sender, and then verified 
by the receiver. It is designed to catch any modification of the UDP header or data anywhere 
between the sender and receiver. 

Despite UDP checksums being optional, they should always be enabled. During the 1980s some 
computer vendors turned off UDP checksums by default, to speed up their implementation of 
Sun's Network File System (NFS), which uses UDP. While this might be acceptable on a single 
LAN, where the cyclic redundancy check on the data-link frame (e.g., Ethernet or token ring 
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frame) can detect most corruption of the frame, when the datagrams pass through routers, all 
bets are off. Believe it or not, there have been routers with software and hardware bugs that 
have modified bits in the datagrams being routed. These errors are undetectable in a UDP 
datagram if the end-to-end UDP checksum is disabled. Also realize that some data-link 
protocols (e.g., SLIP) don't have any form of data-link checksum. 

The Host Requirements RFC requires that UDP checksums be enabled by default. It also states 
that an implementation must verify a received checksum if the sender calculated one (i.e., the 
received checksum is nonzero). Many implementations violate this, however, and only verify a 
received checksum if outgoing checksums are enabled. 

tcpdump Output

It is hard to detect whether a particular system has UDP checksums enabled. It is normally 
impossible for an application to obtain the checksum field in a received UDP header. To get 
around this, the author added another option to the tcpdump program that prints the received 
UDP checksum. If this printed value is 0, it means the sending host did not calculate the 
checksum. 

Figure 11.4 shows the output to and from three different systems on our test network (see the 
figure on the inside front cover). We ran our sock program (Appendix C), sending a single UDP 
datagram with 9 bytes of data to the standard echo server. 

1
2

0.0
0.303755 ( 
0.3038) 

sun.1900 > gemini.echo: udp 9 (UDP 
cksum=6e90)
gemini.echo > sun.1900: udp 9 (UDP 
cksum=0) 

3
4

17.392480 
(17.0887)
17.614371 ( 
0.2219) 

sun.1904 > aix.echo: udp 9 (UDP 
cksum=6e3b)
aix.echo > sun.1904: udp 9 (UDP 
cksum=6e3b) 

5
6

32.092454 
(14.4781)
32.314378 ( 
0.2219) 

sun.1907 > solaris.echo: udp 9 (UDP 
cksum=6e74)
solaris.echo > sun.1907: udp 9 (UDP 
cksum=6e74) 

Figure 11.4 tcpdump output to see whether other hosts enable UDP checksum.

We can see from this that two of the three systems have UDP checksums enabled. 

Also notice that for this simple example the outgoing datagram has the same checksum as the 
incoming datagram (lines 3 and 4, 5 and 6). Looking at Figure 11.3 we see that the two IP 
addresses are swapped, as are the two port numbers. The other fields in the pseudo-header and 
the UDP header are the same, as is the data being echoed. This reiterates that the UDP 
checksums (indeed, all the checksums in the TCP/IP protocol suite) are simple 16-bit sums. 
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They cannot detect an error that swaps two of the 16-bit values. 

The author also directed a DNS query at each of the eight root name servers described in 
Section 14.2. The DNS uses UDP primarily, and only two of the eight had UDP checksums 
enabled! 

Some Statistics

[Mogul 1992] provides counts of various checksum errors on a busy NFS (Network File 
System) server that had been up for 40 days. Figure 11.5 summarizes these numbers. 

Layer
Number of checksum 
errors 

Approximate total number of packets 

Ethernet 
IP
UDP
TCP 

446
14
5
350 

170,000,000
170,000,000
140,000,000
30,000,000 

Figure 11.5 Counts of corrupted packets detected by various checksums.

The final column is only the approximate total for each row, since other protocols are in use at 
the Ethernet and IP layers. For example, not all the Ethernet frames are IP datagrams, since 
minimally ARP is also used on an Ethernet. Not all IP datagrams are UDP or TCP, since ICMP 
also uses IP. 

Note the much higher percentage of TCP checksum errors compared to UDP checksum errors. 
This is probably because the TCP connections on this system tended to be "long distance" 
(traversing many routers, bridges, etc.) while the UDP traffic was local. The bottom line is not 
to trust the data-link (e.g., Ethernet, token ring, etc.) CRC completely. You should enable the 
end-to-end checksums all the time. Also, if your data is valuable, you might not want to trust 
either the UDP or the TCP checksum completely, since these are simple checksums and were 
not meant to catch all possible errors. 

11.4 A Simple Example

We'll use our sock program to generate some UDP datagrams that we can watch with tcpdump: 

bsdi % sock -v -u -i -n4 svr4 discard 
connected on 140.252.13.35.1108 to 140.252.13.34.9 

bsdi % sock -v -u -i -n4 -w0 svr4 discard
connected on 140.252.13.35.1110 to 140.252.13.34.9 

The first time we execute the program we specify the verbose mode (-v) to see the ephemeral 
port numbers, specify UDP (-u) instead of the default TCP, and use the source mode (-i) to 
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send data instead of trying to read and write standard input and output. The -n4 option says to 
output 4 datagrams (instead of the default 1024) and the destination host is svr4. We described 
the discard service in Section 1.12. We use the default output size of 1024 bytes per write. 

The second time we run the program we specify -w0, causing 0-length datagrams to be written. 
Figure 11.6 shows the tcpdump output for both commands. 

1 
2
3
4 

0.0
0.002424 ( 0.0024)
0.006210 ( 0.0038)
0.010276 ( 0.0041) 

bsdi.1108 > svr4.discard: udp 1024
bsdi.1108 > svr4.discard: udp 1024
bsdi.1108 > svr4.discard: udp 1024
bsdi.1108 > svr4.discard: udp 1024 

5
6
7
8 

41.720114 (41.7098)
41.721072 ( 0.0010)
41.722094 ( 0.0010)
41.723070 ( 0.0010) 

bsdi.1110 > svr4.discard: udp 0
bsdi.1110 > svr4.discard: udp 0
bsdi.1110 > svr4.discard: udp 0
bsdi.1110 > svr4.discard: udp 0 

Figure 11.6 tcpdump output when UDP datagrams are sent in one direction.

This output shows the four 1024-byte datagrams, followed by the four 0-length data-grants. 
Each datagram followed the previous by a few milliseconds. (It took 41 seconds to type in the 
second command.) 

There is no communication between the sender and receiver before the first datagram is sent. 
(We'll see in Chapter 17 that TCP must establish a connection with the other end before the first 
byte of data can be sent.) Also, there are no acknowledgments by the receiver when the data is 
received. The sender, in this example, has no idea whether the other end receives the datagrams. 

Finally note that the source UDP port number changes each time the program is run. First it is 
1108 and then it is 1110. We mentioned in Section 1.9 that the ephemeral port numbers used by 
clients are typically in the range 1024 through 5000, as we see here. 

11.5 IP Fragmentation

As we described in Section 2.8, the physical network layer normally imposes an upper limit on 
the size of the frame that can be transmitted. Whenever the IP layer receives an IP datagram to 
send, it determines which local interface the datagram is being sent on (routing), and queries 
that interface to obtain its MTU. IP compares the MTU with the datagram size and performs 
fragmentation, if necessary. Fragmentation can take place either at the original sending host or 
at an intermediate router. 

When an IP datagram is fragmented, it is not reassembled until it reaches its final destination. 
(This handling of reassembly differs from some other networking protocols that require 
reassembly to take place at the next hop, not at the final destination.) The IP layer at the 
destination performs the reassembly. The goal is to make fragmentation and reassembly 
transparent to the transport layer (TCP and UDP), which it is, except for possible performance 
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degradation. It is also possible for the fragment of a datagram to again be fragmented (possibly 
more than once). The information maintained in the IP header for fragmentation and reassembly 
provides enough information to do this. 

Recalling the IP header (Figure 3.1), the following fields are used in fragmentation. The 
identification field contains a unique value for each IP datagram that the sender transmits. This 
number is copied into each fragment of a particular datagram. (We now see the use for this 
field.) The flags field uses one bit as the "more fragments" bit. This bit is turned on for each 
fragment comprising a datagram except the final fragment. The fragment offset field contains 
the offset of this fragment from the beginning of the original datagram. Also, when a datagram 
is fragmented the total length field of each fragment is changed to be the size of that fragment. 

Finally, one of the bits in the flags field is called the "don't fragment" bit. If this is turned on, IP 
will not fragment the datagram. Instead the datagram is thrown away and an ICMP error 
("fragmentation needed but don't fragment bit set," Figure 6.3) is sent to the originator. We'll 
see an example of this error in the next section. 

When an IP datagram is fragmented, each fragment becomes its own packet, with its own IP 
header, and is routed independently of any other packets. This makes it possible for the 
fragments of a datagram to arrive at the final destination out of order, but there is enough 
information in the IP header to allow the receiver to reassemble the fragments correctly. 

Although IP fragmentation looks transparent, there is one feature that makes it less than 
desirable: if one fragment is lost the entire datagram must be retransmitted. To understand why 
this happens, realize that IP itself has no timeout and retransmission-that is the responsibility of 
the higher layers. (TCP performs timeout and retransmission, UDP doesn't. Some UDP 
applications perform timeout and retransmission themselves.) When a fragment is lost that 
came from a TCP segment, TCP will time out and retransmit the entire TCP segment, which 
corresponds to an IP datagram. There is no way to resend only one fragment of a datagram. 
Indeed, if the fragmentation was done by an intermediate router, and not the originating system, 
there is no way for the originating system to know how the datagram was fragmented, For this 
reason alone, fragmentation is often avoided. [Kent and Mogul 1987] provide arguments for 
avoiding fragmentation. 

Using UDP it is easy to generate IP fragmentation. (We'll see later that TCP tries to avoid 
fragmentation and that it is nearly impossible for an application to force TCP to send segments 
large enough to require fragmentation.) We can use our sock program and increase the size of 
the datagram until fragmentation occurs. On an Ethernet the maximum amount of data in a 
frame is 1500 bytes (Figure 2.1), which leaves 1472 bytes for our data, assuming 20 bytes for 
the IP header and 8 bytes for the UDP header. We'll run our sock program, with data sizes of 
1471, 1472, 1473, and 1474 bytes. We expect the last two to cause fragmentation: 

bsdi % sock -u -i -nl -wl471 svr4 discard 
bsdi % sock -u -i -nl -wl472 svr4 discard
bsdi % sock -u -i -nl -wl473 svr4 discard
bsdi % sock -u -i -nl -wl474 svr4 discard 
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Figure 11.7 shows the corresponding tcpdump output. 

1 0.0 bsdi-1112 > svr4.discard: udp 1471 

2
21.008303 
(21.0083) 

bsdi.lll4 > svr4.discard: udp 1472 

3
50.449704 
(29.4414) 

bsdi.lll6 > svr4.discard: udp 1473 (frag 
26304:1480@0+) 

4
50.450040 ( 
0.0003) 

bsdi > svr4: (frag 26304:l@1480) 

5
75.328650 
(24.8786) 

bsdi.1118 > svr4.discard: udp 1474 (frag 
26313:1480@0+) 

6
75.328982 ( 
0.0003) 

bsdi > svr4: (frag 26313:2@1480) 

Figure 11.7 Watching fragmentation of UDP datagrams.

The first two UDP datagrams (lines 1 and 2) fit into Ethernet frames, and are not fragmented. 
But the length of the IP datagram corresponding to the write of 1473 bytes is 1501, which must 
be fragmented (lines 3 and 4). Similarly the datagram generated by the write of 1474 bytes is 
1502, and is also fragmented (lines 5 and 6). 

When the IP datagram is fragmented, tcpdump prints additional information. First, the output 
frag 26304 (lines 3 and 4) and frag 26313 (lines 5 and 6) specify the value of the 
identification field in the IP header. 

The next number in the fragmentation information, the 1480 between the colon and the at sign 
in line 3, is the size, excluding the IP header. The first fragment of both datagrams contains 
1480 bytes of data: 8 bytes for the UDP header and 1472 bytes of user data. (The 20-byte IP 
header makes the packet exactly 1500 bytes.) The second fragment of the first datagram (line 4) 
contains 1 byte of data-the remaining byte of user data. The second fragment of the second 
datagram (line 6) contains the remaining 2 bytes of user data. 

Fragmentation requires that the data portion of the generated fragments (that is, everything 
excluding the IP header) be a multiple of 8 bytes for all fragments other than the final one. In 
this example, 1480 is a multiple of 8. 

The number following the at sign is the offset of the data in the fragment, from the start of the 
datagram. The first fragment of both datagrams starts at 0 (lines 3 and 5) and the second 
fragment of both datagrams starts at byte offset 1480 (lines 4 and 6). The plus sign following 
this offset that is printed for the first fragment of both datagrams means there are more 
fragments comprising this datagram. This plus sign corresponds to the "more fragments" bit in 
the 3-bit flags in the IP header. The purpose of this bit is to let the receiver know when it has 
completed the reassembly of all the fragments for a datagram. 
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Finally, notice that lines 4 and 6 (fragments other than the first) omit the protocol (UDP) and 
the source and destination ports. The protocol could be printed, since it's in the IP header that's 
copied into the fragments. The port numbers, however, are in the UDP header, which only 
occurs in the first fragment. 

Figure 11.8 shows what's happening with the third datagram that is sent (with 1473 bytes of 
user data). It reiterates that any transport layer header appears only in the first fragment. 

Also note the terminology: an IP datagram is the unit of end-to-end transmission at the IP layer 
(before fragmentation and after reassembly), and a packet is the unit of data passed between the 
IP layer and the link layer. A packet can be a complete IP datagram or a fragment of an IP 
datagram. 

Figure 11.8 Example of UDP fragmentation.

11.6 ICMP Unreachable Error (Fragmentation Required)

Another variation of the ICMP unreachable error occurs when a router receives a datagram that 
requires fragmentation, but the don't fragment (DF) flag is turned on in the IP header. This error 
can be used by a program that needs to determine the smallest MTU in the path to a destination-
called the path MTU discovery mechanism (Section 2.9). 

Figure 11.9 shows the format of the ICMP unreachable error for this case. This differs from 
Figure 6.10 because bits 16-31 of the second 32-bit word can provide the MTU of the next hop, 
instead of being 0. 

Figure 11.9 ICMP unreachable error when fragmentation required but don't fragment bit set.

If a router doesn't provide this newer format ICMP error, the next-hop MTU is set to 0. 
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The new Router Requirements RFC [Almquist 1993] states that a router must generate this 
newer form when originating this ICMP unreachable error. 

Example

A problem encountered by the author involving fragmentation and this ICMP error is trying to 
determine the MTU on the dialup SLIP link from the router netb to the host sun. We know 
the MTU of this link from sun to netb: it's part of the SLIP configuration process when SLIP 
was installed in the host sun, plus we saw it with the netstat command in Section 3.9. We 
want to determine the MTU in the other direction also. (In Chapter 25 we'll see how to 
determine this using SNMP.) On a point-to-point link, it is not required that the MTU be the 
same in both directions. 

The technique used was to run ping on the host solaris, to the host bsdi, increasing the 
size of the data packets until fragmentation was seen on the incoming packets. This is shown in 
Figure 11.10. 

Figure 11.10 Systems being used to determine MTU of SLIP link from netb to sun.

tcpdump was run on the host sun, watching the SLIP link, to see when fragmentation 
occurred. No fragmentation was observed and everything was fine until the size of the data 
portion of the ping packet was increased from 500 to 600 bytes. The incoming echo requests 
were seen (there was still no fragmentation), but the echo replies disappeared. 

To track this down, tcpdump was also run on bsdi, to see what it was receiving and sending. 
Figure 11.11 shows the output. 

1 0.0 solaris > bsdi: icmp: echo request (DF) 

2 0.000000 (0.0000) bsdi > solaris: icmp: echo reply (DF) 

3 0.000000 (0.0000) 
sun > bsdi: icmp: solaris unreachable - 
need to frag, mtu = 0 (DF) 

4 0.738400 (0.7384) solaris > bsdi: icmp: echo request (DF) 

5 0.748800 (0.0104) bsdi > solaris: icmp: echo reply (DF) 

file:///D|/Documents%20and%20Settings/bigini/Doc...omenet2run/tcpip/tcp-ip-illustrated/udp_user.htm (10 of 29) [12/09/2001 14.46.58]



Chapter 11. UDP: User Datagram Protocol

6 0.748800 (0.0000) 
sun > bsdi: icmp: solaris unreachable - 
need to frag, mtu = 0 (DF) 

Figure 11.11 tcpdump output for ping of bsdi from solaris with 600-byte IP datagram.

First, the notation (DF) in each line means the don't fragment bit is turned on in the IP header. It 
turns out that Solaris 2.2 normally turns this bit on, as part of its implementation of the path 
MTU discovery mechanism. 

Line 1 shows that the echo request got through the router netb to sun without being fragmented, 
and with the DF bit set, so we know that the SLIP MTU of netb has not been reached yet. 

Next, notice in line 2 that the DF flag is copied into the echo reply. This is what causes the 
problem. The echo reply is the same size as the echo request (just over 600 bytes), but the MTU 
on sun's outgoing SLIP interface is 552. The echo reply needs to be fragmented, but the DF flag 
is set. This causes sun to generate the ICMP unreachable error back to bsdi (where it's 
discarded). 

This is why we never saw any echo replies on solaris. The replies never got past sun. 
Figure 11.12 shows the path of the packets. 

Figure 11.12 Packets exchanged in example.

Finally, the notation mtu=0 in lines 3 and 6 of Figure 11.11 indicates that sun does not return 
the MTU of the outgoing interface in the ICMP unreachable message, as shown in Figure 11.9. 
(In Section 25.9 we return to this problem and use SNMP to determine that the MTU of the 
SLIP interface on netb is 1500.) 

11.7 Determining the Path MTU Using Traceroute

Although most systems don't support the path MTU discovery feature, we can easily modify a 
version of traceroute (Chapter 8) to let us determine the path MTU. What we'll do is send 

file:///D|/Documents%20and%20Settings/bigini/Doc...omenet2run/tcpip/tcp-ip-illustrated/udp_user.htm (11 of 29) [12/09/2001 14.46.58]



Chapter 11. UDP: User Datagram Protocol

packets with the "don't fragment" bit set. The size of the first packet we send will equal the 
MTU of the outgoing interface, and whenever we receive an ICMP "can't fragment" error 
(which we described in the previous section) we'll reduce the size of the packet. If the router 
sending the ICMP error sends the newer version that includes the MTU of the outgoing 
interface, we'll use that value; otherwise we'll try the next smallest MTU. As RFC 1191 [Mogul 
and Deering 1990] states, there are a limited number of MTUs, so our program has a table of 
the likely values and moves to the next smallest value. 

Let's first try it from our host sun to the host slip, knowing that the SLIP link has an MTU of 
296: 

sun % traeeroute.pmtu slip 
traceroute to slip (140.252.13.65), 30 hops max
outgoing MTU = 1500
1 bsdi (140.252.13.35) 15 ms 6 ms 6 ms
2 bsdi (140.252.13.35) 6 ms
fragmentation required and DF set, trying new MTU = 1492
fragmentation required and DF set, trying new MTU = 1006
fragmentation required and DF set, trying new MTU = 576
fragmentation required and DF set, trying new MTU = 552
fragmentation required and DF set, trying new MTU = 544
fragmentation required and DF set, trying new MTU = 512
fragmentation required and DF set, trying new MTU = 508
fragmentation required and DF set, trying new MTU = 296
2 slip (140.252.13.65) 377 ms 377 ms 377 ms 

In this example the router bsdi does not return the MTU of the outgoing interface in the ICMP 
error, so we step through the likely values for the MTU. The first line of output for a TTL of 2 
prints a hostname of bsdi, but that's because it's the router returning the ICMP error. The final 
line of output for a TTL of 2 is what we're looking for. 

It's not hard to modify the ICMP code on bsdi to return the MTU of the outgoing interface, and 
if we do that and rerun our program, we get the following output: 

sun % traceroute.pmtu slip 
traceroute to slip (140.252.13.65), 30 hops max
outgoing MTU = 1500
1 bsdi (140.252.13.35) 53 ms 6 ms 6 ms
2 bsdi (140.252.13.35) 6 ms
fragmentation required and DF set, next hop MTU = 296
2 slip (140.252.13.65) 377 ms 378 ms 377 ms 

Here we don't have to try eight different values for the MTU before finding the right one-the 
router returns the correct value. 

The Worldwide Internet
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As an experiment, this modified version of traceroute was run numerous times to various 
hosts around the world. Fifteen countries (including Antarctica) were reached and various 
transatlantic and transpacific links were used. Before doing this, however, the MTU of the 
dialup SLIP link between the author's subnet and the router netb (Figure 11.12) was increased 
to 1500, the same as an Ethernet. 

Out of 18 runs, only 2 had a path MTU of less than 1500. One of the transatlantic links had an 
MTU of 572 (a value not even listed as a likely value in RFC 1191) and the router did return the 
newer format ICMP error. Another link, between two routers in Japan, wouldn't handle a 1500-
byte frame, and the router did not return the newer format ICMP error. Setting the MTU down 
to 1006 did work. 

The conclusion we can make from this experiment is that many, but not all, WANs today can 
handle packets larger than 512 bytes. Using the path MTU discovery feature will allow 
applications to take advantage of these larger MTUs. 

11.8 Path MTU Discovery with UDP

Let's examine the interaction between an application using UDP and the path MTU discovery 
mechanism. We want to see what happens when the application writes datagrams that are too 
big for some intermediate link. 

Example

Since the only system that we've been using that supports the path MTU discovery mechanism 
is Solaris 2.x, we'll use it as the source host to send 650-byte datagrams to slip. Since our host 
slip sits behind a SLIP link with an MTU of 296, any UDP datagram greater than 268 bytes 
(296 -20-8) with the "don't fragment" bit set should cause the router bsdi to generate the ICMP 
"can't fragment" error. Figure 11.13 shows the topology and the MTUs. 

Figure 11.13 Systems used for path MTU discovery using UDP.

The following command generates ten 650-byte UDP datagrams, with a 5-second pause 

file:///D|/Documents%20and%20Settings/bigini/Doc...omenet2run/tcpip/tcp-ip-illustrated/udp_user.htm (13 of 29) [12/09/2001 14.46.58]



Chapter 11. UDP: User Datagram Protocol

between each datagram: 

solaris % sock -u -i -n10 -w650 -p5 slip discard 

Figure 11.14 shows the tcpdump output. When this example was run, the router bsdi was set 
to not return the next-hop MTU as part of the ICMP "can't fragment" error. 

The first datagram is sent with the DF bit set (line 1) and generates the expected error from the 
router bsdi (line 2). What's puzzling is that the next datagram is also sent with the DF bit set 
(line 3) and generates the same ICMP error (line 4). We would expect this datagram to be sent 
with the DF bit off. 

On line 5 it appears IP has finally learned that datagrams to this destination should not be sent 
with the DF bit set, so IP goes ahead and fragments the datagrams at the source host. This is 
different from earlier examples where IP sends the datagram that is passed to it by UDP and 
allows the router with the smaller MTU (bsdi in this case) to 

1 0.0 solaris.38196 > slip.discard: udp 650 (DF) 

2 0.004218 (0.0042) 
bsdi > solaris: icmp: 
slip unreachable - need to frag, mtu = 0 
(DF) 

3 4.980528 (4.9763) solaris.38196 > slip.discard: udp 650 (DF) 

4 4.984503 (0.0040) 
bsdi > solaris: icmp: 
slip unreachable - need to frag, mtu = 0 
(DF) 

5 9.870407 (4.8859) 
solaris.38196 > slip.discard: udp 650 
(frag 47942:552@0+) 

6 9.960056 (0.0896) solaris > slip: (frag 47942:106(3552) 

7
14.940338 
(4.9803) 

solaris.38196 > slip.discard: udp 650 (DF) 

8
14.944466 
(0.0041) 

bsdi > solaris: icmp: 
slip unreachable - need to frag, mtu = 0 
(DF) 

9
19.890015 
(4.9455) 

solaris.38196 > slip.discard: udp 650 
(frag 47944:552@0+) 

10
19.950463 
(0.0604) 

solaris > slip: (frag 47944:106@552) 

11
24.870401 
(4.9199) 

solaris.38196 > slip.discard: udp 650 
(frag 47945:552@0+) 

12
24.960038 
(0.0896) 

solaris > slip: (frag 47945:1060552) 

13
29.880182 
(4.9201) 

solaris.38196 > slip.discard: udp 650 
(frag 47946:552@0+) 
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14
29.940498 
(0.0603) 

solaris > slip: (frag 47946:1060552) 

15
34.860607 
(4.9201) 

solaris.38196 > slip.discard: udp 650 
(frag 47947:552@0+) 

16
34.950051 
(0.0894) 

solaris > slip: (frag 47947:1060552) 

17
39.870216 
(4.9202) 

solaris.38196 > slip.discard: udp 650 
(frag 47948:552@0+) 

18
39.930443 
(0.0602) 

solaris > slip: (frag 47948:106@552) 

19
44.940485 
(5.0100) 

solaris.38196 > slip.discard: udp 650 (DF) 

20
44.944432 
(0.0039) 

bsdi > solaris: icmp: 
slip unreachable - need to frag, mtu = 0 
(DF) 

Figure 11.14 Path MTU discovery using UDP.

do the fragmentation. Since the ICMP "can't fragment" message didn't specify the next-hop 
MTU, it appears that IP guesses that an MTU of 576 is OK. The first fragment (line 5) contains 
544 bytes of UDP data, the 8-byte UDP header, and the 20-byte IP header, for a total IP 
datagram size of 572 bytes. The second fragment (line 6) contains the remaining 106 bytes of 
UDP data and a 20-byte IP header. 

Unfortunately the next datagram, line 7, has its DF bit set, so it's discarded by bsdi and the 
ICMP error returned. What has happened here is that an IP timer has expired telling IP to see if 
the path MTU has increased by setting the DF bit again. We see this happen again on lines 19 
and 20. Comparing the times on lines 7 and 19 it appears that IP turns on the DF bit, to see if 
the path MTU has increased, every 30 seconds. 

This 30-second timer value is way too small. RFC 1191 recommends a value of 10 minutes. It 
can be changed by modifying the parameter ip_ire_pathmtu_interval (Section E.4). 
Also there is no way in Solaris 2.2 to turn off this path MTU discovery for a single UDP 
application or for all UDP applications. It can only be enabled or disabled on a systemwide 
basis by changing the parameter ip_path_mtu_discovery. As we can see from this 
example, enabling path MTU discovery when UDP applications write datagrams that will 
probably be fragmented can cause datagrams to be discarded. 

The maximum datagram size assumed by the IP layer on solaris (576 bytes) is not right. In 
Figure 11.13 we see that the real MTU is 296 bytes. This means the fragments generated by 
solaris will be fragmented again by bsdi. Figure 11.15 shows the tcpdump output 
collected on the destination host (slip) for the first datagram that arrives (lines 5 and 6 from 
Figure 11.14). 
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1 0.0 
solaris.38196 > slip.discard: udp 650 (frag 
47942:272@0+) 

2
0.304513 
(0.3045) 

solaris > slip: (frag 47942:272@272+) 

3
0.334651 
(0.0301) 

solaris > slip: (frag 47942:8@544+) 

4
0.466642 
(0.1320) 

solaris > slip: (frag 47942:106@552) 

Figure 11.15 First datagram arriving at host slip from solaris.

In this example the host solaris should not fragment the outgoing datagrams but should turn 
off the DF bit and let the router with the smaller MTU do the fragmentation. 

Now we'll run the same example but modify the router bsdi to return the next-hop MTU in the 
ICMP "can't fragment" error. Figure 11.16 shows the first six lines of the tcpdump output. 

1 0.0 solaris. 37974 > slip.discard: udp 650 (DF) 

2
0.004199 
(0.0042) 

bsdi > solaris: icmp: 
slip unreachable - need to frag, mtu = 296 
(DF) 

3
4.950193 
(4.9460) 

solaris.37974 > slip.discard: udp 650 (DF) 

4
4.954325 
(0.0041) 

bsdi > solaris: icmp: 
slip unreachable - need to frag, mtu = 296 
(DF) 

5
9.779855 
(4.8255) 

solaris.37974 > slip.discard: udp 650 (frag 
35278:272@0+) 

6
9.930018 
(0.1502) 

solaris > slip: (frag 35278:272@272+) 

7
9.990170 
(0.0602) 

solaris > slip: (frag 35278:114@544) 

Figure 11.16 Path MTU discovery using UDP.

Again, the first two datagrams are sent with the DF bit set, and both elicit the ICMP error. The 
ICMP error now specifies the next-hop MTU of 296. 

In lines 5, 6, and 7 we see the source host perform fragmentation, similar to Figure 11.14. But 
knowing the next-hop MTU, only three fragments are generated, compared to the four 
fragments generated by the router bsdi in Figure 11.15. 

11.9 Interaction Between UDP and ARP
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Using UDP we can see an interesting (and often unmentioned) interaction with UDP and typical 
implementations of ARP. 

We use our sock program to generate a single UDP datagram with 8192 bytes of data. We 
expect this to generate six fragments on an Ethernet (see Exercise 11.3). We also assure that the 
ARP cache is empty before running the program, so that an ARP request and reply must be 
exchanged before the first fragment is sent. 

bsdi % arp -a verify ARP cache is empty 

bsdi % sock -u -i -nl -w8192 svr4 discard 

We expect the first fragment to cause an ARP request to be sent. Five more fragments are 
generated by IP and this presents two timing questions that we'll need to use tcpdump to 
answer: are the remaining fragments ready to be sent before the ARP reply is received, and if 
so, what does ARP do with multiple packets to a given destination when it's waiting for an ARP 
reply? Figure 11.17 shows the tcpdump output. 

1 0.0 arp who-has svr4 tell bsdi

2 0.001234 (0.0012) arp who-has svr4 tell bsdi

3 0.001941 (0.0007) arp who-has svr4 tell bsdi

4 0.002775 (0.0008) arp who-has svr4 tell bsdi

5 0.003495 (0.0007) arp who-has svr4 tell bsdi

6 0.004319 (0.0008) arp who-has svr4 tell bsdi

7 0.008772 (0.0045) arp reply svr4 is-at 0:0:c0:c2:9b:26 

8 0.009911 (0.0011) arp reply svr4 is-at 0:0:c0:c2:9b:26 

9 0.011127 (0.0012) bsdi > svr4: (frag 10863:800@7400) 

10 0.011255 (0.0001) arp reply svr4 is-at 0:0:c0:c2:9b:26 

11 0.012562 (0.0013) arp reply svr4 is-at 0:0:c0:c2:9b:26 

12 0.013458 (0.0009) arp reply svr4 is-at 0:0:c0:c2:9b:26 

13 0.014526 (0.0011) arp reply svr4 is-at 0:0:c0:c2:9b:26 

14 0.015583 (0.0011) arp reply svr4 is-at 0:0:c0:c2:9b:26 

Figure 11.17 Packet exchange when an 8192-byte UDP datagram is sent on an Ethernet.

There are a few surprises in this output. First, six ARP requests are generated before the first 
ARP reply is returned. What we guess is happening is that IP generates the six fragments 
rapidly, and each one causes an ARP request. 

Next, when the first ARP reply is received (line 7) only the last fragment is sent (line 9)! It 
appears that the first five fragments have been discarded. Indeed, this is the normal operation of 
ARP. Most implementations keep only the last packet sent to a given destination while waiting 
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for an ARP reply. 

The Host Requirements RFC requires an implementation to prevent this type of ARP flooding 
(repeatedly sending an ARP request for the same IP address at a high rate). The recommended 
maximum rate is one per second. Here we see six ARP requests in 4.3 ms. 

The Host Requirements RFC states that ARP should save at least one packet, and this should be 
the latest packet. That's what we see here. 

Another unexplained anomaly in this output is that svr4 sends back seven ARP replies, not 
six. 

The final point worth mentioning is that tcpdump was left to run for 5 minutes after the final 
ARP reply was returned, waiting to see if svr4 sent back an ICMP "time exceeded during 
reassembly" error. The ICMP error was never sent. (We showed the format of this message in 
Figure 8.2. A code of I indicates that the time was exceeded during the reassembly of a 
datagram.) 

The IP layer must start a timer when the first fragment of a datagram appears. Here "first" 
means the first arrival of any fragment for a given datagram, not the first fragment (with a 
fragment offset of 0). A normal timeout value is 30 or 60 seconds. If all the fragments for this 
datagram have not arrived when the timer expires, all these fragments are discarded. If this were 
not done, fragments that never arrive (as we see in this example) could eventually cause the 
receiver to run out of buffers. 

There are two reasons we don't see the ICMP message here. First, most Berkeley-derived 
implementations never generate this error! These implementations do set a timer, and do discard 
all fragments when the timer expires, but the ICMP error is never generated. Second, the first 
fragment-the one with an offset of 0 containing the UDP header-was never received. (It was the 
first of the five packets discarded by ARP.) An implementation is not required to generate the 
ICMP error unless this first fragment has been received. The reason is that the receiver of the 
ICMP error couldn't tell which user process sent the datagram that was discarded, because the 
transport layer header is not available. It's assumed that the upper layer (either TCP or the 
application using UDP) will eventually time out and retransmit. 

In this section we've used IP fragmentation to see this interaction between UDP and ARP. We 
can also see this interaction if the sender quickly transmits multiple UDP datagrams. We chose 
to use fragmentation because the packets get generated quickly by IP, faster than multiple 
datagrams can be generated by a user process. 

As unlikely as this example might seem, it occurs regularly. NFS sends UDP datagrams whose 
length just exceeds 8192 bytes. On an Ethernet these are fragmented as we've indicated, and if 
the appropriate ARP cache entry times out, you can see what we've shown here. NFS will time 
out and retransmit, but the first IP datagram can still be discarded because of ARP's limited 
queue. 
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11.10 Maximum UDP Datagram Size

Theoretically, the maximum size of an IP datagram is 65535 bytes, imposed by the 16-bit total 
length field in the IP header (Figure 3.1). With an IP header of 20 bytes and a UDP header of 8 
bytes, this leaves a maximum of 65507 bytes of user data in a UDP datagram. Most 
implementations, however, provide less than this maximum. 

"There are two limits we can encounter. First the application program may be limited by its 
programming interface. The sockets API (Section 1.15) provides a function that the application 
can call to set the size of the receive buffer and the send buffer. For a UDP socket, this size is 
directly related to the maximum size UDP datagram the application can read or write. Most 
systems today provide a default of just over 8192 bytes for the maximum size of a UDP 
datagram that can be read or written. (This default is because 8192 is the amount of user data 
that NFS reads and writes by default.) 

The next limitation comes from the kernel's implementation of TCP/IP. There may be 
implementation features (or bugs) that limit the size of an IP datagram to less than 65535 bytes. 

The author experimented with various UDP datagram sizes, using the sock program. Using the 
loopback interface under SunOS 4.1.3, the maximum size IP datagram was 32767 bytes. All 
higher values failed. But going across an Ethernet from BSD/386 to SunOS 4.1.3, the maximum 
size IP datagram the Sun could accept was 32786 (that is, 32758 bytes of user data). Using the 
loopback interface under Solaris 2.2, the maximum 65535-byte IP datagram could be sent and 
received. From Solaris 2.2 to AIX 3.2.2, the maximum 65535-byte IP datagram could be 
transferred. Obviously this limit depends on the source and destination implementations. 

We mentioned in Section 3.2 that a host is required to receive at least a 576-byte IP datagram. 
Many UDP applications are designed to restrict their application data to 512 bytes or less, to 
stay below this limit. We saw this in Section 10.4, for example, where the Routing Information 
Protocol always sent less than 512 bytes of data per datagram. We'll encounter this same limit 
with other UDP applications: the DNS (Chapter 14), TFTP (Chapter 15), BOOTP (Chapter 16), 
and SNMP (Chapter 25). 

Datagram Truncation

Just because IP is capable of sending and receiving a datagram of a given size doesn't mean the 
receiving application is prepared to read that size. UDP programming interfaces allow the 
application to specify the maximum number of bytes to return each time. What happens if the 
received datagram exceeds the size the application is prepared to deal with? 

Unfortunately the answer depends on the programming interface and the implementation. 

The traditional Berkeley version of the sockets API truncates the datagram, discarding any 
excess data. Whether the application is notified depends on the version. (4.3BSD Reno and later 
can notify the application that the datagram was truncated.) 
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The sockets API under SVR4 (including Solaris 2.x) does not truncate the datagram. Any 
excess data is returned in subsequent reads. The application is not notified that multiple reads 
are being fulfilled from a single UDP datagram. 

The TLI API does not discard the data. Instead a flag is returned indicating that more data is 
available, and subsequent reads by the application return the rest of the datagram. 

When we discuss TCP we'll see that it provides a continuous stream of bytes to the application, 
without any message boundaries. TCP passes the data to the application in whatever size reads 
the application asks for-there is never any data loss across this interface. 

11.11 ICMP Source Quench Error

Using UDP we are also able to generate the ICMP "source quench" error. This is an error that 
may be generated by a system (router or host) when it receives datagrams at a rate that is too 
fast to be processed. Note the qualifier "may." A system is not required to send a source quench, 
even if it runs out of buffers and throws datagrams away. 

Figure 11.18 shows the format of the ICMP source quench error. We have a perfect scenario 
with our test network for generating this error. We can send datagrams from bsdi to the router 
sun across the Ethernet that must be routed across the dialup SLIP link. Since the SLIP link is 
about 1000 times slower than the Ethernet, we should easily be able to overrun its buffer space. 
The following command sends 100 1024-byte datagrams from the host bsdi through the router 
sun to solaris. We send the datagrams to the standard discard service, where they'll be ignored: 

bsdi % sock -u -i -w1024 -n100 solaris discard 

Figure 11.18 ICMP source quench error.

Figure 11.19 shows the tcpdump output corresponding to this command. 

1 0.0 bsdi .1403 > solaris.discard: udp 1024 

26 lines that we don't show 
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27 0.10 (0.00) bsdi.1403 > solaris.discard: udp 1024 

28 0.11 (0.01) sun > bsdi: icmp: source quench 

29 0.11 (0.00) bsdi.1403 > solaris.discard: udp 1024 

30 0.11 (0.00) sun > bsdi: icmp: source quench 

142 lines that we don't show 

173 0.71 (0.06) bsdi. 1403 > solaris.discard: udp 1024 

174 0.71 (0.00) sun > bsdi: icmp: source quench 

Figure 11.19 ICMP source quench from the router sun.

We have removed lots of lines from this output; there is a pattern. The first 26 datagrams are 
received without an error; we show the output only for the first. Starting with our 27th 
datagram, however, every time we send a datagram, we receive a source quench in return. There 
are a total of 26 + (74 x 1) = 174 lines of output. 

From our serial line throughput calculations in Section 2.10, it takes just over 1 second to 
transfer a 1024-byte datagram at 9600 bits/sec. (In our example it should take longer than this 
since the 20 + 8 + 1024 byte datagram will be fragmented because the MTU of the SLIP link 
from sun to netb is 552 bytes.) But we can see from the timing in Figure 11.19 that the router 
sun receives all 100 datagrams in less than 1 second, before the first one is through the SLIP 
link. It's not surprising that we used up many of its buffers. 

Although RFC 1009 [Braden and Postel 1987] requires a router to generate source quenches 
when it runs out of buffers, the new Router Requirements RFC [Almquist 1993] changes this 
and says that a router must not originate source quench errors. The current feeling is to 
deprecate the source quench error, since it consumes network bandwidth and is an ineffective 
and unfair fix for congestion. 

Another point to make regarding this example is that our sock program either never received a 
notification that the source quenches were being received, or if it did, it appears to have ignored 
them.. It turns out that BSD implementations normally ignore received source quenches if the 
protocol is UDP. (TCP is notified, and slows down the data transfer on the connection that 
generated the source quench, as we discuss in Section 21.10.) Part of the problem is that the 
process that generated the data that caused the source quench may have already terminated 
when the source quench is received. Indeed, if we use the Unix time program to measure how 
long our sock program takes to run, it only executes for about 0.5 seconds. But from Figure 
11.19 we see that some of the source quenches are received 0.71 seconds after the first 
datagram was sent, after the process has terminated. What is happening is that our program 
writes 100 datagrams and terminates. But not all 100 datagrams have been sent-some are 
queued for output. 

This example reiterates that UDP is an unreliable protocol and illustrates the value of end-to-
end flow control. Even though our sock program successfully wrote 100 datagrams to its 
network, only 26 were really sent to the destination. The other 74 were probably discarded by 
the intermediate router. Unless we build some form. of acknowledgment into the application, 
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the sender has no idea whether the receiver really got the data. 

11.12 UDP Server Design

There are some implications in using UDP that affect the design and implementation of a 
server. The design and implementation of clients is usually easier than that of servers, which is 
why we talk about server design and not client design. Servers typically interact with the 
operating system and most servers need a way to handle multiple clients at the same time. 

Normally a client starts, immediately communicates with a single server, and is done. Servers, 
on the other hand, start and then go to sleep, waiting for a client's request to arrive. In the case 
of UDP, the server wakes up when a client's datagram arrives, probably containing a request 
message of some form from the client. 

Our interest here is not in the programming aspects of clients and servers ([Stevens 1990] 
covers all those details), but in the protocol features of UDP that affect the design and 
implementation of a server using UDP. (We examine the details of TCP server design in 
Section 18.11.) Although some of the features we describe depend on the implementation of 
UDP being used, the features are common to most implementations. 

Client IP Address and Port Number

What arrives from the client is a UDP datagram. The IP header contains the source and 
destination IP addresses, and the UDP header contains the source and destination UDP port 
numbers. When an application receives a UDP datagram, it must be told by the operating 
system who sent the message-the source IP address and port number. 

This feature allows an iterative UDP server to handle multiple clients. Each reply is sent back to 
the client that sent the request. 

Destination IP Address

Some applications need to know who the datagram was sent to, that is, the destination IP 
address. For example, the Host Requirements RFC states that a TFTP server should ignore 
received datagrams that are sent to a broadcast address. (We describe broadcasting in Chapter 
12 and TFTP in Chapter 15.) 

This requires the operating system to pass the destination IP address from the received UDP 
datagram to the application. Unfortunately, not all implementations provide this capability. 

The sockets API provides this capability with the IP_RECVDSTADDR socket option. Of the 
systems used in the text, only BSD/386, 4.4BSD, and AIX 3.2.2 support this option. SVR4, 
SunOS 4.x, and Solaris 2.x don't support it. 

UDP Input Queue
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We said in Section 1.8 that most UDP servers are iterative servers. This means a single server 
process handles all the client requests on a single UDP port (the server's well-known port). 

Normally there is a limited size input queue associated with each UDP port that a application is 
using. This means that requests that arrive at about the same time from different clients are 
automatically queued by UDP. The received UDP datagrams are passed to the application 
(when it asks for the next one) in the order they were received. It is possible, however, for this 
queue to overflow, causing the kernel's UDP module to discard incoming datagrams. We can 
see this with the following experiment. We start our sock program on the host bsdi running as a 
UDP server: 

bsdi % sock -s -u -v -E -R256 -r256 -P30 6666 

from 140.252.13.33, to 140.252.13.63: 
1111111111 

from sun to broad cast 
address 

from 140.252.13.34, to 140.252.13.35: 
4444444444444 

from svr4, to unicast 
address 

We specify the following flags: -s to run as a server, -u for UDP, -v to print the client's IP 
address, and -E to print the destination IP address (which is supported by this system). 
Additionally we set the UDP receive buffer for this port to 256 bytes (-R), along with the size 
of each application read (-r). The flag -P30 tells it to pause for 30 seconds after creating the 
UDP port, before reading the first datagram. This gives us time to start the clients on two other 
hosts, send some datagrams, and see how the receive queueing works. 

Once the server is started, and is in its 30-second pause, we start one client on the host sun and 
send three datagrams: 

sun % sock -u -v 140.252.13.63 6666 to Ethernet broadcast address
connected on 140.252.13.33.1252 to 140.252.13.63.6666
1111111111 11 bytes of data (with newline)
222222222 10 bytes of data (with newline)
33333333333 12 bytes of data (with newline) 

The destination address is the broadcast address (140.252.13.63). We also start a second client 
on the host svr4 and send another three datagrams: 

svr4 % sock -u -v bsdi 6666
connected on 0.0.0.0.1042 to 140.252.13.35.6666
4444444444444 14 bytes of data (with newline)
555555555555555 16 bytes of data (with newline)
66666666 9 bytes of data (with newline) 

The first thing we notice in the interactive output shown earlier on bsdi is that only two 
datagrams were received by the application: the first one from sun with all 1s, and the first one 
from svr4 with all 4s. The other four datagrams appear to have been thrown away. 
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The tcpdump output in Figure 11.20 shows that all six datagrams were delivered to the 
destination host. The datagrams were typed on the two clients in alternating order: first from 
sun, then from svr4, and so on. We can also see that all six were delivered in about 12 
seconds, within the 30-second period while the server was sleeping. 

1 0.0 sun.1252 > 140.252.13.63.6666: udp 11 

2 2.499184 (2.4992) svr4.1042 > bsdi.6666: udp 14

3 4.959166 (2.4600) sun.1252 > 140.252.13.63.6666: udp 10 

4 7.607149 (2.6480) svr4.1042 > bsdi.6666: udp 16

5 10.079059 (2.4719) sun.1252 > 140.252.13.63.6666: udp 12 

6 12.415943 (2.3369) svr4.1042 > bsdi.6666: udp 9

Figure 11.20 tcpdump for UDP datagrams sent by two clients.

We can also see the server's -E option lets it know the destination IP address of each datagram. 
If it wanted to, it could choose what to do with the first datagram it receives, which was sent to 
a broadcast address. 

We can see several points in this example. First, the application is not told when its input queue 
overflows. The excess datagrams are just discarded by UDP. Also, from the tcpdump output we 
see that nothing is sent back to the client to tell it that its datagram was discarded. There is 
nothing like an ICMP source quench sent back to the sender. Finally, it appears that the UDP 
input queue is FIFO (first-in, first-out), whereas we saw that the ARP input queue in Section 
11.9 was LIFO (last-in, first-out). 

Restricting Local IP Address

Most UDP servers wildcard their local IP address when they create a UDP end point. This 
means that an incoming UDP datagram destined for the server's port will be accepted on any 
local interface. For example, we can start a UDP server on port 7777: 

sun % sock -u -s 7777 

We then use the netstat command to see the state of the end point: 

sun % netstat -a -n -f inet 

Active Internet connections (including servers) 

Proto Recv-Q Send-Q Local Address Foreign Address (state) 

udp 0 0 *.7777 *.*

We have deleted many lines of output other than the one in which we're interested. The -a flag 
reports on all network end points. The -n flag prints IP addresses as dotted-decimal numbers, 
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instead of trying to use the DNS to convert the address to a name, and prints numeric port 
numbers instead of service names. The -f inet option reports only TCP and UDP end points. 

The local address is printed as *.7777 where the asterisk means the local IP address has been 
wildcarded. 

When the server creates its end point it can specify one of the host's local IP addresses, 
including one of its broadcast addresses, as the local IP address for the end point. Incoming 
UDP datagrams will then be passed to this end point only if the destination IP address matches 
the specified local address. With our sock program, if we specify an IP address before the port 
number, that IP address becomes the local IP address for the end point. For example, 

sun % sock -u -s 140.252.1.29 7777 

restricts the server to datagrams arriving on the SLIP interface (140.252.1.29). The netstat 
output shows this: 

Proto Recv-Q Send-Q Local Address 
Foreign 
Address

(state) 

udp 0 0 140.252.1.29.7777 *.*

If we try to send this server a datagram from a host on the Ethernet, bsdi at address 
140.252.13.35, an ICMP port unreachable is returned. The server never sees the datagram. 
Figure 11.21 shows this scenario. 

1 0.0 bsdi.1723 > sun.7777: udp 13

2
0.000822 
(0.0008) 

sun > bsdi: icmp: sun udp port 7777 
unreachable 

Figure 11.21 Rejection of UDP datagram caused by server's local address binding.

It is possible to start different servers at the same port, each with a different local IP address. 
Normally, however, the system must be told by the application that it is OK to reuse the same 
port number. 

With the sockets API the SO_REUSEADDR socket option must be specified. This is done by our 
sock program by specifying the -A option. 

On our host sun we can start five different servers on the same UDP port (8888): 

sun % sock -u -s 140.252.1.29 8888 for SLIP link

sun % sock -u -s -A 140.252.13.33 
8888 

for Ethernet

sun % sock -u -s -A 127.0.0.1 8888 for loopback interface 
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sun % sock -u -s -A 140.252.13.63 
8888 

for Ethernet broadcasts 

sun % sock -u -s -A 8888 everything 
else (wildcard IP address) 

All except the first of the servers must be started with the -A flag, telling the system that it's OK 
to reuse the same port number. The netstat output shows the five servers: 

Proto Recv-Q Send-Q Local Address 
Foreign 
Address

(state) 

udp 0 0 *.8888 *.*

udp 0 0 140.252.13.63.8888 *.*

udp 0 0 127.0.0.1.8888 *.*

udp 0 0 140.252.13.33.8888 *.*

udp 0 0 140.252.1.29.8888 *.*

In this scenario, the only datagrams that will go to the server with the wildcarded local IP 
address are those destined to 140.252.1.255, because the other four servers cover all other 
possibilities. 

There is a priority implied when an end point with a wildcard address exists. An end point with 
a specific IP address that matches the destination IP address is always chosen over a wildcard. 
The wildcard end point is used only when a specific match is not found. 

Restricting Foreign IP Address

In all the netstat output that we showed earlier, the foreign IP address and foreign port 
number are shown as *.* meaning the end point will accept an incoming UDP datagram from 
any IP address and any port number. Most implementations allow a UDP end point to restrict 
the foreign address. 

This means the end point will only receive UDP datagrams from that specific IP address and 
port number. Our sock program uses the -f option to specify the foreign IP address and port 
number: 

sun % sock -u -s -f 140.252.13.35.4444 5555 

This sets the foreign IP address to 140.252.13.35 (our host bsdi) and the foreign port number 
to 4444. The server's well-known port is 5555. If we run netstat we see that the local IP 
address has also been set, even though we didn't specify it: 

Proto Recv-Q Send-Q Local Address 
Foreign 
Address

(state) 
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udp 0 0 140.252.13.33.5555 *.*

This is a side effect of specifying the foreign IP address and foreign port on Berkeley-derived 
systems: if the local address has not been chosen when the foreign address is specified, the local 
address is chosen automatically. Its value becomes the IP address of the interface chosen by IP 
routing to reach the specified foreign IP address. Indeed, in this example the IP address on sun 
for the Ethernet that is connected to the foreign address is 140.252.13.33. 

Figure 11.22 summarizes the three types of address bindings that a UDP server can establish for 
itself. 

Local Address Foreign Address Description

localIP.lport 
localIP.lport

*. lport

foreignIP.fport
*.*
*.*

restricted to one client
restricted to datagrams arriving on one local interface: 
localIP
receives all datagrams sent to lport 

Figure 11.22 Specification of local and foreign IP addresses and port number for UDP server.

In all cases, lport is the server's well-known port and localIP must be the IP address of a local 
interface. The ordering of the three rows in the table is the order that the UDP module applies 
when trying to determine which local end point receives an incoming datagram. The most 
specific binding (the first row) is tried first, and the least specific (the last row with both IP 
addresses wildcarded) is tried last. 

Multiple Recipients per Port

Although it's not specified in the RFCs, most implementations allow only one application end 
point at a time to be associated with any one local IP address and UDP port number. When a 
UDP datagram arrives at a host destined for that IP address and port number, one copy is 
delivered to that single end point. The IP address of the end point can be the wildcard, as shown 
earlier. 

For example, under SunOS 4.1.3 we start one server on port 9999 with a wildcarded local IP 
address: 

sun % sock -u -s 9999 

If we then try to start another server with the same wildcarded local address and the same port, 
it doesn't work, even if we specify the -A option:

sun % sock -u -s 9999 we expect this to fail
can't bind local address: Address already in use 
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sun % sock -u-s-A 9999 so we try -A flag this time
can't bind local address: Address already in use 

On systems that support multicasting (Chapter 12), this changes. Multiple end points can use 
the same local IP address and UDP port number, although the application normally must tell the 
API that this is OK (i.e., our -A flag to specify the SO_REUSEADDR socket option). 

4.4BSD, which supports multicasting, requires the application to set a different socket option 
(SO_REUSEPORT) to allow multiple end points to share the same port. Furthermore each end 
point must specify this option, including the first one to use the port. 

When a UDP datagram arrives whose destination IP address is a broadcast or multicast address, 
and there are multiple end points at the destination IP address and port number, one copy of the 
incoming datagram is passed to each end point. (The end point's local IP address can be the 
wildcard, which matches any destination IP address.) But if a UDP datagram arrives whose 
destination IP address is a unicast address, only a single copy of the datagram is delivered to 
one of the end points. Which end point gets the unicast datagram is implementation dependent. 

11.13 Summary

UDP is a simple protocol. Its official specification, RFC 768 [Postel 1980], requires only three 
pages. The services it provides to a user process, above and beyond IP, are port numbers and an 
optional checksum. We used UDP to examine this checksum and to see how fragmentation is 
performed. 

We then examined the ICMP unreachable error that is part of the new path MTU discovery 
feature (Section 2.9). We watched path MTU discovery using Traceroute and UDP We also 
looked at the interaction between UDP and ARP whereby most ARP implementations only 
retain the most recently transmitted datagram to a given destination, while waiting for an ARP 
reply. 

The ICMP source quench error can be sent by a system that is receiving IP datagrams faster 
than they can be processed. It is easy to generate these ICMP errors using UDP. 

Exercises

11.1 In Section 11.5 we caused fragmentation on an Ethernet by writing a UDP datagram with 
1473 bytes of user data. What is the smallest amount of user data that causes fragmentation on 
an Ethernet if IEEE 802 encapsulation (Section 2.2) is used instead? 

11.2 Read RFC 791 [Postel 1981a] to determine why all fragments other than the last must have 
a length that is a multiple of 8 bytes. 

11.3 Assume an Ethernet and a UDP datagram with 8192 bytes of user data. How many 
fragments are transmitted and what is the offset and length of each fragment? 
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11.4 Continue the previous exercise, assuming these fragments then traverse a SLIP link with 
an MTU of 552. You also need to remember that the amount of data in each fragment (i.e., 
everything other than the IP header) must be a multiple of 8 bytes. How many fragments are 
transmitted and what is the offset and length of each fragment? 

11.5 An application using UDP sends a datagram that gets fragmented into four pieces. Assume 
that fragments 1 and 2 make it to the destination, with fragments 3 and 4 being lost. The 
application then times out and retransmits the UDP datagram 10 seconds later and this datagram 
is fragmented identically to the first transmission (i.e., same offsets and lengths). Assume that 
this time fragments 1 and 2 are lost but fragments 3 and 4 make it to the destination. Also 
assume that the reassembly timer on the receiving host is 60 seconds, so when fragments 3 and 
4 of the retransmission make it to the destination, fragments 1 and 2 from the first transmission 
have not been discarded. Can the receiver reassemble the IP datagram from the four fragments 
it now has? 

11.6 How do you know that the fragments in Figure 11.15 really correspond to lines 5 and 6 in 
Figure 11.14? 

11.7 After the host gemini had been up for 33 days, the netstat program showed that 129 
IP datagrams out of 48 mi1110n had been dropped because of a bad header checksum, and 20 
TCP segments out of 30 mi1110n had been dropped because of a bad TCP checksum. Not a 
single UDP datagram was dropped, however, because of a UDP checksum error, out of the 
approximately 18 mi1110n UDP datagrams. Give two reasons why. (Hint: See Figure 11.4.) 

11.8 In our discussion of fragmentation we never said what happens to IP options in the IP 
header-are they copied as part of the IP header in each fragment, or left in the first fragment 
only? We've described the following IP options: record route (Section 7.3), time-stamp (Section 
7.4), strict and loose source routing (Section 8.5). How would you expect fragmentation to 
handle these options? Check your answer with RFC 791. 

11.9 In Figure 1.8 we said that incoming UDP datagrams are demultiplexed based on the 
destination UDP port number. Is that correct? 
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Broadcasting and Multicasting
12.1 Introduction

We mentioned in Chapter 1 that there are three kinds of IP addresses: unicast, broadcast, 
and multicast. In this chapter we discuss broadcasting and multicasting in more detail. 

Broadcasting and multicasting only apply to UDP, where it makes sense for an 
application to send a single message to multiple recipients. TCP is a connection-oriented 
protocol that implies a connection between two hosts (specified by IP addresses) and one 
process on each host (specified by port numbers). 

Consider a set of hosts on a shared network such as an Ethernet. Each Ethernet frame 
contains the source and destination Ethernet addresses (48-bit values). Normally each 
Ethernet frame is destined for a single host. The destination address specifies a single 
interface-called a unicast. In this way communication between any two hosts doesn't 
bother any of the remaining hosts on the cable (except for possible contention for the 
shared media). 

There are times, however, when a host wants to send a frame to every other host on the 
cable-called a broadcast. We saw this with ARP and RARP. Multicasting fits between 
unicasting and broadcasting: the frame should be delivered to a set of hosts that belong to 
a multicast group. 

To understand broadcasting and multicasting we need to understand that filtering takes 
place on each host, each time a frame passes by on the cable. Figure 12.1 shows a picture 
of this. 

First, the interface card sees every frame that passes by on the cable and makes a decision 
whether to receive the frame and deliver it to the device driver. Normally the interface 
card receives only those frames whose destination address is either the hardware address 
of the interface or the broadcast address. Additionally, most interfaces can be placed into 
a promiscuous mode whereby they receive a copy of every frame. This mode is used by 
tcpdump, for example. 
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Figure 12.1 Filtering that takes place up the protocol stack when a frame is received.

Today most interfaces can also be configured to receive frames whose destination address 
is a multicast address, or some subset of multicast addresses. On an Ethernet, a multicast 
address has the low-order bit of the high-order byte turned on. In hexadecimal this bit 
looks like 01:00:00:00:00:00. (We can consider the Ethernet broadcast address, 
ff:ff:ff:ff:ff:ff as a special case of the Ethernet multicast address.) 

If the interface card receives the frame, it is passed to the device driver. (One reason the 
interface card might discard the frame is if the Ethernet checksum is incorrect.) 
Additional filtering is performed by the device driver. First, the frame type must specify a 
protocol that is supported (IP, ARP, etc.). Second, additional multicast filtering may be 
performed, to check whether the host belongs to the addressed multicast group. 

The device driver then passes the frame to the next layer, such as IP, if the frame type 
specifies an IP datagram. IP performs more filtering, based on the source and destination 
IP addresses, and passes the datagram up to the next layer (such as TCP or UDP) if all is 
well. 

Each time UDP receives a datagram from IP, it performs filtering based on the destination 
port number, and sometimes the source port number too. If no process is currently using 
the destination port number, the datagram is discarded and an ICMP port unreachable 
message is normally generated. (TCP performs similar filtering based on its port 
numbers.) If the UDP datagram has a checksum error, UDP silently discards it. 
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The problem with broadcasting is the processing load that it places on hosts that aren't 
interested in the broadcasts. Consider an application that is designed to use UDP 
broadcasts. If there are 50 hosts on the cable, but only 20 are participating in the 
application, every time one of the 20 sends a UDP broadcast, the other 30 hosts have to 
process the broadcast, all the way up through the UDP layer, before the UDP datagram is 
discarded. The UDP datagram is discarded by these 30 hosts because the destination port 
number is not in use. 

The intent of multicasting is to reduce this load on hosts with no interest in the 
application. With multicasting a host specifically joins one or more multicast groups. If 
possible, the interface card is told which multicast groups the host belongs to, and only 
those multicast frames are received. 

12.2 Broadcasting

In Figure 3.9 we showed four different forms of IP broadcast addresses. We now describe 
them in more detail. 

Limited Broadcast

The limited broadcast address is 255.255.255.255. This can be used as the destination 
address of an IP datagram during the host configuration process, when the host might not 
know its subnet mask or even its IP address. 

A datagram destined for the limited broadcast address is never forwarded by a router 
under any circumstance. It only appears on the local cable. 

An unanswered question is: if a host is multihomed and a process sends a datagram to the 
limited broadcast address, should the datagram be sent out each connected interface that 
supports broadcasting? If not, an application that wants to broadcast out all interfaces 
must determine all the interfaces on the host that support broadcasting, and send a copy 
out each interface. 

Most BSD systems treat 255.255.255.255 as an alias for the broadcast address of the first 
interface that was configured, and don't provide any way to send a datagram out all 
attached, broadcast-capable interfaces. Indeed, two applications that send UDP datagrams 
out every interface are routed (Section 10.3) and rwhod (the server for the BSD rwho 
client). Both of these applications go through a similar start-up procedure to determine all 
the interfaces on the host, and which ones are capable of broadcasting. The net-directed 
broadcast address corresponding to that interface is then used as the destination address 
for datagrams sent out the interface. 

The Host Requirements RFC takes no stand on the issue of whether a multihomed host should send a 
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limited broadcast out all its interfaces. 

Net-directed Broadcast

The net-directed broadcast address has a host ID of all one bits. A class A net-directed 
broadcast address is netid.255.255.255, where netid is the class A network ID. 

A router must forward a net-directed broadcast, but it must also have an option to disable 
this forwarding. 

Subnet-directed Broadcast

The subnet-directed broadcast address has a host ID of all one bits but a specific subnet 
ID. Classification of an IP address as a subnet-directed broadcast address requires 
knowledge of the subnet mask. For example, if a router receives a datagram destined for 
128.1.2.255, this is a subnet-directed broadcast if the class B network 128.1 has a subnet 
mask of 255.255.255.0, but it is not a broadcast if the subnet mask is 255.255.254.0 
(0xfffffe00). 

All-subnets-directed Broadcast

An all-subnets-directed broadcast address also requires knowledge of the destination 
network's subnet mask, to differentiate this broadcast address from a net-directed 
broadcast address. Both the subnet ID and the host ID are all one bits. For example, if the 
destination's subnet mask is 255.255.255.0, then the IP address 128.1.255.255 is an all-
subnets-directed broadcast. But if the network is not subnetted, then this is a net-directed 
broadcast. 

Current feeling [Almquist 1993] is that this type of broadcast is obsolete. It is better to use 
multicasting than an all-subnets-directed broadcast. 

[Almquist 1993] notes that RFC 922 requires that an all-subnets-directed broadcast be sent to all subnets, 
but no current routers do so. This is fortunate since a host that has been misconfigured without its subnet 
mask sends all its "local" broadcasts to all subnets. For example, if the host with IP address 128.1.2.3 
doesn't set a subnet mask, then its broadcast address normally defaults to 128.1.255.255. But if the 
subnet mask should have been set to 255.255.255.0, then broadcasts from this misconfigured host appear 
directed to all subnets. 

The first widespread implementation of TCP/IP, the 4.2BSD system in 1983, used a host ID of all zero 
bits for the broadcast address. One of the earliest references to the broadcast IP address is IEN 212 
[Gurwitz and Hinden 1982], and it proposed to define the IP broadcast address as a host ID of one bits. 
(lENs are the Internet Experiment Notes, basically predecessors to the RFCs.) RFC 894 [Hornig 1984] 
commented that 4.2BSD used a nonstandard broadcast address, but RFC 906 [Finlayson 1984] noted that 
there was no Internet standard for the broadcast address. The RFC editor added a footnote to RFC 906 
acknowledging the lack of a standard broadcast address, but strongly recommended that a host ID of all 
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one bits be used as the broadcast address. Although Berkeley adopted the use of all one bits for the 
broadcast address with 4.3BSD in 1986, some operating systems (notably SunOS 4.x) continued to use 
the nonstandard broadcast address through the early 1990s. 

12.3 Broadcasting Examples

How are broadcasts sent and what do routers and hosts do with broadcasts? Unfortunately 
this is a hard question to answer because it depends on the type of broadcast address, the 
application, the TCP/IP implementation, and possible configuration switches. First, the 
application must support broadcasting. If we execute 

sun % ping 255.255.255.255 
/usr/etc/ping: unknown host 255.255.255.255 

intending to send a broadcast on the local cable, it doesn't work. But the problem here is a 
programming problem in the application (ping). Most applications that accept either a 
dotted-decimal IP address or a hostname call the function inet_addr(3) to convert the 
dotted-decimal character string to its 32-bit binary IP address, and if this fails, assume the 
character string is a hostname. Unfortunately this library function returns -1 to indicate an 
error (such as a character other than a digit or decimal point in the string), but the limited 
broadcast address (255.255.255.255) also converts into -1. Most programs then assume 
that the character string is a hostname, look it up using the DNS (Chapter 14), and end up 
printing an error such as "unknown host." 

If we fix this programming shortfall in the ping program, however, the results are often 
not what we expect. On six different systems tested by the author, only one handled this 
as expected and generated a broadcast packet on the local cable. Most looked up the IP 
address 255.255.255.255 in the routing table, applied the default route, and sent a unicast 
packet to the default router. Eventually the packet was thrown away 

A subnet-directed broadcast is what we should be using. Indeed, in Section 6.3 we sent 
datagrams to the IP address 140.252.13.63 for the bottom Ethernet in our test network 
(inside front cover), and got replies from all the hosts on the Ethernet. The subnet-
directed broadcast address associated with each interface is the value used with the 
ifconfig command (Section 3.8). If we ping that address, the result is what we expect: 

sun % arp -a ARP cache is empty 

sun % ping 140.252.13.63 
PING 140.252.13.63: 56 data bytes
64 bytes from sun (140.252.13.33): icmp_seq=0. time=4. ms
64 bytes frombsdi (140.252.13.35): icmp_seq=0. time=172. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=0. time=192. ms 
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64 bytes from sun (140.252.13.33): icmp_seq=l. time=1. ms 
64 bytes from bsdi (140.252.13.35): icmp_seq=l. time=52. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=l. time=90. ms 

^? type interrupt key to stop
--140.252.13.63 PING Statistics--
2 packets transmitted, 6 packets received, -200% packet loss
round-trip (ms) min/avg/max = 1/85/192 

sun % arp -a check ARP cache again 
svr4 (140.252.13.34) at 0:0:c0:c2:9b:26
bsdi (140.252.13.35) at 0:0:c0:6f:2d:40 

IP looks at the destination address (140.252.13.63), determines that it is the subnet-
directed broadcast address, and sends the datagram to the link-layer broadcast address. 

We mentioned in Section 6.3 that this type of broadcast means all the hosts on the local 
network, including the sender. We see here that we do get a reply from the sending host 
(sun) in addition to the other hosts on the cable. 

In this example we've also shown the ARP cache before and after the ping of the 
broadcast address. This is to show the interaction between broadcasting and ARP. "The 
ARP cache is empty before we execute ping, but full afterward. (That is, there is one 
entry for every other host on the cable that responded to the echo request.) How did this 
happen when we said that the Ethernet frame is sent to the link-layer broadcast address 
(0xffffffff)? The sending of these frames by sun does not require ARP. 

If we watch ping using tcpdump, we see that it is the recipients of the broadcast frames 
that generate an ARP request to sun, before they can send their reply. This is because the 
reply is unicast. We said in Section 4.5 that the receiver of an ARP request (sun in this 
example) normally adds the requestor's IP address and hardware address to its ARP 
cache, in addition to sending an ARP reply. This is on the assumption that if the requestor 
is about to send us a packet, we'll probably want to send something back. 

Our use of ping is somewhat special because the type of programming interface that it 
uses (called "raw sockets" on most Unix implementations) always allows a datagram to 
be sent to the broadcast address. What if we use an application that was not designed to 
support broadcasting, such as TFTP? (We cover TFTP in more detail in Chapter 15.) 

bsdi % tftp start the client 

tftp> connect 140.252.13.63 specify the IP address of the server 
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tftp> get temp.foo and try to fetch a file from the server 

tftp: sendto: Permission 
denied 

tftp> quit terminate the client 

Here we get an error immediately, and nothing is sent on the cable. What's happening 
here is that the sockets API doesn't allow a process to send a UDP datagram to the 
broadcast address unless the process specifically states that it plans to broadcast. This is 
intended to prevent users from mistakenly specifying a broadcast address (as we did here) 
when the application was never intended to broadcast. 

With the sockets API the application must set the SO_BROADCAST socket option before sending a UDP 
datagram to a broadcast address. 

Not all systems enforce this restriction. Some implementations allow any process to broadcast UDP 
datagrams, without requiring the process to say so. Others are more restrictive and require a process to 
have superuser privileges to broadcast. 

The next question is whether directed broadcasts are forwarded or not. Some kernels and 
routers have an option to enable or disable this feature. (See Appendix E.) 

If we enable this feature on our router bsdi and run ping from the host slip, we can 
see if the subnet-directed broadcasts are forwarded by bsdi. Forwarding a directed 
broadcast means the router takes the incoming unicast datagram, determines that the 
destination address is the directed broadcast for one of its interfaces, and then forwards 
the datagram onto the appropriate network using a link-layer broadcast. 

slip % ping 140.252.13.63 

PING 140.252.13.63 (140.252.13.63): 56 data bytes 64 bytes
from 140.252.13.35: icmp_seq=0 ttl=255 time=190 ms 64 bytes
from 140.252.13.33: icmp_seq=0 ttl=254 time=280 ms (DUP!)
64 bytes from 140.252.13.34; icmp_seq=0 ttl=254 time=360 ms 
(DUP!) 

64 bytes from 140.252.13.35; icmp_seq=l ttl=255 time=180 ms
64 bytes from 140.252.13.33: icmp_seq=l ttl=254 time=270 ms 
(DUP!) 
64 bytes from 140.252.13.34: icmp_seq=l ttl=254 time=360 ms 
(DUP!) 

^? type interrupt key to stop
- 140.252.13.63 ping statistics -
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3 packets transmitted, 2 packets received, +4 duplicates, 
33% packet loss
round-trip min/avg/max = 180/273/360 ms 

We see that this does indeed work. We also see that the BSD ping program checks for 
duplicate sequence numbers and prints DUP! when this occurs. It normally means a 
packet was duplicated somewhere, but here we expect to see this, since we sent the 
requests to a broadcast address. 

We can also run this test from a host much farther away from the network to which the 
broadcast is directed. If we run ping from the host vangogh.cs.berkeley.edu (14 
hops away from our network), it still works if the router sun is configured to forward 
directed broadcasts. In this case the IP datagrams (carrying the ICMP echo requests) are 
forwarded by every router in the path as a normal datagram. None of them knows that it's 
really a directed broadcast. The next to last router, netb, thinks it's for the host with an 
ID of 63, and forwards it to sun. It is the router sun that detects that the destination IP 
address is really the broadcast address of an attached interface, and turns the datagram 
into a link-layer broadcast on that network. 

Broadcasting is a feature that should be used with great care. In many cases IP 
multicasting will prove to be a better solution. 

12.4 Multicasting

IP multicasting provides two services for an application. 

1.  Delivery to multiple destinations. There are many applications that deliver 
information to multiple recipients: interactive conferencing and dissemination of 
mail or news to multiple recipients, for example. Without multicasting these types 
of services tend to use TCP today (delivering a separate copy to each destination). 
Even with multicasting, some of these applications might continue to use TCP for 
its reliability. 

2.  Solicitation of servers by clients. A diskless workstation, for example, needs to 
locate a bootstrap server. Today this is provided using a broadcast (as we'll see 
with BOOTP in Chapter 16), but a multicast solution would impose less overhead 
on the hosts that don't provide the service. 

In this section we'll take a look at multicast addresses, and the next chapter looks at the 
protocol used by multicasting hosts and routers (IGMP). 

Multicast Group Addresses

Figure 12.2 shows the format of a class D IP address. 
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Figure 12.2 Format of a class D IP address.

Unlike the other three classes of IP addresses (A, B, and C), which we showed in Figure 
1.5, the 28 bits allocated for the multicast group ID have no further structure. 

A multicast group address is the combination of the high-order 4 bits of 1110 and the 
multicast group ID. These are normally written as dotted-decimal numbers and are in the 
range 224.0.0.0 through 239.255.255.255. 

The set of hosts listening to a particular IP multicast address is called a host group. A host 
group can span multiple networks. Membership in a host group is dynamic-hosts may join 
and leave host groups at will. There is no restriction on the number of hosts in a group, 
and a host does not have to belong to a group to send a message to that group. 

Some multicast group addresses are assigned as well-known addresses by the IANA 
(Internet Assigned Numbers Authority). "These are called permanent host groups. This is 
similar to the well-known TCP and UDP port numbers. Similarly, these well-known 
multicast addresses are listed in the latest Assigned Numbers RFC. Notice that it is the 
multicast address of the group that is permanent, not the membership of the group. 

For example, 224.0.0.1 means "all systems on this subnet," and 224.0.0.2 means "all 
routers on this subnet." The multicast address 224.0.1.1 is for NTP, the Network Time 
Protocol, 224.0.0.9 is for RIP-2 (Section 10.5), and 224.0.1.2 is for SGI's (Silicon 
Graphics) dogfight application. 

Converting Multicast Group Addresses to Ethernet Addresses 

The IANA owns an Ethernet address block, which in hexadecimal is 00:00:5e. This is 
the high-order 24 bits of the Ethernet address, meaning that this block includes addresses 
in the range 00:00:5e:00:00:00 through 00:00:5e:ff:ff:ff. The IANA 
allocates half of this block for multicast addresses. Given that the first byte of any 
Ethernet address must be 01 to specify a multicast address, this means the Ethernet 
addresses corresponding to IP multicasting are in the range 01:00:5e:00:00:00 
through 01:00:5e:7f:ff:ff. 

Our notation here uses the Internet standard bit order, for a CSMA/CD or token bus network, as the bits 
appear in memory. This is what most programmers and system administrators deal with. The IEEE 
documentation uses the transmission order of the bits. The Assigned Numbers RFC gives additional 
details on the differences between these representations. 
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This allocation allows for 23 bits in the Ethernet address to correspond to the IP multicast 
group ID. The mapping places the low-order 23 bits of the multicast group ID into these 
23 bits of the Ethernet address. This is shown in Figure 12.3. 

Since the upper 5 bits of the multicast group ID are ignored in this mapping, it is not 
unique. Thirty-two different multicast group IDs map to each Ethernet address. For 
example, the multicast addresses 224.128.64.32 (hex e0.80.40.20) and 224.0.64.32 
(hex e0.00 40.20) both map into the Ethernet address 01:00:5e:00:40:20. 

Since the mapping is not unique, it implies that the device driver or the IP module in 
Figure 12.1 must perform filtering, since the interface card may receive multicast frames 
in which the host is really not interested. Also, if the interface card doesn't

Figure 12.3 Mapping of a class D IP address into Ethernet multicast address.

provide adequate filtering of multicast frames, the device driver may have to receive all 
multicast frames, and perform the filtering itself. 

LAN interface cards tend to come in two varieties. One type performs multicast filtering based on the 
hash value of the multicast hardware address, which means some unwanted frames can always get 
through. The other type has a small, fixed number of multicast addresses to listen for, meaning that when 
the host needs to receive more multicast addresses than are supported, the interface must be put into a 
"multicast promiscuous" mode. Hence, both types of interfaces still require that the device driver 
perform checking that the received frame is really wanted. 

Even if the interface performs perfect multicast filtering (based on the 48-bit hardware address), since 
the mapping from a class D IP address to a 48-bit hardware address is not one-to-one, filtering is still 
required. 

Despite this imperfect address mapping and hardware filtering, multicasting is still better than 
broadcasting. 

Multicasting on a single physical network is simple. The sending process specifies a 
destination IP address that is a multicast address, the device driver converts this to the 
corresponding Ethernet address, and sends it. The receiving processes must notify their IP 
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layers that they want to receive datagrams destined for a given multicast address, and the 
device driver must somehow enable reception of these multicast frames. This is called 
"joining a multicast group." (The reason we use the plural "receiving processes" is 
because there are normally multiple receivers for a given multicast message, either on the 
same host or on multiple hosts, which is why we're using multicasting in the first place.) 
When a multicast datagram is received by a host, it must deliver a copy to all the 
processes that belong to that multicast group. This is different from UDP where a single 
process receives an incoming unicast UDP datagram. With multicasting it is possible for 
multiple processes on a given host to belong to the same multicast group. 

But complications arise when we extend multicasting beyond a single physical network 
and pass multicast packets through routers. A protocol is needed for multicast routers to 
know if any hosts on a given physical network belong to a given multicast group. This 
protocol is called the Internet Group Management Protocol (IGMP) and is the topic of 
the next chapter. 

Multicasting on FDDI and Token Ring Networks

FDDI networks use the same mapping between the class D IP address and the 48-bit 
FDDI address [Katz 1990]. Token ring networks normally use a different mapping, 
because of limitations in most token ring controllers [Pusateri 1993]. 

12.5 Summary

Broadcasting is sending a packet to all hosts on a network (usually a locally attached 
network) and multicasting is sending a packet to a set of hosts on a network. Basic to 
these two concepts is an understanding of the different types of filtering that occur when a 
received frame passes up a protocol stack. Each layer can discard a received packet for 
different reasons. 

There are four types of broadcast addresses: limited, net-directed, subnet-directed, and all-
subnets-directed. The most common is subnet-directed. The limited broadcast address is 
normally seen only when a system is bootstrapping. 

Problems occur when trying to broadcast through routers, often because the router may 
not know the subnet mask of the destination network. The results depend on many 
factors: which type of broadcast address, configuration parameters, and so on. 

A class D IP address is called a multicast group address. It is converted to an Ethernet 
address by placing its lower 23 bits into a fixed Ethernet address. The mapping is not 
unique, requiring additional filtering by one of the protocol modules. 

Exercises
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12.1 Does broadcasting increase the amount of network traffic? 

12.2 Consider 50 hosts on an Ethernet: 20 running TCP/IP and 30 running some other 
protocol suite. How are broadcasts from one protocol suite handled by hosts running the 
other protocol suite? 

12.3 You login to a Unix system that you've never used before and want to find the subnet-
directed broadcast address for all attached interfaces that support broadcasting. How can 
you do this? 

12.4 If we ping the broadcast address with a large packet size, as in 

sun % ping 140.252.13.63 1472 
PING 140.252.13.63; 1472 data bytes
1480 bytes from sun (140.252.13.33): icmp_seq=0. time=6. ms
1480 bytes from svr4 (140.252.13.34): icmp_seq=0. time=84. 
ms
1480 bytes from bsdi (140.252.13.35): icmp_seq=0. time=128. 
ms 

it works, but increasing the packet size by 1 byte gives us the following error: 

sun % ping 140.252.13.63 1473
PING 140.252.13.63: 1473 data bytes
sendto: Message too long 

What's going on? 

12.5 Redo Exercise 10.6 assuming the eight RIP messages are multicast instead of 
broadcast (assume RIP Version 2 is being used). What changes? 
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IGMP: Internet Group Management 
Protocol
13.1 Introduction

Section 12.4 provided an overview of IP multicasting and described how class D IP addresses are mapped 
into Ethernet addresses. We briefly mentioned how multicasting occurs on a single physical network, but said 
complications occur when multiple networks are involved and the multicast datagrams must pass through 
routers. 

In this chapter we'll look at the Internet Group Management Protocol (IGMP), which is used by hosts and 
routers that support multicasting. It lets all the systems on a physical network know which hosts currently 
belong to which multicast groups. This information is required by the multicast routers, so they know which 
multicast datagrams to forward onto which interfaces. IGMP is defined in RFC 1112 [Deering 1989]. 

Like ICMP, IGMP is considered part of the IP layer. Also like ICMP, IGMP messages are transmitted in IP 
datagrams. Unlike other protocols that we've seen, IGMP has a fixed-size message, with no optional data. 
Figure 13.1 shows the encapsulation of an IGMP message within an IP datagram.

Figure 13.1 Encapsulation of an IGMP message within an IP datagram.

IGMP messages are specified in the IP datagram with a protocol value of 2. 

13.2 IGMP Message

Figure 13.2 shows the format of the 8-byte IGMP message. 

Figure 13.2 Format of fields in IGMP message.

The IGMP version is 1. An IGMP type of 1 is a query sent by a multicast router, and 2 is a response sent by a 
host. The checksum is calculated in the same manner as the ICMP checksum. 

The group address is a class D IP address. In a query the group address is set to 0, and in a report it contains 
the group address being reported. We'll say more about it in the next section when we see how IGMP 
operates. 

13.3 IGMP Protocol
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Joining a Multicast Group

Fundamental to multicasting is the concept of a process joining a multicast group on a given interface on a 
host. (We use the term process to mean a program being executed by the operating system.) Membership in a 
multicast group on a given interface is dynamic-it changes over time as processes join and leave the group. 

We imply here that a process must have a way of joining a multicast group on a given interface. A process 
can also leave a multicast group that it previously joined. These are required parts of any API on a host that 
supports multicasting. We use the qualifier "interface" because membership in a group is associated with an 
interface. A process can join the same group on multiple interfaces. 

The release of IP multicasting for Berkeley Unix from Stanford University details these changes for the sockets API. These 
changes are also provided in Solaris 2.x and documented in the ip(7) manual pages. 

Implied here is that a host identifies a group by the group address and the interface. A host must keep a table 
of all the groups that at least one process belongs to, and a reference count of the number of processes 
belonging to the group. 

IGMP Reports and Queries

IGMP messages are used by multicast routers to keep track of group membership on each of the router's 
physically attached networks. The following rules apply. 

1.  A host sends an IGMP report when the first process joins a group. If multiple processes on a given 
host join the same group, only one report is sent, the first time a process joins that group. This report is 
sent out the same interface on which the process joined the group. 

2.  A host does not send a report when processes leave a group, even when the last process leaves a 
group. The host knows that there are no members in a given group, so when it receives the next query 
(next step), it won't report the group. 

3.  A multicast router sends an IGMP query at regular intervals to see if any hosts still have processes 
belonging to any groups. The router must send one query out each interface. The group address in the 
query is 0 since the router expects one response from a host for every group that contains one or more 
members on that host. 

4.  A host responds to an IGMP query by sending one IGMP report for each group that still contains at 
least one process. 

Using these queries and reports, a multicast router keeps a table of which of its interfaces have one or more 
hosts in a multicast group. When the router receives a multicast datagram to forward, it forwards the 
datagram (using the corresponding multicast link-layer address) only out the interfaces that still have hosts 
with processes belonging to that group. 

Figure 13.3 shows these two IGMP messages, reports sent by hosts, and queries sent by routers. The router is 
asking each host to identify each group on that interface.

file:///D|/Documents%20and%20Settings/bigini/Docum.../homenet2run/tcpip/tcp-ip-illustrated/igmp_int.htm (2 of 7) [12/09/2001 14.47.02]



Chapter 13. IGMP: Internet Group Management Protocol

Figure 13.3 IGMP reports and queries.

We talk about the TTL field later in this section. 

Implementation Details

There are many implementation details in this protocol that improve its efficiency. First, when a host sends 
an initial IGMP report (when the first process joins a group), there's no guarantee that the report is delivered 
(since IP is used as the delivery service). Another report is sent at a later time. This later time is chosen by the 
host to be a random value between 0 and 10 seconds. 

Next, when a host receives a query from a router it doesn't respond immediately, but schedules the responses 
for later times. (We use the plural "responses" because the host must send one report for each group that 
contains one or more members.) Since multiple hosts can be sending a report for the same group, each 
schedules its response using random delays. Also realize that all the hosts on a physical network receive all 
the reports from other hosts in the same group, because the destination address of the report in Figure 13.3 is 
the group's address. This means that, if a host is scheduled to send a report, but receives a copy of the same 
report from another host, the response can be canceled. This is because a multicast router doesn't care how 
many hosts belong to the group-only whether at least one host belongs to the group. Indeed, a multicast router 
doesn't even care which host belongs to a group. It only needs to know that at least one host belongs to a 
group on a given interface. 

On a single physical network without any multicast routers, the only IGMP traffic is the reports issued by the 
hosts that support IP multicasting, when the host joins a new group. 

Time-to-Live Field

In Figure 13.3 we noted that the TTL field of the reports and queries is set to 1. This refers to the normal TTL 
field in the IP header. A multicast datagram with an initial TTL of 0 is restricted to the same host. By default, 
multicast datagrams are sent with a TTL of 1. This restricts the datagram to the same subnet. Higher TTLs 
can be forwarded by multicast routers. 

Recall from Section 6.2 that an ICMP error is never generated in response to a datagram destined to a 
multicast address. Multicast routers do not generate ICMP "time exceeded" errors when the TTL reaches 0. 

Normally user processes aren't concerned with the outgoing TTL. One exception, however, is the Traceroute program (Chapter 
8), which is based on setting the TTL field. Since multicasting applications must be able to set the outgoing TTL field, this 

implies that the programming interface must provide this capability to user processes. 

By increasing the TTL an application can perform an expanding ring search for a particular server. The first 
multicast datagram is sent with a TTL of 1. If no response is received, a TTL of 2 is tried, then 3, and so on. 

file:///D|/Documents%20and%20Settings/bigini/Docum.../homenet2run/tcpip/tcp-ip-illustrated/igmp_int.htm (3 of 7) [12/09/2001 14.47.02]



Chapter 13. IGMP: Internet Group Management Protocol

In this way the application locates the closest server, in terms of hops. 

The special range of addresses 224.0.0.0 through 224.0.0.255 is intended for applications that never need to 
multicast further than one hop. A multicast router should never forward a datagram with one of these 
addresses as the destination, regardless of the TTL. 

All-Hosts Group

In Figure 13.3 we also indicated that the router's IGMP query is sent to the destination IP address of 
224.0.0.1. This is called the all-hosts group address. It refers to all the multicast-capable hosts and routers on 
a physical network. Each host automatically joins this multicast group on all multicast-capable interfaces, 
when the interface is initialized. Membership in this group is never reported. 

13.4 An Example

Now that we've gone through some of the details of IP multicasting, let's take a look at the messages 
involved. We've added IP multicasting support to the host sun and will use some test programs provided 
with the multicasting software to see what happens. 

First we'll use a modified version of the netstat command that reports multicast group membership for 
each interface. (We showed the standard netstat -ni output for this host in Section 3.9.) In the following 
output we show the lines corresponding to multicast groups in a bold font: 

sun % netstat -nia 

Name Mtu Network Address lpkts lerrs Opkts Oerrs Coll

le0 1500 140.252.13. 140.252.13.33 4370 0 4924 0 0 

224.0.0.1 

08;00:20:03:f6:42 

01:00:5e:00:00:01 

sl0 552 140.252.1 140.252.1.29 13587 0 15615 0 0 

224.0.0.1 

lo0 1536 127 127.0.0.1 1351 0 1351 0 0 

224.0.0.1 

The -n option prints IP addresses in numeric format (instead of trying to print them as names), -i prints the 
interface statistics, and -a reports on all configured interfaces. 

The second line of output for le0 (the Ethernet) shows that this interface belongs to the multicast group 
224.0.0.1 ("all hosts"), and two lines later the corresponding Ethernet address is shown: 
01:00:5e:00:00:01. This is what we expect for the Ethernet address, given the mapping we described 
in Section 12.4. We also see that the other two interfaces that support multicasting, the SLIP link sl0 and the 
loopback interface lo0, also belong to the all-hosts group. 

We must also show the IP routing table, as the normal routing table is used for multicast datagrams. The bold 
entry shows that all datagrams for 224.0.0.0 are sent to the Ethernet: 

sun % netstat -rn 

Routing tables
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Destination Gateway Flags Refcnt Use Interface 

140.252.13.65 140.252.13.35 UGH 0 32 le0

127.0.0.1 127.0.0.1 UH 1 381 lo0

140.252.1.183 140.252.1.29 UH 0 6 sl0

default 140.252.1.183 UG 0 328 sl0

224.0.0.0 140.252.13.33 U 0 66 le0 

140.252.13.32 140.252.13.33 U 8 5581 le0

If you compare this routing table to the one shown in Section 9.2 for the router sun, you'll see that the 
multicast entry is the only change. 

We now run a test program that lets us join a multicast group on an interface. (We don't show any output for 
our use of this test program.) We join the group 224.1.2.3 on the Ethernet interface (140.252.13.33). 
Executing netstat shows that the kernel has joined the group, and again the Ethernet address is what we 
expect. We show the changes from the previous netstat output in a bold font: 

sun % netstat -nia 

Name Mtu Network Address lpkts lerrs Opkts Oerrs Coll

le0 1500 140.252.13. 140.252.13.33 4374 0 4929 0 0 

224.1.2.3 

224.0.0.1 

08:00:20:03:f6:42 

01:00:5e:01:02:03 

01:00:5e:00:00:01 

sl0 552 140.252.1 140.252.1.29 13862 0 15943 0 0 

224.0.0.1 

lo0 1536 127 127.0.0.1 1360 0 1360 0 0 

224.0.0.1 

We have shown the output again for the other two interfaces, sl0 and lo0, to reiterate that the multicast 
group is joined only on one interface. 

Figure 13.4 shows the tcpdump output corresponding to the process joining the multicast group. 

1 0.0 8:0:20:3:f6:42 1:0:5e:1:2:3 ip 60: 

sun > 224.1.2.3: igmp report 224.1.2.3 [ttl 1] 

2 6.94 (6.94) 8:0:20:3:f6:42 1:0:5e:1:2:3 ip 60: 

sun > 224.1.2.3: igmp report 224.1.2.3 [ttl 1] 

Figure 13.4 tcpdump output when a host joins a multicast group.

Line 1 occurs when the host joins the group. The next line is the delayed report that we said is sent at some 
random time up to 10 seconds afterward. 

We have shown the hardware addresses in these two lines, to verify that the Ethernet destination address is 
the correct multicast address. We can also see that the source IP address is the one corresponding to sun, and 
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the destination IP address is the multicast group address. We can also see that the reported address is that 
same multicast group address. 

Finally, we note that the TTL is 1, as specified, tcpdump prints the TTL in square brackets when its value is 
0 or 1. This is because the TTL is normally greater than this. With multicasting, however, we expect to see 
lots of IP datagrams with a TTL of 1. 

Implied in this output is that a multicast router must receive all multicast datagrams on all its interfaces. The 
router has no idea which multicast groups the hosts might join. 

Multicast Router Example

Let's continue the previous example, but we'll also start a multicast routing daemon on the host sun. Our 
interest here is not the details of multicast routing protocols, but to see the IGMP queries and reports that are 
exchanged. Even though the multicast routing daemon is running on the only host that supports multicasting 
(sun), all the queries and reports are multicast on the Ethernet, so we can see them on any other system on 
the Ethernet. 

Before starting the routing daemon we joined another multicast group: 224.9.9.9. Figure 13.5 shows the 
output. 

1 0.0 sun > 224.0.0.4: igmp report 224.0.0.4 

2 0.00 ( 0.00) sun > 224.0.0.1: igmp query 

3 5.10 ( 5.10) sun > 224.9.9.9: igmp report 224.9.9.9 

4 5.22 ( 0.12) sun > 224.0.0.1: igmp query 

5 7.90 ( 2.68) sun > 224.1.2.3: igmp report 224.1.2.3 

6 8.50 ( 0.60) sun > 224.0.0.4: igmp report 224.0.0.4 

7 11.70 ( 3.20) sun > 224.9.9.9: igmp report 224.9.9.9 

8 125.51 (113.81) sun > 224.0.0.1: igmp query 

9 125.70 ( 0.19) sun > 224.9.9.9: igmp report 224.9.9.9 

10 128.50 ( 2.80) sun > 224.1.2.3: igmp report 224.1.2.3 

11 129.10 ( 0.60) sun > 224.0.0.4: igmp report 224.0.0.4 

12 247.82 (118.72) sun > 224.0.0.1: igmp query 

13 248.09 ( 0.27) sun > 224.1.2.3: igmp report 224.1.2.3 

14 248.69 ( 0.60) sun > 224.0.0.4: igmp report 224.0.0.4 

15 255.29 ( 6.60) sun > 224.9.9.9: igmp report 224.9.9.9 

Figure 13.5 tcpdump output while multicast routing daemon is running.

We have not included the Ethernet addresses in this output, because we've already verified that they are what 
we expect. We've also deleted the notation that the TTL equals 1, because again that's what we expect. 

Line 1 is output when the routing daemon starts. It sends a report that it has joined the group 224.0.0.4. 
Multicast address 224.0.0.4 is a well-known address used by DVMRP (Distance Vector Multicast Routing 
Protocol), the protocol currently used for multicast routing. (DVMRP is defined in RFC 1075 [Waitzman, 
Partridge, and Deering 1988].) 

When the daemon starts it also sends out a query (line 2). The destination IP address of the query is 224.0.0.1 
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(all-hosts), as shown in Figure 13.3. 

The first report (line 3) is received about 5 seconds later, for group 224.9.9.9. This is the only report received 
before another query is sent (line 4). These two queries (lines 2 and 4) occur rapidly when the daemon starts 
up, as it tries to build its multicast routing table. 

Lines 5, 6, and 7 are what we expect: one report from the host sun for each group to which it belongs. Notice 
that the group 224.0.0.4 is reported, in addition to the two groups that we explicitly joined, because as long as 
the routing daemon is running, it belongs to this group. 

The next query on line 8 occurs about 2 minutes after the previous query. Again it elicits the three reports we 
expect (lines 9, 10, and 11). The reports are in a different order this time, as expected, since the time between 
receiving the query and sending the report should be randomized. 

The final query that we show occurs about 2 minutes after the previous query, and again we have the 
expected responses. 

13.5 Summary

Multicasting is a way to send a message to multiple recipients. In many applications it is better than 
broadcasting, since multicasting imposes less overhead on hosts that are not participating in the 
communication. The simple host membership reporting protocol (IGMP) is the basic building block for 
multicasting. 

Multicasting on a LAN or across closely connected LANs uses the techniques we've described in this chapter. 
Since broadcasting is often restricted to a single LAN, multicasting could be used instead of broadcasting for 
many applications that use broadcasting today 

A problem that has not been completely solved, however, is multicasting across wide area networks. [Deering 
and Cheriton 1990] propose extensions to common routing protocols to support multicasting. Section 9.13 of 
[Periman 1992] discusses some of the problems with multicasting across WANs. 

[Casner and Deering 1992] describe the delivery of audio for an IETF meeting across the Internet using 
multicasting and a virtual network called the MBONE (multicasting backbone). 

Exercises

13.1 We said that hosts schedule IGMP reports with random delays. How can the hosts on a LAN try to 
ensure that no two hosts generate the same random delay? 

13.2 In [Casner and Deering 1992] they mention that UDP lacks two features needed for sending audio 
samples across the MBONE: detection of packet reordering and detection of duplicate packets. How could 
you add these capabilities above UDP? 
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DNS: The Domain Name System
14.1 Introduction

The Domain Name System, or DNS, is a distributed database that is used by TCP/IP applications to map between 
hostnames and IP addresses, and to provide electronic mail routing information. We use the term distributed because 
no single site on the Internet knows all the information. Each site (university department, campus, company, or 
department within a company, for example) maintains its own database of information and runs a server program that 
other systems across the Internet (clients) can query. The DNS provides the protocol that allows clients and servers to 
communicate with each other. 

From an application's point of view, access to the DNS is through a resolver. On Unix hosts the resolver is accessed 
primarily through two library functions, gethostbyname(3) and gethostbyaddr(3), which are linked with the 
application when the application is built. The first takes a hostname and returns an IP address, and the second takes an 
IP address and looks up a hostname. The resolver contacts one or more name servers to do the mapping. 

In Figure 4.2 we showed that the resolver is normally part of the application. It is not part of the operating system 
kernel as are the TCP/IP protocols. Another fundamental point from this figure is that an application must convert a 
hostname to an IP address before it can ask TCP to open a connection or send a datagram using UDP. The TCP/IP 
protocols within the kernel know nothing about the DNS. 

In this chapter we'll take a look at how resolvers communicate with name servers using the TCP/IP protocols (mainly 
UDP). We do not cover all the administrative details of running a name server or all the options available with 
resolvers and servers. These details can fill an entire book. (See [Albitz and Liu 1992] for all the details on the care and 
feeding of the standard Unix resolver and name server.) 

RFC 1034 [Mockapetris 1987a] specifies the concepts and facilities provided by the DNS, and RFC 1035 [Mockapetris 
1987b] details the implementation and specification. The most commonly used implementation of the DNS, both 
resolver and name server, is called BIND-the Berkeley Internet Name Domain server. The server is called named. An 
analysis of the wide-area network traffic generated by the DNS is given in [Danzig, Obraczka, and Kumar 1992]. 

14.2 DNS Basics

The DNS name space is hierarchical, similar to the Unix filesystem. Figure 14.1 shows this hierarchical organization. 
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Figure 14.1 Hierarchical organization of the DNS.

Every node (circles in Figure 14.1) has a label of up to 63 characters. The root of the tree is a special node with a null 
label. Any comparison of labels considers uppercase and lowercase characters the same. The domain name of any node 
in the tree is the list of labels, starting at that node, working up to the root, using a period ("dot") to separate the labels. 
(Note that this is different from the Unix filesystem, which forms a pathname by starting at the top and going down the 
tree.) Every node in the tree must have a unique domain name, but the same label can be used at different points in the 
tree. 

A domain name that ends with a period is called an absolute domain name or a fully qualified domain name (FQDN). 
An example is sun.tuc.noao.edu.. If the domain name does not end with a period, it is assumed that the name 
needs to be completed. How the name is completed depends on the DNS software being used. If the uncompleted name 
consists of two or more labels, it might be considered to be complete; otherwise a local addition might be added to the 
right of the name. For example, the name sun might be completed by adding the local suffix .tuc.noao.edu.. The 
top-level domains are divided into three areas: 

1.  arpa is a special domain used for address-to-name mappings. (We describe this in Section 14.5.) 
2.  The seven 3-character domains are called the generic domains. Some texts call these the organizational 

domains. 
3.  All the 2-character domains are based on the country codes found in ISO 3166. These are called the country 

domains, or the geographical domains. 

Figure 14.2 lists the normal classification of the seven generic domains. 

Domain Description

com commercial organizations

edu educational institutions
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gov other U.S. governmental organizations

int international organizations

mil U.S. military

net networks

org other organizations

Figure 14.2 The 3-character generic domains.

DNS folklore says that the 3-character generic domains are only for U.S. organizations, and the 2-character country 
domains for everyone else, but this is false. There are many non-U.S. organizations in the generic domains, and many 
U.S. organizations in the .us country domain. (RFC 1480 [Cooper and Postel 1993] describes the .us domain in 
more detail.) The only generic domains that are restricted to the United States are .gov and .mil. 

Many countries form second-level domains beneath their 2-character country code similar to the generic domains: 
.ac.uk, for example, is for academic institutions in the United Kingdom and .co.uk is for commercial 
organizations in the United Kingdom. 

One important feature of the DNS that isn't shown in figures such as Figure 14.1 is the delegation of responsibility 
within the DNS. No single entity manages every label in the tree. Instead, one entity (the NIC) maintains a portion of 
the tree (the top-level domains) and delegates responsibility to others for specific zones. 

A zone is a subtree of the DNS tree that is administered separately. A common zone is a second-level domain, 
noao.edu, for example. Many second-level domains then divide their zone into smaller zones. For example, a 
university might divide itself into zones based on departments, and a company might divide itself into zones based on 
branch offices or internal divisions. 

If you are familiar with the Unix filesystem, notice that the division of the DNS tree into zones is similar to the division 
of a logical Unix filesystem into physical disk partitions. Just as we can't tell from Figure 14.1 where the zones of 
authority lie, we can't tell from a similar picture of a Unix filesystem which directories are on which disk partitions. 

Once the authority for a zone is delegated, it is up to the person responsible for the zone to provide multiple name 
servers for that zone. Whenever a new system is installed in a zone, the DNS administrator for the zone allocates a 
name and an IP address for the new system and enters these into the name server's database. This is where the need for 
delegation becomes obvious. At a small university, for example, one person could do this each time a new system was 
added, but in a large university the responsibility would have to be delegated (probably by departments), since one 
person couldn't keep up with the work. 

A name server is said to have authority for one zone or multiple zones. The person responsible for a zone must provide 
a primary name server for that zone and one or more secondary name servers. The primary and secondaries must be 
independent and redundant servers so that availability of name service for the zone isn't affected by a single point of 
failure. 

The main difference between a primary and secondary is that the primary loads all the information for the zone from 
disk files, while the secondaries obtain all the information from the primary. When a secondary obtains the information 
from its primary we call this a zone transfer. 

When a new host is added to a zone, the administrator adds the appropriate information (name and IP address 
minimally) to a disk file on the system running the primary. The primary name server is then notified to reread its 
configuration files. The secondaries query the primary on a regular basis (normally every 3 hours) and if the primary 
contains newer data, the secondary obtains the new data using a zone transfer. 

What does a name server do when it doesn't contain the information requested? It must contact another name server. 
(This is the distributed nature of the DNS.) Not every name server, however, knows how to contact every other name 
server. Instead every name server must know how to contact the root name servers. As of April 1993 there were eight 
root servers and all the primary servers must know the IP address of each root server. (These IP addresses are contained 
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in the primary's configuration files. The primary servers must know the IP addresses of the root servers, not their DNS 
names.) The root servers then know the name and location (i.e., the IP address) of each authoritative name server for all 
the second-level domains. This implies an iterative process: the requesting name server must contact a root server. The 
root server tells the requesting server to contact another server, and so on. We'll look into this procedure with some 
examples later in this chapter. 

You can fetch the current list of root servers using anonymous FTP. Obtain the file netinfo/root-servers.txt 
from either ftp.rs.internic.net or nic.ddn.mil. 

A fundamental property of the DNS is caching. That is, when a name server receives information about a mapping 
(say, the IP address of a hostname) it caches that information so that a later query for the same mapping can use the 
cached result and not result in additional queries to other servers. Section 14.7 shows an example of caching. 

14.3 DNS Message Format

There is one DNS message defined for both queries and responses. Figure 14.3 shows the overall format of the 
message. 

Figure 14.3 General format of DNS queries and responses.

The message has a fixed 12-byte header followed by four variable-length fields. 

The identification is set by the client and returned by the server. It lets the client match responses to requests. 

The 16-bit flags field is divided into numerous pieces, as shown in Figure 14.4. 
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Figure 14.4 flags field in the DNS header.

We'll start at the leftmost bit and describe each field. 

●     QR is a 1-bit field: 0 means the message is a query, 1 means it's a response. 
●     opcode is a 4-bit field. The normal value is 0 (a standard query). Other values are 1 (an inverse query) and 2 

(server status request). 
●     AA is a 1-bit flag that means "authoritative answer." The name server is authoritative for the domain in the 

question section. 
●     TC is a 1-bit field that means "truncated." With UDP this means the total size of the reply exceeded 512 bytes, 

and only the first 512 bytes of the reply was returned. 
●     RD is a 1-bit field that means "recursion desired." This bit can be set in a query and is then returned in the 

response. This flag tells the name server to handle the query itself, called a recursive query. If the bit is not set, 
and the requested name server doesn't have an authoritative answer, the requested name server returns a list of 
other name servers to contact for the answer. This is called an iterative query. We'll see examples of both types 
of queries in later examples. 

●     RA is a 1-bit field that means "recursion available." This bit is set to 1 in the response if the server supports 
recursion. We'll see in our examples that most name servers provide recursion, except for some root servers. 

●     There is a 3-bit field that must be 0. 
●     rcode is a 4-bit field with the return code. The common values are 0 (no error) and 3 (name error). A name error 

is returned only from an authoritative name server and means the domain name specified in the query does not 
exist. 

The next four 16-bit fields specify the number of entries in the four variable-length fields that complete the record. For 
a query, the number of questions is normally 1 and the other three counts are 0. Similarly, for a reply the number of 
answers is at least 1, and the remaining two counts can be 0 or nonzero. 

Question Portion of DNS Query Message

The format of each question in the question section is shown in Figure 14.5. There is normally just one question. 

The query name is the name being looked up. It is a sequence of one or more labels. Each label begins with a 1-byte 
count that specifies the number of bytes that follow. The name is terminated with a byte of 0, which is a label with a 
length of 0, which is the label of the root. Each count byte must be in the range of 0 to 63, since labels are limited. 

Figure 14.5 Format of question portion of DNS query message.

to 63 bytes. (We'll see later in this section that a count byte with the two high-order bits turned on, values 192 to 255, is 
used with a compression scheme.) Unlike many other message formats that we've encountered, this field is allowed to 
end on a boundary other than a 32-bit boundary. No padding is used. Figure 14.6 shows how the domain name 
gemini.tuc.noao.edu is stored. 
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Figure 14.6 Representation of the domain name gemini.tuc.noao.edu.

Each question has a query type and each response (called a resource record, which we talk about below) has a type. 
There are about 20 different values, some of which are now obsolete. Figure 14.7 shows some of these values. The 
query type is a superset of the type: two of the values we show can be used only in questions. 

Name
Numeric

value
Description type?

query 
type?

A
NS
CNAME
PTR
HINFO
MX 

1
2
5
12
13
15

IP address
name server
canonical name
pointer record
host info
mail exchange record 

*
*
*
*
*
*

*
*
*
*
*
*

AXFR
* or ANY

252
255

request for zone transfer
request for all records 

*
*

Figure 14.7 type and query type values for DNS questions and responses.

The most common query type is an A type, which means an IP address is desired for the query name. A PTR query 
requests the names corresponding to an IP address. This is a pointer query that we describe in Section 14.5. We 
describe the other query types in Section 14.6. 

The query class is normally 1, meaning Internet address. (Some other non-IP values are also supported at some 
locations.) 

Resource Record Portion of DNS Response Message

The final three fields in the DNS message, the answers, authority, and additional information fields, share a common 
format called a resource record or RR. Figure 14.8 shows the format of a resource record. 
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Figure 14.8 Format of DNS resource record.

The domain name is the name to which the following resource data corresponds. It is in the same format as we 
described earlier for the query name field (Figure 14.6). 

The type specifies one of the RR type codes. These are the same as the query type values that we described earlier. The 
class is normally 1 for Internet data. 

The time-to-live field is the number of seconds that the RR can be cached by the client. RRs often have a TTL of 2 
days. 

The resource data length specifies the amount of resource data. The format of this data depends on the type. For a type 
of 1 (an A record) the resource data is a 4-byte IP address. 

Now that we've described the basic format of the DNS queries and responses, we'll see what is passed in the packets by 
watching some exchanges using tcpdump. 

14.4 A Simple Example

Let's start with a simple example to see the communication between a resolver and a name server. We'll run the Telnet 
client on the host sun to the host gemini, connecting to the daytime server: 

sun % telnet gemini daytime
Trying 140.252.1.11 ...
Connected to gemini. tuc.noao.edu.
Escape character is '^]'
Wed Mar 24 10:44:17 1993
Connection closed by foreign host. 

first three lines of output are from Telnet client

this is the output from the daytime server
and this is from the Telnet client 

For this example we direct the resolver on the host sun (where the Telnet client is run) to use the name server on the 
host noao.edu (140.252.1.54). Figure 14.9 shows the arrangement of the three systems. 
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Figure 14.9 Systems being used for simple DNS example.

As we've mentioned before, the resolver is part of the client, and the resolver contacts a name server to obtain the IP 
address before the TCP connection can be established between Telnet and the daytime server. 

In this figure we've omitted the detail that the connection between sun and the 140.252.1 Ethernet is really a SLIP link 
(see the figure on the inside front cover) because that doesn't affect the discussion. We will, however, run tcpdump on 
the SLIP link to see the packets exchanged between the resolver and name server. 

The file /etc/resolv.conf on the host sun tells the resolver what to do: 

sun % cat /etc/resolv.conf 
nameserver 140.252.1.54
domain tuc.noao.edu 

The first line gives the IP address of the name server - the host noao.edu. Up to three nameserver lines can be 
specified, to provide backup in case one is down or unreachable. The domain line specifies the default domain. If the 
name being looked up is not a fully qualified domain name (it doesn't end with a period) then the default domain 
.tuc.noao.edu is appended to the name. This is why we can type telnet gemini instead of telnet 
gemini.tuc.noao.edu. Figure 14.10 shows the packet exchange between the resolver and name server. 

1 0.0 
140.252.1.29.1447 > 140.252.1.54.53: 1+ A? 
gemini.tuc.noao.edu. (37) 

2 0.290820 (0.2908) 
140.252.1.54.53 > 140.252.1.29.1447: 1* 2/0/0 A 
140.252.1.11 (69) 

Figure 14.10 tcpdump output for name server query of the hostname gemini.tuc.noao.edu.

We've instructed tcpdump not to print domain names for the source and destination IP addresses of each IP datagram. 
Instead it prints 140.252.1.29 for the client (the resolver) and 140.252.1.54 for the name server. Port 1447 is the 
ephemeral port used by the client and 53 is the well-known port for the name server. If tcpdump had tried to print 
names instead of IP addresses, then it would have been contacting the same name server (doing pointer queries), 
confusing the output. 

Starting with line 1, the field after the colon (1+) means the identification field is 1, and the plus sign means the RD 
flag (recursion desired) is set. We see that by default, the resolver asks for recursion. 

The next field, A?, means the query type is A (we want an IP address), and the question mark indicates it's a query (not 
a response). The query name is printed next: gemini.tuc.noao.edu.. The resolver added the final period to the 
query name, indicating that it's an absolute domain name. 

The length of user data in the UDP datagram is shown as 37 bytes: 12 bytes are the fixed-size header (Figure 14.3); 21 
bytes for the query name (Figure 14.6), and 4 bytes for the query type and query class. The odd-length UDP datagram 
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reiterates that there is no padding in the DNS messages. 

Line 2 in the tcpdump output is the response from the name server and 1* is the identification field with the asterisk 
meaning the AA flag (authoritative answer) is set. (We expect this server, the primary server for the noao.edu 
domain, to be authoritative for names within its domain.) 

The output 2/0/0 shows the number of resource records in the final three variable-length fields in the response: 2 
answer RRs, 0 authority RRs, and 0 additional RRs. tcpdump only prints the first answer, which in this case has a 
type of A (IP address) with a value of 140.252.1.11. 

Why do we get two answers to our query? Because the host gemini is multihomed. Two IP addresses are returned. 
Indeed, another useful tool with the DNS is a publicly available program named host. It lets us issue queries to a name 
server and see what comes back. If we run this program we'll see the two IP addresses for this host: 

sun % host gemini 

gemini.tuc.noao.edu A 140.252.1.11

gemini.tuc.noao.edu A 140.252.3.54

The first answer in Figure 14.10 and the first line of output from the host command are the IP address that shares the 
same subnet (140.252.1) as the requesting host. This is not an accident. If the name server and the host issuing the 
query are on the same network (or subnet), then BIND sorts the results so that addresses on common networks appear 
first. 

We can still access the host gemini using the other address, but it might be less efficient. Using traceroute in this 
instance shows that the normal route from subnet 140.252.1 to 140.252.3 is not through the host gemini, but through 
another router that's connected to both networks. So in this case if we accessed gemini through the other IP address 
(140.252.3.54) all the packets would require an additional hop. We return to this example and explore the reason for the 
alternative route in Section 25.9, when we can use SNMP to look at a router's routing table. 

There are other programs that provide easy interactive access to the DNS. nslookup is supplied with most 
implementations of the DNS. Chapter 10 of [Albitz and Liu 1992] provides a detailed description of how to use this 
program. The dig program ("Domain Internet Groper") is another publicly available tool that queries DNS servers, 
doc ("Domain Obscenity Control") is a shell script that uses dig and diagnoses misbehaving domains by sending 
queries to the appropriate DNS name servers, and performing simple analysis of the responses. See Appendix F for 
details on how to obtain these programs. 

The final detail to account for in this example is the size of the UDP data in the reply: 69 bytes. We need to know two 
points to account for these bytes. 

1.  The question is returned in the reply. 
2.  There can be many repetitions of domain names in a reply, so a compression scheme is used. Indeed, in our 

example, there are three occurrences of the domain name gemini.tuc.noao.edu. 

The compression scheme is simple. Anywhere the label portion of a domain name can occur, the single count 
byte (which is between 0 and 63) has its two high-order bits turned on instead. This means it is a 16-bit pointer 
and not an 8-bit count byte. The 14 bits that follow in the pointer specify an offset in the DNS message of a 
label to continue with. (The offset of the first byte in the identification field is 0.) We purposely said that this 
pointer can occur wherever a label can occur, not just where a complete domain name can. occur, since it's 
possible for a pointer to form either a complete domain name or just the ending portion of a name. (This is 
because the ending labels in the names from a given domain tend to be identical.) 

Figure 14.11 shows the format of the DNS reply, line 2 from Figure 14.10. We also show the IP and UDP headers to 
reiterate that DNS messages are normally encapsulated in UDP datagrams. We explicitly show the count bytes in the 
labels of the domain name in the question. The two answers returned are the same, except for the different IP addresses 
returned in each answer. In this example the pointer in each answer would have a value of 12, the offset from the start 
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of the DNS header of the complete domain name. 

The final point to note from this example is from the second line of output from the Telnet command, which we repeat 
here: 

sun % telnet gemini daytime we only type gemini 

Trying 140.252.1.11

... Connected to 
gemini.tuc.noao.edu. 

but the Telnet client outputs FQDN 

We typed just the hostname (gemini), not the FQDN, but the Telnet client output the FQDN. What's happening is that 
the Telnet client looks up the name we type by calling 

Figure 14.11 Format of DNS reply corresponding to line 2 of Figure 14.10.

the resolver (gethostbyname), which returns the IP addresses and the FQDN. Telnet then prints the IP address that 
it's trying to establish a TCP connection with, and when the connection is established, it outputs the FQDN. 

If there is a significant pause between typing the Telnet command and printing the IP address, this delay is caused by 
the resolver contacting a name server to resolve the name into an IP address. A pause between printing Trying and 
Connected to, however, is a delay caused by the establishment of the TCP connection between the client and 
server, not the DNS. 

14.5 Pointer Queries

A perpetual stumbling block in understanding the DNS is how pointer queries are handled - given an IP address, return 
the name (or names) corresponding to that address. 

First return to Figure 14.1 and examine the arpa top-level domain, and the in-addr domain beneath it. When an 
organization joins the Internet and obtains authority for a portion of the DNS name space, such as noao.edu, they 
also obtain authority for a portion of the in-addr.arpa name space corresponding to their IP address on the 
Internet. In the case of noao.edu it is the class B network ID 140.252. The level of the DNS tree beneath in-
addr.arpa must be the first byte of the IP address (140 in this example), the next level is the next byte of the IP 
address (252), and so on. But remember that names are written starting at the bottom of the DNS tree, working upward. 
This means the DNS name for the host sun, with an IP address of 140.252.13.33, is 33.13.252.140. in-addr.arpa. 

We have to write the 4 bytes of the IP address backward because authority is delegated based on network IDs: the first 
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byte of a class A address, the first and second bytes of a class B address, and the first, second, and third bytes of a class 
C address. The first byte of the IP address must be immediately below the in-addr label, but FQDNs are written 
from the bottom of the tree up. If FQDNs were written from the top down, then the DNS name for the IP address would 
be arpa.in-addr.140.252.13.33, but the FQDN for the host would be edu.noao.tuc.sun. 

If there was not a separate branch of the DNS tree for handling this address-to-name translation, there would be no way 
to do the reverse translation other than starting at the root of the tree and trying every top-level domain. This could 
literally take days or weeks, given the current size of the Internet. The in-addr.arpa solution is a clever one, 
although the reversed bytes of the IP address and the special domain are confusing. 

Having to worry about the in-addr.arpa domain and reversing the bytes of the IP address affects us only if we're 
dealing directly with the DNS, using a program such as host, or watching the packets with tcpdump. From an 
application's point of view, the normal resolver function (gethostbyaddr) takes an IP address and returns 
information about the host. The reversal of the bytes and appending the domain in-addr.arpa are done 
automatically by this resolver function. 

Example

Let's use the host program to do a pointer lookup and watch the packets with tcpdump. We'll use the same setup as 
in Figure 14.9, running the host program on the host sun, and the name server on the host noao.edu. We specify 
the IP address of our host svr4: 

sun % host 140.252.13.34 
Name: svr4.tuc.noao.edu
Address: 140.252.13.34 

Since the only command-line argument is an IP address, the host program automatically generates the pointer query. 
Figure 14.12 shows the tcpdump output. 

1 0.0 
140.252.1.29.1610 > 140.252.1.54.53: 1+ PTR? 
34.13.252.140.in-addr.arpa. (44) 

2 0.332288 (0.3323) 
140.252.1.54.53 > 140.252.1.29.1610: 1* 1/0/0 PTR 
svr4.tuc.noao.edu. (75) 

Figure 14.12 tcpdump output for a pointer query.

Line 1 shows that the identifier is 1, the recursion-desired flag is set (the plus sign), and the query type is PTR. (Recall 
that the question mark means this is a query and not a response.) The data size of 44 bytes is from the 12-byte DNS 
header, 28 bytes for the 7 labels in the domain name, and 4 bytes for the query type and query class. 

The reply has the authoritative-answer bit set (the asterisk) and contains one answer RR. The RR type is PTR and the 
resource data contains the domain name. 

What is passed from the resolver to the name server for a pointer query is not a 32-bit IP address, but the domain name 
34.13.252.140.in-addr.arpa. 

Hostname Spoofing Check

When an IP datagram arrives at a host for a server, be it a UDP datagram or a TCP connection request segment, all 
that's available to the server process is the client's IP address and port number (UDP or TCP). Some servers require the 
client's IP address to have a pointer record in the DNS. We'll see an example of this, using anonymous FTP from an 
unknown IP address, in Section 27.3. 

Other servers, such as the Rlogin server (Chapter 26), not only require that the client's IP address have a pointer record, 
but then ask the DNS for the IP addresses corresponding to the name returned in the PTR response, and require that one 
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of the returned addresses match the source IP address in the received datagram. This check is because entries in the 
.rhosts file (Section 26.2) contain the hostname, not an IP address, so the server wants to verify that the hostname 
really corresponds to the incoming IP address. 

Some vendors automatically put this check into their resolver routines, specifically the function gethostbyaddr. 
This makes the check available to any program using the resolver, instead of manually placing the check in each 
application. 

We can see an example of this using the SunOS 4.1.3 resolver library. We have written a simple program that performs 
a pointer query by calling the function gethostbyaddr. We have also set our /etc/resolv.conf file to use the 
name server on the host noao.edu, which is across the SLIP link from the host sun. Figure 14.13 shows the 
tcpdump output collected on the SLIP link when the function gethostbyaddr is called to fetch the name 
corresponding to the IP address 140.252.1.29 (our host sun). 

1 0.0 
sun. 1812 > noao.edu.domain: 1+ PTR? 
29.1.252.140.in-addr.arpa. (43) 

2 0.339091 (0.3391) 
noao.edu.domain > sun.1812: 1* 1/0/0 PTR 
sun.tuc.noao.edu. (73) 

3 0.344348 (0.0053) 
sun. 1813 > noao.edu.domain: 2+ A? 
sun.tuc.noao.edu. (33) 

4 0.669022 (0.3247) 
noao.edu.domain > sun.1813: 2* 2/0/0 A 
140.252.1.29 (69) 

Figure 14.13 Calling resolver function to perform pointer query

Line 1 is the expected pointer query, and line 2 is the expected response. But the resolver function automatically sends 
an IP address query in line 3 for the name returned in line 2. The response in line 4 contains two answer records, since 
the host sun has two IP addresses. If one of the addresses does not match the argument to gethostbyaddr, a 
message is sent to the system logging facility, and the function returns an error to the application. 

14.6 Resource Records

We've seen a few different types of resource records (RRs) so far: an IP address has a type of A, and PTR means a 
pointer query. We've also seen that RRs are what a name server returns: answer RRs, authority RRs, and additional 
information RRs. There are about 20 different types of resource records, some of which we'll now describe. Also, more 
RR types are being added over time. 

A An A record defines an IP address. It is stored as a 32-bit binary value. 

PTR
This is the pointer record used for pointer queries. The IP address is represented as a domain name (a 
sequence of labels) in the in-addr.arpa domain. 

CNAME

This stands for "canonical name." It is represented as a domain name (a sequence of labels). The domain 
name that has a canonical name is often called an alias. These are used by some FTP sites to provide an 
easy to remember alias for some other system. 

For example, the gated server (mentioned in Section 10.3) is available through anonymous FTP from the 
server gated.cornell.edu. But there is no system named gated, this is an alias for some other 
system. That other system is the canonical name for gated.cornell.edu: 

sun % host -t cname gated.cornell.edu
gated.cornell.edu CNAME COMET.CIT.CORNELL.EDO 

Here we use the -t option to specify one particular query type. 
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HINFO

Host information: two arbitrary character strings specifying the CPU and operating system. Not all sites 
provide HINFO records for all their systems, and the information provided may not be up to date. 

sun % host -t hinfo sun
sun.tuc.noao.edu HINFO Sun-4/25 Sun4.1.3 

MX

Mail exchange records, which are used in the following scenarios: (1) A site that is not connected to the 
Internet can get an Internet-connected site to be its mail exchanger. The two sites then work out an 
alternati ve way to exchange any mail that arrives, often using the UUCP protocol. (2) MX records 
provide a way to deliver mail to an alternative host when the destination host is not available. (3) MX 
records allow organizations to provide virtual hosts that one can send mail to, such as 
cs.university.edu, even if a host with that name doesn't exist. (4) Organizations with firewall 
gateways can use MX records to limit connectivity to internal systems. 

Many sites that are not connected to the Internet have a UUCP link with an Internet connected site such as 
UUNET. MX records are then provided so that electronic mail can be sent to the site using the standard 
user@host notation. For example, a fictitious domain foo.com might have the following MX records: 

sun % host -t mx foo.com
foo.com MX relayl.UU.NET
foo.com MX relay2.UH.NET 

MX records are used by mailers on hosts connected to the Internet. In this example the other mailers are 
told "if you have mail to send to user@foo.com, send the mail to relay1.uu.net or 
relay2.uu.net." 

MX records have 16-bit integers assigned to them, called preference values. If multiple MX records exist 
for a destination, they're used in order, starting with the smallest preference value. 

Another example of MX records handles the case when a host is down or unavailable. In that case the 
mailer uses the MX records only if it can't connect to the destination using TCP. In the case of the author's 
primary system, which is connected to the In ternet by a SLIP connection, which is down most of the time, 
we have: 

sun % host -tv mx sun
Query about sun for record types MX
Trying sun within tuc.noao.edu ...
Query done, 2 answers, authoritative status: no error
sun.tuc.noao.edu 86400 IN MX 0 sun.tuc.noao.edu
sun.tuc.noao.edu 86400 IN MX 10 noao.edu 

We also specified the -v option, to see the preference values. (This option also causes other fields to be 
output.) The second field, 86400, is the time-to-live value in seconds. This TTL is 24 hours (24 x 60 x 60). 
The third column, IN, is the class (Internet). We see that direct delivery to the host itself, the first MX 
record, has the lowest preference value of 0. If that doesn't work (i.e., the SLIP link is down), the next 
higher preference is used (10) and delivery is attempted to the host noao.edu. If that doesn't work, the 
sender will time out and retry at a later time. 

In Section 28.3 we show examples of SMTP mail delivery using MX records. 

NS
Name server record. These specify the authoritative name server for a domain. They are represented as 
domain names (a sequence of labels). We'll see examples of these records in the next section. 

These are the common types of RRs. We'll encounter many of them in later examples. 

14.7 Caching
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To reduce the DNS traffic on the Internet, all name servers employ a cache. With the standard Unix implementation, 
the cache is maintained in the server, not the resolver. Since the resolver is part of each application, and applications 
come and go, putting the cache into the program that lives the entire time the system is up (the name server) makes 
sense. This makes the cache available to any applications that use the server. Any other hosts at the site that use this 
name server also share the server's cache. 

In the scenario that we've used for our examples so far (Figure 14.9), we've run the clients on the host sun accessing the 
name server across the SLIP link on the host noao.edu. We'll change that now and run the name server on the host 
sun. In this way if we monitor the DNS traffic on the SLIP link using tcpdump, we'll only see queries that can't be 
handled by the server out of its cache. 

By default, the resolver looks for a name server on the local host (UDP port 53 or TCP port 53). We delete the 
nameserver directive from our resolver file, leaving only the domain directive: 

sun % cat /etc/resolv.conf 
domain tuc.noao.edu 

The absence of a nameserver directive in this file causes the resolver to use the name server on the local host. 

We then use the host command to execute the following query: 

sun % host ftp.uu.net
ftp.uu.net A 192.48.96.9 

Figure 14.14 shows the tcpdump output for this query. 

1 0.0 
sun.tuc.noao.edu.domain > NS.NIC.DDN.MIL.domain: 
2 A? ftp.uu.net. (28) 

2 0.559285 ( 0.5593) 
NS.NIC.DDN.MIL.domain > sun.tuc.noao.edu.domain: 
2- 0/5/5 (229) 

3 0.564449 ( 0.0052) 
sun.tuc.noao.edu.domain > ns.UU.NET.domain: 
3+ A? ftp.uu.net. (28) 

4 1.009476 ( 0.4450) 
ns.UU.NET.domain > sun.tuc.noao.edu.domain: 
3* 1/0/0 A ftp.UU.NET (44) 

Figure 14.14 tcpdump output for: host ftp.uu.net.

This time we've used a new option for tcpdump. We collected all the data to or from UDP or TCP ports 53 with the -w 
option. This saves the raw output in a file for later processing. This prevents tcpdump from trying to call the resolver 
itself, to print all the names corresponding to the IP addresses. After we ran our queries, we terminated tcpdump and 
reran it with the -r option. This causes it to read the raw output file and generate its normal printed output (which we 
show in Figure 14.14). This takes a few seconds, since tcpdump calls the resolver itself. 

The first thing to notice in our tcpdump output is that the identifiers are small integers (2 and 3). This is because we 
terminated the name server, and then restarted it, to force the cache to be empty. When the name server starts up, it 
initializes the identifier to 1. 

When we type our query, looking for the IP address of the host ftp.uu.net, the name server contacts one of the 
eight root servers, ns.nic.ddn.mil (line 1). This is the normal A type query that we've seen before, but notice that 
the recursion-desired flag is not specified. (A plus sign would have been printed after the identifier 2 if the flag was 
set.) In our earlier examples we always saw the resolver set the recursion-desired flag, but here we see that our name 
server doesn't set the flag when it's contacting one of the root servers. This is because the root servers shouldn't be 
asked to recursively answer queries-they should be used only to find the addresses of other, authoritative servers. 

Line 2 shows that the response comes back with no answer RRs, five authority RRs, and five additional information 
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RRs. The minus sign following the identifier 2 means the recursion-available (RA) flag was not set-this root server 
wouldn't answer a recursive query even if we asked it to. 

Although tcpdump doesn't print the 10 RRs that are returned, we can execute the host command to see what's in the 
cache: 

sun % host -v ftp.uu.net 

Query about ftp.uu.net for record types A 

Trying ftp.uu.net ...

Query done, 1 answer, status: no error 

The following answer is not authoritative: 

ftp.uu.net 19109 IN A 192.48.96.9

Authoritative nameservers: 

UU.NET 170308 IN NS NS.UU.NET

UU.NET 170308 IN NS UUNET.UU.NET

UU.NET 170308 IN NS UUCP-GW-1.PA.DEC.COM

UU.NET 170308 IN NS UUCP-GW-2.PA.DEC.COM

UU.NET 170308 IN NS NS.EU.NET

Additional information:

NS.UU.NET 170347 IN A 137.39.1.3

UUNET.UU.NET 170347 IN A 192.48.96.2

UUCP-GW-1.PA.DEC.COM 170347 IN A 16.1.0.18

UUCP-GW-2.PA.DEC.COM 170347 IN A 16.1.0.19

NS.EU.NET 170347 IN A 192.16.202.11

This time we specified the -v option to see more than just the A record. This shows that there are five authoritative 
name servers for the domain uu.net. The five RRs with additional information that are returned by the root server 
contain the IP addresses of these five name servers. This saves us from having to contact the root server again, to look 
up the address of one of the servers. This is another implementation optimization in the DNS. 

The host command states that the answer is not authoritative. This is because the answer was obtained from our name 
server's cache, not by contacting an authoritative server. 

Returning to line 3 of Figure 14.14, our name server contacts the first of the authoritative servers (ns.uu.net) with 
the same question: What is the IP address of ftp.uu.net? This time our server sets the recursion-desired flag. The 
answer is returned on line 4 as a response with one answer RR. 

We then execute the host command again, asking for the same name: 

sun % host ftp.uu.net
ftp.uu.net A 192.48.96.9 

This time there is no tcpdump output. This is what we expect, since the answer output by host is returned from the 
server's cache. 

We execute the host command again, looking for the address of ftp.ee.lbl.gov: 

sun%hostftp.ee.lbl.gov

ftp.ee.lbl.gov CNAME ee.lbl.gov

ee.lbl.gov A 128.3.112.20
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Figure 14.15 shows the tcpdump output. 

1 18.664971 (17.6555) 
sun.tuc.noao.edu.domain > c.nyser.net.domain:
4 A? ftp.ee.lbl.gov. (32) 

2 19.429412 ( 0.7644) 
c.nyser.net.domain > sun.tuc.noao.edu.domain: 
4 0/4/4 (188) 

3 19.432271 ( 0.0029) 
sun.tuc.noao.edu.domain > nsl.lbl.gov.domain: 
5+ A? ftp.ee.lbl.gov. (32) 

4 19.909242 ( 0.4770) 
nsl.lbl.gov.domain > sun.tuc.noao.edu.domain: 
5* 2/0/0 CNAME ee.lbl.gov. (72) 

Figure 14.15 tcpdump output for: host ftp.ee.lbl.gov.

Line 1 shows that this time our server contacts another of the root servers (c.nyser.net). A name server normally 
cycles through the various servers for a zone until round-trip estimates are accumulated. The server with the smallest 
round-trip time is then used. 

Since our server is contacting a root server, the recursion-desired flag is not set. This root server does not clear the 
recursion-available flag, as we saw in line 2 in Figure 14.14. (Even so, a name server still should not ask a root server 
for a recursive query.) 

In line 2 the response comes back with no answers, but four authority RRs and four additional information RRs. As we 
can guess, the four authority RRs are the names of the name servers for ftp.ee.lbl.gov, and the four other RRs 
contain the IP addresses of these four servers. 

Line 3 is the query of the name server nsl.lbl.gov (the first of the four name servers returned in line 2). The 
recursion-desired flag is set. 

The response in line 4 is different from previous responses. Two answer RRs are returned and tcpdump says that the 
first one is a CNAME RR. The canonical name of ftp.ee.lbl.gov is ee.lbl.gov. 

This is a common usage of CNAME records. The FTP site for LBL always has a name beginning with ftp, but it may 
move from one host to another over time. Users need only know the name ftp.ee.lbl.gov and the DNS will 
replace this with its canonical name when referenced. 

Remember that when we ran host, it printed both the CNAME and the IP address of the canonical name. This is 
because the response (line 4 in Figure 14.15) contained two answer RRs. The first one is the CNAME and the second is 
the A record. If the A record had not been returned with the CNAME, our server would have issued another query, 
asking for the IP address of ee.lbl.gov. This is another implementation optimization-both the CNAME and the A 
record of the canonical name are returned in one response. 

14.8 UDP or TCP

We've mentioned that the well-known port numbers for DNS name servers are UDP port 53 and TCP port 53. This 
implies that the DNS supports both UDP and TCP. But all the examples that we've watched with tcpdump have used 
UDP. When is each protocol used and why? 

When the resolver issues a query and the response comes back with the TC bit set ("truncated") it means the size of the 
response exceeded 512 bytes, so only the first 512 bytes were returned by the server. The resolver normally issues the 
request again, using TCP. This allows more than 512 bytes to be returned. (Recall our discussion of the maximum UDP 
datagram size in Section 11.10.) Since TCP breaks up a stream of user data into what it calls segments, it can transfer 
any amount of user data, using multiple segments. 

Also, when a secondary name server for a domain starts up it performs a zone transfer from the primary name server 
for the domain. We also said that the secondary queries the primary on a regular basis (often every 3 hours) to see if the 
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primary has had its tables updated, and if so, a zone transfer is performed. Zone transfers are done using TCP, since 
there is much more data to transfer than a single query or response. 

Since the DNS primarily uses UDP, both the resolver and the name server must perform their own timeout and 
retransmission. Also, unlike many other Internet applications that used UDP (TFTP, BOOTP, and SNMP), which 
operate mostly on local area networks, DNS queries and responses often traverse wide area networks. The packet loss 
rate and variability in round-trip times are normally higher on a WAN than a LAN, increasing the importance of a good 
retransmission and timeout algorithm for DNS clients. 

14.9 Another Example

Let's look at another example that ties together many of the DNS features that we've described. We start an Rlogin 
client, connecting to an Rlogin server in some other domain. Figure 14.16 shows the exchange of packets that takes 
place. 

Figure 14.16 Summary of packets exchanged to start up Rlogin client and server

The following 11 steps take place, assuming none of the information is already cached by the client or server: 

1.  The client starts and calls its resolver function to convert the hostname that we typed into an IP address. A query 
of type A is sent to a root server. 

2.  The root server's response contains the name servers for the server's domain. 
3.  The client's resolver reissues the query of type A to the server's name server. This query normally has the 

recursion-desired flag set. 
4.  The response comes back with the IP address of the server host. 
5.  The Rlogin client establishes a TCP connection with the Rlogin server. (Chapter 18 provides all the details of 

this step.) Three packets are exchanged between the client and server TCP modules. 
6.  The Rlogin server receives the connection from the client and calls its resolver to obtain the name of the client 

host, given the IP address that the server receives from its TCP. This is a PTR query issued to a root name 
server. This root server can be different from the root server used by the client in step 1. 

7.  The root server's response contains the name servers for the client's in-addr.arpa domain. 
8.  The server's resolver reissues the PTR query to the client's name server. 
9.  The PTR response contains the FQDN of the client host. 

10.  The server's resolver issues a query of type A to the client's name server, asking for the IP addresses 
corresponding to the name returned in the previous step. This may be done automatically by the server's 
gethostbyaddr function, as we described in Section 14.5, otherwise the Rlogin server does this step 
explicitly. Also, the client's name server is often the same as the client's in-addr.arpa name server, but this 
isn't required. 

11.  The response from the client's name server contains the A records for the client host. The Rlogin server 
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compares the A records with the IP address from. the client's TCP connection request. 

Caching can reduce the number of packets exchanged in this figure. 

14.10 Summary

The DNS is an essential part of any host connected to the Internet, and widely used in private internets also. The basic 
organization is a hierarchical tree that forms the DNS name space. 

Applications contact resolvers to convert a hostname to an IP address, and vice versa. Resolvers then contact a local 
name server, and this server may contact one of the root servers or other servers to fulfill the request. 

All DNS queries and responses have the same message format. This message contains questions and possibly answer 
resource records (RRs), authority RRs, and additional RRs. We saw numerous examples, showing the resolver 
configuration file and some of the DNS optimizations: pointers to domain names (to reduce the size of messages), 
caching, the in-addr.arpa domain (to look up a name given an IP address), and returning additional RRs (to save 
the requestor from issuing another query). 

Exercises

14.1 Classify a DNS resolver and a DNS name server as either client, server, or both. 

14.2 Account for all 75 bytes in the response in Figure 14.12. 

14.3 In Section 12.3 we said that an application that accepts either a dotted-decimal IP address or a hostname should 
assume the former, and if that fails, then assume a hostname. What happens if the order of the tests is reversed? 

14.4 Every UDP datagram has an associated length. A process that receives a UDP datagram is told what its length is. 
When a resolver issues a query using TCP instead of UDP, since TCP is a stream of bytes without any record markers, 
how does the application know how much data is returned? Notice that there is no length field in the DNS header 
(Figure 14.3). (Hint: Look at RFC 1035.) 

14.5 We said that a name server must know the IP addresses of the root servers and that this information is available 
via anonymous FTP. Unfortunately not all system administrators update their DNS files whenever changes are made to 
the list of root servers. (Changes do occur to the list of root servers, but not frequently.) How do you think the DNS 
handles this? 

14.6 Fetch the file specified in Exercise 1.8 and determine who is responsible for maintaining the root name servers. 
How frequently are the root servers updated? 

14.7 What is a problem with maintaining the cache in the name server, and having a stateless resolver? 

14.8 In the discussion of Figure 14.10 we said that the name server sorts the A records so that addresses on common 
networks appear first. Who should sort the A records, the name server or the resolver? 
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TFTP: Trivial File Transfer Protocol
15.1 Introduction

TFTP is the Trivial File Transfer Protocol. It is intended to be used when bootstrapping diskless systems (normally 
workstations or X terminals). Unlike the File Transfer Protocol (FTP), which we describe in Chapter 27 and which 
uses TCP, TFTP was designed to use UDP, to make it simple and small. Implementations of TFTP (and its required 
UDP, IP, and a device driver) can fit in read-only memory. 

This chapter provides an overview of TFTP because we'll encounter it in the next chapter with the Bootstrap 
Protocol. We also encountered TFTP in Figure 5.1 when we bootstrapped the host sun from the network. It issued a 
TFTP request after obtaining its IP address using RARP. 

RFC 1350 [Sollins 1992] is the official specification of version 2 of TFTP. Chapter 12 of [Stevens 1990] provides a 
complete source code implementation of a TFTP client and server, and describes some of the programming 
techniques used with TFTP. 

15.2 Protocol

Each exchange between a client and server starts with the client asking the server to either read a file for the client or 
write a file for the client. In the normal case of bootstrapping a diskless system, the first request is a read request 
(RRQ). Figure 15.1 shows the format of the five TFTP messages. (Opcodes 1 and 2 share the same format.) 
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Figure 15.1 Format of the five TFTP messages.

The first 2 bytes of the TFTP message are an opcode. For a read request (RRQ) and write request (WRQ) the 
filename specifies the file on the server that the client wants to read from. or write to. We specifically show that this 
filename is terminated by a byte of 0 in Figure 15.1. The mode is one of the ASCII strings netascii or octet (in 
any combination of uppercase or lowercase), again terminated by a byte of 0. netascii means the data are lines of 
ASCII text with each line terminated by the 2-character sequence of a carriage return followed by a linefeed (called 
CR/LF). Both ends must convert between this format and whatever the local host uses as a line delimiter. An octet 
transfer treats the data as 8-bit bytes with no interpretation. 

Each data packet contains a block number that is later used in an acknowledgment packet. As an example, when 
reading a file the client sends a read request (RRQ) specifying the filename and mode. If the file can be read by the 
client, the server responds with a data packet with a block number of 1. The client sends an ACK of block number 1. 
The server responds with the next data packet, with a block number of 2. The client sends an ACK of block number 
2. This continues until the file is transferred. Each data packet contains 512 bytes of data, except for the final packet, 
which contains 0-511 bytes of data. When the client receives a data packet with less than 512 bytes of data, it knows 
it has received the final packet. 

In the case of a write request (WRQ), the client sends the WRQ specifying the filename and mode. If the file can be 
written by the client, the server responds with an ACK of block number 0. The client then sends the first 512 bytes 
of file with a block number of 1. The server responds with an ACK of block number 1. 

This type of data transmission is called a stop-and-wait protocol. It is found only in simple protocols such as TFTP. 
We'll see in Section 20.3 that TCP provides a different form of acknowledgment, which can provide higher 
throughput. TFTP is designed for simplicity of implementation, not high throughput. 

The final TFTP message type is the error message, with an opcode of 5. This is what the server responds with if a 
read request or write request can't be processed. Read and write errors during file transmission also cause this 
message to be sent, and transmission is then terminated. The error number gives a numeric error code, followed by 
an ASCII error message that might contain additional, operating system specific information. 

Since TFTP uses the unreliable UDP, it is up to TFTP to handle lost and duplicated packets. Lost packets are 
detected with a timeout and retransmission implemented by the sender. (Be aware of a potential problem called the 
"sorcerer's apprentice syndrome" that can occur if both sides time out and retransmit. Section 12.2 of [Stevens 1990] 
shows how the problem can occur.) As with most UDP applications, there is no checksum in the TFTP messages, 
which assumes any corruption of the data will be caught by the UDP checksum (Section 11.3). 

15.3 An Example

Let's examine TFTP by watching the protocol in action. We'll run the TFTP client on the host bsdi and fetch a text 
file from the host svr4: 

bsdi % tftp svr4 start the TFTP client 

tftp> get testl.c fetch a file from the server 

Received 962 bytes in 0.3 seconds 

tftp> quit and terminate

bsdi % ls -1 testl.c how many bytes in thefile we fetched? 

-rw-r-r- 1 rstevens staff 914 Mar 20 11:41 test1.c 

bsdi % wc -1 testl.c and how many lines? 

48 testl.c

The first point that catches our eye is that the file contains 914 bytes under Unix, but TFTP transfers 962 bytes. 
Using the wc program we see that there are 48 lines in the file, so the 48 Unix newline characters are expanded into 
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48 CR/LF pairs, since the TFTP default is a netascii transfer. Figure 15.2 shows the packet exchange that takes 
place. 

1 0.0 bsdi.ll06 > svr4.tftp: 19 RRQ "testl.c" 

2 
3 

0.287080 (0.2871)
0.291178 (0.0041) 

svr4.1077 > bsdi.ll06: udp 516
bsdi.1106 > svr4.1077: udp 4 

4 
5 

0.299446 (0.0083)
0.312320 (0.0129) 

svr4.1077 > bsdi.1106: udp 454
bsdi.ll06 > svr4.1077: udp 4 

Figure 15.2 Packet exchange for TFTP of a file.

Line 1 shows the read request from the client to the server. Since the destination UDP port is the TFTP well-known 
port (69), tcpdump interprets the TFTP packet and prints RRQ and the name of the file. The length of the UDP 
data is printed as 19 bytes and is accounted for as follows: 2 bytes for the opcode, 7 bytes for the filename, 1 byte of 
0, 8 bytes for netascii, and another byte of 0. 

The next packet is from the server (line 2) and contains 516 bytes: 2 bytes for the opcode, 2 bytes for the block 
number, and 512 bytes of data. Line 3 is the acknowledgment for this data: 2 bytes for the opcode and 2 bytes for the 
block number. 

The final data packet (line 4) contains 450 bytes of data. The 512 bytes of data in line 2 and this 450 bytes of data 
account for the 962 bytes of data output by the client. 

Note that tcpdump doesn't output any additional TFTP protocol information for lines 2-5, whereas it interpreted the 
TFTP message in line 1. This is because the server's port number changes between lines 1 and 2. The TFTP protocol 
requires that the client send the first packet (the RRQ or WRQ) to the server's well-known UDP port (69). The server 
then allocates some other unused ephemeral port on the server's host (1077 in Figure 15.2), which is then used by the 
server for all further packet exchange between this client and server. The client's port number (1106 in this example) 
doesn't change, tcpdump has no idea that port 1077 on host svr4 is really a TFTP server. 

The reason the server's port number changes is so the server doesn't tie up the well-known port for the amount of 
time required to transfer the file (which could be many seconds or even minutes). Instead, the well-known port is left 
available for other TFTP clients to send their requests to, while the current transfer is under way. 

Recall from Figure 10.6 that when the RIP server had more than 512 bytes to send to the client, both UDP datagrams 
came from the server's well-known port. In that example, even though the server had to write multiple datagrams to 
send all the data back, the server did one write, followed by the next, both from its well-known port. Here, with 
TFTP, the protocol is different since there is a longer term relationship between the client and server (which we said 
could be seconds or minutes). If one server process used the well-known port for the duration of the file transfer, it 
would either have to refuse any further requests that arrived from other clients, or that one server process would have 
to multiplex file transfers with multiple clients at the same time, on the same port (69). The simplest solution is to 
have the server obtain a new port after it receives the RRQ or WRQ. Naturally the client must detect this new port 
when it receives the first data packet (line 2 in Figure 15.2) and then send all further acknowledgments (lines 3 and 
5) to that new port. In Section 16.3 we'll see TFTP used when an X terminal is bootstrapped. 

15.4 Security

Notice in the TFTP packets (Figure 15.1) that there is no provision for a username or password. This is a feature 
(i.e., "security hole") of TFTP. Since TFTP was designed for use during the bootstrap process it could be impossible 
to provide a username and password. 

This feature of TFTP was used by many crackers to obtain copies of a Unix password file and then try to guess 
passwords. To prevent this type of access, most TFTP servers nowadays provide an option whereby only files in a 
specific directory (often /tftpboot on Unix systems) can be accessed. This directory then contains only the 
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bootstrap files required by the diskless systems. 

For additional security, the TFTP server on a Unix system normally sets its user ID and group ID to values that 
should not be assigned to any real user. This allows access only to files that have world-read or world-write 
permissions. 

15.5 Summary

TFTP is a simple protocol designed to fit into read-only memory and be used only during the bootstrap process of 
diskless systems. It uses only a few message formats and a stop-and-wait protocol. 

To allow multiple clients to bootstrap at the same time, a TFTP server needs to provide some form of concurrency. 
Because UDP does not provide a unique connection between a client and server (as does TCP), the TFTP server 
provides concurrency by creating a new UDP port for each client. This allows different client input datagrams to be 
demultiplexed by the server's UDP module, based on destination port numbers, instead of doing this in the server 
itself. 

The TFTP protocol provides no security features. Most implementations count on the system administrator of the 
TFTP server to restrict any client's access to the files necessary for bootstrapping only. 

Chapter 27 covers the File Transfer Protocol (FTP), which is designed for general purpose, high-throughput file 
transfer. 

Exercises

15.1 Read the Host Requirements RFC to see what a TFTP server should do if it receives a request and the 
destination IP address of the request is a broadcast address. 

15.2 What do you think happens when the TFTP block number wraps around from 65535 to 0? Does RFC 1350 say 
anything about this? 

15.3 We said that the TFTP sender performs the timeout and retransmission to handle lost packets. How does this 
affect the use of TFTP when it's being used as part of the bootstrap process? 

15.4 What is the limiting factor in the time required to transfer a file using TFTP? 
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BOOTP: Bootstrap Protocol
16.1 Introduction

In Chapter 5 we described how a diskless system, with no knowledge of its IP address, can 
determine its IP address using RARP when it is bootstrapped. There are two problems with 
RARP: (1) the only thing returned is the IP address, and (2) since RARP uses a link-layer 
broadcast, RARP requests are not forwarded by routers (necessitating an RARP server on 
every physical network). This chapter describes an alternative method for a diskless system to 
bootstrap itself, called the Bootstrap Protocol, or BOOTP. 

BOOTP uses UDP and normally works in conjunction with TFTP (Chapter 15). RFC 951 
[Croft and Gilmore 1985] is the official specification for BOOTP with clarifications given in 
RFC 1542 [Wimer 1993]. 

16.2 BOOTP Packet Format

BOOTP requests and replies are encapsulated in UDP datagrams, as shown in Figure 16.1. 

Figure 16.1 Encapsulation of BOOTP requests and replies within a UDP datagram.

Figure 16.2 shows the format of the 300-byte BOOTP request and reply. 
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Figure 16.2 Format of BOOTP request and reply.

Opcode is 1 for a request and 2 for a reply. The hardware type field is 1 for a 10 Mbits/sec 
Ethernet, the same value that is in the field of the same name in an ARP request or reply 
(Figure 4.3). Similarly, the hardware address length is 6 bytes for an Ethernet. 

The hop count is set to 0 by the client, but can be used by a proxy server (described in Section 
16.5). 

The transaction ID is a 32-bit integer set by the client and returned by the server. This lets the 
client match a response with a request. The client should set this to a random number for each 
request. 
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Number of seconds can be set by the client to the time since it started trying to bootstrap. The 
servers can look at this value, and perhaps a secondary server for a client won't respond until 
the number of seconds has exceeded some value, implying that the client's primary server is 
down. 

If the client already knows its IP address, it fills in the client IP address. Otherwise, the client 
sets this to 0. In the latter case the server fills in your IP address with the client's IP address. 
The server IP address is filled in by the server. If a proxy server is used (Section 16.5), that 
proxy server fills in its gateway IP address. 

The client must set its client hardware address. Although this is the same value as in the 
Ethernet header, by placing the field in the UDP datagram also, it is easily available to any 
user process (e.g., a BOOTP server) that receives the datagram. It is normally much harder (or 
impossible) for a process reading UDP datagrams to determine the fields in the Ethernet 
header that carried the UDP datagram. 

The server hostname is a null terminated string that is optionally filled in by the server. The 
server can also fill in the boot filename with the fully qualified, null terminated pathname of a 
file to bootstrap from. 

The vendor-specific area is used for various extensions to BOOTP. Section 16.6 describes 
some of these extensions. 

When a client is bootstrapping using BOOTP (an opcode of 1) the request is normally a link-
layer broadcast and the destination IP address in the IP header is normally 255.255.255.255 
(the limited broadcast. Section 12.2). The source IP address is often 0.0.0.0 since the client 
does not know its own IP address yet. Recall from Figure 3.9 that 0.0.0.0 is a valid source IP 
address when a system is bootstrapping itself. 

Port Numbers

There are two well-known ports for BOOTP: 67 for the server and 68 for the client. This 
means the client does not choose an unused ephemeral port, but uses 68 instead. The reason 
two port numbers were chosen, instead of just one for the server, is that a server's reply can be 
(but normally isn't) broadcast. 

If the server's reply were broadcast, and if the client were to choose an ephemeral port 
number, these broadcasts would also be received by other applications on other hosts that 
happen to be using the same ephemeral port number. Hence, it is considered bad form to 
broadcast to a random (i.e., ephemeral) port number. 

If the client also used the server's well-known port (67) as its port, then all servers on the 
network are awakened to look at each broadcast reply. (If all the servers were awakened, they 
would examine the opcode, see that it's a reply and not a request, and go back to sleep.) 
Therefore the choice was made to have all clients use a single well-known port that differs 

file:///D|/Documents%20and%20Settings/bigini/Documenti/homenet2run/tcpip/tcp-ip-illustrated/bootp.htm (3 of 9) [12/09/2001 14.47.08]



Chapter 16. BOOTP: Bootstrap Protocol

from the server's well-known port. 

If multiple clients are bootstrapping at the same time, and if the server broadcasts the replies, 
each client sees the replies intended for the other clients. The clients can use the transaction ID 
field in the BOOTP header to match replies with requests, or the client can examine the 
returned client hardware address. 

16.3 An Example

Let's look at an example of BOOTP when an X terminal is bootstrapped. Figure 16.3 shows 
the tcpdump output. (The client's name is proteus and the server's name is mercury. This 
tcpdump output was obtained on a different network from the one we've been using for all 
the other examples in the text.) 

1 0.0 
0.0.0.0.68 > 255.255.255.255.bootp: 
secs: 100 ether 0:0:a7:0:62:7c 

2 0.355446 (0.3554) 

mercury.bootp > proteus.68: secs:100 
Y:proteus 
S: mercury G: mercury ether 
0:0:a7:0:62:7c
file "/local/var/bootfiles/Xncdl9r" 

3 0.355447 (0.0000) arp who-has proteus tell 0.0.0.0

4 0.851508 (0.4961) arp who-has proteus tell 0.0.0.0

5
1.371070 
(0..5196) 

arp who-has proteus tell proteus

6
1.863226 
(0..4922) 

proteus.68 > 255.255.255.255.bootp: 
secs: 100 ether 0:0:a7:0:62:7c 

7 1.71038 (0..0078) 

mercury.bootp > proteus.68: secsilOO 
Y:proteus 
S: mercury G: mercury ether 
0:0:a7:0;62:7c
file "/local/var/bootfiles/Xncdl9r" 

8 3.871038 (2.0000) 
proteus.68 > 255.255.255.255.bootp:
secs: 1OO ether 0:0:a7:0:62:7c 

9 3.878850 (0.0078) 

mercury.bootp > proteus. 68: secs: 100 
Y:proteus 
S: mercury G: mercury ether 
0:0:a7:0:62:7c
file "/local/var/bootfiles/Xncdl9r" 

10 5.925786 (2.0469) arp who-has mercury tell proteus

11 5.929692 (0.0039) arp reply mercury is-at 8:0:2b:28:eb:1d 

12 5.929694 (0.0000) 
proteus. tftp > mercury, tftp: 37 RRQ 
"/local/var/bootfiles/Xncdl9r" 
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13 5.996094 (0.0664) 
mercury.2352 > proteus.tftp: 516 DATA 
block 1 

14 6.000000 (0.0039) proteus. tftp > mercury. 2352: 4 ACK 

many lines deleted here 

15
14.980472 
(8.9805) 

mercury.2352 > proteus.tftp: 516 DATA 
block 2510 

16
14.984376 
(0.0039) 

proteus. tftp > mercury. 2352: 4 ACK 

17
14.984377 
(0.0000) 

mercury. 2352 > proteus. tftp: 228 DATA 
block 2464 

18
14.984378 
(0.0000) 

proteus.tftp > mercury.2352: 4 ACK 

Figure 16.3 Example of BOOTP being used to bootstrap an X terminal.

In line 1 we see the client's request from 0.0.0.0.68, destined for 255.255.255.255.67. The only 
fields the client has filled in are the number of seconds and its Ethernet address. We'll see that 
this client always sets the number of seconds to 100. The hop count and transaction ID are 
both 0 since they are not output by tcpdump. (A transaction ID of 0 means the client ignores 
the field, since it would set this field to a random number if it was going to verify the returned 
value in the response.) 

Line 2 is the reply from the server. The fields filled in by the server are the client's IP address 
(which tcpdump prints as the name proteus), the server's IP address (printed as the name 
mercury), the IP address of a gateway (printed as the name mercury), and the name of a 
boot file. 

After receiving the BOOTP reply, the client immediately issues an ARP request to see if 
anyone else on the network has its IP address. The name proteus following who-has 
corresponds to the target IP address (Figure 4.3), and the sender's IP address is set to 0.0.0.0. It 
sends another identical ARP request 0.5 second later, and another one 0.5 second after that. In 
the third ARP request (line 5) it changes the sender's IP address to be its own IP address. This 
is a gratuitous ARP request (Section 4.7). 

Line 6 shows that the client waits another 0.5 second and broadcasts another BOOTP request. 
The only difference between this request and line 1 is that now the client puts its own IP 
address in the IP header. It receives the same reply from the same server (line 7). The client 
waits another 2 seconds and broadcasts yet another BOOTP request (line 8) and receives the 
same reply from the same server. 

The client then waits another 2 seconds and sends an ARP request for its server mercury (line 
10). The ARP reply is received and the client immediately issues a TFTP read request for its 
boot file (line 12). What follows are 2464 TFTP data packets and acknowledgments. The 
amount of data transferred is 512 x 2463+224 = 1,261,280 bytes. This loads the operating 
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system into the X terminal. We have deleted most of the TFTP lines from Figure 16.3. 

One thing to notice, when comparing this TFTP exchange with Figure 15.2, is that here the 
client uses the TFTP well-known port (69) for the entire transfer. Since one of the two partners 
is using port 69, tcpdump knows that the packets are TFTP messages, so it is able to 
interpret each packet using the TFTP protocol. This is why Figure 16.3 indicates which 
packets contain data, which contain acknowledgments, and what the block number is for each 
packet. We didn't get this additional information in Figure 15.2 because neither end was using 
TFTP's well-known port for the data transfer. Normally the TFTP client cannot use TFTP's 
well-known port, since that port is used by the server on a multiuser system. But here the 
system is being bootstrapped, so a TFTP server is not provided, allowing the client to use the 
port for the duration of the transfer. This also implies that the TFTP server on mercury doesn't 
care what the client's port number is-it sends the data to the client's port, whatever that 
happens to be. 

From Figure 16.3 we see that 1,261,280 bytes are transferred in 9 seconds. This is a rate of 
about 140,000 bytes per second. While this is slower than most FTP file transfers across an 
Ethernet, it is not that bad for a simple stop-and-wait protocol such as TFTP. 

What follows as this X terminal is bootstrapped are additional TFTP transfers of the terminal's 
font files, some DNS name server queries, and then the initialization of the X protocol. The 
total time in Figure 16.3 was almost 15 seconds, and another 6 seconds is taken for the 
remaining steps. This gives a total of 21 seconds to bootstrap the diskless X terminal. 

16.4 BOOTP Server Design

The BOOTP client is normally provided in read-only memory on the diskless system. It is 
interesting to see how the server is normally implemented. 

First, the server reads UDP datagrams from its well-known port (67). Nothing special is 
required. This differs from an RARP server (Section 5.4), which we said had to read Ethernet 
frames with a type field of "RARP request." The BOOTP protocol also made it easy for the 
server to obtain the client's hardware address, by placing it into the BOOTP packet (Figure 
16.2). 

An interesting problem arises: how can the server send a response directly back to the client? 
The response is a UDP datagram, and the server knows the client's IP address (probably read 
from a configuration file on the server). But if the client sends a UDP datagram to that IP 
address (the normal way UDP output is handled), the server's host will probably issue an ARP 
request for that IP address. But the client can't respond to the ARP request since it doesn't 
know its IP address yet! (This is called the "chicken and egg" issue in RFC 951.) 

There are two solutions. The first, commonly used by Unix servers, is tor the server to issue an 
ioctl(2) request to the kernel, to place an entry into the ARP cache for this client. (This is 
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what the arp -s command does. Section 4.8.) The server can do this since it knows the 
client's hardware address and IP address. This means that when the server sends the UDP 
datagram (the BOOTP reply), the server's ARP module will find the client's IP address in the 
ARP cache. 

An alternative solution is tor the server to broadcast the BOOTP reply, instead of sending it 
directly to the client. Since reducing the number of broadcasts on a network is always 
desirable, this solution should be used only if the server cannot make an entry into its ARP 
cache. Normally it requires superuser permission to make an entry into the ARP cache, 
requiring a broadcast reply if the server is nonprivileged. 

16.5 BOOTP Through a Router

We said in Section 5.4 that one of the drawbacks of RARP is that it uses a link-layer 
broadcast, which is normally not forwarded by a router. This required an RARP server on each 
physical network. BOOTP can be used through a router, if supported by the router. (Most 
major router vendors do support this feature.) 

This is mainly intended for diskless routers, because if a multiuser system with a disk is used 
as a router, it can probably run a BOOTP server itself. Alternatively, the common Unix 
BOOTP server (Appendix F) supports this relay mode, but again, if you can run a BOOTP 
server on the physical network, there's normally no need to forward the requests to yet another 
server on another network. 

What happens is that the router (also called the "BOOTP relay agent") listens tor BOOTP 
requests on the server's well-known port (67). When a request is received, the relay agent 
places its IP address into the gateway IP address field in the BOOTP request, and sends the 
request to the real BOOTP server. (The address placed by the relay agent into the gateway 
field is the IP address of the interface on which the request was received.) The relay agent also 
increments the hops field by one. (This is to prevent infinite loops in case the request is 
reforwarded. RFC 951 mentions that the request should probably be thrown away if the hop 
count reaches 3.) Since the outgoing request is a unicast datagram (as opposed to the original 
client request that was broadcast), it can follow any route to the real BOOTP server, passing 
through other routers. The real server gets the request, forms the BOOTP reply, and sends it 
back to the relay agent, not the client. The real server knows that the request has been 
forwarded, since the gateway field in the request is nonzero. The relay agent receives the reply 
and sends it to the client. 

16.6 Vendor-Specific Information

In Figure 16.2 we showed a 64-byte vendor-specific area, RFC 1533 [Alexander and Droms 
1993] defines the format of this area. This area contains optional information for the server to 
return to the client. 

If information is provided, the first 4 bytes of this area are set to the IP address 99.130.83.99. 
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This is called the magic cookie and means there is information in the area. 

The rest of this area is a list of items. Each item begins with a 1-byte tag field. Two of the 
items consist of just the tag field: a tag of 0 is a pad byte (to force following items to preferred 
byte boundaries), and a tag of 255 marks the end of the items. Any bytes remaining in this area 
after the first end byte should be set to this value (255). 

Other than these two 1-byte items, the remaining items consist of a single length byte, 
followed by the information. Figure 16.4 shows the format of some of the items in the vendor-
specific area. 

Figure 16.4 Format of some of the items in the vendor-specific area.

The subnet mask and time value are really fixed-length items because their values always 
occupy 4 bytes. The time offset is the number of seconds since midnight January 1,1900, 
UTC. 

The gateway item is an example of a variable-length item. The length is always a multiple of 
4, and the values are the 32-bit IP addresses of one or more gateways (routers) for the client to 
use. The first one returned must be the preferred gateway. 
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There are 14 other items defined in RFC 1533. Probably the most important is the IP address 
of a DNS name server, with a tag value of 6. Other items return the IP address of a printer 
server, the IP address of a time server, and so on. Refer to the RFC for all the details. 

Returning to our example in Figure 16.3, we never saw an ICMP address mask request 
(Section 6.3) that would have been broadcast by the client to find its subnet mask. Although it 
wasn't output by tcpdump, we can probably assume that the client's subnet mask was 
returned in the vendor-specific area of the BOOTP reply. 

The Host Requirements RFC recommends that a system using BOOTP obtain its subnet mask using BOOTP, 
not ICMP. 

The size of the vendor-specific area is limited to 64 bytes. This is a constraint for some 
applications. A new protocol named DHCP (Dynamic Host Configuration Protocol) is built 
on, but replaces, BOOTP. DHCP extends this area to 312 bytes and is defined in RFC 1541 
[Droms 1993]. 

16.7 Summary

BOOTP uses UDP and is intended as an alternative to RARP for bootstrapping a diskless 
system to find its IP address. BOOTP can also return additional information, such as the IP 
address of a router, the client's subnet mask, and the IP address of a name server. 

Since BOOTP is used in the bootstrap process, a diskless system needs the following protocols 
implemented in read-only memory: BOOTP, TFTP, UDP, IP, and a device driver for the local 
network. 

The implementation of a BOOTP server is easier than an RARP server, since BOOTP requests 
and replies are in UDP datagrams, not special link-layer frames. A router can also serve as a 
proxy agent for a real BOOTP server, forwarding client requests to the real server on a 
different network. 

Exercises

16.1 We've said that one advantage of BOOTP over RARP is that BOOTP can work through 
routers, whereas RARP, which is a link-layer broadcast, cannot. Yet in Section 16.5 we had to 
define special ways for BOOTP to work through a router. What would happen if a capability 
were added to routers allowing them to forward RARP requests? 

16.2 We said that a BOOTP client must use the transaction ID to match responses with 
requests, in case there are multiple clients bootstrapping at the same time from a server that 
broadcasts replies. But in Figure 16.3 the transaction ID is 0, implying that this client ignores 
the transaction ID. How do you think this client matches the responses with its requests? 
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TCP: Transmission Control Protocol
17.1 Introduction

In this chapter we provide a description of the services provided by TCP for the application 
layer. We also look at the fields in the TCP header. In the chapters that follow we examine 
all of these header fields in more detail, as we see how TCP operates. 

Our description of TCP starts in this chapter and continues in the next seven chapters. 
Chapter 18 describes how a TCP connection is established and terminated, and Chapters 19 
and 20 look at the normal transfer of data, both for interactive use (remote login) and bulk 
data (file transfer). Chapter 21 provides the details of TCP's timeout and retransmission, 
followed by two other TCP timers in Chapters 22 and 23. Finally Chapter 24 takes a look at 
newer TCP features and TCP performance. 

The original specification for TCP is RFC 793 [Postel 1981c], although some errors in that 
RFC are corrected in the Host Requirements RFC. 

17.2 TCP Services

Even though TCP and UDP use the same network layer (IP), TCP provides a totally 
different service to the application layer than UDP does. TCP provides a connection-
oriented, reliable, byte stream service. 

The term connection-oriented means the two applications using TCP (normally considered a 
client and a server) must establish a TCP connection with each other before they can 
exchange data. The typical analogy is dialing a telephone number, waiting for the other 
party to answer the phone and say "hello," and then saying who's calling. In Chapter 18 we 
look at how a connection is established, and disconnected some time later when either end is 
done. 

There are exactly two end points communicating with each other on a TCP connection. 
Concepts that we talked about in Chapter 12, broadcasting and multicasting, aren't 
applicable to TCP. 

TCP provides reliability by doing the following: 

●     The application data is broken into what TCP considers the best sized chunks to send. 
This is totally different from UDP, where each write by the application generates a 
UDP datagram of that size. The unit of information passed by TCP to IP is called a 
segment. (See Figure 1.7) In Section 18.4 we'll see how TCP decides what this 
segment size is. 
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●     When TCP sends a segment it maintains a timer, waiting for the other end to 
acknowledge reception of the segment. If an acknowledgment isn't received in time, 
the segment is retransmitted. In Chapter 21 we'll look at TCP's adaptive timeout and 
retransmission strategy. 

●     When TCP receives data from the other end of the connection, it sends an 
acknowledgment. This acknowledgment is not sent immediately, but normally 
delayed a fraction of a second, as we discuss in Section 19.3. 

●     TCP maintains a checksum on its header and data. This is an end-to-end checksum 
whose purpose is to detect any modification of the data in transit. If a segment arrives 
with an invalid checksum, TCP discards it and doesn't acknowledge receiving it. (It 
expects the sender to time out and retransmit.) 

●     Since TCP segments are transmitted as IP datagrams, and since IP datagrams can 
arrive out of order, TCP segments can arrive out of order. A receiving TCP 
resequences the data if necessary, passing the received data in the correct order to the 
application. 

●     Since IP datagrams can get duplicated, a receiving TCP must discard duplicate data. 
●     TCP also provides flow control. Each end of a TCP connection has a finite amount of 

buffer space. A receiving TCP only allows the other end to send as much data as the 
receiver has buffers for. This prevents a fast host from taking all the buffers on a 
slower host. 

A stream of 8-bit bytes is exchanged across the TCP connection between the two 
applications. There are no record markers automatically inserted by TCP. This is what we 
called a byte stream service. If the application on one end writes 10 bytes, followed by a 
write of 20 bytes, followed by a write of 50 bytes, the application at the other end of the 
connection cannot tell what size the individual writes were. The other end may read the 80 
bytes in four reads of 20 bytes at a time. One end puts a stream of bytes into TCP and the 
same, identical stream of bytes appears at the other end. 

Also, TCP does not interpret the contents of the bytes at all. 'TCP has no idea if the data 
bytes being exchanged are binary data, ASCII characters, EBCDIC characters, or whatever. 
The interpretation of this byte stream is up to the applications on each end of the connection. 

This treatment of the byte stream by TCP is similar to the treatment of a file by the Unix operating system. 
The Unix kernel does no interpretation whatsoever of the bytes that an application reads or write-that is up 
to the applications. There is no distinction to the Unix kernel between a binary file or a file containing lines 
of text. 

17.3 TCP Header

Recall that TCP data is encapsulated in an IP datagram, as shown in Figure 17.1. 
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Figure 17.1 Encapsulation of TCP data in an IP datagram.

Figure 17.2 shows the format of the TCP header. Its normal size is 20 bytes, unless options 
are present. 

Figure 17.2 TCP header.

Each TCP segment contains the source and destination port number to identify the sending 
and receiving application. These two values, along with the source and destination IP 
addresses in the IP header, uniquely identify each connection. 

The combination of an IP address and a port number is sometimes called a socket. This term 
appeared in the original TCP specification (RFC 793), and later it also became used as the 
name of the Berkeley-derived programming interface (Section 1.15). It is the socket pair 
(the 4-tuple consisting of the client IP address, client port number, server IP address, and 
server port number) that specifies the two end points that uniquely identifies each TCP 
connection in an internet. 
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The sequence number identifies the byte in the stream of data from the sending TCP to the 
receiving TCP that the first byte of data in this segment represents. If we consider the stream 
of bytes flowing in one direction between two applications, TCP numbers each byte with a 
sequence number. This sequence number is a 32-bit unsigned number that wraps back 
around to 0 after reaching 232 - 1. 

When a new connection is being established, the SYN flag is turned on. The sequence 
number field contains the initial sequence number (ISN) chosen by this host for this 
connection. The sequence number of the first byte of data sent by this host will be the ISN 
plus one because the SYN flag consumes a sequence number. (We describe additional 
details on exactly how a connection is established and terminated in the next chapter where 
we'll see that the FIN flag consumes a sequence number also.) 

Since every byte that is exchanged is numbered, the acknowledgment number contains the 
next sequence number that the sender of the acknowledgment expects to receive. This is 
therefore the sequence number plus 1 of the last successfully received byte of data. This 
field is valid only if the ACK flag (described below) is on. 

Sending an ACK costs nothing because the 32-bit acknowledgment number field is always 
part of the header, as is the ACK flag. Therefore we'll see that once a connection is 
established, this field is always set and the ACK flag is always on. 

TCP provides a full-duplex service to the application layer. This means that data can be 
flowing in each direction, independent of the other direction. Therefore, each end of a 
connection must maintain a sequence number of the data flowing in each direction. 

TCP can be described as a sliding-window protocol without selective or negative 
acknowledgments. (The sliding window protocol used for data transmission is described in 
Section 20.3.) We say that TCP lacks selective acknowledgments because the 
acknowledgment number in the TCP header means that the sender has successfully received 
up through but not including that byte. There is currently no way to acknowledge selected 
pieces of the data stream. For example, if bytes 1-1024 are received OK, and the next 
segment contains bytes 2049-3072, the receiver cannot acknowledge this new segment. All 
it can send is an ACK with 1025 as the acknowledgment number. There is no means for 
negatively acknowledging a segment. For example, if the segment with bytes 1025-2048 did 
arrive, but had a checksum error, all the receiving TCP can send is an ACK with 1025 as the 
acknowledgment number. In Section 21.7 we'll see how duplicate acknowledgments can 
help determine that packets have been lost. 

The header length gives the length of the header in 32-bit words. This is required because 
the length of the options field is variable. With a 4-bit field, TCP is limited to a 60-byte 
header. Without options, however, the normal size is 20 bytes. 

There are six flag bits in the TCP header. One or more of them can be turned on at the same 
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time. We briefly mention their use here and discuss each flag in more detail in later chapters. 

URG The urgent pointer is valid (Section 20.8). 

ACK The acknowledgment number is valid. 

PSH
The receiver should pass this data to the application as soon as possible (Section 
20.5). 

RST Reset the connection (Section 18.7). 

SYN
Synchronize sequence numbers to initiate a connection. This flag and the next are 
described in Chapter 18. 

FIN The sender is finished sending data. 

TCP's flow control is provided by each end advertising a window size. This is the number of 
bytes, starting with the one specified by the acknowledgment number field, that the receiver 
is willing to accept. This is a 16-bit field, limiting the window to 65535 bytes. In Section 
24.4 we'll look at the new window scale option that allows this value to be scaled, providing 
larger windows. 

The checksum covers the TCP segment: the TCP header and the TCP data. This is a 
mandatory field that must be calculated and stored by the sender, and then verified by the 
receiver. The TCP checksum is calculated similar to the UDP checksum, using a pseudo-
header as described in Section 11.3. 

The urgent pointer is valid only if the URG flag is set. This pointer is a positive offset that 
must be added to the sequence number field of the segment to yield the sequence number of 
the last byte of urgent data. TCP's urgent mode is a way for the sender to transmit 
emergency data to the other end. We'll look at this feature in Section 20.8. 

The most common option field is the maximum segment size option, called the MSS. Each 
end of a connection normally specifies this option on the first segment exchanged (the one 
with the SYN flag set to establish the connection). It specifies the maximum sized segment 
that the sender wants to receive. We describe the MSS option in more detail in Section 18.4, 
and some of the other TCP options in Chapter 24. 

In Figure 17.2 we note that the data portion of the TCP segment is optional. We'll see in 
Chapter 18 that when a connection is established, and when a connection is terminated, 
segments are exchanged that contain only the TCP header with possible options. A header 
without any data is also used to acknowledge received data, if there is no data to be 
transmitted in that direction. There are also some cases dealing with timeouts when a 
segment can be sent without any data. 

17.4 Summary
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TCP provides a reliable, connection-oriented, byte stream, transport layer service. We 
looked briefly at all the fields in the TCP header and will examine them in detail in the 
following chapters. 

TCP packetizes the user data into segments, sets a timeout any time it sends data, 
acknowledges data received by the other end, reorders out-of-order data, discards duplicate 
data, provides end-to-end flow control, and calculates and verifies a mandatory end-to-end 
checksum. 

TCP is used by many of the popular applications, such as Telnet, Rlogin, FTP, and 
electronic mail (SMTP). 

Exercises

17.1 We've covered the following packet formats, each of which has a checksum in its 
corresponding header: IP, ICMP, IGMP, UDP, and TCP. For each one, describe what 
portion of an IP datagram the checksum covers and whether the checksum is mandatory or 
optional. 

17.2 Why do all the Internet protocols that we've discussed (IP, ICMP, IGMP, UDP, TCP) 
quietly discard a packet that arrives with a checksum error? 

17.3 TCP provides a byte-stream service where record boundaries are not maintained 
between the sender and receiver. How can applications provide their own record markers? 

17.4 Why are the source and destination port numbers at the beginning of the TCP header? 

17.5 Why does the TCP header have a header length field while the UDP header (Figure 
11.2) does not? 
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TCP Connection Establishment and 
Termination
18.1 Introduction

TCP is a connection-oriented protocol. Before either end can send data to the other, a 
connection must be established between them. In this chapter we take a detailed look at how a 
TCP connection is established and later terminated. 

This establishment of a connection between the two ends differs from a connectionless protocol 
such as UDP. We saw in Chapter 11 that with UDP one end just sends a datagram to the other 
end, without any preliminary handshaking. 

18.2 Connection Establishment and Termination

To see what happens when a TCP connection is established and then terminated, we type the 
following command on the system svr4: 

svr4 % telnet bsdi discard 

Trying 192.82.148.3 ...

Connected to bsdi.

Escape character is '^]'.

^] type Control, right bracket to talk to the Telnet client 

telnet> quit terminate the connection 

Connection closed.

The telnet command establishes a TCP connection with the host bsdi on the port 
corresponding to the discard service (Section 1.12). This is exactly the type of service we need 
to see what happens when a connection is established and terminated, without having the server 
initiate any data exchange. 

tcpdump Output

Figure 18.1 shows the tcpdump output for the segments generated by this command. 

1 0.0 
svr4.1037 > bsdi.discard: S 
1415531521:1415531521(0) 
win 4096 <mss 1024> 
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2
0.002402 
(0.0024) 

bsdi.discard > svr4.1037: S 
1823083521:1823083521(0) 
ack 1415531522 win 4096 <mss 1024> 

3
0.007224 
(0.0048) 

svr4.1037 > bsdi.discard: ack 1823083522 
win 4096 

4
4.155441 
(4.1482) 

svr4.1037 > bsdi.discard: F 
1415531522:1415531522(0) 
ack 1823083522 win 4096 

5
4.156747 
(0.0013) 

bsdi.discard > svr4.1037: . ack 1415531523 
win 4096 

6
4.158144 
(0.0014) 

bsdi.discard > svr4.1037: F 
1823083522:1823083522(0) 
ack 1415531523 win 4096 

7
4.180662 
(0.0225) 

svr4.1037 > bsdi.discard: . ack 1823083523 
win 4096 

Figure 18.1 tcpdump output for TCP connection establishment and termination.

These seven TCP segments contain TCP headers only. No data is exchanged. For TCP 
segments, each output line begins with 

source > destination: flags 

where flags represents four of the six flag bits in the TCP header (Figure 17.2). Figure 18.2 
shows the five different characters that can appear in the flags output. 

flag
3-character 

abbreviation
Description

S
F
R
P
.

SYN
FIN
RST
PSH

-

synchronize sequence numbers
sender is finished sending data
reset connection
push data to receiving process as soon as possible
none of above four flags is on 

Figure 18.2 flag characters output by tcpdump for flag bits in TCP header.

In this example we see the S, F, and period. We'll see the other two flags (R and P) later. The 
other two TCP header flag bits-ACK and URG-are printed specially by tcpdump. 

It's possible for more than one of the four flag bits in Figure 18.2 to be on in a single segment, 
but we normally see only one on at a time. 

RFC 1025 [Postel 1987], the TCP and IP Bake Off, calls a segment with the maximum combination of 
allowable flag bits turned on at once (SYN, URG, PSH, FIN, and 1 byte of data) a Kamikaze packet. It's also 
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known as a nastygram, Christmas tree packet, and lamp test segment. 

In line 1, the field 1415531521:1415531521 (0) means the sequence number of the packet 
was 1415531521 and the number of data bytes in the segment was 0. tcpdump displays this by 
printing the starting sequence number, a colon, the implied ending sequence number, and the 
number of data bytes in parentheses. The advantage of displaying both the sequence number 
and the implied ending sequence number is to see what the implied ending sequence number is, 
when the number of bytes is greater than 0. This field is output only if (1) the segment contains 
one or more bytes of data or (2) the SYN, FIN, or RST flag was on. Lines 1, 2, 4, and 6 in 
Figure 18.1 display this field because of the flag bits-we never exchange any data in this 
example. 

In line 2 the field ack 1415531522 shows the acknowledgment number. This is printed only 
if the ACK flag in the header is on. 

The field win 4096 in every line of output shows the window size being advertised by the 
sender. In these examples, where we are not exchanging any data, the window size never 
changes from its default of 4096. (We examine TCP's window size in Section 20.4.) 

The final field that is output in Figure 18.1, <mss 1024> shows the maximum segment size 
(MSS) option specified by the sender. The sender does not want to receive TCP segments larger 
than this value. This is normally to avoid fragmentation (Section 11.5). We discuss the 
maximum segment size in Section 18.4, and show the format of the various TCP options in 
Section 18.10. 

Time Line

Figure 18.3 shows the time line for this sequence of packets. (We described some general 
features of these time lines when we showed the first one in Figure 6.11.) This figure shows 
which end is sending packets. We also expand some of the tcpdump output (e.g., printing 
SYN instead of S). In this time line we have also removed the window size values, since they 
add nothing to the discussion. 

Connection Establishment Protocol

Now let's return to the details of the TCP protocol that are shown in Figure 18.3. To establish a 
TCP connection: 

1.  The requesting end (normally called the client) sends a SYN segment specifying the port 
number of the server that the client wants to connect to, and the client's initial sequence 
number (ISN, 1415531521 in this example). This is segment 1. 

2.  The server responds with its own SYN segment containing the server's initial sequence 
number (segment 2). The server also acknowledges the client's SYN by ACKing the 
client's ISN plus one. A SYN consumes one sequence number. 

3.  The client must acknowledge this SYN from the server by ACKing the server's ISN plus 
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one (segment 3). 

These three segments complete the connection establishment. This is often called the three-way 
handshake. 

Figure 18.3 Time line of connection establishment and connection termination.

The side that sends the first SYN is said to perform an active open. The other side, which 
receives this SYN and sends the next SYN, performs a passive open. (In Section 18.8 we 
describe a simultaneous open where both sides can do an active open.) 

When each end sends its SYN to establish the connection, it chooses an initial sequence number 
for that connection. The ISN should change over time, so that each connection has a different 
ISN. RFC 793 [Postel 1981c] specifies that the ISN should be viewed as a 32-bit counter that 
increments by one every 4 microseconds. The purpose in these sequence numbers is to prevent 
packets that get delayed in the network from being delivered later and then misinterpreted as 
part of an existing connection. 

How are the sequence numbers chosen? In 4.4BSD (and most Berkeley-derived implementations) when the 
system is initialized the initial send sequence number is initialized to 1. This practice violates the Host 
Requirements RFC. (A comment in the code acknowledges that this is wrong.) This variable is then 
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incremented by 64,000 every half-second, and will cycle back to 0 about every 9.5 hours. (This corresponds to 
a counter that is incremented every 8 microseconds, not every 4 microseconds.) Additionally, each time a 
connection is established, this variable is incremented by 64,000. 

The 4.1-second gap between segments 3 and 4 is the time between establishing the connection 
and typing the quit command to telnet to terminate the connection. 

Connection Termination Protocol

While it takes three segments to establish a connection, it takes four to terminate a connection. 
This is caused by TCP's half-close. Since a TCP connection is full-duplex (that is, data can be 
flowing in each direction independently of the other direction), each direction must be shut 
down independently. The rule is that either end can send a FIN when it is done sending data. 
When a TCP receives a FIN, it must notify the application that the other end has terminated that 
direction of data flow. The sending of a FIN is normally the result of the application issuing a 
close. 

The receipt of a FIN only means there will be no more data flowing in that direction. A TCP 
can still send data after receiving a FIN. While it's possible for an application to take advantage 
of this half-close, in practice few TCP applications use it. The normal scenario is what we show 
in Figure 18.3. We describe the half-close in more detail in Section 18.5. 

We say that the end that first issues the close (e.g., sends the first FIN) performs the active 
close and the other end (that receives this FIN) performs the passive close. Normally one end 
does the active close and the other does the passive close, but we'll see in Section 18.9 how 
both ends can do an active close. 

Segment 4 in Figure 18.3 initiates the termination of the connection and is sent when the Telnet 
client closes its connection. This happens when we type quit. This causes the client TCP to 
send a FIN, closing the flow of data from the client to the server. 

When the server receives the FIN it sends back an ACK of the received sequence number plus 
one (segment 5). A FIN consumes a sequence number, just like a SYN. At this point the 
server's TCP also delivers an end-of-file to the application (the discard server). The server then 
closes its connection, causing its TCP to send a FIN (segment 6), which the client TCP must 
ACK by incrementing the received sequence number by one (segment 7). 

Figure 18.4 shows the typical sequence of segments that we've described for the termination of 
a connection. We omit the sequence numbers. In this figure sending the FINs is caused by the 
applications closing their end of the connection, whereas the ACKs of these FINs are 
automatically generated by the TCP software. 

Connections are normally initiated by the client, with the first SYN going from the client to the 
server. Either end can actively close the connection (i.e., send the first FIN). Often, however, it 
is the client that determines when the connection should be terminated, since client processes 
are often driven by an interactive user, who enters something like "quit" to terminate. In Figure 
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18.4 we can switch the labels at the top, calling the left side the server and the right side the 
client, and everything still works fine as shown. (The first example in Section 14.4, for 
example, shows the daytime server closing the connection.) 

Figure 18.4 Normal exchange of segments during connection termination.

Normal tcpdump Output

Having to sort through all the huge sequence numbers is cumbersome, so the default tcpdump 
output shows the complete sequence numbers only on the SYN segments, and shows all 
following sequence numbers as relative offsets from the original sequence numbers. (To 
generate the output for Figure 18.1 we had to specify the -S option.) The normal tcpdump 
output corresponding to Figure 18.1 is shown in Figure 18.5. 

1 0.0 
svr4.1037 > bsdi.discard: S 
1415531521:1415531521(0) 
win 4096 <mss 1024> 

2
0.002402 
(0.0024) 

bsdi.discard > svr4.1037: S 
1823083521:1823083521(0) 
ack 1415531522 win 4096 <mss 1024> 

3
0.007224 
(0.0048) 

svr4.1037 > bsdi.discard: . ack 1 win 4096 

4
4.155441 
(4.1482) 

svr4.1037 > bsdi.discard: F 1:1(0) ack 1 
win 4096 

5
4.156747 
(0.0013) 

bsdi.discard > svr4.1037: . ack 2 win 4096 

6
4.158144 
(0.0014) 

bsdi.discard > svr4.1037: F 1:1(0) ack 2 
win 4096 

7
4.180662 
(0.0225) 

svr4.1037 > bsdi.discard: . ack 2 win 4096 

Figure 18.5 Normal tcpdump output for connection establishment and termination. 

Unless we need to show the complete sequence numbers, we'll use this form of output in all 
following examples. 

18.3 Timeout of Connection Establishment

There are several instances when the connection cannot be established. In one example the 
server host is down. To simulate this scenario we issue our telnet command after 
disconnecting the Ethernet cable from the server's host. Figure 18.6 shows the tcpdump 
output. 

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/tcp_conn.htm (6 of 37) [12/09/2001 14.47.16]



Chapter 18. TCP Connection Establishment and Termination 

1 0.0 
bsdi-1024 > svr4.discard: S 
291008001:291008001(0) 
win 4096 <mss 1024> [tos 0x10] 

2
5.814797 ( 
5.8148) 

bsdi-1024 > svr4.discard: S 
291008001:291008001(0) 
win 4096 <mss 1024> [tos 0x10] 

3
29.815436 
(24.0006) 

bsdi.l024 > svr4.discard: S 
291008001:291008001(0) 
win 4096 <mss 1024> [tos 0x10] 

Figure 18.6 tcpdump output for connection establishment that times out.

The interesting point in this output is how frequently the client's TCP sends a SYN to try to 
establish the connection. The second segment is sent 5.8 seconds after the first, and the third is 
sent 24 seconds after the second. 

As a side note, this example was run about 38 minutes after the client was rebooted. This corresponds with the 
initial sequence number of 291,008,001 (approximately 38 x 60 x 64000 x 2). Recall earlier in this chapter we 
said that typical Berkeley-derived systems initialize the initial sequence number to 1 and then increment it by 
64,000 every half-second. 

Also, this is the first TCP connection since the system was bootstrapped, which is why the client's port number 
is 1024. 

What isn't shown in Figure 18.6 is how long the client's TCP keeps retransmitting before giving 
up. To see this we have to time the telnet command: 

bsdi % date ; telnet svr4 discard ; date
Thu Sep 24 16:24:11 MST 1992
Trying 192.82.148.2...
telnet: Unable to connect to remote host: Connection timed out 
Thu Sep 24 16:25:27 MST 1992 

The time difference is 76 seconds. Most Berkeley-derived systems set a time limit of 75 
seconds on the establishment of a new connection. We'll see in Section 21.4 that the third 
packet sent by the client would have timed out around 16:25:29, 48 seconds after it was sent, 
had the client not given up after 75 seconds. 

First Timeout Period

One puzzling item in Figure 18.6 is that the first timeout period, 5.8 seconds, is close to 6 
seconds, but not exact, while the second period is almost exactly 24 seconds. Ten more of these 
tests were run and the first timeout period took on various values between 5.59 seconds and 
5.93 seconds. The second timeout period, however, was always 24.00 (to two decimal places). 

What's happening here is that BSD implementations of TCP run a timer that goes off every 500 
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ms. This 500-ms timer is used for various TCP timeouts, all of which we cover in later 
chapters. When we type in the telnet command, an initial 6-second timer is established (12 
clock ticks), but it may expire anywhere between 5.5 and 6 seconds in the future. Figure 18.7 
shows what's happening. 

Figure 18.7 TCP 500-ms timer.

Although the timer is initialized to 12 ticks, the first decrement of the timer can occur between 
0 and 500 ms after it is set. From that point on the timer is decremented about every 500 ms, 
but the first period can be variable. (We use the qualifier "about" because the time when TCP 
gets control every 500 ms can be preempted by other interrupts being handled by the kernel.) 

When that 6-second timer expires at the tick labeled 0 in Figure 18.7, the timer is reset for 24 
seconds (48 ticks) in the future. This next timer will be close to 24 seconds, since it was set at a 
time when the TCP's 500-ms timer handler was called by the kernel. 

Type-of-Service Field

In Figure 18.6, the notation [tos 0x10] appears. This is the type-of-service(TOS) field in 
the IP datagram (Figure 3.2). The BSD/386 Telnet client sets the field for minimum delay. 

18.4 Maximum Segment Size

The maximum segment size (MSS) is the largest "chunk" of data that TCP will send to the 
other end. When a connection is established, each end can announce its MSS. The values we've 
seen have all been 1024. The resulting IP datagram is normally 40 bytes larger: 20 bytes for the 
TCP header and 20 bytes for the IP header. 

Some texts refer to this as a "negotiated" option. It is not negotiated in any way. When a 
connection is established, each end has the option of announcing the MSS it expects to receive. 
(An MSS option can only appear in a SYN segment.) If one end does not receive an MSS 
option from the other end, a default of 536 bytes is assumed. (This default allows for a 20-byte 
IP header and a 20-byte TCP header to fit into a 576-byte IP datagram.) 

In general, the larger the MSS the better, until fragmentation occurs. (This may not always be 
true. See Figures 24.3 and 24.4 for a counterexample.) A larger segment size allows more data 
to be sent in each segment, amortizing the cost of the IP and TCP headers. When TCP sends a 
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SYN segment, either because a local application wants to initiate a connection, or when a 
connection request is received from another host, it can send an MSS value up to the outgoing 
interface's MTU, minus the size of the fixed TCP and IP headers. For an Ethernet this implies 
an MSS of up to 1460 bytes. Using IEEE 802.3 encapsulation (Section 2.2), the MSS could go 
up to 1452 bytes. 

The values of 1024 that we've seen in this chapter, for connections involving BSD/386 and 
SVR4, are because many BSD implementations require the MSS to be a multiple of 512. Other 
systems, such as SunOS 4.1.3, Solaris 2.2, and AIX 3.2.2, all announce an MSS of 1460 when 
both ends are on a local Ethernet. Measurements in [Mogul 1993] show how an MSS of 1460 
provides better performance on an Ethernet than an MSS of 1024. 

If the destination IP address is "nonlocal," the MSS normally defaults to 536. While it's easy to 
say that a destination whose IP address has the same network ID and the same subnet ID as 
ours is local, and a destination whose IP address has a totally different network ID from ours is 
nonlocal, a destination with the same network ID but a different subnet ID could be either local 
or nonlocal. Most implementations provide a configuration option (Appendix E and Figure E.1) 
that lets the system administrator specify whether different subnets are local or nonlocal. The 
setting of this option determines whether the announced MSS is as large as possible (up to the 
outgoing interface's MTU) or the default of 536. 

The MSS lets a host limit the size of datagrams that the other end sends it. When combined 
with the fact that a host can also limit the size of the datagrams that it sends, this lets a host 
avoid fragmentation when the host is connected to a network with a small MTU. 

Consider our host slip, which has a SLIP link with an MTU of 296 to the router bsdi. 
Figure 18.8 shows these systems and the host sun. 

Figure 18.8 TCP connection from sun to slip showing MSS values.

We initiate a TCP connection from sun to slip and watch the segments using tcpdump. 
Figure 18.9 shows only the connection establishment (with the window size advertisements 
removed). 
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1 0.0 
sun.1093 > slip.discard: S 
517312000:517312000 (0) 
<mss 1460> 

2 0.10 (0.00) 
slip.discard > sun.1093: S 
509556225:509556225 (0)
ack 517312001 <mss 256> 

3 0.10 (0.00) sun.1093 > slip.discard: . ack 1 

Figure 18.9 tcpdump output for connection establishment from sun to slip.

The important fact here is that sun cannot send a segment with more than 256 bytes of data, 
since it received an MSS option of 256 (line 2). Furthermore, since slip knows that the 
outgoing interface's MTU is 296, even though sun announced an MSS of 1460, it will never 
send more than 256 bytes of data, to avoid fragmentation. It's OK for a system to send less than 
the MSS announced by the other end. 

This avoidance of fragmentation works only if either host is directly connected to a network 
with an MTU of less than 576. If both hosts are connected to Ethernets, and both announce an 
MSS of 536, but an intermediate network has an MTU of 296, fragmentation will occur. The 
only way around this is to use the path MTU discovery mechanism (Section 24.2). 

18.5 TCP Half-Close

TCP provides the ability for one end of a connection to terminate its output, while still 
receiving data from the other end. This is called a half-close. Few applications take advantage 
of this capability, as we mentioned earlier. 

To use this feature the programming interface must provide a way for the application to say "I 
am done sending data, so send an end-of-file (FIN) to the other end, but I still want to receive 
data from the other end, until it sends me an end-of-file (FIN)." 

The sockets API supports the half-close, if the application calls shutdown with a second argument of 1, instead 
of calling close. Most applications, however, terminate both directions of the connection by calling close. 

Figure 18.10 shows a typical scenario for a half-close. We show the client on the left side 
initiating the half-close, but either end can do this. The first two segments are the same: a FIN 
by the initiator, followed by an ACK of the FIN by the recipient. But it then changes from 
Figure 18.4, because the side that receives the half-close can still send data. We show only one 
data segment, followed by an ACK, but any number of data segments can be sent. (We talk 
more about the exchange of data segments and acknowledgments in Chapter 19.) When the end 
that received the half-close is done sending data, it closes its end of the connection, causing a 
FIN to be sent, and this delivers an end-of-file to the application that initiated the half-close. 
When this second FIN is acknowledged, the connection is completely closed. 
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Figure 18.10 Example of TCP's half-close.

Why is there a half-close? One example is the Unix rsh(l) command, which executes a 
command on another system. The command 

sun % rsh bsdi sort < datafile 

executes the sort command on the host bsdi with standard input for the rsh command 
being read from the file named datafile. A TCP connection is created by rsh between itself 
and the program being executed on the other host. The operation of rsh is then simple: it 
copies standard input (datafile) to the connection, and copies from the connection to 
standard output (our terminal). Figure 18.11 shows the setup. (Remember that a TCP 
connection is full-duplex.) 

Figure 18.11 The command: rsh bsdi sort < datafile.

On the remote host bsdi the rshd server executes the sort program so that its standard 
input and standard output are both the TCP connection. Chapter 14 of [Stevens 1990] details 
the Unix process structure involved, but what concerns us here is the use of the TCP connection 
and the required use of TCP's half-close. 
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The sort program cannot generate any output until all of its input has been read. All the initial 
data across the connection is from the rsh client to the sort server, sending the file to be 
sorted. When the end-of-file is reached on the input (datafile), the rsh client performs a 
half-close on the TCP connection. The sort server then receives an end-of-file on its standard 
input (the TCP connection), sorts the file, and writes the result to its standard output (the TCP 
connection). The rsh client continues reading its end of the TCP connection, copying the 
sorted file to its standard output. 

Without a half-close, some other technique is needed to let the client tell the server that the 
client is finished sending data, but still let the client receive data from the server. Two 
connections could be used as an alternative, but a single connection with a half-close is better. 

18.6 TCP State Transition Diagram

We've described numerous rules regarding the initiation and termination of a TCP connection. 
These rules can be summarized in a state transition diagram, which we show in Figure 18.12. 

The first thing to note in this diagram is that a subset of the state transitions is "typical." We've 
marked the normal client transitions with a darker solid arrow, and the normal server transitions 
with a darker dashed arrow. 

Next, the two transitions leading to the ESTABLISHED state correspond to opening a 
connection, and the two transitions leading from the ESTABLISHED state are for the 
termination of a connection. The ESTABLISHED state is where data transfer can occur 
between the two ends in both directions. Later chapters describe what happens in this state. 

We've collected the four boxes in the lower left of this diagram within a dashed box and labeled 
it "active close." Two other boxes (CLOSE_WAIT and LAST_ACK) are collected in a dashed 
box with the label "passive close." 

The names of the 11 states (CLOSED, LISTEN, SYN_SENT, etc.) in this figure were 
purposely chosen to be identical to the states output by the netstat command. The 
netstat names, in turn, are almost identical to the names originally described in RFC 793. 
The state CLOSED is not really a state, but is the imaginary starting point and ending point for 
the diagram. 

The state transition from LISTEN to SYN_SENT is legal but is not supported in Berkeley-
derived implementations. 

The transition from SYN_RCVD back to LISTEN is valid only if the SYN_RCVD state was 
entered from the LISTEN state (the normal scenario), not from the SYN_SENT state (a 
simultaneous open). This means if we perform a passive open (enter LISTEN), receive a SYN, 
send a SYN with an ACK (enter SYN_RCVD), and then receive a reset instead of an ACK, the 
end point returns to the LISTEN state and waits for another connection request to arrive. 
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Figure 18.12 TCP state transition diagram.

Figure 18.13 shows the normal TCP connection establishment and termination, detailing the 
different states through which the client and server pass. It is a redo of Figure 18.3 showing 
only the states. 

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/tcp_conn.htm (13 of 37) [12/09/2001 14.47.16]



Chapter 18. TCP Connection Establishment and Termination 

Figure 18.13 TCP states corresponding to normal connection establishment and termination.

We assume in Figure 18.13 that the client on the left side does an active open, and the server on 
the right side does a passive open. Although we show the client doing the active close, as we 
mentioned earlier, either side can do the active close. 

You should follow through the state changes in Figure 18.13 using the state transition diagram 
in Figure 18.12, making certain you understand why each state change takes place. 

2MSL Wait State

The TIME_WAIT state is also called the 2MSL wait state. Every implementation must choose 
a value for the maximum segment lifetime (MSL). It is the maximum amount of time any 
segment can exist in the network before being discarded. We know this time limit is bounded, 
since TCP segments are transmitted as IP datagrams, and the IP datagram has the TTL field that 
limits its lifetime. 

RFC 793 [Postel 1981c] specifies the MSL as 2 minutes. Common implementation values, however, are 30 
seconds, 1 minute, or 2 minutes. 

Recall from Chapter 8 that the real-world limit on the lifetime of the IP datagram is based on 
the number of hops, not a timer. 

Given the MSL value for an implementation, the rule is: when TCP performs an active close, 
and sends the final ACK, that connection must stay in the TIME_WAIT state for twice the 
MSL. This lets TCP resend the final ACK in case this ACK is lost (in which case the other end 
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will time out and retransmit its final FIN). 

Another effect of this 2MSL wait is that while the TCP connection is in the 2MSL wait, the 
socket pair defining that connection (client IP address, client port number, server IP address, 
and server port number) cannot be reused. That connection can only be reused when the 2MSL 
wait is over. 

Unfortunately most implementations (i.e., the Berkeley-derived ones) impose a more stringent 
constraint. By default a local port number cannot be reused while that port number is the local 
port number of a socket pair that is in the 2MSL wait. We'll see examples of this common 
constraint below. 

Some implementations and APIs provide a way to bypass this restriction. With the sockets API, the 
SO_REUSEADDR socket option can be specified. It lets the caller assign itself a local port number that's in the 
2MSL wait, but we'll see that the rules of TCP still prevent this port number from being part of a connection 
that is in the 2MSL wait. 

Any delayed segments that arrive for a connection while it is in the 2MSL wait are discarded. 
Since the connection defined by the socket pair in the 2MSL wait cannot be reused during this 
time period, when we do establish a valid connection we know that delayed segments from an 
earlier incarnation of this connection cannot be misinterpreted as being part of the new 
connection. (A connection is defined by a socket pair. New instances of a connection are called 
incarnations of that connection.) 

As we said with Figure 18.13, it is normally the client that does the active close and enters the 
TIME_WAIT state. The server usually does the passive close, and does not go through the 
TIME_WAIT state. The implication is that if we terminate a client, and restart the same client 
immediately, that new client cannot reuse the same local port number. This isn't a problem, 
since clients normally use ephemeral ports, and don't care what the local ephemeral port 
number is. 

With servers, however, this changes, since servers use well-known ports. If we terminate a 
server that has a connection established, and immediately try to restart the server, the server 
cannot assign its well-known port number to its end point, since that port number is part of a 
connection that is in a 2MSL wait. It may take from 1 to 4 minutes before the server can be 
restarted. 

We can see this scenario using our sock program. We start the server, connect to it from a 
client, and then terminate the server: 

sun % sock -v -s 6666 start as server, listening on port 6666 

(execute client on bsdi that connects to this port) 

connection on 140.252.13.33.6666 from 140.252.13.35.1081 

^? then type interrupt key to terminate server 

sun % sock -s 6666 and immediately try to restart server on same port 
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can't bind local address: Address already in use 

sun % netstat let's check the state of the connection 

Active Internet 
connections 

Proto Recv-Q Send-Q Local Address
Foreign 
Address 

(state)

tcp 0 0 sun.6666 bsdi.1081 TIME_WAIT 

many more lines that are deleted 

When we try to restart the server, the program outputs an error message indicating it cannot 
bind its well-known port number, because it's already in use (i.e., it's in a 2MSL wait). 

We then immediately execute netstat to see the state of the connection, and verify that it is 
indeed in the TIME_WAIT state. 

If we continually try to restart the server, and measure the time until it succeeds, we can 
measure the 2MSL value. On SunOS 4.1.3, SVR4, BSD/386, and AIX 3.2.2, it takes 1 minute 
to restart the server, meaning the MSL is 30 seconds. Under Solaris 2.2 it takes 4 minutes to 
restart the server, implying an MSL of 2 minutes. 

We can see the same error from a client, if the client tries to allocate a port that is part of a 
connection in the 2MSL wait (something clients normally don't do): 

sun % sock -v bsdi echo start as client, connect to echo server 

connected on 140.252.13.33.1162 to 140.252.13.35.7 

hello there type this line

hello there and it's echoed by the server 

^D type end-of-file character to terminate client 

sun % sock -b1162 bsdi echo 

can't bind local address: Address already in use 

The first time we execute the client we specify the -v option to see what the local port number 
is (1162). The second time we execute the client we specify the -b option, telling the client to 
assign itself 1162 as its local port number. As we expect, the client can't do this, since that port 
number is part of a connection that is in a 2MSL wait. 

We need to reemphasize one effect of the 2MSL wait because we'll encounter it in Chapter 27 
with FTP, the File Transfer Protocol. As we said earlier, it is a socket pair (that is, the 4-tuple 
consisting of a local IP address, local port, remote IP address and remote port) that remains in 
the 2MSL wait. Although many implementations allow a process to reuse a port number that is 
part of a connection that is in the 2MSL wait (normally with an option named 
SO_REUSEADDR), TCP cannot allow a new connection to be created with the same socket 
pair. We can see this with the following experiment: 
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sun % sock -v -s 6666 
start as server, listening on port 6666
(execute client on bsdi that connects to this port) 

connection on 140.252.13.33.6666 from 140.252.13.35.1098 

^? then type interrupt key to terminate server 

sun % sock -b6666 bsdi 1098 try to start as client with local port 6666 

can't bind local address: Address already in use 

sun % sock -A -b6666 bsdi 
1098 

try again, this time with -A option 

active open error: Address already in use 

The first time we run our sock program, we run it as a server on port 6666 and connect to it 
from a client on the host bsdi. The client's ephemeral port number is 1098. We terminate the 
server so it does the active close. This causes the 4-tuple of 140.252.13.33 (local IP address), 
6666 (local port number), 140.252.13.35 (foreign IP address), and 1098 (foreign port number) 
to enter the 2MSL wait on the server host. 

The second time we run the program, we run it as a client and try to specify the local port 
number as 6666 and connect to host bsdi on port 1098. But the program gets an error when it 
tries to assign itself the local port number of 6666, because that port number is part of the 4-
tuple that is in the 2MSL wait state. 

To try and get around this error we run the program again, specifying the -A option, which 
enables the SO_REUSEADDR option that we mentioned. This lets the program assign itself the 
port number 6666, but we then get an error when it tries to issue the active open. Even though it 
can assign itself the port number 6666, it cannot create a connection to port 1098 on the host 
bsdi, because the socket pair defining that connection is in the 2MSL wait state. 

What if we try to establish the connection from the other host? First we must restart the server 
on sun with the -A flag, since the local port it needs (6666) is part of a connection that is in the 
2MSL wait: 

sun % sock -A -s 6666 start as server, listening on port 6666 

Then, before the 2MSL wait is over on sun, we start the client on bsdi: 

bsdi % sock -bl098 sun 6666
connected on 140.252.13.35.1098 to 140.252.13.33.6666 

Unfortunately it works! This is a violation of the TCP specification, but is supported by most 
Berkeley-derived implementations. These implementations allow a new connection request to 
arrive for a connection that is in the TIME_WAIT state, if the new sequence number is greater 
than the final sequence number from the previous incarnation of this connection. In this case 
the ISN for the new incarnation is set to the final sequence number from the previous 
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incarnation plus 128,000. The appendix of RFC 1185 [Jacobson, Braden, and Zhang 1990] 
shows the pitfalls still possible with this technique. 

This implementation feature lets a client and server continually reuse the same port number at 
each end for successive incarnations of the same connection, but only if the server does the 
active close. We'll see another example of this 2MSL wait condition in Figure 27.8, with FTP. 
See Exercise 18.5 also. 

Quiet Time Concept

The 2MSL wait provides protection against delayed segments from an earlier incarnation of a 
connection from being interpreted as part of a new connection that uses the same local and 
foreign IP addresses and port numbers. But this works only if a host with connections in the 
2MSL wait does not crash. 

What if a host with ports in the 2MSL wait crashes, reboots within MSL seconds, and 
immediately establishes new connections using the same local and foreign IP addresses and 
port numbers corresponding to the local ports that were in the 2MSL wait before the crash? In 
this scenario, delayed segments from the connections that existed before the crash can be 
misinterpreted as belonging to the new connections created after the reboot. This can happen 
regardless of how the initial sequence number is chosen after the reboot. 

To protect against this scenario, RFC 793 states that TCP should not create any connections for 
MSL seconds after rebooting. This is called the quiet time. 

Few implementations abide by this since most hosts take longer than MSL seconds to reboot after a crash. 

FIN WAIT 2 State

In the FIN_WAIT_2 state we have sent our FIN and the other end has acknowledged it. Unless 
we have done a half-close, we are waiting for the application on the other end to recognize that 
it has received an end-of-file notification and close its end of the connection, which sends us a 
FIN. Only when the process at the other end does this close will our end move from the 
FIN_WAIT_2 to the TIME_WAIT state. 

This means our end of the connection can remain in this state forever. The other end is still in 
the CLOSE_WAIT state, and can remain there forever, until the application decides to issue its 
close. 

Many Berkeley-derived implementations prevent this infinite wait in the FIN_WAIT_2 state as follows. If the 
application that does the active close does a complete close, not a half-close indicating that it expects to receive 
data, then a timer is set. If the connection is idle for 10 minutes plus 75 seconds, TCP moves the connection 
into the CLOSED state. A comment in the code acknowledges that this implementation feature violates the 
protocol specification. 

18.7 Reset Segments
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We've mentioned a bit in the TCP header named RST for "reset." In general, a reset is sent by 
TCP whenever a segment arrives that doesn't appear correct for the referenced connection. (We 
use the term "referenced connection" to mean the connection specified by the destination IP 
address and port number, and the source IP address and port number. This is what RFC 793 
calls a socket.) 

Connection Request to Nonexistent Port

A common case for generating a reset is when a connection request arrives and no process is 
listening on the destination port. In the case of UDP, we saw in Section 6.5 that an ICMP port 
unreachable was generated when a datagram arrived for a destination port that was not in use. 
TCP uses a reset instead. 

This example is trivial to generate-we use the Telnet client and specify a port number that's not 
in use on the destination: 

bsdi % telnet: svr4 20000 port 20000 should not be in use 

Trying 140.252.13.34...

telnet: Unable to connect to remote host: Connection refused 

This error message is output by the Telnet client immediately. Figure 18.14 shows the packet 
exchange corresponding to this command. 

1 0.0 
bsdi.1087 > svr4.20000: S 
297416193:297416193(0) 
win 4096 <mss 1024> [tos 0x10] 

2
0.003771 
(0.0038) 

svr4.20000 > bsdi.1087: R 0:0(0) 
ack 297416194 win 0 

Figure 18.14 Reset generated by attempt to open connection to nonexistent port.

The values we need to examine in this figure are the sequence number field and 
acknowledgment number field in the reset. Because the ACK bit was not on in the arriving 
segment, the sequence number of the reset is set to 0 and the acknowledgment number is set to 
the incoming ISN plus the number of data bytes in the segment. Although there is no real data 
in the arriving segment, the SYN bit logically occupies 1 byte of sequence number space; 
therefore, in this example the acknowledgment number in the reset is set to the ISN, plus the 
data length (0), plus one for the SYN bit. 

Aborting a Connection

We saw in Section 18.2 that the normal way to terminate a connection is for one side to send a 
FIN. This is sometimes called an orderly release since the FIN is sent after all previously 
queued data has been sent, and there is normally no loss of data. But it's also possible to abort a 
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connection by sending a reset instead of a FIN. This is sometimes called an abortive release. 

Aborting a connection provides two features to the application: (1) any queued data is thrown 
away and the reset is sent immediately, and (2) the receiver of the RST can tell that the other 
end did an abort instead of a normal close. The API being used by the application must provide 
a way to generate the abort instead of a normal close. 

We can watch this abort sequence happen using our sock program. The sockets API provides 
this capability by using the "linger on close" socket option (SO_LINGER). We specify the -L 
option with a linger time of 0. This causes the abort to be sent when the connection is closed, 
instead of the normal FIN. We'll connect to a server version of our sock program on svr4 and 
type one line of input: 

bsdi % sock -LO svr4 8888 this is the client; server shown later 

hello, world type one line of input that's sent to other end 

^D type end-of-file character to terminate client 

Figure 18.15 shows the tcpdump output for this example. (We have deleted all the window 
advertisements in this figure, since they add nothing to the discussion.) 

1 0.0 
bsdi.1099 > svr4.8888: S 
671112193:671112193(0) 
<mss 1024> 

2
0.004975 
(0.0050) 

svr4.8888 > bsdi.1099; S 
3224959489:3224959489(0) 
ack 671112194 <mss 1024> 

3
0.006656 
(0.0017) 

bsdi.1099 > svr4.8888: . ack 1 

4
4.833073 
(4.8264) 

bsdi.1099 > svr4.8888: P 1:14(13) ack 1 

5
5.026224 
(0.1932) 

svr4.8888 > bsdi.1099: . ack 14 

6
9.527634 
(4.5014) 

bsdi.1099 > svr4.8888: R 14:14(0) ack 1 

Figure 18.15 Aborting a connection with a reset (RST) instead of a FIN.

Lines 1-3 show the normal connection establishment. Line 4 sends the data line that we typed 
(12 characters plus the Unix newline character), and line 5 is the acknowledgment of the 
received data. 

Line 6 corresponds to our typing the end-of-file character (Control-D) to terminate the client. 
Since we specified an abort instead of a normal close (the -L0 command-line option), the TCP 
on bsdi sends an RST instead of the normal FIN. The RST segment contains a sequence 

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/tcp_conn.htm (20 of 37) [12/09/2001 14.47.16]



Chapter 18. TCP Connection Establishment and Termination 

number and acknowledgment number. Also notice that the RST segment elicits no response 
from the other end-it is not acknowledged at all. The receiver of the reset aborts the connection 
and advises the application that the connection was reset. We get the following error on the 
server for this exchange: 

svr4 % sock -s 8888 run as server, listen on-port 8888 

hello, world this is what the client sent over 

read error: Connection reset by peer 

This server reads from the network and copies whatever it receives to standard output. It 
normally ends by receiving an end-of-file notification from its TCP, but here we see that it 
receives an error when the RST arrives. The error is what we expect: the connection was reset 
by the peer. 

Detecting Half-Open Connections

A TCP connection is said to be half-open if one end has closed or aborted the connection 
without the knowledge of the other end. This can happen any time one of the two hosts crashes. 
As long as there is no attempt to transfer data across a half-open connection, the end that's still 
up won't detect that the other end has crashed. 

Another common cause of a half-open connection is when a client host is powered off, instead 
of terminating the client application and then shutting down the client host. This happens when 
PCs are being used to run Telnet clients, for example, and the users power off the PC at the end 
of the day. If there was no data transfer going on when the PC was powered off, the server will 
never la-row that the client disappeared. When the user comes in the next morning, powers on 
the PC, and starts a new Telnet client, a new occurrence of the server is started on the server 
host. This can lead to many half-open TCP connections on the server host. (In Chapter 23 we'll 
see a way for one end of a TCP connection to discover that the other end has disappeared using 
TCP's keepalive option.) 

We can easily create a half-open connection. We'll execute the Telnet client on bsdi, 
connecting to the discard server on svr4. We type one line of input, and watch it go across 
with tcpdump, and then disconnect the Ethernet cable on the server's host, and reboot the 
server host. This simulates the server host crashing. (We disconnect the Ethernet cable before 
rebooting the server to prevent it from sending a FIN out the open connections, which some 
TCPs do when they are shut down.) After the server has rebooted, we reconnect the cable, and 
try to send another line from the client to the server. Since the server's TCP has rebooted, and 
lost all memory of the connections that existed before it was rebooted, it knows nothing about 
the connection that the data segment references. The rule of TCP is that the receiver responds 
with a reset. 

bsdi % telnet svr4 discard start the client 

Trying 140.252.13.34...

Connected to svr4.
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Escape character is '^]'

hi there this line is sent OK. 

here is where we reboot the server host 

another line and this one elicits a reset 

Connection closed by foreign 
host. 

Figure 18.16 shows the tcpdump output for this example. (We have removed from this output 
the window advertisements, the type-of-service information, and the MSS announcements, 
since they add nothing to the discussion.) 

1 0.0 
bsdi.1102 > svr4.discard: 
S1591752193:1591752193(0) 

2 0.004811 (0.0048) 
svr4.discard > bsdi.1102: 
S26368001:26368001(0) 
ack 1591752194 

3 0.006516 (0.0017) bsdi.1102 > svr4.discard: . ack 1 

4 5.167679 (5.1612) bsdi.1102 > svr4.discard: P 1:11(10) ack 1 

5 5.201662 (0.0340) svr4.discard > bsdi.1102: . ack 11 

6
194.909929 
(189.7083) 

bsdi.1102 > svr4.discard: P 11:25(14) ack 1 

7
194.914957 
(0.0050) 

arp who-has bsdi tell svr4

8
194.915678 
(0.0007) 

arp reply bsdi is-at 0:0:c0:6f:2d:40 

9
194.918225 
(0.0025) 

svr4.discard > bsdi.1102: 
R26368002:26368002 (0) 

Figure 18.16 Reset in response to data segment on a half-open connection.

Lines 1-3 are the normal connection establishment. Line 4 sends the line "hi there" to the 
discard server, and line 5 is the acknowledgment. 

At this point we disconnect the Ethernet cable from svr4, reboot it, and reconnect the cable. 
This takes almost 190 seconds. We then type the next line of input to the client ("another line") 
and when we type the return key the line is sent to the server (line 6 in Figure 18.16). This 
elicits a response from the server, but note that since the server was rebooted, its ARP cache is 
empty, so an ARP request and reply are required (lines 7 and 8). Then the reset is sent in line 9. 
The client receives the reset and outputs that the connection was terminated by the foreign host. 
(The final message output by the Telnet client is not as informative as it could be.) 

18.8 Simultaneous Open
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It is possible, although improbable, for two applications to both perform an active open to each 
other at the same time. Each end must transmit a SYN, and the SYNs must pass each other on 
the network. It also requires each end to have a local port number that is well known to the 
other end. This is called a simultaneous open. 

For example, one application on host A could have a local port of 7777 and perform an active 
open to port 8888 on host B. The application on host B would have a local port of 8888 and 
perform an active open to port 7777 on host A. 

This is not the same as connecting a Telnet client on host A to the Telnet server on host B, at 
the same time that a Telnet client on host B is connecting to the Telnet server on host A. In this 
Telnet scenario, both Telnet servers perform passive opens, not active opens, and the Telnet 
clients assign themselves an ephemeral port number, not a port number that is well known to 
the other Telnet server. 

TCP was purposely designed to handle simultaneous opens and the rule is that only one 
connection results from this, not two connections. (Other protocol suites, notably the OSI 
transport layer, create two connections in this scenario, not one.) 

When a simultaneous open occurs the state transitions differ from those shown in Figure 18.13. 
Both ends send a SYN at about the same time, entering the SYN_SENT state. When each end 
receives the SYN, the state changes to SYN_RCVD (Figure 18.12), and each end resends the 
SYN and acknowledges the received SYN. When each end receives the SYN plus the ACK, the 
state changes to ESTABLISHED. These state changes are summarized in Figure 18.17. 

Figure 18.17 Segments exchanged during simultaneous open.

A simultaneous open requires the exchange of four segments, one more than the normal three-
way handshake. Also notice that we don't call either end a client or a server, because both ends 
act as client and server. 

An Example

It is possible, though hard, to generate a simultaneous open. The two ends must be started at 
about the same time, so that the SYNs cross each other. Having a long round-trip time between 
the two ends helps, to let the SYNs cross. To do this we'll execute one end on our host bsdi, 
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and the other end on the host vangogh.cs.berkeley.edu. Since there is a dialup SLIP 
link between them, the round-trip time should be long enough (a few hundred milliseconds) to 
let the SYNs cross. 

One end (bsdi) assigns itself a local port of 8888 (the -b command-line option) and performs 
an active open to port 7777 on the other host: 

bsdi % sock -v -b8888 vangogh.cs.berkeley.edu 7777 

connected on 140.252.13.35.8888 to 128.32.130.2.7777 

TCP_MAXSEG = 512

hello, world we type this line 

and hi there this line was typed on other end 

connection closed by peer this is output when FIN received 

The other end is started at about the same time, assigns itself a local port of 7777, and performs 
an active open to port 8888: 

vangogh % sock -v -b7777 bsdi.tuc.noao.edu 8888 

connected on 128.32.130.2.7777 to 140.252.13.35.8888 

TCP_MAXSEG = 512

hello, world this is typed on the other end 

and hi there we type this line 

^D and then type our EOF character 

We specify the -v flag to our sock program to verify the IP address and port numbers on each 
end of the connection. This flag also prints the MSS used by each end of the connection. We 
also type in one line on each end, which is sent to the other end and printed, to verify that both 
ends are indeed talking to each other. 

Figure 18.18 shows the exchange of segments across the connection. (We have deleted some 
new TCP options that appear in the original SYN from vangogh, a 4.4BSD system. We 
describe these newer options in Section 18.10.) Notice the two SYNs (lines 1 and 2) followed 
by the two SYNs with ACKs (lines 3 and 4). These perform the simultaneous open. 

Line 5 shows the input line "hello, world" going from bsdi to vangogh, with the 
acknowledgment in line 6. Lines 7 and 8 correspond to the line "and hi there" going in the other 
direction. Lines 9-12 show the normal connection termination. 

Many Berkeley-derived implementations do not support the simultaneous open correctly. On these systems, if 
you can get the SYNs to cross, you end up with an infinite exchange of segments, each with a SYN and an 
ACK, in each direction. The transition from the SYN_SENT state to the SYN_RCVD state in Figure 18.12 is 

not always tested in many implementations. 
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1 0.0 
bsdi.8888 >vangogh.7777: S 
91904001:91904001(0) 
win 4096 <mss 512> 

2
0.213782 
(0.2138) 

vangogh.7777 > bsdi.8888: S 
1058199041:1058199041(0) 
win 8192 <mss 512> 

3
0.215399 
(0.0016) 

bsdi.8888 > vangogh.7777: S 
91904001:91904001(0) 
ack 1058199042 win 4096 <mss 512> 

4
0.340405 
(0.1250) 

vangogh.7777 > bsdi.8888: S 
1058199041:1058199041(0) 
ack 91904002 win 8192 <mss 512> 

5
5.633142 
(5.2927) 

bsdi.8888 > vangogh.7777: P 1:14(13) ack 1 
win 4096 

6
6.100366 
(0.4672) 

vangogh.7777 > bsdi.8888: . ack 14 win 8192 

7
9.640214 
(3.5398) 

vangogh.7777 > bsdi.8888: P 1:14(13) ack 14 
win 8192 

8
9.796417 
(0.1562) 

bsdi.8888 > vangogh.7777: . ack 14 win 4096 

9
13.060395 
(3.2640) 

vangogh.7777 > bsdi.8888: F 14:14(0) ack 14 
win 8192 

10
13.061828 
(0.0014) 

bsdi.8888 > vangogh.7777: . ack 15 win 4096 

11
13.079769 
(0.0179) 

bsdi.8888 > vangogh.7777: F 14:14(0) ack 15 
win 4096 

12
13.299940 
(0.2202) 

vangogh.7777 > bsdi.8888: . ack 15 win 8192 

Figure 18.18 Exchange of segments during simultaneous open.

18.9 Simultaneous Close

We said earlier that one side (often, but not always, the client) performs the active close, 
causing the first FIN to be sent. It's also possible for both sides to perform an active close, and 
the TCP protocol allows for this simultaneous close. 

In terms of Figure 18.12, both ends go from ESTABLISHED to FIN_WAIT_1 when the 
application issues the close. This causes both FINs to be sent, and they probably pass each other 
somewhere in the network. When the FIN is received, each end transitions from FIN_WAIT_1 
to the CLOSING state, and each state sends its final ACK. When each end receives the final 
ACK, the state changes to TIME_WAIT. Figure 18.19 summarizes these state changes. 
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Figure 18.19 Segments exchanged during simultaneous close.

With a simultaneous close the same number of segments are exchanged as in the normal close. 

18.10 TCP Options

The TCP header can contain options (Figure 17.2). The only options defined in the original 
TCP specification are the end of option list, no operation, and the maximum segment size 
option. We have seen the MSS option in almost every SYN segment in our examples. 

Newer RFCs, specifically RFC 1323 [Jacobson, Braden, and Borman 1992], define additional 
TCP options, most of which are found only in the latest implementations. (We describe these 
new options in Chapter 24.) Figure 18.20 shows the format of the current TCP options-those 
from RFC 793 and RFC 1323. 
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Figure 18.20 TCP options.

Every option begins with a 1-byte kind that specifies the type of option. The options with a kind 
of 0 and 1 occupy a single byte. The other options have a len byte that follows the kind byte. 
The length is the total length, including the kind and len bytes. 

The reason for the no operation (NOP) option is to allow the sender to pad fields to a multiple 
of 4 bytes. If we initiate a TCP connection from a 4.4BSD system, the following TCP options 
are output by tcpdump on the initial SYN segment: 

<mss 512,nop,wscale 0,nop,nop,timestamp 146647 0> 

The MSS option is set to 512, followed by a NOP, followed by the window scale option. The 
reason for the first NOP is to pad the 3-byte window scale option to a 4-byte boundary. 
Similarly, the IO-byte timestamp option is preceded by two NOPs, to occupy 12 bytes, placing 
the two 4-byte timestamps onto 4-byte boundaries. 

Four other options have been proposed, with kinds of 4, 5, 6, and 7 called the selective-ACK and echo options. 
We don't show them in Figure 18.20 because the echo options have been replaced with the timestamp option, 
and selective ACKs, as currently defined, are still under discussion and were not included in RFC 1323. Also, 
the T/TCP proposal for TCP transactions (Section 24.7) specifies three options with kinds of 11, 12, and 13. 

18.11 TCP Server Design

We said in Section 1.8 that most TCP servers are concurrent. When a new connection request 
arrives at a server, the server accepts the connection and invokes a new process to handle the 
new client. Depending on the operating system, various techniques are used to invoke the new 
server. Under Unix the common technique is to create a new process using the fork function. 
Lightweight processes (threads) can also be used, if supported. 

What we're interested in is the interaction of TCP with concurrent servers. We need to answer 
the following questions: how are the port numbers handled when a server accepts a new 
connection request from a client, and what happens if multiple connection requests arrive at 
about the same time? 

TCP Server Port Numbers

We can see how TCP handles the port numbers by watching any TCP server. We'll watch the 
Telnet server using the netstat command. The following output is on a system with no 
active Telnet connections. (We have deleted all the lines except the one showing the Telnet 
server.) 

sun % netstat -a -n -f inet 

Active Internet connections (including servers) 

Proto Recv-Q Send-Q Local Address Foreign Address (state) 
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tcp 0 0 *.23 *.* LISTEN

The -a flag reports on all network end points, not just those that are ESTABLISHED. The -n 
flag prints IP addresses as dotted-decimal numbers, instead of trying to use the DNS to convert 
the address to a name, and prints numeric port numbers (e.g., 23) instead of service names (e.g., 
Telnet). The -f inet option reports only TCP and UDP end points. 

The local address is output as *.23, where the asterisk is normally called the wildcard 
character. This means that an incoming connection request (i.e., a SYN) will be accepted on 
any local interface. If the host were multihomed, we could specify a single IP address for the 
local IP address (one of the host's IP addresses), and only connections received on that interface 
would be accepted. (We'll see an example of this later in this section.) The local port is 23, the 
well-known port number for Telnet. 

The foreign address is output as *.*, which means the foreign IP address and foreign port 
number are not known yet, because the end point is in the LISTEN state, waiting for a 
connection to arrive. 

We now start a Telnet client on the host slip (140.252.13.65) that connects to this server. 
Here are the relevant lines from the netstat output: 

Proto
Recv-
Q 

Send-
Q 

Local Address Foreign Address (state)

tcp 0 0 140.252.13.33.23 140.252.13.65.1029 ESTABLISHED 

tcp 0 0 *.23 *.* LISTEN 

The first line for port 23 is the ESTABLISHED connection. All four elements of the local and 
foreign address are filled in for this connection: the local IP address and port number, and the 
foreign IP address and port number. The local IP address corresponds to the interface on which 
the connection request arrived (the Ethernet interface, 140.252.13.33). 

The end point in the LISTEN state is left alone. This is the end point that the concurrent server 
uses to accept future connection requests. It is the TCP module in the kernel that creates the 
new end point in the ESTABLISHED state, when the incoming connection request arrives and 
is accepted. Also notice that the port number for the ESTABLISHED connection doesn't 
change: it's 23, the same as the LISTEN end point. 

We now initiate another Telnet client from the same client (slip) to this server. Here is the 
relevant netstat output: 

Proto
Recv-
Q 

Send-
Q 

Local Address Foreign Address (state)

tcp 0 0 140.252.13.33.23 140.252.13.65.1030 ESTABLISHED 

tcp 0 0 140.252.13.33.23 140.252.13.65.1029 ESTABLISHED 
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tcp 0 0 *.23 *.* LISTEN 

We now have two ESTABLISHED connections from the same host to the same server. Both 
have a local port number of 23. This is not a problem for TCP since the foreign port numbers 
are different. They must be different because each of the Telnet clients uses an ephemeral port, 
and the definition of an ephemeral port is one that is not currently in use on that host (slip). 

This example reiterates that TCP demultiplexes incoming segments using all four values that 
comprise the local and foreign addresses: destination IP address, destination port number, 
source IP address, and source port number. TCP cannot determine which process gets an 
incoming segment by looking at the destination port number only. Also, the only one of the 
three end points at port 23 that will receive incoming connection requests is the one in the 
LISTEN state. The end points in the ESTABLISHED state cannot receive SYN segments, and 
the end point in the LISTEN state cannot receive data segments. 

Next we initiate a third Telnet client, from the host solaris that is across the SLIP link from 
sun, and not on its Ethernet. 

Proto
Recv-
Q 

Send-
Q 

Local Address Foreign Address (state)

tcp 0 0 140.252.1.29.23 140.252.1.32.34603 ESTABLISHED 

tcp 0 0 140.252.13.33.23 140.252.13.65.1030 ESTABLISHED 

tcp 0 0 140.252.13.33.23 140.252.13.65.1029 ESTABLISHED 

tcp 0 0 *.23 *.* LISTEN 

The local IP address of the first ESTABLISHED connection now corresponds to the interface 
address of SLIP link on the multihomed host sun (140.252.1.29). 

Restricting Local IP Address

We can see what happens when the server does not wildcard its local IP address, setting it to 
one particular local interface address instead. If we specify an IP address (or host-name) to our 
sock program when we invoke it as a server, that IP address becomes the local IP address of the 
listening end point. For example 

sun % sock -s 140.252.1.29 8888 

restricts this server to connections arriving on the SLIP interface (140.252.1.29). The 
netstat output reflects this: 

Proto
Recv-
Q 

Send-
Q 

Local Address Foreign Address (state)

tcp 0 0 140.252.1.29.8888 *.* LISTEN 
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If we connect to this server across the SLIP link, from the host solaris, it works. 

Proto
Recv-
Q 

Send-
Q 

Local Address Foreign Address (state)

tcp 0 0 140.252.1.29.8888 140.252.1.32.34614 ESTABLISHED 

tcp 0 0 140.252.1.29.8888 *.* LISTEN 

But if we try to connect to this server from a host on the Ethernet (140.252.13), the connection 
request is not accepted by the TCP module. If we watch it with tcpdump the SYN is 
responded to with an RST, as we show in Figure 18.21. 

1 0.0 
bsdi.l026 > sun.8888: S 
3657920001:3657920001(0) 
win 4096 <mss 1024> 

2
0.000859 
(0.0009) 

sun.8888 > bsdi.l026: R 0:0(0) ack 3657920002 
win 0 

Figure 18.21 Rejection of a connection request based on local IP address of server.

The server application never sees the connection request - the rejection is done by the kernel's 
TCP module, based on the local IP address specified by the application. 

Restricting Foreign IP Address

In Section 11.12 we saw that a UDP server can normally specify the foreign IP address and 
foreign port, in addition to specifying the local IP address and local port. The interface 
functions shown in RFC 793 allow a server doing a passive open to have either a fully specified 
foreign socket (to wait for a particular client to issue an active open) or a unspecified foreign 
socket (to wait for any client). 

Unfortunately, most APIs don't provide a way to do this. The server must leave the foreign 
socket unspecified, wait for the connection to arrive, and then examine the IP address and port 
number of the client. 

Figure 18.22 summarizes the three types of address bindings that a TCP server can establish for 
itself. In all cases, lport is the server's well-known port and localIP must be the IP address of a 
local interface. The ordering of the three rows in the table is the order that the TCP module 
applies when trying to determine which local end point receives an incoming connection 
request. The most specific binding (the first row, if supported) is tried first, and the least 
specific (the last row with both IP addresses wild-carded) is tried last. 

Local Address
Foreign 
Address

Description
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localIP.lport 
localIP.lport

*.lport

foreignIP.fport
*.*
* *

restricted to one client (normally not supported)
restricted to connections arriving on one local interface: 
localIP
receives all connections sent to lport 

Figure 18.22 Specification of local and foreign IP addresses and port number for TCP server.

Incoming Connection Request Queue

A concurrent server invokes a new process to handle each client, so the listening server should 
always be ready to handle the next incoming connection request. That's the underlying reason 
for using concurrent servers. But there is still a chance that multiple connection requests arrive 
while the listening server is creating a new process, or while the operating system is busy 
running other higher priority processes. How does TCP handle these incoming connection 
requests while the listening application is busy? In Berkeley-derived implementations the 
following rules apply. 

1.  Each listening end point has a fixed length queue of connections that have been accepted 
by TCP (i.e., the three-way handshake is complete), but not yet accepted by the 
application. 

Be careful to differentiate between TCP accepting a connection and placing it on this 
queue, and the application taking the accepted connection off this queue. 

2.  The application specifies a limit to this queue, commonly called the backlog. This 
backlog must be between 0 and 5, inclusive. (Most applications specify the maximum 
value of 5.) 

3.  When a connection request arrives (i.e., the SYN segment), an algorithm is applied by 
TCP to the current number of connections already queued for this listening end point, to 
see whether to accept the connection or not. We would expect the backlog value 
specified by the application to be the maximum number of queued connections allowed 
for this end point, but it's not that simple. Figure 18.23 shows the relationship between 
the backlog value and the real maximum number of queued connections allowed by 
traditional Berkeley systems and Solaris 2.2. 

Backlog value Max # of queued connections

Traditional BSD Solaris 2.2

0 
1
2
3
4
5

1
2
4
5
7
8

0
1
2
3
4
5
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Figure 18.23 Maximum number of accepted connections allowed for listening end 
point.

Keep in mind that this backlog value specifies only the maximum number of queued 
connections for one listening end point, all of which have already been accepted by TCP 
and are waiting to be accepted by the application. This backlog has no effect whatsoever 
on the maximum number of established connections allowed by the system, or on the 
number of clients that a concurrent server can handle concurrently. 

The Solaris values in this figure are what we expect. The traditional BSD values are (for some 
unknown reason) the backlog value times 3, divided by 2, plus 1. 

4.  If there is room on this listening end point's queue for this new connection (based on 
Figure 18.23), the TCP module ACKs the SYN and completes the connection. The 
server application with the listening end point won't see this new connection until the 
third segment of the three-way handshake is received. Also, the client may think the 
server is ready to receive data when the client's active open completes successfully, 
before the server application has been notified of the new connection. (If this happens, 
the server's TCP just queues the incoming data.) 

5.  If there is not room on the queue for the new connection, TCP just ignores the received 
SYN. Nothing is sent back (i.e., no RST segment). If the listening server doesn't get 
around to accepting some of the already accepted connections that have filled its queue 
to the limit, the client's active open will eventually time out. 

We can see this scenario take place with our sock program. We invoke it with a new option (-
O) that tells it to pause after creating the listening end point, before accepting any connection 
requests. If we then invoke multiple clients during this pause period, it should cause the server's 
queue of accepted connections to fill, and we can see what happens with tcpdump. 

bsdi % sock -a -v -q1 -O30 7777 

The -q1 option sets the backlog of the listening end point to 1, which for this traditional BSD 
system should allow two pending connection requests (Figure 18.23). The -O30 option causes 
the program to sleep for 30 seconds before accepting any client connections. This gives us 30 
seconds to start some clients, to fill the queue. We'll start four clients on the host sun. 

Figure 18.24 shows the tcpdump output, starting with the first SYN from the first client. (We 
have removed the window size advertisements and MSS announcements. We have also marked 
the client port numbers in bold when the TCP connection is established-the three-way 
handshake.) 

The first client's connection request from port 1090 is accepted by TCP (segments 1-3). The 
second client's connection request from port 1091 is also accepted by TCP (segments 4-6). The 
server application is still asleep, and has not accepted either connection yet. Everything has 
been done by the TCP module in the kernel. Also, the two clients have returned successfully 
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from their active opens, since the three-way handshakes are complete. 

1 0.0 
sun.1090 > bsdi.7777: S 
1617152000:1617152000(0) 

2
0.002310 ( 
0.0023) 

bsdi.7777 > sun.1090: S 
4164096001:4164096001(0) 
ack 1617152001 

3
0.003098 ( 
0.0008) 

sun.1090 > bsdi.7777: . ack 1

4
4.291007 ( 
4.2879) 

sun.1091 > bsdi.7777: S 
1617792000:1617792000(0) 

5
4.293349 ( 
0.0023) 

S 4164672001:4164672001(0) ack 1617792001 

6
4.294167 ( 
0.0008) 

sun.1091 > bsdi.7777: . ack 1

7
7.131981 ( 
2.8378) 

sun.1092 > bsdi.7777: S 
1618176000:1618176000 (0) 

8
10.556787 ( 
3..4248) 

sun.1093 > bsdi.7777: S 
1618688000:1618688000 (0) 

9
12.695916 ( 
2..1391) 

sun.1092 > bsdi.7777: S 
1618176000:1618176000 (0) 

10
16.195772 ( 
3..4999) 

sun.1093 > bsdi.7777: S 
1618688000:1618688000 (0) 

11
24.695571 ( 
8..4998) 

sun.1092 > bsdi.7777: S 
1618176000:1618176000 (0) 

12
28.195454 ( 
3.4999) 

sun.1093 > bsdi.7777: S 
1618688000:1618688000 (0) 

13
28.197810 ( 
0.0024) 

bsdi.7777 > sun.1093: S 
4167808001:4167808001 (0) 
ack 1618688001 

14
28.198639 ( 
0.0008) 

sun.1093 > bsdi.7777: ack 1

15
48.694931 
(20.4963) 

sun.1092 > bsdi.7777: S 
1618176000:1618176000(0) 

16
48.697292 ( 
0.0024) 

bsdi.7777 > sun.1092: S 4190496001: 417 049 
6001(0) 
ack 1618176001 

17
48.698145 ( 
0.0009) 

sun.1092 > bsdi.7777: ack 1

Figure 18.24 tcpdump output for backlog example.

We try to start a third client in segment 7 (port 1092), and a fourth in segment 8 (port 1093). 
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TCP ignores both SYNs since the queue for this listening end point is full. Both clients 
retransmit their SYNs in segments 9, 10, 11, 12, and 15. The fourth client's third retransmission 
is accepted (segments 12-14) because the server's 30-second pause is over, causing the server to 
remove the two connections that were accepted, emptying its queue. (The reason it appears this 
connection was accepted by the server at the time 28.19, and not at a time greater than 30, is 
because it took a few seconds to start the first client [segment 1, the starting time point in the 
output] after starting the server.) The third client's fourth retransmission is then accepted 
(segments 15-17). The fourth client connection (port 1093) is accepted by the server before the 
third client connection (port 1092) because of the timing interactions between the server's 30-
second pause and the client's retransmissions. 

We would expect the queue of accepted connections to be passed to the application in FIFO (first-in, first-out) 
order. That is, after TCP accepts the connections on ports 1090 and 1091, we expect the application to receive 
the connection on port 1090 first, and then the connection on port 1091. But a bug has existed for years in many 
Berkeley-derived implementations causing them to be returned in a LIFO (last-in, first-out) order instead. 
Vendors have recently started fixing this bug, but it still exists in systems such as SunOS 4.1.3. 

TCP ignores the incoming SYN when the queue is full, and doesn't respond with an RST, 
because this is a soft error, not a hard error. Normally the queue is full because the application 
or the operating system is busy, preventing the application from servicing incoming 
connections. This condition could change in a short while. But if the server's TCP responded 
with a reset, the client's active open would abort (which is what we saw happen if the server 
wasn't started). By ignoring the SYN, the server forces the client TCP to retransmit the SYN 
later, hoping that the queue will then have room for the new connection. 

A subtle point in this example, which is found in most TCP/IP implementations, is that TCP 
accepts an incoming connection request (i.e., a SYN) if there is room on the listener's queue, 
without giving the application a chance to see who it's from (the source IP address and source 
port number). This is not required by TCP, it's just the common implementation technique (i.e., 
the way the Berkeley sources have always done it). If an API such as TLI (Section 1.15) gives 
the application a way to learn when a connection request arrives, and then allows the 
application to choose whether to accept the connection or not, be aware that with TCP, when 
the application is supposedly told that the connection has just arrived, TCP's three-way 
handshake is over! Other transport layers may be implemented to provide this separation to the 
application between arrival and acceptance (i.e., the OSI transport layer) but not TCP. 

Solaris 2.2 provides an option that prevents TCP from accepting an incoming connection request until the 
application says so (tcp_eager_listeners in Section E.4). 

This behavior also means that a TCP server has no way to cause a client's active open to fail. 
When a new client connection is passed to the server application, TCP's three-way handshake is 
over, and the client's active open has completed successfully. If the server then looks at the 
client's IP address and port number, and decides it doesn't want to service this client, all the 
server can do is either close the connection (causing a FIN to be sent) or reset the connection 
(causing an RST to be sent). In either case the client thought everything was OK when its active 
open completed, and may have already sent a request to the server. 
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18.12 Summary

Before two processes can exchange data using TCP, they must establish a connection between 
themselves. When they're done they terminate the connection. This chapter has provided a 
detailed look at how connections are established using a three-way handshake, and terminated 
using four segments. 

We used tcpdump to show all the fields in the TCP header. We've also seen how a connection 
establishment can time out, how resets are sent, what happens with a half-open connection, and 
how TCP provides a half-close, simultaneous opens, and simultaneous closes. 

Fundamental to understanding the operation of TCP is its state transition diagram. We've 
followed through the steps involved in connection establishment and termination, and the state 
transitions that take place. We also looked at the implications of TCP's connection 
establishment on the design of concurrent TCP servers. 

A TCP connection is uniquely defined by a 4-tuple: the local IP address, local port number, 
foreign IP address, and foreign port number. Whenever a connection is terminated, one end 
must maintain knowledge of the connection, and we saw that the TIME_WAIT state handles 
this. The rule is that the end that does the active open enters this state for twice the 
implementation's MSL. 

Exercises

18.1 In Section 18.2 we said that the initial sequence number (ISN) normally starts at 1 and is 
incremented by 64,000 every half-second and every time an active open is performed. This 
would imply that the low-order three digits of the ISN would always be 001. But in Figure 18.3 
these low-order three digits are 521 in each direction. What's going on? 

18.2 In Figure 18.15 we typed 12 characters and saw 13 bytes sent by TCP. In Figure 18.16 we 
typed eight characters but TCP sent 10 bytes. Why was 1 byte added in the first case, but 2 
bytes in the second case? 

18.3 What's the difference between a half-open connection and a half-closed connection? 

18.4 If we start our sock program as a server, and then terminate it (without having a client 
connect to it), we can immediately restart the server. This implies that it doesn't go through the 
2MSL wait state. Explain this in terms of the state transition diagram. 

18.5 In Section 18.6 we showed that a client cannot reuse the same local port number while that 
port is part of a connection in the 2MSL wait. But if we run our sock program twice in a row as 
a client, connecting to the daytime server, we can reuse the same local port number. 
Additionally, we're able to create a new incarnation of a connection that should be in the 2MSL 
wait. What's going on? 
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sun % sock -v bsdi daytime 
connected on 140.252.13.33.1163 to 140.252.13.35.13 
Wed Jul 7 07:54:51 1993
connection closed by peer 

sun % sock -v -bll63 bsdi daytime reuse same local port number
connected on 140.252.13.33.1163 to 140.252.13.35.13 
Wed Jul 707:55:01 1993
connection closed by peer 

18.6 At the end of Section 18.6 when describing the FIN_WAIT_2 state, we mentioned that 
many implementations move a connection from this state into the CLOSED state if the 
application did a complete close (not a half-close) after just over 11 minutes. If the other end (in 
the CLOSE_WAIT state) waited 12 minutes before issuing its close (i.e., sending its FIN), what 
would its TCP get in response to the FIN? 

18.7 Which end of a telephone conversation does the active open, and which does the passive 
open? Are simultaneous opens allowed? Are simultaneous closes allowed? 

18.8 In Figure 18.6 we don't see an ARP request or an ARP reply. Obviously the hardware 
address for host svr4 must be in the ARP cache on bsdi. What would change in this figure if 
this ARP cache entry was not present? 

18.9 Explain the following tcpdump output. Compare it with Figure 18.13. 

1 0.0 
solaris.32990 > bsdi.discard: S 
40140288:40140288(0)
win 8760 <mss 1460> 

2
0.003295 
(0.0033) 

bsdi.discard > solaris.32990: S 
4208081409:4208081409 (0) 
ack 40140289 win 4096 <mss 1024> 

3
0.419991 
(0.4167) 

solaris.32990 > bsdi.discard: P 1:257(256) ack 
1 win 9216 

4
0.449852 
(0.0299) 

solaris.32990 > bsdi.discard: F 257:257(0) ack 
1 win 9216 

5
0.451965 
(0.0021) 

bsdi.discard > solaris.32990: . ack 258 win 
3840 

6
0.464569 
(0.0126) 

bsdi.discard > solaris.32990: F 1:1(0) ack 258 
win 4096 

7
0.720031 
(0.2555) 

solaris.32990 > bsdi.discard: . ack 2 win 9216 

18.10 Why doesn't the server in Figure 18.4 combine the ACK of the client's FIN with its own 
FIN, reducing the number of segments to three? 
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18.11 In Figure 18.16 why is the sequence number of the RST 26368002? 

18.12 Does TCP's querying the link layer for the MTU violate the spirit of layering? 

18.13 Assume in Figure 14.16 that each DNS query is issued using TCP instead of UDP. How 
many packets are exchanged? 

18.14 With an MSL of 120 seconds, what is the maximum at which a system can initiate new 
connections and then do an active close? 

18.15 Read RFC 793 to see what happens when an end point that is in the TIME_WAIT state 
receives a duplicate of the FIN that placed it into this state. 

18.16 Read RFC 793 to see what happens when an end point that is in the TIME_WAIT state 
receives an RST. 

18.17 Read the Host Requirements RFC to obtain the definition of a half-duplex TCP close. 

18.18 In Figure 1.8 we said that incoming TCP segments are demultiplexed based on the 
destination TCP port number. Is that correct? 
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TCP Interactive Data Flow
19.1 Introduction

The previous chapter dealt with the establishment and termination of TCP connections. 
We now examine the transfer of data using TCP. 

Studies of TCP traffic, such as [Caceres et al. 1991], usually find that on a packet-count 
basis about half of all TCP segments contain bulk data (FTP, electronic mail, Usenet 
news) and the other half contain interactive data (Telnet and Rlogin, for example). On a 
byte-count basis the ratio is around 90% bulk data and 10% interactive, since bulk data 
segments tend to be full sized (normally 512 bytes of user data), while interactive data 
tends to be much smaller. (The above-mentioned study found that 90% of Telnet and 
Rlogin packets carry less than 10 bytes of user data.) 

TCP obviously handles both types of data, but different algorithms come into play for 
each. In this chapter we'll look at interactive data transfer, using the Rlogin application. 
We'll see how delayed acknowledgments work and how the Nagle algorithm reduces the 
number of small packets across wide area networks. The same algorithms apply to 
Telnet. In the next chapter we'll look at bulk data transfer. 

19.2 Interactive Input

Let's look at the flow of data when we type an interactive command on an Rlogin 
connection. Many newcomers to TCP/IP are surprised to find that each interactive 
keystroke normally generates a data packet. That is, the keystrokes are sent from the 
client to the server 1 byte at a time (not one line at a time). Furthermore, Rlogin has the 
remote system (the server) echo the characters that we (the client) type. This could 
generate four segments: (1) the interactive keystroke from the client, (2) an 
acknowledgment of the keystroke from the server, (3) the echo of the keystroke from the 
server, and (4) an acknowledgment of the echo from the client. Figure 19.1 shows this 
flow of data. 
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Figure 19.1 One possible way to do remote echo of interactive keystroke.

Normally, however, segments 2 and 3 are combined-the acknowledgment of the 
keystroke is sent along with the echo. We describe the technique that combines these 
(called delayed acknowledgments) in the next section. 

We purposely use Rlogin for the examples in this chapter because it always sends one 
character at a time from the client to the server. When we describe Telnet in Chapter 26, 
we'll see that it has an option that allows lines of input to be sent from the client to the 
server, which reduces the network load. 

Figure 19.2 shows the flow of data when we type the five characters date\n. (We do 
not show the connection establishment and we have removed all the type-of-service 
output. BSD/386 sets the TOS for an Rlogin connection for minimum delay.) Line 1 
sends the character d from the client to the server. Line 2 is the acknowledgment of this 
character and its echo. (This is combining the middle two segments in Figure 19.1.) Line 
3 is the acknowledgment of the echoed character. Lines 4-6 correspond to the character a, 
lines 7-9 to the character t, and lines 10-12 to the character e. The fractional second 
delays between lines 3-4, 6-7, 9-10, and 12-13 are the human delays between typing each 
character. 

Notice that lines 13-15 are slightly different. One character is sent from the client to the 
server (the Unix newline character, from our typing the RETURN key) but two 
characters are echoed. These two characters are a carriage return and linefeed (CR/LF), 
to move the cursor back to the left and space down one line. 

Line 16 is the output of the date command from the server. The 30 bytes are composed 
of the following 28 characters 
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Sat Feb 6 07:52:17 MST 1993 

1 0.0 
bsdi.1023 > svr4.login: P 0:1(1) ack 1 
win 4096 

2
0.016497 
(0.0165) 

svr4.login > bsdi.1023: P 1:2(1) ack 1 
win 4096 

3
0.139955 
(0.1235) 

bsdi.1023 > svr4.login: . ack 2 win 4096 

4
0.458037 
(0.3181) 

bsdi.1023 > svr4.login: P 1:2(1) ack 2 
win 4096 

5
0.474386 
(0.0163) 

svr4.login > bsdi.1023: P 2:3(1) ack 2 
win 4096 

6
0.539943 
(0.0656) 

bsdi.1023 > svr4.login: . ack 3 win 4096 

7
0.814582 
(0.2746) 

bsdi.1023 > svr4.login: P 2:3(1) ack 3 
win 4096 

8
0.831108 
(0.0165) 

svr4.login > bsdi.1023: P 3:4(1) ack 3 
win 4096 

9
0.940112 
(0.1090) 

bsdi.1023 > svr4.login: . ack 4 win 4096 

10
1.191287 
(0.2512) 

bsdi.1023 > svr4.login: P 3:4(1) ack 4 
win 4096 

11
1.207701 
(0.0164) 

svr4.login > bsdi.1023: P 4:5(1) ack 4 
win 4096 

12
1.339994 
(0.1323) 

bsdi.1023 > svr4.login: . ack 5 win 4096 

13
1.680646 
(0.3407) 

bsdi.1023 > svr4.login: P 4:5(1) ack 5 
win 4096 

14
1.697977 
(0.0173) 

svr4.login > bsdi.1023: P 5:7(2) ack 5 
win 4096 

15
1.739974 
(0.0420) 

bsdi.1023 > svr4.login: . ack 7 win 4096 

16
1.799841 
(0.0599) 

svr4.login > bsdi.1023: P 7:37(30) ack 5 
win 4096 

17
1.940176 
(0.1403) 

bsdi.1023 > svr4.login: . ack 37 win 4096 

18
1.944338 
(0.0042) 

svr4.login > bsdi.1023: P 37:44(7) ack 5 
win 4096 

19
2.140110 
(0.1958) 

bsdi.1023 > svr4.login: . ack 44 win 4096 

file:///D|/Documents%20and%20Settings/bigini/Docum...i/homenet2run/tcpip/tcp-ip-illustrated/tcp_int.htm (3 of 14) [12/09/2001 14.47.18]



Chapter 19. TCP Interactive Data Flow

Figure 19.2 TCP segments when date typed on Rlogin connection.

plus a CR/LF pair at the end. The next 7 bytes sent from the server to the client (line 18) 
are the client's prompt on the server host: svr4 % . Line 19 acknowledges these 7 
bytes. 

Notice how the TCP acknowledgments operate. Line 1 sends the data byte with the 
sequence number 0. Line 2 ACKs this by setting the acknowledgment sequence number 
to 1, the sequence number of the last successfully received byte plus one. (This is also 
called the sequence number of the next expected byte.) Line 2 also sends the data byte 
with a sequence number of 1 from the server to the client. This is ACKed by the client in 
line 3 by setting the acknowledged sequence number to 2. 

19.3 Delayed Acknowledgments

There are some subtle points in Figure 19.2 dealing with timing that we'll cover in this 
section. Figure 19.3 shows the time line for the exchange in Figure 19.2. (We have 
deleted all the window advertisements from this time line, and have added a notation 
indicating what data is being transferred.) 

We have labeled the seven ACKs sent from bsdi to svr4 as delayed ACKs. Normally 
TCP does not send an ACK the instant it receives data. Instead, it delays the ACK, 
hoping to have data going in the same direction as the ACK, so the ACK can be sent 
along with the data. (This is sometimes called having the ACK piggyback with the data.) 
Most implementations use a 200-ms delay-that is, TCP will delay an ACK up to 200 ms 
to see if there is data to send with the ACK. 

Figure 19.3 Time line of data flow for date command typed on an rlogin 
connection.

If we look at the time differences between bsdi receiving the data and sending the 
ACK, they appear to be random: 123.5, 65.6, 109.0, 132.3,42.0, 140.3, and 195.8 ms. 
Look instead at the actual times (starting from 0) when the ACKs are sent: 139.9, 539.9, 
940.1, 1339.9, 1739.9, 1940.1, and 2140.1 ms. (We have marked these with an asterisk to 
the left of the time in Figure 19.3.) There is a multiple of 200 ms between these times. 
What is happening here is that TCP has a timer that goes off every 200 ms, but it goes off 
at fixed points in time-every 200 ms relative to when the kernel was bootstrapped. Since 
the data being acknowledged arrives randomly (at times 16.4, 474.3, 831.1, etc.), TCP 
asks to be notified the next time the kernel's 200-ms timer expires. This can be anywhere 
from 1 to 200 ms in the future. 

If we look at how long it takes svr4 to generate the echo of each character it receives, 
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the times are 16.5, 16.3, 16.5, 16.4, and 17.3 ms. Since this time is less than 200 ms, we 
never see a delayed ACK on that side. There is always data ready to be sent before the 
delayed ACK timer expires. (We could still see a delayed ACK if the wait period, about 
16 ms, crosses one of the kernel's 200-ms clock tick boundaries. We just don't see any of 
these in this example.) 

We saw this same scenario in Figure 18.7 with the 500-ms TCP timer used when 
detecting a timeout. Both TCP timers, the 200- and 500-ms timers, go off at times 
relative to when the kernel was bootstrapped. Whenever TCP sets a timer, it can go off 
anywhere between 1-200 or 1-500 ms in the future. 

The Host Requirements RFC states that TCP should implement a delayed ACK but the 
delay must be less than 500 ms. 

19.4 Nagle Algorithm

We saw in the previous section that 1 byte at a time normally flows from the client to the 
server across an Rlogin connection. This generates 41-byte packets: 20 bytes for the IP 
header, 20 bytes for the TCP header, and 1 byte of data. These small packets (called 
tinygrams) are normally not a problem on LANs, since most LANs are not congested, but 
these tinygrams can add to congestion on wide area networks. A simple and elegant 
solution was proposed in RFC 896 [Nagle 1984], called the Nagle algorithm. 

This algorithm says that a TCP connection can have only one outstanding small segment 
that has not yet been acknowledged. No additional small segments can be sent until the 
acknowledgment is received. Instead, small amounts of data are collected by TCP and 
sent in a single segment when the acknowledgment arrives. The beauty of this algorithm 
is that it is self-clocking: the faster the ACKs come back, the faster the data is sent. But 
on a slow WAN, where it is desired to reduce the number of tinygrams, fewer segments 
are sent. (We'll see in Section 22.3 that the definition of "small" is less than the segment 
size.) 

We saw in Figure 19.3 that the round-trip time on an Ethernet for a single byte to be sent, 
acknowledged, and echoed averaged around 16 ms. To generate data faster than this we 
would have to be typing more than 60 characters per second. This means we rarely 
encounter this algorithm when sending data between two hosts on a LAN. 

Things change, however, when the round-trip tune (RTT) increases, typically across a 
WAN. Let's look at an Rlogin connection between our host slip and the host 
vangogh.cs.berkeley.edu. To get out of our network (see inside front cover), 
two SLIP links must be traversed, and then the Internet is used. We expect much longer 
round-trip times. Figure 19.4 shows the time line of some data flow while characters 
were being typed quickly on the client (similar to a fast typist). (We have removed the 
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type-of-service information, but have left in the window size advertisements.) 

Figure 19.4 Dataflow using rlogin between slip and 
vangogh.cs.berkeley.edu.

The first thing we notice, comparing Figure 19.4 with Figure 19.3, is the lack of delayed 
ACKs from slip to vangogh. This is because there is always data ready to send before 
the delayed ACK timer expires. 

Next, notice the various amounts of data being sent from the left to the right: 1, 1, 2, 1, 2, 
2, 3, 1, and 3 bytes. This is because the client is collecting the data to send, but doesn't 
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send it until the previously sent data has been acknowledged. By using the Nagle 
algorithm only nine segments were used to send 16 bytes, instead of 16 segments. 

Segments 14 and 15 appear to contradict the Nagle algorithm, but we need to look at the 
sequence numbers to see what's really happening. Segment 14 is in response to the ACK 
received in segment 12, since the acknowledged sequence number is 54. But before this 
data segment is sent by the client, segment 13 arrives from the server. Segment 15 
contains the ACK of segment 13, sequence number 56. So the client is obeying the Nagle 
algorithm, even though we see two back-to-back data segments from the client to the 
server. 

Also notice in Figure 19.4 that one delayed ACK is present, but it's from the server to the 
client (segment 12). We are assuming this is a delayed ACK since it contains no data. 
The server must have been busy at this time, so that the Rlogin server was not able to 
echo the character before the server's delayed ACK timer expired. 

Finally, look at the amounts of data and the sequence numbers in the final two segments. 
The client sends 3 bytes of data (numbered 18, 19, and 20), then the server acknowledges 
these 3 bytes (the ACK of 21 in the final segment) but sends back only 1 byte (numbered 
59). What's happening here is that the server's TCP is acknowledging the 3 bytes of data 
once it has received them correctly, but it won't have the echo of these 3 bytes ready to 
send back until the Rlogin server sends them. This shows that TCP can acknowledge 
received data before the application has read and processed that data. The TCP 
acknowledgment just means TCP has correctly received the data. We also have an 
indication that the server process has not read these 3 bytes of data because the advertised 
window in the final segment is 8189, not 8192. 

Disabling the Nagle Algorithm

There are times when the Nagle algorithm needs to be turned off. The classic example is 
the X Window System server (Section 30.5): small messages (mouse movements) must 
be delivered without delay to provide real-time feedback for interactive users doing 
certain operations. 

Here we'll show another example that's easier to demonstrate-typing one of the terminal's 
special function keys during an interactive login. The function keys normally generate 
multiple bytes of data, often beginning with the ASCII escape character. If TCP gets the 
data 1 byte at a time, it's possible for it to send the first byte (the ASCII ESC) and then 
hold the remaining bytes of the sequence waiting for the ACK of this byte. But when the 
server receives this first byte it doesn't generate an echo until the remaining bytes are 
received. This often triggers the delayed ACK algorithm on the server, meaning that the 
remaining bytes aren't sent for up to 200 ms. This can lead to noticeable delays to the 
interactive user. 
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The sockets API uses the TCP_NODELAY socket option to disable the Nagle algorithm. 

The Host Requirements RFC states that TCP should implement the Nagle algorithm but 
there must be a way for an application to disable it on an individual connection. 

An Example

We can see this interaction between the Nagle algorithm and keystrokes that generate 
multiple bytes. We establish an Rlogin connection from our host slip to the host 
vangogh.cs.berkeley.edu. We then type the Fl function key, which generates 3 
bytes: an escape, a left bracket, and an M. We then type the F2 function key, which 
generates another 3 bytes. Figure 19.5 shows the tcpdump output. (We have removed the 
type-of-service information and the window advertisements.) 

type Fl key 

1 0.0 
slip.1023 > vangogh. login: P 1:2(1) ack 
2 

2
0.250520 
(0.2505) 

vangogh.login > slip.1023: P 2:4(2) ack 
2 

3
0.251709 
(0.0012) 

slip.1023 > vangogh.login: P 2:4(2) ack 
4 

4
0.490344 
(0.2386) 

vangogh.login > slip.1023: P 4:6(2) ack 
4 

5
0.588694 
(0.0984) 

slip.1023 > vangogh.login: . ack 6 

type F2 key 

6
2.836830 
(2.2481) 

slip.1023 > vangogh.login: P 4:5(1) ack 
6 

7
3.132388 
(0.2956) 

vangogh.login > slip.1023: P 6:8(2) ack 
5 

8
3.133573 
(0.0012) 

slip.1023 > vangogh.login: P 5:7(2) ack 
8 

9
3.370346 
(0.2368) 

vangogh.login > slip.1023: P 8:10(2) ack 
7 

10
3.388692 
(0.0183) 

slip.1023 > vangogh.login: . ack 10 

Figure 19.5 Watching the Nagle algorithm when typing characters that generate multiple 
bytes of data.
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Figure 19.6 shows the time line for this exchange. At the bottom of this figure we show 
the 6 bytes going from the client to the server with their sequence numbers, and the 8 
bytes of echo being returned. 

When the first byte of input is read by the rlogin client and written to TCP, it is sent 
by itself as segment 1. This is the first of the 3 bytes generated by the Fl key. Its echo is 
returned in segment 2, and only then are the next 2 bytes sent (segment 3). The echo of 
the second 2 bytes is received in segment 4 and acknowledged in segment 5. 

The reason the echo of the first byte occupies 2 bytes (segment 2) is because the ASCII 
escape character is echoed as 2 bytes: a caret and a left bracket. The next 2 bytes of input, 
a left bracket and an M, are echoed as themselves. 

The same exchange occurs when the next special function key is typed (segments 6-10). 
As we expect, the time difference between segments 5 and 10 (slip sending the 
acknowledgment of the echo) is a multiple of 200 ms, since both ACKs are delayed. 
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Figure 19.6 Time line for Figure 19.5 (watching the Nagle algorithm).

We now repeat this same example using a version of rlogin that has been modified to 
turn off the Nagle algorithm. Figure 19.7 shows the tcpdump output. (Again, we have 
deleted the type-of-service information and the window advertisements.) 

type Fl key 

1 0.0 
slip.1023 > vangogh.login: P 1:2(1) ack 
2 

2
0.002163 
(0.0022) 

slip.1023 > vangogh.login: P 2:3(1) ack 
2 

3
0.004218 
(0.0021) 

slip.1023 > vangogh.login: P 3:4(1) ack 
2 

4
0.280621 
(0.2764) 

vangogh.login > slip.1023: P 5:6(1) ack 
4 

5
0.281738 
(0.0011) 

slip.1023 > vangogh.login: . ack 2 

6
2.477561 
(2.1958) 

vangogh.login > slip.1023: P 2:6(4) ack 
4 

7
2.478735 
(0.0012) 

slip.1023 > vangogh.login: . ack 6 

type F2 key 

8
3.217023 
(0.7383) 

slip.1023 > vangogh.login: P 4:5(1) ack 
6 

9
3.219165 
(0.0021) 

slip.1023 > vangogh.login: P 5:6(1) ack 
6 

10
3.221688 
(0.0025) 

slip.1023 > vangogh.login: P 6:7(1) ack 
6 

11
3.460626 
(0.2389) 

vangogh.login > slip.1023: P 6:8(2) ack 
5 

12
3.489414 
(0.0288) 

vangogh.login > slip.1023: P 8:10(2) ack 
1 

13
3.640356 
(0.1509) 

slip.1023 > vangogh.login: . ack 10 

Figure 19.7 Disabling the Nagle algorithm during an Rlogin session.

It is instructive and more enlightening to take this output and construct the time line, 
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knowing that some of the segments are crossing in the network. Also, this example 
requires careful examination of the sequence numbers, to follow the data flow. We show 
this in Figure 19.8. We have numbered the segments to correspond with the numbering in 
the tcpdump output in Figure 19.7. 

The first change we notice is that all 3 bytes are sent when they're ready (segments 1,2, 
and 3). "There is no delay-the Nagle algorithm has been disabled. 

The next packet we see in the tcpdump output (segment 4) contains byte 5 from the 
server with an ACK 4. This is wrong. The client immediately responds with an ACK 2 (it 
is not delayed), not an ACK 6, since it wasn't expecting byte 5 to arrive. It appears a data 
segment was lost. We show this with a dashed line in Figure 19.8. 

How do we know this lost segment contained bytes 2, 3, and 4, along with an ACK 3? 
The next byte we're expecting is byte number 2, as announced by segment 5. (Whenever 
TCP receives out-of-order data beyond the next expected sequence number, it normally 
responds with an acknowledgment specifying the sequence number of the next byte it 
expects to receive.) Also, since the missing segment contained bytes 2, 3, and 4, it means 
the server must have received segment 2, so the missing segment must have specified an 
ACK 3 (the sequence number of the next byte the server is expecting to receive.) Finally, 
notice that the retransmission, segment 6, contains data from the missing segment and 
segment 4. This is called repacketization, and we'll discuss it more in Section 21.11. 

Returning to our discussion of disabling the Nagle algorithm, we can see the 3 bytes of 
the next special function key that we type is sent as three individual segments (8, 9, and 
10). This time the server echoes the byte in segment 8 first (segment II), and then echoes 
the bytes in segments 9 and 10 (segment 12). 

What we've seen in this example is that the default use of the Nagle algorithm can cause 
additional delays when multibyte keystrokes are entered while running an interactive 
application across a WAN. We return to the topic of timeout and retransmission in 
Chapter 21. 
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Figure 19.8 Time line for Figure 19.7 (Nagle algorithm disabled).

19.5 Window Size Advertisements

In Figure 19.4 we see that slip advertises a window of 4096 bytes and vangogh 
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advertises a window of 8192 bytes. Most segments in this figure contain one of these two 
values. 

Segment 5, however, advertises a window of 4095 bytes. This means there is still 1 byte 
in the TCP buffer for the application (the Rlogin client) to read. Similarly, the next 
segment from the client advertises a window of 4094 bytes, meaning there are 2 bytes 
still to be read. 

The server normally advertises a window of 8192 bytes, because the server's TCP has 
nothing to send until the Rlogin server reads the received data and echoes it. The data 
from the server is sent after the Rlogin server has read its input from the client. 

The client TCP, on the other hand, often has data to send when the ACK arrives, since it's 
buffering the received characters just waiting for the ACK. When the client TCP sends 
the buffered data, the Rlogin client has not had a chance to read the data received from 
the server, so the client's advertised window is less than 4096. 

19.6 Summary

Interactive data is normally transmitted in segments smaller than the maximum segment 
size. With Rlogin a single byte of data is normally sent from the client to the server. 
Telnet allows for the input to be sent one line at a time, but most implementations today 
still send single characters of input. 

Delayed acknowledgments are used by the receiver of these small segments to see if the 
acknowledgment can be piggybacked along with data going back to the sender. This 
often reduces the number of segments, especially for an Rlogin session, where the server 
is echoing the characters typed at the client. 

On slower WANs the Nagle algorithm is often used to reduce the number of these small 
segments. This algorithm limits the sender to a single small packet of unacknowledged 
data at any time. But there are times when the Nagle algorithm needs to be disabled, and 
we showed an example of this. 

Exercises

19.1 Consider a TCP client application that writes a small application header (8 bytes) 
followed by a small request (12 bytes). It then waits for a reply from the server. What 
happens if the request is sent using two writes (8 bytes, then 12 bytes) versus a single 
write of 20 bytes? 

19.2 In Figure 19.4 we are running tcpdump on the router sun. This means the data in 
the arrows from the right to the left still have to go through bsdi, and the data in the 
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arrows from the left to the right have already come through bsdi. When we see a 
segment going to slip, followed by a segment coming from slip, the time differences 
between the two are: 34.8, 26.7, 30.1, 28.1, 29.9, and 35.3 ms. Given that there are two 
links between sun and slip (an Ethernet and a 9600 bits/sec CSLIP link), do these time 
differences make sense? (Hint: Reread Section 2.10.) 

19.3 Compare the time required to send a special function key and have it acknowledged 
using the Nagle algorithm (Figure 19.6) and with the algorithm disabled (Figure 19.8). 

file:///D|/Documents%20and%20Settings/bigini/Docu.../homenet2run/tcpip/tcp-ip-illustrated/tcp_int.htm (14 of 14) [12/09/2001 14.47.18]



Chapter 20. TCP Bulk Data Flow

TCP Bulk Data Flow
20.1 Introduction

In Chapter 15 we saw that TFTP uses a stop-and-wait protocol. The sender of a data block 
required an acknowledgment for that block before the next block was sent. In this chapter 
we'll see that TCP uses a different form of flow control called a sliding window protocol. It 
allows the sender to transmit multiple packets before it stops and waits for an 
acknowledgment. This leads to faster data transfer, since the sender doesn't have to stop and 
wait for an acknowledgment each time a packet is sent. 

We also look at TCP's PUSH flag, something we've seen in many of the previous examples. 
We also look at slow start, the technique used by TCP for getting the flow of data 
established on a connection, and then we examine bulk data throughput. 

20.2 Normal Data Flow

Let's start with a one-way transfer of 8192 bytes from the host svr4 to the host bsdi. We 
run our sock program on bsdi as the server: 

bsdi % sock -i -s 7777 

The -i and -s flags tell the program to run as a "sink" server (read from the network and 
discard the data), and the server's port number is specified as 7777. The corresponding client 
is then run as: 

svr4 % sock -i -n8 bsdi 7777 

This causes the client to perform eight 1024-byte writes to the network. Figure 20.1 shows 
the time line for this exchange. We have left the first three segments in the output to show 
the MSS values for each end. 
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Figure 20.1 Transfer of 8192 bytes from svr4 to bsdi.

The sender transmits three data segments (4-6) first. The next segment (7) acknowledges the 
first two data segments only. We know this because the acknowledged sequence number is 
2049, not 3073. 

Segment 7 specifies an ACK of 2049 and not 3073 for the following reason. When a packet 
arrives it is initially processed by the device driver's interrupt service routine and then placed 
onto IP's input queue. The three segments 4, 5, and 6 arrive one after the other and are 
placed onto IP's input queue in the received order. IP will pass them to TCP in the same 
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order. When TCP processes segment 4, the connection is marked to generate a delayed 
ACK. TCP processes the next segment (5) and since TCP now has two outstanding 
segments to ACK, the ACK of 2049 is generated (segment 7), and the delayed ACK flag for 
this connection is turned off. TCP processes the next input segment (6) and the connection is 
again marked for a delayed ACK. Before segment 9 arrives, however, it appears the delayed 
ACK timer goes off, and the ACK of 3073 (segment 8) is generated. Segment 8 advertises a 
window of 3072 bytes, implying that there are still 1024 bytes of data in the TCP receive 
buffer that the application has not read. 

Segments 11-16 show the "ACK every other segment" strategy that is common. Segments 
11, 12, and 13 arrive and are placed on IP's input queue. When segment 11 is processed by 
TCP the connection is marked for a delayed ACK. When segment 12 is processed, an ACK 
is generated (segment 14) for segments 11 and 12, and the delayed ACK flag for this 
connection is turned off. Segment 13 causes the connection to be marked again for a delayed 
ACK but before the timer goes off, segment 15 is processed, causing the ACK (segment 16) 
to be sent immediately. 

It is important to notice that the ACK in segments 7, 14, and 16 acknowledge two received 
segments. With TCP's sliding-window protocol the receiver does not have to acknowledge 
every received packet. With TCP, the ACKs are cumulative-they acknowledge that the 
receiver has correctly received all bytes up through the acknowledged sequence number 
minus one. In this example three of the ACKs acknowledge 2048 bytes of data and two 
acknowledge 1024 bytes of data. (This ignores the ACKs in the connection establishment 
and termination.) 

What we are watching with tcpdump are the dynamics of TCP in action. The ordering of 
the packets that we see on the wire depends on many factors, most of which we have no 
control over: the sending TCP implementation, the receiving TCP implementation, the 
reading of data by the receiving process (which depends on the process scheduling by the 
operating system), and the dynamics of the network (i.e., Ethernet collisions and backoffs). 
There is no single correct way for two TCPs to exchange a given amount of data. 

To show how things can change. Figure 20.2 shows another time line for the same exchange 
of data between the same two hosts, captured a few minutes after the one in Figure 20.1. 

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/tcp_bulk.htm (3 of 24) [12/09/2001 14.47.22]



Chapter 20. TCP Bulk Data Flow

Figure 20.2 Another transfer of 8192 bytes from svr4 to bsdi.

A few things have changed. This time the receiver does not send an ACK of 3073; instead it 
waits and sends the ACK of 4097. The receiver sends only four ACKs (segments 7, 10, 12, 
and 15): three of these are for 2048 bytes and one for 1024 bytes. The ACK of the final 1024 
bytes of data appears in segment 17, along with the ACK of the FIN. (Compare segment 17 
in this figure with segments 16 and 18 in Figure 20.1.) 

Fast Sender, Slow Receiver

Figure 20.3 shows another time line, this time from a fast sender (a Spare) to a slow receiver 
(an 80386 with a slow Ethernet card). The dynamics are different again. 
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Figure 20.3 Sending 8192 bytes from a fast sender to a slow receiver.

The sender transmits four back-to-back data segments (4-7) to fill the receiver's window. 
The sender then stops and waits for an ACK. The receiver sends the ACK (segment 8) but 
the advertised window is 0. This means the receiver has all the data, but it's all in the 
receiver's TCP buffers, because the application hasn't had a chance to read the data. Another 
ACK (called a window update) is sent 17.4 ms later, announcing that the receiver can now 
receive another 4096 bytes. Although this looks like an ACK, it is called a window update 
because it does not acknowledge any new data, it just advances the right edge of the 
window. 

The sender transmits its final four segments (10-13), again filling the receiver's window. 
Notice that segment 13 contains two flag bits: PUSH and FIN. This is followed by another 
two ACKs from the receiver. Both of these acknowledge the final 4096 bytes of data (bytes 
4097 through 8192) and the FIN (numbered 8193). 

20.3 Sliding Windows
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The sliding window protocol that we observed in the previous section can be visualized as 
shown in Figure 20.4. 

Figure 20.4 Visualization of TCP sliding window.

In this figure we have numbered the bytes 1 through 11. The window advertised by the 
receiver is called the offered window and covers bytes 4 through 9, meaning that the receiver 
has acknowledged all bytes up through and including number 3, and has advertised a 
window size of 6. Recall from Chapter 17 that the window size is relative to the 
acknowledged sequence number. The sender computes its usable window, which is how 
much data it can send immediately 

Over time this sliding window moves to the right, as the receiver acknowledges data. The 
relative motion of the two ends of the window increases or decreases the size of the window. 
Three terms are used to describe the movement of the right and left edges of the window. 

1.  The window closes as the left edge advances to the right. This happens when data is 
sent and acknowledged. 

2.  The window opens when the right edge moves to the right, allowing more data to be 
sent. This happens when the receiving process on the other end reads acknowledged 
data, freeing up space in its TCP receive buffer. 

3.  The window shrinks when the right edge moves to the left. The Host Requirements 
RFC strongly discourages this, but TCP must be able to cope with a peer that does 
this. Section 22.3 shows an example when one side would like to shrink the window 
by moving the right edge to the left, but cannot. 

Figure 20.5 shows these three terms. The left edge of the window cannot move to the left, 
because this edge is controlled by the acknowledgment number received from the other end. 
If an ACK were received that implied moving the left edge to the left, it is a duplicate ACK, 
and discarded. 

Figure 20.5 Movement of window edges.

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/tcp_bulk.htm (6 of 24) [12/09/2001 14.47.22]



Chapter 20. TCP Bulk Data Flow

If the left edge reaches the right edge, it is called a zero window. This stops the sender from 
transmitting any data. 

An Example

Figure 20.6 shows the dynamics of TCP's sliding window protocol for the data transfer in 
Figure 20.1. 

Figure 20.6 Sliding window protocol for Figure 20.1.

There are numerous points that we can summarize using this figure as an example. 

1.  The sender does not have to transmit a full window's worth of data. 
2.  One segment from the receiver acknowledges data and slides the window to the right. 

This is because the window size is relative to the acknowledged sequence number. 
3.  The size of the window can decrease, as shown by the change from segment 7 to 

segment 8, but the right edge of the window must not move leftward. 
4.  The receiver does not have to wait for the window to fill before sending an ACK. We 

saw earlier that many implementations send an ACK for every two segments that are 
received. 

We'll see more examples of the dynamics of the sliding window protocol in later examples. 
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20.4 Window Size

The size of the window offered by the receiver can usually be controlled by the receiving 
process. This can affect the TCP performance. 

4.2BSD defaulted the send buffer and receive buffer to 2048 bytes each. With 4.3BSD both were increased 
to 4096 bytes. As we can see from all the examples so far in this text, SunOS 4.1.3, BSD/386, and SVR4 
still use this 4096-byte default. Other systems, such as Solaris 2.2,4.4BSD, and AIX 3.2, use larger default 
buffer sizes, such as 8192 or 16384 bytes. 

The sockets API allows a process to set the sizes of the send buffer and the receive buffer. The size of the 
receive buffer is the maximum size of the advertised window for that connection. Some applications change 
the socket buffer sizes to increase performance. 

[Mogul 1993] shows some results for file transfer between two workstations on an Ethernet, 
with varying sizes for the transmit buffer and receive buffer. (For a one-way flow of data 
such as file transfer, it is the size of the transmit buffer on the sending side and the size of 
the receive buffer on the receiving side that matters.) The common default of 4096 bytes for 
both is not optimal for an Ethernet. An approximate 40% increase in throughput is seen by 
just increasing both buffers to 16384 bytes. Similar results are shown in [Papadopoulos and 
Parulkar 1993]. 

In Section 20.7 we'll see how to calculate the minimum buffer size, given the bandwidth of 
the communication media and the round-trip time between the two ends. 

An Example

We can control the sizes of these buffers with our sock program. We invoke the server as: 

bsdi % sock -i -a -R6144 5555 

which sets the size of the receive buffer (-R option) to 6144 bytes. We then start the client 
on the host sun and have it perform one write of 8192 bytes: 

sun % sock -i -nl -w8192 bsdi 5555 

Figure 20.7 shows the results. 
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Figure 20.7 Data transfer with receiver offering a window size of 6144 bytes.

First notice that the receiver's window size is offered as 6144 bytes in segment 2. Because of 
this larger window, the client sends six segments immediately (segments 4-9), and then 
stops. Segment 10 acknowledges all the data (bytes 1 through 6144) but offers a window of 
only 2048, probably because the receiving application hasn't had a chance to read more than 
2048 bytes. Segments 11 and 12 complete the data transfer from the client, and this final 
data segment also carries the FIN flag. 

Segment 13 contains the same acknowledgment sequence number as segment 10, but 
advertises a larger window. Segment 14 acknowledges the final 2048 bytes of data and the 
FIN, and segments 15 and 16 just advertise a larger window. Segments 17 and 18 complete 
the normal close. 

20.5 PUSH Flag
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We've seen the PUSH flag in every one our TCP examples, but we've never described its 
use. It's a notification from the sender to the receiver for the receiver to pass all the data that 
it has to the receiving process. This data would consist of whatever is in the segment with 
the PUSH flag, along with any other data the receiving TCP has collected for the receiving 
process. 

In the original TCP specification, it was assumed that the programming interface would 
allow the sending process to tell its TCP when to set the PUSH flag. In an interactive 
application, for example, when the client sent a command to the server, the client would set 
the PUSH flag and wait for the server's response. (In Exercise 19.1 we could imagine the 
client setting the PUSH flag when the 12-byte request is written.) By allowing the client 
application to tell its TCP to set the flag, it was a notification to the client's TCP that the 
client process didn't want the data to hang around in the TCP buffer, waiting for additional 
data, before sending a segment to the server. Similarly, when the server's TCP received the 
segment with the PUSH flag, it was a notification to pass the data to the server process and 
not wait to see if any additional data arrives. 

Today, however, most APIs don't provide a way for the application to tell its TCP to set the 
PUSH flag. Indeed, many implementors feel the need for the PUSH flag is outdated, and a 
good TCP implementation can determine when to set the flag by itself. 

Most Berkeley-derived implementations automatically set the PUSH flag if the data in the 
segment being sent empties the send buffer. This means we normally see the PUSH flag set 
for each application write, because data is usually sent when it's written. 

A comment in the code indicates this algorithm is to please those implementations that only pass received 
data to the application when a buffer fills or a segment is received with the PUSH flag. 

It is not possible using the sockets API to tell TCP to turn on the PUSH flag or to tell whether the PUSH 
flag was set in received data. 

Berkeley-derived implementations ignore a received PUSH flag because they normally 
never delay the delivery of received data to the application. 

Examples

In Figure 20.1 we see the PUSH flag turned on for all eight data segments (4-6, 9, 11-13, 
and 15). This is because the client did eight writes of 1024 bytes, and each write emptied the 
send buffer. 

Look again at Figure 20.7. We expect the PUSH flag to be set on segment 12, since that is 
the final data segment. Why was the PUSH flag set on segment 7, when the sender knew 
there were still more bytes to send? The reason is that the size of the sender's send buffer is 
4096 bytes, even though we specified a single write of 8192 bytes. 
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Another point to note in Figure 20.7 concerns the three consecutive ACKs, segments 14, 15, 
and 16. We saw two consecutive ACKs in Figure 20.3, but that was because the receiver had 
advertised a window of 0 (stopping the sender) so when the window opened up, another 
ACK was required, with the nonzero window, to restart the sender. In Figure 20.7, however, 
the window never reaches 0. Nevertheless, when the size of the window increases by 2048 
bytes, another ACK is sent (segments 15 and 16) to provide this window update to the other 
end. (These two window updates in segments 15 and 16 are not needed, since the FIN has 
been received from the other end, preventing it from sending any more data.) Many 
implementations send this window update if the window increases by either two maximum 
sized segments (2048 bytes in this example, with an MSS of 1024) or 50% of the maximum 
possible window (2048 bytes in this example, with a maximum window of 4096). We'll see 
this again in Section 22.3 when we examine the silly window syndrome in detail. 

As another example of the PUSH flag, look again at Figure 20.3. The reason we see the flag 
on for the first four data segments (4-7) is because each one caused a segment to be 
generated by TCP and passed to the IP layer. But then TCP had to stop, waiting for an ACK 
to move the 4096-byte window. While waiting for the ACK, TCP takes the final 4096 bytes 
of data from the application. When the window opens up (segment 9) the sending TCP 
knows it has four segments that it can send immediately, so it only turns on the PUSH flag 
for the final segment (13). 

20.6 Slow Start

In all the examples we've seen so far in this chapter, the sender starts off by injecting 
multiple segments into the network, up to the window size advertised by the receiver. While 
this is OK when the two hosts are on the same LAN, if there are routers and slower links 
between the sender and the receiver, problems can arise. Some intermediate router must 
queue the packets, and it's possible for that router to run out of space. [Jacobson 1988] 
shows how this naive approach can reduce the throughput of a TCP connection drastically. 

TCP is now required to support an algorithm called slow start. It operates by observing that 
the rate at which new packets should be injected into the network is the rate at which the 
acknowledgments are returned by the other end. 

Slow start adds another window to the sender's TCP: the congestion window, called cwnd. 
When a new connection is established with a host on another network, the congestion 
window is initialized to one segment (i.e., the segment size announced by the other end). 
Each time an ACK is received, the congestion window is increased by one segment, (cwnd 
is maintained in bytes, but slow start always increments it by the segment size.) The sender 
can transmit up to the minimum of the congestion window and the advertised window. The 
congestion window is flow control imposed by the sender, while the advertised window is 
flow control imposed by the receiver. 

The sender starts by transmitting one segment and waiting for its ACK. When that ACK is 
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received, the congestion window is incremented from one to two, and two segments can be 
sent. When each of those two segments is acknowledged, the congestion window is 
increased to four. This provides an exponential increase. 

At some point the capacity of the internet can be reached, and an intermediate router will 
start discarding packets. This tells the sender that its congestion window has gotten too 
large. When we talk about TCP's timeout and retransmission algorithms in the next chapter, 
we'll see how this is handled, and what happens to the congestion window. For now, let's 
watch slow start in action. 

An Example

Figure 20.8 shows data being sent from the host sun to the host 
vangogh.cs.berkeley.edu. The data traverses a slow SLIP link, which should be the 
bottleneck. (We have removed the connection establishment from this time line.) 
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Figure 20.8 Example of slow start.

We see the sender transmit one segment with 512 bytes of data and then wait for its ACK. 
The ACK is received 716 ms later, which is an indicator of the round-trip time. The 
congestion window is then increased to two segments, and two segments are sent. When the 
ACK in segment 5 is received, the congestion window is increased to three segments. 
Although three more could be sent, only two are sent before another ACK is received. 

We'll return to slow start in Section 21.6 and see how it's normally implemented with 
another technique called congestion avoidance. 

20.7 Bulk Data Throughput

Let's look at the interaction of the window size, the windowed flow control, and slow start 
on the throughput of a TCP connection carrying bulk data. 

Figure 20.9 shows the steps over time of a connection between a sender on the left and a 
receiver on the right. Sixteen units of time are shown. We show only discrete units of time in 
this figure, for simplicity. We show segments carrying data going from the left to right in the 
top half of each picture, numbered 1, 2, 3, and so on. The ACKs go in the other direction in 
the bottom half of each picture. We draw the ACKs smaller, and show the segment number 
being acknowledged. 
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Figure 20.9 Times 0-15 for bulk data throughput example.

At time 0 the sender transmits one segment. Since the sender is in slow start (its congestion 
window is one segment), it must wait for the acknowledgment of this segment before 
continuing. 

At times 1, 2, and 3 the segment moves one unit of time to the right. At time 4 the receiver 
reads the segment and generates the acknowledgment. At times 5, 6, and 7 the ACK moves 
to the left one unit, back to the sender. We have a round-trip time (RTT) of 8 units of time. 

We have purposely drawn the ACK segment smaller than the data segment, since it's 
normally just an IP header and a TCP header. We're showing only a unidirectional flow of 
data here. Also, we assume that the ACK moves at the same speed as the data segment, 
which isn't always true. 
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In general the time to send a packet depends on two factors: a propagation delay (caused by the finite speed 
of light, latencies in transmission equipment, etc.) and a transmission delay that depends on the speed of the 
media (how many bits per second the media can transmit). For a given path between two nodes the 
propagation delay is fixed while the transmission delay depends on the packet size. At lower speeds the 
transmission delay dominates (e.g., Exercise 7.2 where we didn't even consider the propagation delay), 
whereas at gigabit speeds the propagation delay dominates (e.g.. Figure 24.6). 

When the sender receives the ACK it can transmit two more segments (which we've 
numbered 2 and 3), at times 8 and 9. Its congestion window is now two segments. These two 
segments move right toward the receiver, where the ACKs are generated at times 12 and 13. 
The spacing of the ACKs returned to the sender is identical to the spacing of the data 
segments. This is called the self-clocking behavior of TCP. Since the receiver can only 
generate ACKs when the data arrives, the spacing of the ACKs at the sender identifies the 
arrival rate of the data at the receiver. (In actuality, however, queueing on the return path can 
change the arrival rate of the ACKs.) 

Figure 20.10 shows the next 16 time units. The arrival of the two ACKs increases the 
congestion window from two to four segments, and these four segments are sent at times 16-
19. The first of the ACKs returns at time 23. The four ACKs increase the congestion 
window from four to eight segments, and these eight segments are transmitted at times 24-
31. 
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Figure 20.10 Times 16-31 for bulk data throughput example.

At time 31, and at all successive times, the pipe between the sender and receiver is full. It 
cannot hold any more data, regardless of the congestion window or the window advertised 
by the receiver. Each unit of time a segment is removed from the network by the receiver, 
and another is placed into the network by the sender. However many data segments fill the 
pipe, there are an equal number of ACKs making the return trip. This is the ideal steady state 
of the connection. 

Bandwidth-Delay Product

We can now answer the question: how big should the window be? In our example, the 
sender needs to have eight segments outstanding and unacknowledged at any time, for 
maximum throughput. The receiver's advertised window must be that large, since that limits 
how much the sender can transmit. We can calculate the capacity of the pipe as 
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capacity (bits) = bandwidth (bits/sec) x round-trip time (sec)

This is normally called the bandwidth-delay product. This value can vary widely, depending 
on the network speed and the RTT between the two ends. For example, a Tl telephone line 
(1,544,000 bits/sec) across the United States (about a 60-ms RTT) gives a bandwidth-delay 
product of 11,580 bytes. This is reasonable in terms of the buffer sizes we talked about in 
Section 20.4, but a T3 telephone line (45,000,000 bits/sec) across the United States gives a 
bandwidth-delay product of 337,500 bytes, which is bigger than the maximum allowable 
TCP window advertisement (65535 bytes). We describe the new TCP window scale option 
in Section 24.4 that gets around this current limitation of TCP. 

The value 1,544,000 bits/sec for a Tl phone line is the raw bit rate. The data rate is actually 1,536,000 
bits/sec, since 1 bit in 193 is used for framing. The raw bit rate of a T3 phone line is actually 44,736,000 
bits/sec, and the data rate can reach 44,210,000 bits/sec. For our discussion we'll use 1.544 Mbits/sec and 45 
Mbits/sec. 

Either the bandwidth or the delay can affect the capacity of the pipe between the sender and 
receiver. In Figure 20.11 we show graphically how a doubling of the RTT-doubles the 
capacity of the pipe. 

Figure 20.11 Doubling the RTT doubles the capacity of the pipe.

In the lower illustration of Figure 20.11, with the longer RTT, the pipe can hold eight 
segments, instead of four. 

Similarly, Figure 20.12 shows that doubling the bandwidth also doubles the capacity of the 
pipe. 
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Figure 20.12 Doubling the bandwidth doubles the capacity of the pipe.

In the lower illustration of Figure 20.12, we assume that the network speed has doubled, 
allowing us to send four segments in half the time as in the top picture. Again, the capacity 
of the pipe has doubled. (We assume that the segments in the top half of this figure have the 
same area, that is the same number of bits, as the segments in the bottom half.) 

Congestion

Congestion can occur when data arrives on a big pipe (a fast LAN) and gets sent out a 
smaller pipe (a slower WAN). Congestion can also occur when multiple input streams arrive 
at a router whose output capacity is less than the sum of the inputs. 

Figure 20.13 shows a typical scenario with a big pipe feeding a smaller pipe. We say this is 
typical because most hosts are connected to LANs, with an attached router that is connected 
to a slower WAN. (Again, we are assuming the areas of all the data segments (9-20) in the 
top half of the figure are all the same, and the areas of all the acknowledgments in the 
bottom half are all the same.) 

Figure 20.13 Congestion caused by a bigger pipe feeding a smaller pipe.

In this figure we have labeled the router R1 as the "bottleneck," because it is the congestion 
point. It can receive packets from the LAN on its left faster than they can be sent out the 
WAN on its right. (Commonly R1 and R3 are the same router, as are R2 and R4, but that's 
not required; asymmetrical paths can occur.) When router R2 puts the received packets onto 
the LAN on its right, they maintain the same spacing as they did on the WAN on its left, 
even though the bandwidth of the LAN is higher. Similarly, the spacing of the ACKs on 
their way back is the same as the spacing of the slowest link in the path. 

In Figure 20.13 we have assumed that the sender did not use slow start, and sent the 
segments we've numbered 1-20 as fast as the LAN could take them. (This assumes the 
receiving host advertised a window of at least 20 segments.) The spacing of the ACKs will 
correspond to the bandwidth of the slowest link, as we show. We are assuming the 
bottleneck router has adequate buffering for all 20 segments. This is not guaranteed, and can 
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lead to that router discarding packets. We'll see how to avoid this when we talk about 
congestion avoidance in Section 21.6. 

20.8 Urgent Mode

TCP provides what it calls urgent mode, allowing one end to tell the other end that "urgent 
data" of some form has been placed into the normal stream of data. The other end is notified 
that this urgent data has been placed into the data stream, and it's up to the receiving end to 
decide what to do. 

The notification from one end to the other that urgent data exists in the data stream is done 
by setting two fields in the TCP header (Figure 17.2). The URG bit is turned on and the 16-
bit urgent pointer is set to a positive offset that must be added to the sequence number field 
in the TCP header to obtain the sequence number of the last byte of urgent data. 

There is continuing debate about whether the urgent pointer points to the last byte of urgent data, or to the 
byte following the last byte of urgent data. The original TCP specification gave both interpretations but the 
Host Requirements RFC identifies which is correct: the urgent pointer points to the last byte of urgent data. 

The problem, however, is that most implementations (i.e., the Berkeley-derived implementations) continue 
to use the wrong interpretation. An implementation that follows the specification in the Host Requirements 
RFC might be compliant, but might not communicate correctly with most other hosts. 

TCP must inform the receiving process when an urgent pointer is received and one was not 
already pending on the connection, or if the urgent pointer advances in the data stream. The 
receiving application can then read the data stream and must be able to tell when the urgent 
pointer is encountered. As long as data exists from the receiver's current read position until 
the urgent pointer, the application is considered to be in an "urgent mode." After the urgent 
pointer is passed, the application returns to its normal mode. 

TCP itself says little more about urgent data. There is no way to specify where the urgent 
data starts in the data stream. The only information sent across the connection by TCP is that 
urgent mode has begun (the URG bit in the TCP header) and the pointer to the last byte of 
urgent data. Everything else is left to the application. 

Unfortunately many implementations incorrectly call TCP's urgent mode out-of-band data. 
If an application really wants a separate out-of-band channel, a second TCP connection is 
the easiest way to accomplish this. (Some transport layers do provide what most people 
consider true out-of-band data: a logically separate data path using the same connection as 
the normal data path. This is not what TCP provides.) 

The confusion between TCP's urgent mode and out-of-band data is also because the predominant 
programming interface, the sockets API, maps TCP's urgent mode into what sockets calls out-of-band data. 

What is urgent mode used for? The two most commonly used applications are Tel-net and 
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Rlogin, when the interactive user types the interrupt key, and we show examples of this use 
of urgent mode in Chapter 26. Another is FTP, when the interactive user aborts a file 
transfer, and we show an example of this in Chapter 27. 

Telnet and Rlogin use urgent mode from the server to the client because it's possible for this 
direction of data flow to be stopped by the client TCP (i.e., it advertises a window of 0). But 
if the server process enters urgent mode, the server TCP immediately sends the urgent 
pointer and the URG flag, even though it can't send any data. When the client TCP receives 
this notification, it in turn notifies the client process, so the client can read its input from the 
server, to open the window, and let the data flow. 

What happens if the sender enters urgent mode multiple times before the receiver processes 
all the data up through the first urgent pointer? The urgent pointer just advances in the data 
stream, and its previous position at the receiver is lost. There is only one urgent pointer at 
the receiver and its value is overwritten when a new value for the urgent pointer arrives from 
the other end. This means if the contents of the data stream that are written by the sender 
when it enters urgent mode are important to the receiver, these data bytes must be specially 
marked (somehow) by the sender. We'll see that Telnet marks all of its command bytes in 
the data stream by prefixing them with a byte of 255. 

An Example

Let's watch how TCP sends urgent data, even when the receiver's window is closed. We'll 
start our sock program on the host bsdi and have it pause for 10 seconds after the 
connection is established (the -P option), before it reads from the network. This lets the other 
end fill the send window. 

bsdi % sock -i -s -P10 5555 

We then start the client on the host sun telling it to use a send buffer of 8192 bytes (-S 
option) and perform six 1024-byte writes to the network (-n option). We also specify -U5 
telling it to write 1 byte of data and enter urgent mode before writing the fifth buffer to the 
network. We specify the verbose flag to see the order of the writes: 

sun % sock -v -i -n6 -S8192 -U5 bsdi 5555
connected on 140.252.13.33.1305 to 140.252.13.35.5555
SO_SNDBUF = 8192
TCP_MAXSEG = 1024
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1 byte of urgent data
wrote 1024 bytes
wrote 1024 bytes 
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We set the send buffer size to 8192 bytes, to let the sending application immediately write 
all of its data. Figure 20.14 shows the tcpdump output for this exchange. (We have 
removed the connection establishment.) Lines 1-5 show the sender filling the receiver's 
window with four 1024-byte segments. The sender is then stopped because the receiver's 
window is full. (The ACK on line 4 acknowledges data, but does not move the right edge of 
the window.) 

1 0.0 
sun.1305 > bsdi.5555: P 1:1025(1024) ack 1 
win 4096 

2
0.073743 
(0.0737) 

sun.1305 > bsdi.5555: P 1025:2049(1024) 
ack 1 win 4096 

3
0.096969 
(0.0232) 

sun.1305 > bsdi.5555: P 2049:3073(1024) 
ack 1 win 4096 

4
0.157514 
(0.0605) 

bsdi.5555 > sun.1305: . ack 3073 win 1024 

5
0.164267 
(0.0068) 

sun.1305 > bsdi.5555: P 3073:4097(1024) 
ack 1 win 4096 

6
0.167961 
(0.0037) 

sun.1305 > bsdi.5555: . ack 1 win 4096 urg 
4098 

7
0.171969 
(0.0040) 

sun.1305 > bsdi.5555: . ack 1 win 4096 urg 
4098 

8
0.176196 
(0.0042) 

sun.1305 > bsdi.5555: . ack 1 win 4096 urg 
4098 

9
0.180373 
(0.0042) 

sun.1305 > bsdi.5555: . ack 1 win 4096 urg 
4098 

10
0.180768 
(0.0004) 

sun.1305 > bsdi.5555: . ack 1 win 4096 urg 
4098 

11
0.367533 
(0.1868) 

bsdi.5555 > sun.1305: . ack 4097 win 0 

12
0.368478 
(0.0009) 

sun.1305 > bsdi.5555: . ack 1 win 4096 urg 
4098 

13
9.829712 
(9.4612) 

bsdi.5555 > sun.1305: . ack 4097 win 2048 

14
9.831578 
(0.0019) 

sun.1305 > bsdi.5555: . 4097:5121(1024) 
ack 1 win 4096 urg 4098 

15
9.833303 
(0.0017) 

sun.1305 > bsdi.5555: . 5121:6145(1024) 
ack 1 win 4096 

16
9.835089 
(0.0018) 

bsdi.5555 > sun.1305: . ack 4097 win 4096 
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17
9.835913 
(0.0008) 

sun.1305 > bsdi.5555: FP 6145:6146(1) ack 
1 win 4096 

18
9.840264 
(0.0044) 

bsdi.5555 > sun.1305: . ack 6147 win 2048 

19
9.842386 
(0.0021) 

bsdi.5555 > sun.1305: . ack 6147 win 4096 

20
9.843622 
(0.0012) 

bsdi.5555 > sun.1305: F 1:1(0) ack 6147 
win 4096 

21
9.844320 
(0.0007) 

sun.1305 > bsdi.5555: . ack 2 win 4096 

Figure 20.14 tcpdump output for TCP urgent mode.

After the fourth application write of normal data, the application writes 1 byte of data and 
enters urgent mode. Line 6 is the result of this application write. The urgent pointer is set to 
4098. The urgent pointer is sent with the URG flag even though the sender cannot send any 
data. 

Five of these ACKs are sent in about 13 ms (lines 6-10). The first is sent when the 
application writes 1 byte and enters urgent mode. The next two are sent when the application 
does the final two writes of 1024 bytes. (Even though TCP can't send these 2048 bytes of 
data, each time the application performs a write, the TCP output function is called, and when 
it sees that urgent mode has been entered, sends another urgent notification.) The fourth of 
these ACKs occurs when the application closes its end of the connection. (The TCP output 
function is again called.) The sending application terminates milliseconds after it starts-
before the receiving application has issued its first write. TCP queues all the data and sends 
it when it can. (This is why we specified a send buffer size of 8192-so all the data can fit in 
the buffer.) The fifth of these ACKs is probably generated by the reception of the ACK on 
line 4. The sending TCP has probably already queued its fourth segment for output (line 5) 
before this ACK arrives. The receipt of this ACK from the other end also causes the TCP 
output routine to be called. 

The receiver then acknowledges the final 1024 bytes of data (line 11) but also advertises a 
window of 0. The sender responds with another segment containing the urgent notification. 

The receiver advertises a window of 2048 bytes in line 13, when the application wakes up 
and reads some of the data from the receive buffer. The next two 1024-byte segments are 
sent (lines 14 and 15). The first segment has the urgent notification set, since the urgent 
pointer is within this segment. The second segment has turned the urgent notification off. 

When the receiver opens the window again (line 16) the sender transmits the final byte of 
data (numbered 6145) and also initiates the normal connection termination. 

Figure 20.15 shows the sequence numbers of the 6145 bytes of data that are sent. We see 
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that the sequence number of the byte written when urgent mode was entered is 4097, but the 
value of the urgent pointer in Figure 20.14 is 4098. This confirms that this implementation 
(SunOS 4.1.3) sets the urgent pointer to 1 byte beyond the last byte of urgent data. 

Figure 20.15 Application writes and TCP segments for urgent mode example.

This figure also lets us see how TCP repacketizes the data that the application wrote. The 
single byte that was output when urgent mode was entered is sent along with the next 1023 
bytes of data in the buffer. The next segment also contains 1024 bytes of data, and the final 
segment contains 1 byte of data. 

20.9 Summary

As we said early in the chapter, there is no single way to exchange bulk data using TCP. It is 
a dynamic process that depends on many factors, some of which we can control (e.g., send 
and receive buffer sizes) and some of which we have no control over (e.g., network 
congestion, implementation features). In this chapter we've examined many TCP transfers, 
explaining all the characteristics and algorithms that we could see. 

Fundamental to the efficient transfer of bulk data is TCP's sliding window protocol. We then 
looked at what it takes for TCP to get the fastest transfer possible by keeping the pipe 
between the sender and receiver full. We measured the capacity of this pipe as the 
bandwidth-delay product, and saw the relationship between this and the window size. We 
return to this concept in Section 24.8 when we look at TCP performance. 

We also looked at TCP's PUSH flag, since we'll always see it in trace output, but we have no 
control over its setting. The final topic was TCP's urgent data, which is often mistakenly 
called "out-of-band data." TCP's urgent mode is just a notification from the sender to the 
receiver that urgent data has been sent, along with the sequence number of the final byte of 
urgent data. The programming interface for the application to use with urgent data is often 
less than optimal, which leads to much confusion. 

Exercises

20.1 In Figure 20.6 we could have shown a byte numbered 0 and a byte numbered 8193. 
What do these 2 bytes designate? 

20.2 Look ahead to Figure 22.1 and explain the setting of the PUSH flag by the host bsdi. 
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20.3 In a Usenet posting someone complained about a throughput of 120,000 bits/sec on a 
256,000 bits/sec link with a 128-ms delay between the United States and Japan (47% 
utilization), and a throughput of 33,000 bits/sec when the link was routed over a satellite 
(13% utilization). What does the window size appear to be for both cases? (Assume a 500-
ms delay for the satellite link.) How big should the window be for the satellite link? 

20.4 If the API provided a way for a sending application to tell its TCP to turn on the PUSH 
flag, and a way for the receiver to tell if the PUSH flag was on in a received segment, could 
the flag then be used as a record marker? 

20.5 In Figure 20.3 why aren't segments 15 and 16 combined? 

20.6 In Figure 20.13 we assume that the ACKs come back nicely spaced, corresponding to 
the spacing of the data segments. What happens if the ACKs are queued somewhere on the 
return path, causing a bunch of them to arrive at the same time at the sender? 
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TCP Timeout and Retransmission
21.1 Introduction

TCP provides a reliable transport layer. One of the ways it provides reliability is for each end 
to acknowledge the data it receives from. the other end. But data segments and 
acknowledgments can get lost. TCP handles this by setting a timeout when it sends data, and 
if the data isn't acknowledged when the timeout expires, it retransmits the data. A critical 
element of any implementation is the timeout and retransmission strategy. How is the timeout 
interval determined, and how frequently does a retransmission occur? 

We've already seen two examples of timeout and retransmission: (1) In the ICMP port 
unreachable example in Section 6.5 we saw the TFTP client using UDP employing a simple 
(and poor) timeout and retransmission strategy: it assumed 5 seconds was an adequate 
timeout period and retransmitted every 5 seconds. (2) In the ARP example to a nonexistent 
host (Section 4.5), we saw that when TCP tried to establish the connection it retransmitted its 
SYN using a longer delay between each retransmission. TCP manages four different timers 
for each connection. 

1.  A retransmission timer is used when expecting an acknowledgment from the other 
end. This chapter looks at this timer in detail, along with related issues such as 
congestion avoidance. 

2.  A persist timer keeps window size information flowing even if the other end closes its 
receive window. Chapter 22 describes this timer. 

3.  A keepalive timer detects when the other end on an otherwise idle connection crashes 
or reboots. Chapter 23 describes this timer. 

4.  A 2MSL timer measures the time a connection has been in the TIME_WAIT state. We 
described this state in Section 18.6. 

In this chapter we start with a simple example of TCP's timeout and retransmission and then 
move to a larger example that lets us look at all the details involved in TCP's timer 
management. We look at how typical implementations measure the round-trip time of TCP 
segments and how TCP uses these measurements to estimate the retransmission timeout of 
the next segment it transmits. We then look at TCP's congestion avoidance-what TCP does 
when packets are lost-and follow through an actual example where packets are lost. We also 
look at the newer fast retransmit and fast recovery algorithms, and see how they let TCP 
detect lost packets faster than waiting for a timer to expire. 

21.2 Simple Timeout and Retransmission Example

Let's first look at the retransmission strategy used by TCP. We'll establish a connection, send 
some data to verify that everything is OK, disconnect the cable, send some more data, and 
watch what TCP does: 
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bsdi % telnet svr4 discard 

Trying 140.252.13.34...

Connected to svr4.

Escape character is '^]'.

Hello, world send this line normally 

and hi disconnect cable before sending this line 

Connection closed by foreign 
host. 

output whenTCP gives up after 9 minutes 

Figure 21.1 shows the tcpdump output. (We have removed all the type-of-service 
information that is set by bsdi.) 

1 0.0 
bsdi.1029 > svr4.discard: S 
1747921409:1747921409(0) 
win 4096 <mss 1024> 

2
0.004811 ( 
0.0048) 

svr4.discard > bsdi.1029: S 
3416685569:3416685569(0) 
ack 1747921410 win 4096 <mss 1024> 

3
0.006441 ( 
0.0016) 

bsdi.1029 > svr4.discard: . ack 1 win 
4096 

4
6.102290 ( 
6.0958) 

bsdi.1029 > svr4.discard: P 1:15(14) ack 
1 win 4096 

5
6.259410 ( 
0.1571) 

svr4.discard > bsdi.1029: . ack 15 win 
4096 

6
24.480158 
(18.2207) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 

7
25.493733 ( 
1.0136) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 

8
28.493795 ( 
3.0001) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 

9
34.493971 ( 
6.0002) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 

10
46.484427 
(11.9905) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 

11
70.485105 
(24.0007) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 

12
118.486408 
(48.0013) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 

13
182.488164 
(64.0018) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 
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14
246.489921 
(64.0018) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 

15
310.491678 
(64.0018) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 

16
374.493431 
(64.0018) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 

17
438.495196 
(64.0018) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 

18
502.486941 
(63.9917) 

bsdi.1029 > svr4.discard: P 15:23(8) ack 
1 win 4096 

19
566.488478 
(64.0015) 

bsdi.1029 > svr4.discard: R 23:23(0) ack 
1 win 4096 

Figure 21.1 Simple example of TCP's timeout and retransmission.

Lines 1, 2, and 3 correspond to the normal TCP connection establishment. Line 4 is the 
transmission of "hello, world" (12 characters plus the carriage return and linefeed), and line 5 
is its acknowledgment. We then disconnect the Ethernet cable from svr4. 

Line 6 shows "and hi" being sent. Lines 7-18 are 12 retransmissions of that segment, and line 
19 is when the sending TCP finally gives up and sends a reset. 

Examine the time difference between successive retransmissions: with rounding they occur 1, 
3, 6, 12, 24, 48, and then 64 seconds apart. We'll see later in this chapter that the first timeout 
is actually set for 1.5 seconds after the first transmission. (The reason it occurs 1.0136 
seconds after the first transmission, and not exactly 1.5 seconds, was explained in Figure 
18.7.) After this the timeout value is doubled for each retransmission, with an upper limit of 
64 seconds. 

This doubling is called an exponential backoff. Compare this to the TFTP example in Section 
6.5, where every retransmission occurred 5 seconds after the previous. 

The time difference between the first transmission of the packet (line 6 at time 24.480) and 
the reset (line 19 at time 566.488) is about 9 minutes. Modem TCP's are persistent when 
trying to send data! 

On most implementations this total timeout value is not tunable. Solaris 2.2 allows the administrator to 
change this (the tcp_ip_abort_interval variable in Section E.4) and its default is only 2 minutes, not 

the more common 9 minutes. 

21.3 Round-Trip Time Measurement

Fundamental to TCP's timeout and retransmission is the measurement of the round-trip time 
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(RTT) experienced on a given connection. We expect this can change over time, as routes 
might change and as network traffic changes, and TCP should track these changes and 
modify its timeout accordingly. 

First TCP must measure the RTT between sending a byte with a particular sequence number 
and receiving an acknowledgment that covers that sequence number. Recall from the 
previous chapter that normally there is not a one-to-one correspondence between data 
segments and ACKs. In Figure 20.1 this means that one RTT that can be measured by the 
sender is the time between the transmission of segment 4 (data bytes 1-1024) and the 
reception of segment 7 (the ACK of bytes 1-2048), even though this ACK is for an additional 
1024 bytes. We'll use M to denote the measured RTT. 

The original TCP specification had TCP update a smoothed RTT estimator (called R) using 
the low-pass filter 

R <- αR + (1-α)M

where α is a smoothing factor with a recommended value of 0.9. This smoothed RTT is 
updated every time a new measurement is made. Ninety percent of each new estimate is from 
the previous estimate and 10% is from the new measurement. 

Given this smoothed estimator, which changes as the RTT changes, RFC 793 recommended 
the retransmission timeout value (RTO) be set to 

RTO = Rβ

where β is a delay variance factor with a recommended value of 2. 

[Jacobson 1988] details the problems with this approach, basically that it can't keep up with wide 
fluctuations in the RTT, causing unnecessary retransmissions. As Jacobson notes, unnecessary 
retransmissions add to the network load, when the network is already loaded. It is the network equivalent of 
pouring gasoline on a fire. 

What's needed is to keep track of the variance in the RTT measurements, in addition to the 
smoothed RTT estimator. Calculating the RTO based on both the mean and variance provides 
much better response to wide fluctuations in the round-trip times, than just calculating the 
RTO as a constant multiple of the mean. Figures 5 and 6 in [Jacobson 1988] show a 
comparison of the RFC 793 RTO values for some actual round-trip times, versus the RTO 
calculations we show below, which take into account the variance of the round-trip times. 

As described by Jacobson, the mean deviation is a good approximation to the standard 
deviation, but easier to compute. (Calculating the standard deviation requires a square root.) 
This leads to the following equations that are applied to each RTT measurement M. 
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Err = M - A
A <- A + gErr

D <- D+ h(|Err| - D)
RTO = A + 4D

where A is the smoothed RTT (an estimator of the average) and D is the smoothed mean 
deviation. Err is the difference between the measured value just obtained and the current 
RTT estimator. Both A and D are used to calculate the next retransmission timeout (RTO). 
The gain g is for the average and is set to 1/8 (0.125). The gain for the deviation is h and is 
set to 0.25. The larger gain for the deviation makes the RTO go up faster when the RTT 
changes. 

[Jacobson 1988] specified 2D in the calculation of RTO, but after further research, [Jacobson 1990c] 
changed the value to 4D, which is what appeared in the BSD Net/1 implementation. 

Jacobson specifies a way to do all these calculations using integer arithmetic, and this is the implementation 
typically used. (That's one reason g, h, and the multiplier 4 are all powers of 2, so the operations can be done 
using shifts instead of multiplies and divides.) 

Comparing the original method with Jacobson's, we see that the calculations of the smoothed average are 
similar (α is one minus the gain g) but a different gain is used. Also, Jacobson's calculation of the RTO 
depends on both the smoothed RTT and the smoothed mean deviation, whereas the original method used a 
multiple of the smoothed RTT. 

We'll see how these estimators are initialized in the next section, when we go through an example. 

Karn's Algorithm

A problem occurs when a packet is retransmitted. Say a packet is transmitted, a timeout occurs, the RTO is 
backed off as shown in Section 21.2, the packet is retransmitted with the longer RTO, and an 
acknowledgment is received. Is the ACK for the first transmission or the second? This is called the 
retransmission ambiguity problem. 

[Karn and Partridge 1987] specify that when a timeout and retransmission occur, we cannot update the RTT 
estimators when the acknowledgment for the retransmitted data finally arrives. This is because we don't 
know to which transmission the ACK corresponds. (Perhaps the first transmission was delayed and not 
thrown away, or perhaps the ACK of the first transmission was delayed.) 

Also, since the data was retransmitted, and the exponential backoff has been applied to the RTO, we reuse 
this backed off RTO for the next transmission. Don't calculate a new RTO until an acknowledgment is 
received for a segment that was not retransmitted. 

21.4 An RTT Example

We'll use the following example throughout this chapter to examine various implementation details of TCP's 
timeout and retransmission, slow start, and congestion avoidance. 
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Using our sock program, 32768 bytes of data are sent from our host slip to the discard service on the host 
vangogh.cs.berkeley.edu using the command: 

slip % sock -D -i -n32 vangogh.cs.berkeley.edu discard 

From the figure on the inside front cover, slip is connected from the 140.252.1 Ethernet by two SLIP links, 
and from there across the Internet to the destination. With two 9600 bits/sec SLIP links, we expect some 
measurable delays. 

This command performs 32 1024-byte writes, and since the MTU between slip and bsdi is 296, this 
becomes 128 segments, each with 256 bytes of user data. The total time for the transfer is about 45 seconds 
and we see one timeout and three retransmissions. 

While this transfer was running we ran tcpdump on the host slip and captured all the segments sent and 
received. Additionally we specified the -D option to turn on socket debugging (Section A.6). We were then 
able to run a modified version of the trpt(8) program to print numerous variables in the connection control 
block relating to the round-trip timing, slow start, and congestion avoidance. 

Given the volume of trace output, we can't show it all. Instead we'll look at pieces as we proceed through the 
chapter. Figure 21.2 shows the transfer of data and acknowledgments for the first 5 seconds. We have 
modified this output slightly from our previous display of tcpdump output. Although we only measure the 
times that the packet is sent or received on the host running tcpdump, in this figure we want to show that 
the packets are crossing in the network (which they are, since this LAN connection is not like a shared 
Ethernet), and show when the receiving host is probably generating the ACKs. (We have also removed all 
the window advertisements from this figure, slip always advertised a window of 4096, and vangogh 
always advertised a window of 8192.) 

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/tcp_time.htm (6 of 29) [12/09/2001 14.47.26]



Chapter 21. TCP Timeout and Retransmission

Figure 21.2 Packet exchange and RTT measurement.

Also note in this figure that we have numbered the segments 1-13 and 15, in the order in which they were 
sent or received on the host slip. This correlates with the tcpdump output that was collected on this host. 

Round-Trip Time Measurements

Three curly braces have been placed on the left side of the time line indicating which segments were timed 
for RTT calculations. Not all data segments are timed. 
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Most Berkeley-derived implementations of TCP measure only one RTT value per connection at any time. If 
the timer for a given connection is already in use when a data segment is transmitted, that segment is not 
timed. 

The timing is done by incrementing a counter every time the 500-ms TCP timer routine is invoked. This 
means that a segment whose acknowledgment arrives 550 rns after the segment was sent could end up with 
either a 1 tick RTT (implying 500 ms) or a 2 tick RTT (implying 1000 ms). 

In addition to this tick counter for each connection, the starting sequence number of the data in the segment 
is also remembered. When an acknowledgment that includes this sequence number is received, the timer is 
turned off. If the data was not retransmitted when the ACK arrives, the smoothed RTT and smoothed mean 
deviation are updated based on this new measurement. 

The timer for the connection in Figure 21.2 is started when segment 1 is transmitted, and turned off when its 
acknowledgment (segment 2) arrives. Although its RTT is 1.061 seconds (from the tcpdump output), 
examining the socket debug information shows that three of TCP's clock ticks occurred during this period, 
implying an RTT of 1500 ms. 

The next segment timed is number 3. When segment 4 is transmitted 2.4 ms later, it cannot be timed, since 
the timer for this connection is already in use. When segment 5 arrives, acknowledging the data that was 
being timed, its RTT is calculated to be 1 tick (500 ms), even though we see that its RTT is 0.808 seconds 
from the tcpdump output. 

The timer is started again when segment 6 is transmitted, and turned off when its acknowledgment (segment 
10) is received 1.015 seconds later. The measured RTT is 2 clock ticks. Segments 7 and 9 cannot be timed, 
since the timer is already being used. Also, when segment 8 is received (the ACK of 769), nothing is updated 
since the acknowledgment was not for bytes being timed. 

Figure 21.3 shows the relationship in this example between the actual RTTs that we can determine from the 
tcpdump output, and the counted clock ticks. 

Figure 21.3 RTT measurements and clock ticks.

On the top we show the clock ticks, every 500 ms. On the bottom we show the times output by tcpdump, 
and when the timer for the connection is turned on and off. We know that 3 ticks occur between sending 
segment 1 and receiving segment 2, 1.061 seconds later, so we assume the first tick occurs at time 0.03. (The 
first tick must be between 0.00 and 0.061.) The figure then shows how the second measured RTT was 
counted as 1 tick, and the third as 2 ticks. 

In this complete example, 128 segments were transmitted, and 18 RTT samples were collected. Figure 21.4 
shows the measured RTT (taken from the tcpdump output) along with the RTO used by TCP for the 
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timeout (taken from the socket debug output). The x-axis starts at time 0 in Figure 21.2, when the first data 
segment is transmitted, not when the first SYN is transmitted. 

Figure 21.4 Measured RTT and TCP's calculated RTO for example.

The first three data points for the measured RTT correspond to the 3 RTTs that we show in Figure 21.2. The 
gaps in the RTT samples around times 10, 14, and 21 are caused by retransmissions that took place there 
(which we'll show later in this chapter). Kam's algorithm prevents us from updating our estimators until 
another segment is transmitted and acknowledged. Also note that for this implementation, TCP's calculated 
RTO is always a multiple of 500 ms. 

RTT Estimator Calculations

Let's see how the RTT estimators (the smoothed RTT and the smoothed mean deviation) are initialized and 
updated, and how each retransmission timeout is calculated. 

The variables A and D are initialized to 0 and 3 seconds, respectively. The initial retransmission timeout is 
calculated using the formula 

RTO = A + 2D = 0 + 2x3 = 6 seconds

(The factor 2D is used only for this initial calculation. After this 4D is added to A to calculate 
RTO, as shown earlier.) This is the RTO for the transmission of the initial SYN. 

It turns out that this initial SYN is lost, and we time out and retransmit. Figure 21.5 shows 
the first four lines from the tcpdump output file. 

1 0.0 
slip.1024 > vangogh. discard: S 
35648001:35648001(0) 
win 4096 <mss 256> 
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2
5.802377 
(5.8024) 

slip.1024 > vangogh.discard: S 
35648001:35648001(0) 
win 4096 <mss 256> 

3
6.269395 
(0.4670) 

vangogh.discard > slip.1024: S 
1365512705:1365512705(0) 
ack 35648002 win 8192 <mss 512> 

4
6.270796 
(0.0014) 

slip. 1024 > vangogh.discard: . ack 1 win 
4096 

Figure 21.5 Timeout and retransmission of initial SYN.

When the timeout occurs after 5.802 seconds, the current RTO is calculated as 

RTO = A + 4D = 0 + 4x3 = 12 seconds

The exponential backoff is then applied to the RTO of 12. Since this is the first timeout we 
use a multiplier of 2, giving the next timeout value as 24 seconds. The next timeout is 
calculated using a multiplier of 4, giving a value of 48 seconds: 12 x 4. (These initial RTOs 
for the first SYN on a connection, 6 seconds and then 24 seconds, are what we saw in Figure 
4.5.) 

The ACK arrives 467 ms after the retransmission. The values of A and D are not updated, 
because of Karn's algorithm dealing with the retransmission ambiguity. The next segment 
sent is the ACK on line 4, but it is not timed since it is only an ACK. (Only segments 
containing data are timed.) 

When the first data segment is sent (segment 1 in Figure 21.2) the RTO is not changed, again 
owing to Karn's algorithm. The current value of 24 seconds is reused until an RTT 
measurement is made. This means the RTO for time 0 in Figure 21.4 is really 24, but we 
didn't plot that point. 

When the ACK for the first data segment arrives (segment 2 in Figure 21.2), three clock ticks 
were counted and our estimators are initialized as 

A = M + 0.5 = 1.5 + 0.5 = 2
D = A/2 = 1

(The value 1.5 for M is for 3 clock ticks.) The previous initialization of A and D to 0 and 3 
was for the initial RTO calculation. This initialization is for the first calculation of the 
estimators using the first RTT measurement M. The RTO is calculated as 

RTO = A + 4D = 2 + 4x1 = 6 seconds
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When the ACK for the second data segment arrives (segment 5 in Figure 21.2), 1 clock tick 
is counted (0.5 seconds) and our estimators are updated as 

Err = M - A = 0.5 - 2 = -1.5
A = A + gErr = 2 - 0.125x1.5 = 1.8125

D = D + h(|Err| - D) = 1 + 0.25x(1.5 - 1) = 1.125
RTO = A + 4D = 1.8125 + 4x1.125 = 6.3125

There are some subtleties in the fixed-point representations of Err, A, and D, and the fixed-
point calculations that are actually used (which we've shown in floating-point for simplicity). 
These differences yield an RTO of 6 seconds (not 6.3125), which is what we plot in Figure 
21.4 for time 1.871. 

Slow Start

We described the slow start algorithm in Section 20.6. We can see it in action again in Figure 
21.2. 

Only one segment is initially transmitted on the connection, and its acknowledgment must be 
received before another segment is transmitted. When segment 2 is received, two more 
segments are transmitted. 

21.5 Congestion Example

Now let's look at the transmission of the data segments. Figure 21.6 is a plot of the starting 
sequence number in a segment versus the time that the segment was sent. This provides a 
nice way to visualize the data transmission. Normally the data points should move up and to 
the right, with the slope of the points being the transfer rate. Retransmissions will appear as 
motion down and to the right. 

At the beginning of Section 21.4 we said the total time for the transfer was about 45 seconds, 
but we show only 35 seconds in this figure. These 35 seconds account for sending the data 
segments only. The first data segment was not transmitted until 6.3 seconds after the first 
SYN was sent, because the first SYN appears to have been lost and was retransmitted (Figure 
21.5). Also, after the final data segment and the FIN were sent (at time 34.1 in Figure 21.6) it 
took another 4.0 seconds to receive the final 14 ACKs from the receiver, before the receiver's 
FIN was received. 
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Figure 21.6 Sending of 32768 bytes of data from slip to vangogh.

We can immediately see the three retransmissions around times 10, 14, and 21 in Figure 
21.6. At each of these three points we can also see that only one segment is retransmitted, 
because only one dot dips below the upward slope. 

Let's examine the first of these dips in detail (around the 10-second mark). From the 
tcpdump output we can put together Figure 21.7. 
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Figure 21.7 Packet exchange for retransmission around the 10-second mark.

We have removed all the window advertisements from this figure, except for segment 72, 
which we discuss below, slip always advertised a window of 4096, and vangogh 
advertised a window of 8192. The segments are numbered in this figure as a continuation of 
Figure 21.2, where the first data segment across the connection was numbered 1. As in 
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Figure 21.2, the segments are numbered according to their send or receive order on the host 
slip, where tcpdump was being run. We have also removed a few segments that have no 
relevance to the discussion (44, 47, and 49, all ACKs from vangogh). 

It appears that segment 45 got lost or arrived damaged-we can't tell from this output. What 
we see on the host slip is the acknowledgment for everything up through but not including 
byte 6657 (segment 58), followed by eight more ACKs of this same sequence number. It is 
the reception of segment 62, the third of the duplicate ACKs, that forces the retransmission 
of the data starting at sequence number 6657 (segment 63). Indeed, Berkeley-derived 
implementations count the number of duplicate ACKs received, and when the third one is 
received, assume that a segment has been lost and retransmit only one segment, starting with 
that sequence number. This is Jacobson's fast retransmit algorithm, which is followed by his 
fast recovery algorithm. We discuss both algorithms in Section 21.7. 

Notice that after the retransmission (segment 63), the sender continues normal data 
transmission (segments 67, 69, and 71). TCP does not wait for the other end to acknowledge 
the retransmission. 

Let's examine what happens at the receiver. When normal data is received in sequence 
(segment 43), the receiving TCP passes the 256 bytes of data to the user process. But the next 
segment received (segment 46) is out of order: the starting sequence number of the data 
(6913) is not the next expected sequence number (6657). TCP saves the 256 bytes of data 
and responds with an ACK of the highest sequence number successfully received, plus one 
(6657). The next seven segments received by vangogh (48, 50, 52, 54, 55, 57, and 59) are 
also out of order. The data is saved by the receiving TCP, and duplicate ACKs are generated. 

Currently there is no way for TCP to tell the other end that a segment is missing. Also, TCP 
cannot acknowledge out-of-order data. All vangogh can do at this point is continue sending 
the ACKs of 6657. 

When the missing data arrives (segment 63), the receiving TCP now has data bytes 6657-
8960 in its buffer, and passes these 2304 bytes to the user process. All 2304 bytes are 
acknowledged in segment 72. Also notice that this ACK advertises a window of 5888 (8192 - 
2304), since the user process hasn't had a chance to read the 2304 bytes that are ready for it. 

If we look in detail at the tcpdump output for the dips around times 14 and 21 in Figure 
21.6, we see that they too were caused by the receipt of three duplicate ACKs, indicating that 
a packet had been lost. In each of these cases only a single packet was retransmitted. 

We'll continue this example in Section 21.8, after describing more about the congestion 
avoidance algorithms. 

21.6 Congestion Avoidance Algorithm
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Slow start, which we described in Section 20.6, is the way to initiate data flow across a 
connection. But at some point we'll reach the limit of an intervening router, and packets can 
be dropped. Congestion avoidance is a way to deal with lost packets. It is described in 
[Jacobson 1988]. 

The assumption of the algorithm is that packet loss caused by damage is very small (much 
less than 1%), therefore the loss of a packet signals congestion somewhere in the network 
between the source and destination. There are two indications of packet loss: a timeout 
occurring and the receipt of duplicate ACKs. (We saw the latter in Section 21.5. If we are 
using a timeout as an indication of congestion, we can see the need for a good RTT 
algorithm, such as that described in Section 21.3.) 

Congestion avoidance and slow start are independent algorithms with different objectives. 
But when congestion occurs we want to slow down the transmission rate of packets into the 
network, and then invoke slow start to get things going again. In practice they are 
implemented together. 

Congestion avoidance and slow start require that two variables be maintained for each 
connection: a congestion window, cwnd, and a slow start threshold size, ssthresh. The 
combined algorithm operates as follows: 

1.  Initialization for a given connection sets cwnd to one segment and ssthresh to 65535 
bytes. 

2.  The TCP output routine never sends more than the minimum of cwnd and the 
receiver's advertised window. 

Congestion avoidance is flow control imposed by the sender, while the advertised 
window is flow control imposed by the receiver. The former is based on the sender's 
assessment of perceived network congestion; the latter is related to the amount of 
available buffer space at the receiver for this connection. 

3.  When congestion occurs (indicated by a timeout or the reception of duplicate ACKs), 
one-half of the current window size (the minimum of cwnd and the receiver's 
advertised window, but at least two segments) is saved in ssthresh. Additionally, if the 
congestion is indicated by a timeout, cwnd is set to one segment (i.e., slow start). 

4.  When new data is acknowledged by the other end, we increase cwnd, but the way it 
increases depends on whether we're performing slow start or congestion avoidance. 

If cwnd is less than or equal to ssthresh, we're doing slow start; otherwise we're doing 
congestion avoidance. Slow start continues until we're halfway to where we were 
when congestion occurred (since we recorded half of the window size that got us into 
trouble in step 2), and then congestion avoidance takes over. 

Slow start has cwnd start at one segment, and be incremented by one segment every 
time an ACK is received. As mentioned in Section 20.6, this opens the window 
exponentially: send one segment, then two, then four, and so on. 
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Congestion avoidance dictates that cwnd be incremented by 1/cwnd each time an 
ACK is received. This is an additive increase, compared to slow start's exponential 
increase. We want to increase cwnd by at most one segment each round-trip time 
(regardless how many ACKs are received in that RTT), whereas slow start will 
increment cwnd by the number of ACKs received in a round-trip time. 

All 4.3BSD releases and 4.4BSD incorrectly add a small fraction of the segment size (the segment 
size divided by 8) during congestion avoidance. This is wrong and should not be emulated in future 
releases [Floyd 1994]. Nevertheless, we show this term in future calculations, to arrive at the same 
answer as the (incorrect) implementation. 

The 4.3BSD Tahoe release, described in [Leffler et al. 1989], performed slow start only if the other 
end was on a different network. This was changed with the 4.3BSD Reno release so that slow start is 
always performed. 

Figure 21.8 is a visual description of slow start and congestion avoidance. We show cwnd 
and ssthresh in units of segments, but they're really maintained in bytes. 

Figure 21.8 Visualization of slow start and congestion avoidance.

In this figure we assume that congestion occurred when cwnd had a value of 32 segments. 
ssthresh is then set to 16 segments and cwnd is set to 1 segment. One segment is then sent at 
time 0 and assuming its ACK is returned at time 1, cwnd is incremented to 2 segments. Two 
segments are then sent and assuming their ACKs return by time 2, cwnd is incremented to 4 
segments (once for each ACK). This exponential increase continues until cwnd equals 
ssthresh, after 8 ACKs are received between times 3 and 4. From this point on the increase in 
cwnd is linear, with a maximum increase of one segment per round-trip time. 

As we can see in this figure, the term "slow start" is not completely correct. It is a slower 
transmission of packets than what caused the congestion, but the rate of increase in the 
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number of packets injected into the network increases during slow start. The rate of increase 
doesn't slow down until ssthresh is reached, when congestion avoidance takes over. 

21.7 Fast Retransmit and Fast Recovery Algorithms

Modifications to the congestion avoidance algorithm were proposed in 1990 [Jacobson 
1990b]. We've already seen these modifications in action in our congestion example (Section 
21.5). 

Before describing the change, realize that TCP is required to generate an immediate 
acknowledgment (a duplicate ACK) when an out-of-order segment is received. This 
duplicate ACK should not be delayed. The purpose of this duplicate ACK is to let the other 
end know that a segment was received out of order, and to tell it what sequence number is 
expected. 

Since we don't know whether a duplicate ACK is caused by a lost segment or just a 
reordering of segments, we wait for a small number of duplicate ACKs to be received. It is 
assumed that if there is just a reordering of the segments, there will be only one or two 
duplicate ACKs before the reordered segment is processed, which will then generate a new 
ACK. If three or more duplicate ACKs are received in a row, it is a strong indication that a 
segment has been lost. (We saw this in Section 21.5.) We then perform a retransmission of 
what appears to be the missing segment, without waiting for a retransmission timer to expire. 
This is the fast retransmit algorithm. Next, congestion avoidance, but not slow start is 
performed. This is the fast recovery algorithm. 

In Figure 21.7 we saw that slow start was not performed after the three duplicate ACKs were 
received. Instead the sender did the retransmission, followed by three more segments with 
new data (segments 67, 69, and 71), before the acknowledgment of the retransmission was 
received (segment 72). 

The reason for not performing slow start in this case is that the receipt of the duplicate ACKs 
tells us more than just a packet has been lost. Since the receiver can only generate the 
duplicate ACK when another segment is received, that segment has left the network and is in 
the receiver's buffer. That is, there is still data flowing between the two ends, and we don't 
want to reduce the flow abruptly by going into slow start. This algorithms are usually 
implemented together as follows. 

1.  When the third duplicate ACK is received, set ssthresh to one-half the current 
congestion window, cwnd. 

Retransmit the missing segment. Set cwnd to ssthresh plus 3 times the segment size. 
2.  Each time another duplicate ACK arrives, increment cwnd by the segment size and 

transmit a packet (if allowed by the new value of cwnd). 
3.  When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the 
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value set in step 1). This should be the ACK of the retransmission from step 1, one 
round-trip time after the retransmission. Additionally, this ACK should acknowledge 
all the intermediate segments sent between the lost packet and the receipt of the first 
duplicate ACK. This step is congestion avoidance, since we're slowing down to one-
half the rate we were at when the packet was lost. 

We'll see what happens to the two variables cwnd and ssthresh in the calculations in the next 
section. 

The fast retransmit algorithm first appeared in the 4.3BSD Tahoe release, but it was incorrectly followed by 
slow start. The fast recovery algorithm appeared in the 4.3BSD Reno release. 

21.8 Congestion Example (Continued)

Watching a connection using tcpdump and the socket debug option (which we described in 
Section 21.4) we can see the values of cwnd and ssthresh as each segment is transmitted. If 
the MSS is 256 bytes, the initial values of cwnd and ssthresh are 256 and 65535, 
respectively. Each time an ACK is received we can see cwnd incremented by the MSS, 
taking on the values 512, 768, 1024, 1280, and so on. Assuming congestion doesn't occur, 
eventually the congestion window will exceed the receiver's advertised window, meaning the 
advertised window will limit the data flow. 

A more interesting example is to see what happens when congestion occurs. We'll use the 
same example from Section 21.4. There were four occurrences of congestion while this 
example was being run. There was a timeout on the transmission of the initial SYN to 
establish the connection (Figure 21.5), followed by three lost packets during the data transfer 
(Figure 21.6). 

Figure 21.9 shows the values of the two variables cwnd and ssthresh when the initial SYN is 
retransmitted, followed by the first seven data segments. (We showed the exchange of the 
initial data segments and their ACKs in Figure 21.2.) We show the data bytes transmitted 
using the tcpdump notation: 1:257(256) means bytes 1 through 256. 

Segment# Action Variable

(Figure 21.2) Send Receive Comment cwnd ssthresh

SYN

SYN

ACK

SYN, ACK

- 

initialize

timeout
retransmit

-

256

256

-

65535

512

-
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1
2
3
4
5
6
7
8
9
10
11
12

1:257(256)

257:513(256)
513:769(256)

769:1025(256)
1025:1281(256)

1281:1537(256)

1537:1793(256)
- 

ACK 257

ACK 513

ACK 769

ACK 1025

ACK 1281

slow start

slow start

cong. avoid

cong. avoid

cong. avoid

512

768

885

991

1089

512

512

512

512

512

Figure 21.9 Example of congestion avoidance.

When the timeout of the SYN occurs, ssthresh is set to its minimum value (512 bytes. which 
is two segments for this example), cwnd is set to one segment (256 bytes, which it was 
already at) to enter the slow start phase. 

When the SYN and ACK are received, nothing happens to the two variables, since new data 
is not being acknowledged. 

When the ACK 257 arrives, we are still in slow start since cwnd is less than or equal to 
ssthresh, so cwnd in incremented by 256. The same thing happens when the ACK 512 
arrives. 

When the ACK 769 arrives we are no longer in slow start, but enter congestior avoidance. 
The new value for cwnd is calculated as 

cwnd <- cwnd + segsize x segsize/cwnd + segsize/8

This is the 1/cwnd increase that we mentioned earlier, taking into account that cwnd is really 
maintained in bytes and not segments. For this example we calculate 

cwnd <- 768 + 256 x 256 / 768 + 256 / 8

which equals 885 (using integer arithmetic). When the next ACK 1025 arrives we calculate 

cwnd <- 885 + 256x256/885 + 256/8

which equals 991. (In these expressions we include the incorrect 256/8 term to match the 
values calculated by the implementation, as we noted in Section 21.6) 
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This additive increase in cwnd continues until the first retransmission, around the 10-second 
mark in Figure 21.6. Figure 21.10 is a plot of the same data as in Figure 21.6, with the value 
of cwnd added. 

Figure 21.10 Value of cwnd and send sequence number while data is being transmitted.

The first six values for cwnd in this figure are the values we calculated for Figure 21.9. It is 
impossible in this figure to tell the difference visually between the exponential increase 
during slow start and the additive increase during congestion avoidance, because the slow 
start phase is so quick. 

We need to explain what is happening at the three points where a retransmission occurs. 
Recall that each of the retransmissions took place because three duplicate ACKs were 
received, indicating a packet had been lost. This is the fast retransmit algorithm from Section 
21.7. ssthresh is immediately set to one-half the window size that was in effect when the 
retransmission took place, but cwnd is allowed to keep increasing while the duplicate ACKs 
are received, since each duplicate ACK means that a segment has left the network (the 
receiving TCP has buffered it, waiting for the missing hole in the data to arrive). This is the 
fast recovery algorithm. 

Figure 21.11 is similar to Figure 21.9, showing the values of cwnd and ssthresh. The segment 
numbers in the first column correspond to Figure 21.7. 
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Segment# Action Variable

(Figure 21.7) Send Receive Comment cwnd ssthresh

58 
59
60
61
62
63
64
65
66
67
68
69
70
71
72

8705:8961(256)

6657:6913(256)

8961:9217(256)

9217:9473(256)

9473:9729(256)
. 

ACK 6657

ACK 6657
ACK 6657
ACK 6657

ACK 6657
ACK 6657
ACK 6657

ACK 6657

ACK 6657

ACK 8961

ACK of new data

duplicate ACK #1
duplicate ACK #2
duplicate ACK #3

retransmission
duplicate ACK #4
duplicate ACK #5
duplicate ACK #6

duplicate ACK #7

duplicate ACK #8

ACK of new data

2426

2426
2426
1792

2048
2304
2560

2816

3072

1280

512

512
512

1024

1024
1024
1024

1024

1024

1024

Figure 21.11 Example of congestion avoidance (continued).

The values for cwnd have been increasing continually, from the final value in Figure 21.9 for 
segment 12 (1089), to the first value in Figure 21.11 for segment 58 (2426). The value of 
ssthresh has remained the same (512), since there have been no retransmissions in this 
period. 

When the first two duplicate ACKs arrive (segments 60 and 61) they are counted, and cwnd 
is left alone. (This is the flat portion of Figure 21.10 preceding the retransmission.) When the 
third one arrives, however, ssthresh is set to one-half cwnd (rounded down to the next 
multiple of the segment size), cwnd is set to ssthresh plus the number of duplicate ACKs 
times the segment size (i.e., 1024 plus 3 times 256). The retransmission is then sent. 

Five more duplicate ACKs arrive (segments 64-66, 68, and 70) and cwnd is incremented by 
the segment size each time. Finally a new ACK arrives (segment 72) and cwnd is set to 
ssthresh (1024) and the normal congestion avoidance takes over. Since cwnd is less than or 
equal to ssthresh (they are equal), the segment size is added to cwnd, giving a value of 1280. 
When the next new ACK is received (which isn't shown in Figure 21.11), cwnd is greater 
than ssthresh, so cwnd is set to 1363. 

During the fast retransmit and fast recovery phase, we transmit new data after receiving the 
duplicate ACKs in segments 66, 68, and 70, but not after receiving the duplicate ACKs in 
segments 64 and 65. The reason is the value of cwnd, versus the number of unacknowledged 
bytes of data. When segment 64 is received, cwnd equals 2048, but we have 2304 
unacknowledged bytes (nine segments: 46, 48, 50, 52, 54, 55, 57, 59, and 63). We can't send 
anything. When segment 65 arrives, cwnd equals 2304, so we still can't send anything. But 
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when segment 66 arrives, cwnd equals 2560, so we can send a new data segment. Similarly 
when segment 68 arrives, cwnd equals 2816, which is greater than the 2560 bytes of 
unacknowledged data, so we can send another new data segment. The same scenario happens 
when segment 70 is received. 

W^hen the next retransmission takes place at time 14.3 in Figure 21.10, it is also triggered by 
the reception of three duplicate ACKs, so we see the same increase in cwnd as one more 
duplicate ACK arrives, followed by a decrease to 1024. 

The retransmission at time 21.1 in Figure 21.10 is also triggered by duplicate ACKs. We 
receive three more duplicates after the retransmission, so we see three additional increases in 
cwnd, followed by a decrease to 1280. For the remainder of the transfer cwnd increases 
linearly to a final value of 3615. 

21.9 Per-Route Metrics

Newer TCP implementations maintain many of the metrics that we've described in this 
chapter in the routing table entry. When a TCP connection is closed, if enough data was sent 
to obtain meaningful statistics, and if the routing table entry for the destination is not a 
default route, the following information is saved in the routing table entry, for the next use of 
the entry: the smoothed RTT, the smoothed mean deviation, and the slow start threshold. The 
quantity "enough data" is 16 windows of data. This gives 16 RTT samples, which allows the 
smoothed RTT filter to converge within 5% of the correct value. 

Additionally, the route(8) command can be used by the administrator to set the metrics for 
a given route: the three values mentioned in the preceding paragraph, along with the MTU, 
the outbound bandwidth-delay product (Section 20.7), and the inbound bandwidth-delay 
product. 

When a new TCP connection is established, either actively or passively, if the routing table 
entry being used for the connection has values for these metrics, the corresponding variable 
is initialized from the metrics. 

21.10 ICMP Errors

Let's see how TCP handles ICMP errors that are returned for a given connection. The most 
common ICMP errors that TCP can encounter are source quench, host unreach-able, and 
network unreachable. Current Berkeley-based implementations handle these ICMP errors as 
follows: 

●     A received source quench causes the congestion window, cwnd, to be set to one 
segment to initiate slow start, but the slow start threshold, ssthresh, is not changed, so 
the window will open until it's either open all the way (limited by the window size and 
round-trip time) or until congestion occurs. 
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●     A received host unreachable or network unreachable is effectively ignored, since 
these two errors are considered transient. It could be that an intermediate router has 
gone down and it can take the routing protocols a few minutes to stabilize on an 
alternative route. During this period either of these two ICMP errors can occur, but 
they must not abort the connection. Instead, TCP keeps trying to send the data that 
caused the error, although it may eventually time out. (Recall in Figure 21.1 that TCP 
did not give up for 9 minutes.) 

Current Berkeley-based implementations record that the ICMP error occurred, and if 
the connection times out, the ICMP error is translated into a more relevant error code 
than "connection timed out." 

Earlier BSD implementations incorrectly aborted a connection whenever an ICMP host unreachable 
or network unreachable was received. 

An Example

We can see how an ICMP host unreachable is handled by taking our dialup SLIP link down 
during the middle of a connection. We establish a connection from the host slip to the host 
aix. (From the figure on the inside front cover we see that this connection goes through our 
dialup SLIP link.) After establishing the connection and transferring some data, the dialup 
SLIP link between the routers sun and netb is taken down. This causes the default routing 
table entry on sun (which we showed in Section 9.2) to be removed. We expect sun to then 
respond to IP datagrams destined for the 140.252.1 Ethernet with an ICMP host unreachable. 
We want to see how TCP handles these ICMP errors. 

Here is the interactive session on the host slip: 

slip % sock aix echo run our sock program 

test line type this line

test line and it's echoed 

SLIP link is brought down here 

another line then type this line and watch retransmissions 

SLIP link is reestablished here 

another line and the line and its echo are exchanged 

line number 3 

line number 3

the last line 

SLIP link is brought down here, and not reestablished 

read error: No route to 
host

TCP finally gives up 
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Figure 21.12 shows the corresponding tcpdump output, captured on the router bsdi. (We 
have removed the connection establishment and all the window advertisements.) We connect 
to the echo server on the host aix and type "test line" (line 1). It is echoed (line 2) and the 
echo is acknowledged (line 3). We then take down the SLIP link. 

1 0.0 
slip.1035 > aix. echo: P 1:11(10) 
ack 1 

2 0.212271 ( 0.2123) 
aix.echo > slip.1035: P 1:11(10) 
ack 11 

3 0.310685 ( 0.0984) slip.1035 > aix.echo: . ack 11 

SLIP link brought down here 

4 174.758100 (174.4474) 
slip.1035 > aix.echo: P 11:24(13) 
ack 11 

5 174.759017 ( 0.0009) 
sun > slip: icmp: host aix 
unreachable 

6 177.150439 ( 2.3914) 
slip.1035 > aix.echo: P 11:24(13) 
ack 11 

7 177.151271 ( 0.0008) 
sun > slip: icmp: host aix 
unreachable 

8 182.150200 ( 4.9989) 
slip.1035 > aix.echo: P 11:24(13) 
ack 11 

9 182.151189 ( 0.0010) 
sun > slip: icmp: host aix 
unreachable 

10 192.149671 ( 9.9985) 
slip.1035 > aix.echo: P 11:24(13) 
ack 11 

11 192.150608 ( 0.0009) 
sun > slip: icmp: host aix 
unreachable 

12 212.148783 ( 19.9982) 
slip.1035 > aix.echo: P 11:24(13) 
ack 11 

13 212.149786 ( 0.0010) 
sun > slip: icmp: host aix 
unreachable 

SLIP link brought up here 

14 252.146774 ( 39.9970) 
slip.1035 > aix.echo: P 11:24(13) 
ack 11 

15 252.439257 ( 0.2925) 
aix.echo > slip.1035: P 11:24(13) 
ack 24 

16 252.505331 ( 0.0661) slip.1035 > aix.echo: . ack 24 

17 261.977246 ( 9.4719) 
slip.1035 > aix.echo: P 24:38(14) 
ack 24 

18 262.158758 ( 0.1815) 
aix.echo > slip.1035: P 24:38(14) 
ack 38 
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19 262.305086 ( 0.1463) slip.1035 > aix.echo: . ack 38 

SLIP link brought down here 

20 458.155330 (195.8502) 
slip.1035 > aix.echo: P 38:52(14) 
ack 38 

21 458.156163 ( 0.0008) 
sun > slip: icmp: host aix 
unreachable 

22 461.136904 (2.9807) 
slip.1035 > aix.echo: P 38:52(14) 
ack 38 

23 461.137826 (0.0009) 
sun > slip: icmp: host aix 
unreachable 

24 467.136461 (5.9986) 
slip.1035 > aix.echo: P 38:52(14) 
ack 38 

25 467.137385 (0.0009) 
sun > slip: icmp: host aix 
unreachable 

26 479.135811 ( 11.9984) 
slip.1035 > aix.echo: P 38:52(14) 
ack 38 

27 479.136647 ( 0.0008) 
sun > slip: icmp: host aix 
unreachable 

28 503.134816 ( 23.9982) 
slip.1035 > aix.echo: P 38:52(14) 
ack 38 

29 503.135740 ( 0.0009) 
sun > slip: icmp: host aix 
unreachabie 

14 lines of output deleted here 

44 1000.219573 ( 64.0959) 
slip.1035 > aix.echo: P 38:52(14) 
ack 38 

45 1000.220503 ( 0.0009) 
sun > slip: icmp: host aix 
unreachable 

46 1064.201281 ( 63.9808) 
slip.1035 > aix.echo: R 52:52(0) 
ack 38 

47 1064.202182 ( 0.0009) 
sun > slip: icmp: host aix 
unreachable 

Figure 21.12 TCP handling of received ICMP host unreachable error.

We type "another line" (line 3) and expect to see TCP time out and retransmit the message. 
Indeed, this line is sent six times before a reply is received. Lines 4-13 show the first 
transmission and the next four retransmissions, each of which generates an ICMP host 
unreachable from the router sun. "This is what we expect: the IP datagrams go from slip to 
the router bsdi (which has a default route that points to sun), and then to sun, where the 
broken link is detected. 

While these retransmissions are taking place, the SLIP link is brought back up, and the 
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retransmission on line 14 gets delivered. Line 15 is the echo from aix, and line 16 is the 
acknowledgment of the echo. 

This shows that TCP ignores the ICMP host unreachable errors and keeps retransmitting. We 
can also see the expected exponential backoff in each retransmission timeout: the first 
appears to be 2.5 seconds, which is then multiplied by 2 (giving 5 seconds), then 4 (10 
seconds), then 8 (20 seconds), then 16 (40 seconds). 

We then type the third line of input ("line number 3") and see it sent on line 17, echoed on 
line 18, and the echo acknowledged on line 19. 

We now want to see what happens when TCP retransmits and gives up, after receiving the 
ICMP host unreachable, so we take down the SLIP link again. After taking it down we type 
"the last line" and see it transmitted 13 times before TCP gives up. (We have deleted lines 30-
43 from the output. They are additional retransmissions.) 

The thing we notice, however, is the error message printed by our sock program when it 
finally gives up: "No route to host." This corresponds to the Unix error associated with the 
ICMP host unreachable error (Figure 6.12). This shows that TCP saves the ICMP error that it 
receives on the connection, and when it finally gives up, it prints that error, instead of 
"Connection timed out." 

Finally, notice the different retransmission intervals in lines 22-46, compared to lines 6-14. It 
appears that TCP updated its estimators when the third line we typed was sent and 
acknowledged without any retransmissions in lines 17-19. The initial retransmission timeout 
is now 3 seconds, giving successive values of 6, 12, 24, 48, and then the upper limit of 64. 

21.11 Repacketization

When TCP times out and retransmits, it does not have to retransmit the identical segment 
again. Instead, TCP is allowed to perform repacketization, sending a bigger segment, which 
can increase performance. (Naturally, this bigger segment cannot exceed the MSS announced 
by the other receiver.) This is allowed in the protocol because TCP identifies the data being 
sent and acknowledged by its byte number, not its segment number. 

We can easily see this in action. We use our sock program to connect to the discard server 
and type one line. We then disconnect the Ethernet cable and type a second line. While this 
second line is being retransmitted, we type a third line. We expect the next retransmission to 
contain both the second and third lines. 

bsdi % sock svr4 discard 

hello there first line gets sent OK 

then we disconnect the Ethernet cable 
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line number 2 this line gets retransmitted 

and 3 type this line before second line sent OK 

then reconnect Ethernet cable 

Figure 21.13 shows the tcpdump output. (We have removed the connection establishment, 
the connection termination, and all the window advertisements.) 

1 0.0 
bsdi. 1032 > svr4.discard: P 1:13(12) ack 
1 

2
0.140489 ( 
0.1405) 

svr4.discard > bsdi.1032: . ack 13 

Ethernet cable disconnected here 

3
26.407696 
(26.2672) 

bsdi.1032 > svr4.discard: P 13:27(14) ack 
1 

4
27.639390 ( 
1.2317) 

bsdi.1032 > svr4.discard: P 13:27(14) ack 
1 

5
30.639453 ( 
3.0001) 

bsdi.1032 > svr4.discard: P 13:27(14) ack 
1 

third line typed here 

6
36.639653 ( 
6.0002) 

bsdi.1032 > svr4.discard: P 13:33(20) ack 
1 

7
48.640131 
(12.0005) 

bsdi.1032 > svr4.discard: P 13:33(20) ack 
1 

8
72.640768 
(24.0006) 

bsdi.1032 > svr4.discard: P 13:33(20) ack 
1 

Ethernet cable reconnected here 

9
72.719091 ( 
0.0783) 

svr4.discard > bsdi.1032: . ack 33 

Figure 21.13 Repacketization of data by TCP.

Lines 1 and 2 show the first line ("hello there") being sent and its acknowledgment. We then 
disconnect the Ethernet cable and type "line number 2" (14 bytes, including the newline). 
These bytes are transmitted on line 3, and then retransmitted on lines 4 and 5. Before the 
retransmission on line 6 we type "and 3" (6 bytes, including the newline) and see this 
retransmission contain 20 bytes: both lines that we typed. When the acknowledgment arrives 
on line 9, it is for all 20 bytes. 

21.12 Summary

This chapter has provided a detailed look at TCP's timeout and retransmission strategy. Our 
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first example was a lost SYN to establish a connection and we saw how an exponential 
backoff is applied to successive retransmission timeout values. 

TCP calculates the round-trip time and then uses these measurements to keep track of a 
smoothed RTT estimator and a smoothed mean deviation estimator. These two estimators are 
then used to calculate the next retransmission timeout value. Many implementations only 
measure a single RTT per window. Karn's algorithm removes the retransmission ambiguity 
problem by preventing us from measuring the RTT when a packet is lost. 

Our detailed example, which included three lost packets, let us see many of TCP's algorithms 
in action: slow start, congestion avoidance, fast retransmit, and fast recovery. We were also 
able to hand calculate TCP RTT estimators along with the congestion window and slow-start 
threshold, and verify the values with the actual values from the trace output. 

We finished the chapter by looking at the effect various ICMP errors have on a TCP 
connection and how TCP is allowed to repacketize its data. We saw how the "soft" ICMP 
errors don't cause a connection to be terminated, but are remembered so that if the connection 
terminates abnormally, the soft error can be reported. 

Exercises

21.1 In Figure 21.5 the first timeout was calculated as 6 seconds and the next as 12 seconds. 
If the ACK for the initial SYN had not arrived after the 12-second timeout expired, when 
would the next timeout occur? 

21.2 In the discussion following Figure 21.5 we said that the timeout intervals are calculated 
as 6, 24, and then 48 seconds, as we saw in Figure 4.5. But if we watch a TCP connection to 
a nonexistent host from an SVR4 system, the timeout intervals are 6, 12, 24, and 48 seconds. 
What's going on? 

21.3 Compare the performance of TCP's sliding window versus TFTP's stop-and-wait 
protocol as follows. In this chapter we transferred 32768 bytes in about 35 seconds (Figure 
21.6) across a link with an RTT that averaged around 1.5 seconds (Figure 21.4). Calculate 
how long TFTP would take for the same transfer. 

21.4 In Section 21.7 we said that the receipt of a duplicate ACK is caused by a segment being 
lost or reordered. In Section 21.5 we saw the generation of duplicate ACKs caused by a lost 
segment. Draw a picture showing that a reordering of segments also generates duplicate 
ACKs. 

21.5 There is a noticeable blip in Figure 21.6 between times 28.8 and 29.8. Is this a 
retransmission? 

21.6 In Section 21.6 we said that the 4.3BSD Tahoe release only performed slow start if the 
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destination was on a different network. How do you think "different network" was 
determined? (Hint: Look at Appendix E.) 

21.7 In Section 20.2 we said that TCP normally ACKs every other segment. But in Figure 
21.2 we see the receiver ACK every segment. Why? 

21.8 Are per-route metrics really useful, given the prevalence of default routes? 
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TCP Persist Timer
22.1 Introduction

We've seen that TCP has the receiver perform flow control by specifying the amount of 
data it is willing to accept from the sender: the window size. What happens when the 
window size goes to 0? This effectively stops the sender from transmitting data, until the 
window becomes nonzero. 

We saw this scenario in Figure 20.3. When the sender received segment 9, opening the 
window that was shut down by segment 8, it immediately started sending data. TCP must 
handle the case of this acknowledgment that opens the window (segment 9) being lost. 
Acknowledgments are not reliably transmitted-that is, TCP does not ACK 
acknowledgments, it only ACKs segments containing data. 

If an acknowledgment is lost, we could end up with both sides waiting for the other: the 
receiver waiting to receive data (since it provided the sender with a nonzero window) and 
the sender waiting to receive the window update allowing it to send. To prevent this form 
of deadlock from occurring the sender uses a persist timer that causes it to query the 
receiver periodically, to find out if the window has been increased. These segments from 
the sender are called window probes. In this chapter we'll examine window probes and 
the persist timer. We'll also examine the silly window syndrome, which is tied to the 
persist timer. 

22.2 An Example

To see the persist timer in action we'll start a receiver process that listens for a connection 
request from a client, accepts the connection request, and then goes to sleep for a long 
time before reading from the network. 

Our sock program lets us specify a pause option -P that sleeps between the server 
accepting the connection request and performing the first read. We'll invoke the server 
as: 

svr4 % sock -i -s -P100000 5555 

This has the server sleep for 100,000 seconds (27.8 hours) before reading from the 
network. The client is run on the host bsdi and performs 1024-byte writes to port 5555 
on the server. Figure 22.1 shows the tcpdump output. (We have removed the 
connection establishment from the output.) 
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1 0.0 
bsdi.1027 > svr4.5555: P 1:1025(1024) 
ack 1 win 4096 

2
0.191961 ( 
0.1920) 

svr4.5555 > bsdi.1027: . ack 1025 win 
4096 

3
0.196950 ( 
0.0050) 

bsdi.1027 > svr4.5555: . 1025 
:2049(1024) ack 1 win 4096 

4
0.200340 ( 
0.0034) 

bsdi.1027 > svr4.5555: . 2049:3073(1024) 
ack 1 win 4096 

5
0.207506 ( 
0.0072) 

svr4.5555 > bsdi.1027: . ack 3073 win 
4096 

6
0.212676 ( 
0.0052) 

bsdi.1027 > svr4.5555: . 3073 
:4097(1024) ack 1 win 4096 

7
0.216113 ( 
0.0034) 

bsdi.1027 > svr4.5555: P 4097 
:5121(1024) ack 1 win 4096 

8
0.219997 ( 
0.0039) 

bsdi.1027 > svr4.5555: P 5121 
:6145(1024) ack 1 win 4096 

9
0.227882 ( 
0.0079) 

svr4.5555 > bsdi.1027: . ack 5121 win 
4096 

10
0.233012 ( 
0.0051) 

bsdi.1027 > svr4.5555: P 6145 
:7169(1024) ack 1 win 4096 

11
0.237014 ( 
0.0040) 

bsdi.1027 > svr4.5555: P 7169 
:8193(1024) ack 1 win 4096 

12
0.240961 ( 
0.0039) 

bsdi.1027 > svr4.5555: P 8193 
:9217(1024) ack 1 win 4096 

13
0.402143 ( 
0.1612) 

svr4.5555 > bsdi.1027: . ack 9217 win 0 

14
5.351561 ( 
4.9494) 

bsdi.1027 > svr4.5555: . 9217 : 9218(1) 
ack 1 win 4096 

15
5.355571 ( 
0.0040) 

svr4.5555 > bsdi.1027: . ack 9217 win 0 

16
10.351714 ( 
4.9961) 

bsdi.1027 > svr4.5555: . 9217 :9218 (1) 
ack 1 win 4096 

17
10.355670 ( 
0.0040) 

svr4.5555 > bsdi.1027: . ack 9217 win 0 

18
16.351881 ( 
5.9962) 

bsdi.1027 > svr4.5555: . 9217 : 9218(1) 
ack 1 win 4096 

19
16.355849 ( 
0.0040) 

svr4.5555 > bsdi.1027: . ack 9217 win 0 
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20
28.352213 
(11.9964) 

bsdi.1027 > svr4.5555: . 9217 :9218 (1) 
ack 1 win 4096 

21
28.356178 ( 
0.0040) 

svr4.5555 > bsdi.1027: . ack 9217 win 0 

22
52.352874 
(23.9967) 

bsdi.1027 > svr4.5555: . 9217 : 9218(1) 
ack 1 win 4096 

23
52.356839 ( 
0.0040) 

svr4.5555 > bsdi.1027: . ack 9217 win 0 

24
100.354224 
(47.9974) 

bsdi.1027 > svr4.5555: . 9217 : 9218(1) 
ack 1 win 4096 

25
100.358207 ( 
0.0040) 

svr4.5555 > bsdi.1027: . ack 9217 win 0 

26
160.355914 
(59.9977) 

bsdi.1027 > svr4.5555: . 9217 :9218 (1) 
ack 1 win 4096 

27
160.359835 ( 
0.0039) 

svr4.5555 > bsdi.1027: . ack 9217 win 0 

28
220.357575 
(59.9977) 

bsdi.1027 > svr4.5555: . 9217:9218(1) 
ack 1 win 4096 

29
220.361668 ( 
0.0041) 

svr4.5555 > bsdi.1027: . ack 9217 win 0 

30
280.359254 
(59.9976) 

bsdi.1027 > svr4.5555: . 9217 : 9218(1) 
ack 1 win 4096 

31
280.363315 ( 
0.0041) 

svr4.5555 > bsdi.1027: . ack 9217 win 0 

Figure 22.1 Example of persist timer probing a zero-sized window.

Segments 1-13 shows the normal data transfer from the client to the server, filling up the 
window with 9216 bytes of data. The server advertises a window of 4096, and has a 
default socket buffer size of 4096, but really accepts a total of 9216 bytes. This is some 
form of interaction between the TCP/IP code and the streams subsystem in SVR4. 

In segment 13 the server acknowledges the previous four data segments, but advertises a 
window of 0, stopping the client from transmitting any more data. This causes the client 
to set its persist timer. If the client doesn't receive a window update when the timer 
expires, it probes the empty window, to see if a window update has been lost. Since our 
server process is asleep, the 9216 bytes of data are buffered by TCP, waiting for the 
application to issue a read. 

Notice the spacing of the window probes by the client. The first (segment 14) is 4.949 
seconds after receiving the zero-sized window. The next (segment 16) is 4.996 seconds 
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later. The spacing is then about 6, 12, 24,48, and 60 seconds after the previous. 

Why are the spacings always a fraction of a second less than 5,6,12, 24, 48, and 60? 
These probes are triggered by TCP's 500-rns timer expiring. When the timer expires, the 
window probe is sent, and a reply is received about 4 ms later. The receipt of the reply 
causes the timer to be restarted, but the time until the next clock tick is about 500 minus 4 
ms. 

The normal TCP exponential backoff is used when calculating the persist timer. The first 
timeout is calculated as 1.5 seconds for a typical LAN connection. This is multiplied by 2 
for a second timeout value of 3 seconds. A multiplier of 4 gives the next value of 6, a 
multiplier of 8 gives a value of 12, and so on. But the persist timer is always bounded 
between 5 and 60 seconds, which accounts for the values we see in Figure 22.1. 

The window probes contain 1 byte of data (sequence number 9217). TCP is always 
allowed to send 1 byte of data beyond the end of a closed window. Notice, however, that 
the acknowledgments returned with the window size of 0 do not ACK this byte. (They 
ACK the receipt of all bytes through and including byte number 9216.) Therefore this 
byte keeps being retransmitted. 

The characteristic of the persist state that is different from the retransmission timeout in 
Chapter 21 is that TCP never gives up sending window probes. These window probes 
continue to be sent at 60-second intervals until the window opens up or either of the 
applications using the connection is terminated. 

22.3 Silly Window Syndrome

Window-based flow control schemes, such as the one used by TCP, can fall victim to a 
condition known as the silly window syndrome (SWS). When it occurs, small amounts of 
data are exchanged across the connection, instead of full-sized segments [dark 1982]. 

It can be caused by either end: the receiver can advertise small windows (instead of 
waiting until a larger window could be advertised) and the sender can transmit small 
amounts of data (instead of waiting for additional data, to send a larger segment). Correct 
avoidance of the silly window syndrome is performed on both ends. 

1.  The receiver must not advertise small windows. The normal algorithm is for the 
receiver not to advertise a larger window than it is currently advertising (which 
can be 0) until the window can be increased by either one full-sized segment (i.e„ 
the MSS being received) or by one-half the receiver's buffer space, whichever is 
smaller. 

2.  Sender avoidance of the silly window syndrome is done by not transmitting unless 
one of the following conditions is true: (a) a full-sized segment can be sent, (b) we 
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can send at least one-half of the maximum sized window that the other end has 
ever advertised, or (c) we can send everything we have and either we are not 
expecting an ACK (i.e., we have no outstanding unacknowledged data) or the 
Nagle algorithm is disabled for this connection (Section 19.4). 

Condition (b) deals with hosts that always advertise tiny windows, perhaps 
smaller than the segment size. Condition (c) prevents us from sending small 
segments when we have unacknowledged data that is waiting to be ACKed and 
the Nagle algorithm is enabled. If the application is doing small writes (e.g., 
smaller than the segment size), it is condition (c) that avoids the silly window 
syndrome. 

These three conditions also let us answer the question: if the Nagle algorithm 
prevents us from sending small segments while there is outstanding 
unacknowledged data, how small is small? From condition (a) we see that "small" 
means the number of bytes is less than the segment size. Condition (b) only comes 
into play with older, primitive hosts. 

Condition (b) in step 2 requires that the sender keep track of the maximum window size 
advertised by the other end. This is an attempt by the sender to guess the size of the other 
end's receive buffer. Although the size of the receiver buffer could decrease while the 
connection is established, in practice this is rare. 

An Example

We'll now go through a detailed example to see the silly window syndrome avoidance in 
action, which also involves the persist timer. We'll use our sock program with the 
sending host, sun, doing six 1024-byte writes to the network: 

sun % sock -i -n6 bsdi 7777 

But we'll put some pauses in the receiving process on the host bsdi, pausing 4 seconds 
before doing the first read, and then pausing 2 seconds between successive reads. 
Additionally, the receiver issues 256-byte reads; 

bsdi % sock -i -s -P4 -p2 -r256 7777 

The reason for the initial pause is to let the receiver's buffer fill, forcing it to stop the 
transmitter. Since the receiver then performs small reads from the network, we expect to 
see the receiver perform silly window syndrome avoidance. 

Figure 22.2 is the time line for the transfer of the 6144 bytes of data. (We have deleted 
the connection establishment.) 
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We also need to track what happens with the application that's reading the data at each 
point in time, along with the number of bytes currently in the receive buffer, and the 
number of bytes of available space in the receive buffer. Figure 22.3 shows everything 
that's happening. 
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Figure 22.2 Time line showing receiver avoidance of silly window syndrome.

Time
Segment#

(Figure 
22.2)

Action Receiver buffer

Send TCP Receive TCP Application data available

0.000 1 1:1025(1024) 1024 3072

0.002 2 1025:2049(1024) 2048 2048

0.003 3 2049:3073(1024) 3072 1024

0.005 4 3073:4097(1024) 4096 0

0.170 5 ACK 4097, win 0

3.99 read 256 3840 256

5.151 6 4097:4098(1) 3841 255

5.17 7 ACK 4098, win 0

5.99 read 256 3585 511

7.99 read 256 3329 767

9.99 read 256 3073 1023

10.151 8 4098:4099(1) 3074 1022

10.170 9 ACK 4099, win 0

11.99 read 256 2818 1278

13.99 read 256 2562 1534

15.151 10 4099:4100(1) 2563 1533

15.170 11
ACK 4100, win 

1533

15.172 12 4100:5124(1024) 3587 509

15.370 13 ACK 5124, win 509

15.99 read 256 3331 765

17.99 read 256 3075 1021

19.99 read 256 2819 1277

20.151 14 5124:5633(509) 3328 768

20.170 15 ACK 5633, win 0

21.99 read 256 3072 1024

23.99 read 256 2816 1280

25.151 16 5633:5634(1) 2817 1279
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25.170 17
ACK 5634, win 

1279

25.171 18 5634:6145(511) 3328 768

25.174 19 ACK 6146, win 767

25.99 read 256 3072 1024

27.99 read 256 2816 1280

29.99 read 256 2560 1536

31.99 read 256 2304 1792

33.99 read 256 2048 2048

35.99 read 256 1792 2304

37.99 read 256 1536 2560

39.99 read 256 1280 2816

39.99 20
ACK 6146, win 

2816

41.99 read 256 1024 3072

43.99 read 256 768 3328

45.99 read 256 512 3584

47.99 read 256 256 3840

49.99 read 256 0 4096

51.99
read 256 
(EOF)

0 4096

51.991 21
ACK 6146, win 

4096

51.992 22 ACK2

Figure 22.3 Sequence of events for receiver avoidance of the silly window syndrome.

In Figure 22.3 the first column is the relative point in time for each action. Those times 
with three digits to the right of the decimal point are taken from the tcpdump output 
(Figure 22.2). Those times with 99 to the right of the decimal point are the assumed times 
of the action on the receiving host. (Having these relative times on the receiver contain 
99 for the hundredths of a second correlates them with segments 20 and 22 in Figure 
22.2, the only two events on the receiver that we can see with tcpdump that are 
triggered by a timeout on the receiving host. All the other packets that we see from bsdi 
are triggered by the reception of a segment from the sender. It also makes sense, because 
this would place the initial 4-second pause just before time 0 when the sender transmits 
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the first data segment. This is about when the receiver would get control, after receiving 
the ACK of its SYN in the connection establishment.) 

The amount of data in the receiver's buffer increases when it receives data from the 
sender, and decreases as the application reads data from the buffer. What we want to 
follow are the window advertisements sent by the receiver to the sender, and what those 
window advertisements are. This lets us see how the silly window syndrome is avoided 
by the receiver. 

The first four data segments and the corresponding ACK (segments 1-5) show the sender 
filling the receiver's buffer. At that point the sender is stopped but it still has more data to 
send. It sets its persist timer for its minimum value of 5 seconds. 

When the persist timer expires, 1 byte of data is sent (segment 6). The receiving 
application has read 256 bytes from the receive buffer (at time 3.99), so the byte is 
accepted and acknowledged (segment 7). But the advertised window is still 0, since the 
receiver does not have room for either one full-sized segment or one-half of its buffer. 
This is silly window avoidance by the receiver. 

The sender's persist timer is reset and goes off again 5 seconds later (at time 10.151). One 
byte is again sent and acknowledged (segments 8 and 9). Again the amount of room in 
the receiver's buffer (1022 bytes) forces it to advertise a window of 0. 

When the sender's persist timer expires next, at time 15.151, another byte is sent and 
acknowledged (segments 10 and 11). This time the receiver has 1533 bytes available in 
its buffer, so a nonzero window is advertised. The sender immediately takes advantage of 
the window and sends 1024 bytes (segment 12). The acknowledgment of these 1024 
bytes (segment 13) advertises a window of 509 bytes. This appears to contradict what 
we've seen earlier with small window advertisements. 

What's happening here is that segment 11 advertised a window of 1533 bytes but the 
sender only transmitted 1024 bytes. If the acknowledgment in segment 13 advertised a 
window of 0, it would violate the TCP principle that a window cannot shrink by moving 
the right edge of the window to the left (Section 20.3). That's why the small window of 
509 bytes must be advertised. 

Next we see that the sender does not immediately transmit into this small window. This 
is silly window avoidance by the sender. Instead it waits for another persist timer to 
expire at time 20.151, when it sends 509 bytes. Even though it ends up sending this small 
segment with 509 bytes of data, it waits 5 seconds before doing so, to see if an ACK 
arrives that opens up the window more. These 509 bytes of data leave only 768 bytes of 
available space in the receive buffer, so the acknowledgment (segment 15) advertises a 
window of 0. 

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/tcp_pers.htm (9 of 11) [12/09/2001 14.47.29]



Chapter 22. TCP Persist Timer

The persist timer goes off again at time 25.151, and the sender transmits 1 byte. The 
receive buffer then has 1279 bytes of space, which is the window advertised in segment 
17. 

The sender has only 511 additional bytes of data to transmit, which it sends immediately 
upon receiving the window advertisement of 1279 (segment 18). This segment also 
contains the FIN flag. The receiver acknowledges the data and the FIN, advertising a 
window of 767. (See Exercise 22.2.) 

Since the sending application issues a close after performing its six 1024-byte writes, the 
sender's end of the connection goes from the ESTABLISHED state to the FIN_WAIT_1 
state, to the FIN_WAIT_2 state (Figure 18.12). It sits in this state until receiving a FIN 
from the other end. There is no timer in this state (recall our discussion at the end of 
Section 18.6), since the FIN that it sent in segment 18 was acknowledged in segment 19. 
This is why we see no further transmissions by the sender until it receives the FIN 
(segment 21). 

The receiving application continues reading 256 bytes of data every 2 seconds from the 
receive buffer. Why is the ACK sent at time 39.99 (segment 20)? The amount of room in 
the receive buffer has gone from its last advertised value of 767 (segment 19) to 2816 
when the application reads at time 39.99. This equals 2049 bytes of additional space in 
the receive buffer. Recalling the first rule at the start of this section, the receiver now 
sends a window update because the amount of room has increased by one-half the room 
in the receive buffer. This implies that the receiving TCP checks whether to send a 
window update every time the application reads data from TCP's receive buffer. 

The final application read occurs at time 51.99 and the application receives an end-of-file 
notification, since the buffer is empty. This causes the final two segments (21 and 22), 
which complete the termination of the connection. 

22.4 Summary

TCP's persist timer is set by one end of a connection when it has data to send, but has 
been stopped because the other end has advertised a zero-sized window. The sender 
keeps probing the closed window using a retransmission interval similar to what we saw 
in Chapter 21. This probing of the closed window continues indefinitely. 

When we ran an example to see the persist timer we also encountered TCP's avoidance of 
the silly window syndrome. This is to prevent TCP from advertising small windows or 
from sending small segments. In our example we saw avoidance of the silly window 
syndrome by both the sender and the receiver. 
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Exercises

22.1 In Figure 22.3 notice the times of all the acknowledgments (segments 5, 7, 9, 11, 13, 
15, and 17): 0.170, 5.170, 10.170, 15.170, 15.370, 20.170, and 25.170. Also notice the 
time differences between receiving the data and sending the ACK: 164.5, 18.5, 18.7, 
18.8, 198.3, 18.5, and 19.1 ms. Explain what's probably going on. 

22.2 In Figure 22.3 at time 25.174 a window of 767 is advertised, but 768 bytes are 
available in the receive buffer. Why the difference of 1 byte? 
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TCP Keepalive Timer
23.1 Introduction

Many newcomers to TCP/IP are surprised to learn that no data whatsoever flows across 
an idle TCP connection. That is, if neither process at the ends of a TCP connection is 
sending data to the other, nothing is exchanged between the two TCP modules. There is 
no polling, for example, as you might find with other networking protocols. This means 
we can start a client process that establishes a TCP connection with a server, and walk 
away for hours, days, weeks or months, and the connection remains up. Intermediate 
routers can crash and reboot, phone lines may go down and back up, but as long as 
neither host at the ends of the connection reboots, the connection remains established. 

This assumes that neither application-the client or server-has application-level timers to 
detect inactivity, causing either application to terminate. Recall at the end of Section 10.7 
that BGP sends an application probe to the other end every 30 seconds. This is an 
application timer that is independent of the TCP keepalive timer. 

There are times, however, when a server wants to know if the client's host has either 
crashed and is down, or crashed and rebooted. The keepalive timer, a feature of many 
implementations, provides this capability. 

Keepalives are not part of the TCP specification. The Host Requirements RFC provides three reasons 
not to use them: (1) they can cause perfectly good connections to be dropped during transient failures, 
(2) they consume unnecessary bandwidth, and (3) they cost money on an internet that charges by the 
packet. Nevertheless, many implementations provide the keep-alive timer. 

The keepalive timer is a controversial feature. Many feel that this polling of the other end 
has no place in TCP and should be done by the application, if desired. This is one of the 
religious issues, because of the fervor expressed by some on the topic. 

The keepalive option can cause an otherwise good connection between two processes to 
be terminated because of a temporary loss of connectivity in the network joining the two 
end systems. For example, if the keepalive probes are sent during the time that an 
intermediate router has crashed and is rebooting, TCP will think that the client's host has 
crashed, which is not what has happened. 

The keepalive feature is intended for server applications that might tie up resources on 
behalf of a client, and want to know if the client host crashes. Many versions of the 
Telnet server and Rlogin server enable the keepalive option by default. 

A common example showing the need for the keepalive feature nowadays is when 
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personal computer users use TCP/IP to login to a host using Telnet. If they just power off 
the computer at the end of the day, without logging off, they leave a half-open 
connection. In Figure 18.16 we showed how sending data across a half-open connection 
caused a reset to be returned, but that was from the client end, where the client was 
sending the data. If the client disappears, leaving the half-open connection on the server's 
end, and the server is waiting for some data from the client, the server will wait forever. 
The keepalive feature is intended to detect these half-open connections from the server 
side. 

23.2 Description

In this description we'll call the end that enables the keepalive option the server, and the 
other end the client. There is nothing to stop a client from setting this option, but 
normally it's set by servers. It can also be set by both ends of a connection, if it's 
important for each end to know if the other end disappears. (In Chapter 29 we'll see that 
when NFS uses TCP, both the client and server set this option. But in Chapter 26 with 
Rlogin and Telnet, only the servers set the option, not the clients.) 

If there is no activity on a given connection for 2 hours, the server sends a probe segment 
to the client. (We'll see what the probe segment looks like in the examples that follow.) 
The client host must be in one of four states. 

1.  The client host is still up and running and reachable from the server. The client's 
TCP responds normally and the server knows that the other end is still up. The 
server's TCP will reset the keepalive timer for 2 hours in the future. If there is 
application traffic across the connection before the next 2-hour timer expires, the 
timer is reset for 2 hours in the future, following the exchange of data. 

2.  The client's host has crashed and is either down or in the process of rebooting. In 
either case, its TCP is not responding. The server will not receive a response to its 
probe and it times out after 75 seconds. The server sends a total of 10 of these 
probes, 75 seconds apart, and if it doesn't receive a response, the server considers 
the client's host as down and terminates the connection. 

3.  The client's host has crashed and rebooted. Here the server will receive a response 
to its keepalive probe, but the response will be a reset, causing the server to 
terminate the connection. 

4.  The client's host is up and running, but unreachable from the server. This is the 
same as scenario 2, because TCP can't distinguish between the two. All it can tell 
is that no replies are received to its probes. 

The server does not have to worry about the client's host being shut down and then 
rebooted. (This refers to an operator shutdown, instead of the host crashing.) When the 
system is shut down by an operator, all application processes are terminated (i.e., the 
client process), which causes the client's TCP to send a FIN on the connection. Receiving 
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the FIN would cause the server's TCP to report an end-of-file to the server process, 
allowing the server to detect this scenario. 

In the first scenario the server application has no idea that the keepalive probes are taking 
place. Everything is handled at the TCP layer. It's transparent to the application until one 
of scenarios 2, 3, or 4 occurs. In these three scenarios an error is returned to the server 
application by its TCP. (Normally the server has issued a read from the network, waiting 
for data from the client. If the keepalive feature returns an error, it is returned to the 
server as the return value from the read.) In scenario 2 the error is something like 
"connection timed out," and in scenario 3 we expect "connection reset by peer." The 
fourth scenario may look like the connection timed out, or may cause another error to be 
returned, depending on whether an ICMP error related to the connection is received. We 
look at all four scenarios in the next section. 

A perpetual question by people discovering the keepalive option is whether the 2-hour idle time value 
can be changed. They normally want it much lower, on the order of minutes. As we show in Appendix 
E, the value can usually be changed, but in all the systems described in this appendix, the keepalive 
interval is a system-wide value, so changing it affects all users of the option. 

The Host Requirements RFC says that an implementation may provide the keepalive feature, but it must 
not be enabled unless the application specifically says so. Also, the keepalive interval must be 
configurable, but it must default to no less than 2 hours. 

23.3 Keepalive Examples

We'll now go through scenarios 2, 3, and 4 from the previous section, to see the packets 
exchanged using the keepalive option. 

Other End Crashes

Let's see what happens when the server host crashes and does not reboot. To simulate this 
we'll do the following steps: 

●     Establish a connection between a client (our sock program on the host bsdi) 
and the standard echo server on the host svr4. The client enables the keepalive 
option with the -K option. 

●     Verify that data can go across the connection. 
●     Watch the client's TCP send keepalive packets every 2 hours, and see them 

acknowledged by the server's TCP. 
●     Disconnect the Ethernet cable from the server, and leave it off until the example is 

complete. This makes the client think the server host has crashed. 
●     We expect the client to send 10 keepalive probes, 75 seconds apart, before 

declaring the connection dead. 
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Here is the interactive output on the client: 

bsdi % sock -K svr4 echo -K for keepalive option 

hello, world type this at beginning, to verify connection is up 

hello, world and see this echoed 

disconnect Ethernet cable after 4 hours 

read error: Connection 
timed out

this happens about 6 hours and 10 minutes after 
start 

Figure 23.1 shows the tcpdump output. (We have removed the connection 
establishment and the window advertisements.) 

1 0.0 
bsdi.1055 > bsdi.echo : P 1:14(13) 
ack 1 

2 0.006105 ( 0.0061) 
bsdi.echo > bsdi.1055 : P 1:14(13) 
ack 14 

3 0.093140 ( 0.0870) bsdi.1055 > svr4 .echo : . ack 14 

4
7199.972793 
(7199.8797) 

arp who-has svr4 tell bsdi 

5
7199.974878 ( 
0.0021) 

arp reply svr4 is-at 0:0:c0: 
c2:9b:26 

6
7199.975741 ( 
0.0009) 

bsdi.1055 > bsdi.echo : . ack 14 

7
7199.979843 ( 
0.0041) 

svr4 .echo > bsdi.1055 : . ack 14 

8
14400.134330 
(7200.1545) 

arp who-has svr4 tell bsdi 

9
14400.136452 ( 
0.0021) 

arp reply svr4 is-at 0:0:c0: 
c2:9b:26 

10
14400.137391 ( 
0.0009) 

bsdi.1055 > bsdi.echo : . ack 14 

11
14400.141408 ( 
0.0040) 

bsdi.echo > bsdi.1055 : . ack 14 

12
21600.318309 
(7200.1769) 

arp who-has svr4 tell bsdi 

13
21675.320373 ( 
75.0021) 

arp who-has svr4 tell bsdi 

14
21750.322407 ( 
75.0020) 

arp who-has svr4 tell bsdi 
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15
21825.324460 ( 
75.0021) 

arp who-has svr4 tell bsdi 

16
21900.436749 ( 
75.1123) 

arp who-has svr4 tell bsdi 

17
21975.438787 ( 
75.0020) 

arp who-has svr4 tell bsdi 

18
22050.440842 ( 
75.0021) 

arp who-has svr4 tell bsdi 

19
22125.432883 ( 
74.9920) 

arp who-has svr4 tell bsdi 

20
22200.434697 ( 
75.0018) 

arp who-has svr4 tell bsdi 

21
22275.436788 ( 
75.0021) 

arp who-has svr4 tell bsdi 

Figure 23.1 Keepalive packets that determine that a host has crashed.

Lines 1, 2, and 3 send the line "hello, world" from the client to the server and back. The 
first keepalive probe occurs 2 hours (7200 seconds) later on line 4. The first thing we see 
is an ARP request and an ARP reply, before the TCP segment on line 6 can be sent. The 
keepalive probe on line 6 elicits a response from the other end (line 7). The same 
sequence of packets is exchanged 2 hours later in lines 8-11. 

If we could see all the fields in the keepalive probes, lines 6 and 10, we would see that the 
sequence number field is one less than the next sequence number to be sent (i.e., 13 in 
this example, when it should be 14), but because there is no data in the segment, 
tcpdump does not print the sequence number field. (It only prints the sequence number 
for empty segments that contain the SYN, FIN, or RST flags.) It is the receipt of this 
incorrect sequence number that forces the server's TCP to respond with an ACK to the 
keepalive probe. The response tells the client the next sequence number that the server is 
expecting (14). 

Some older implementations based on 4.2BSD do not respond to these keepalive probes unless the 
segment contains data. Some systems can be configured to send one garbage byte of data in the probe to 
elicit the response. The garbage byte causes no harm, because it's not the expected byte (it's a byte that 
the receiver has previously received and acknowledged), so it's thrown away by the receiver. Other 
systems send the 4.3BSD-style segment (no data) for the first half of the probe period, and if no 
response is received, switch to the 4.2BSD-style segment for the last half. 

We then disconnect the cable and expect the next probe, 2 hours later, to fail. When this 
next probe takes place, notice that we never see the TCP segments on the cable, because 
the host is not responding to ARP requests. We can still see that the client sends 10 
probes, spaced 75 seconds apart, before giving up. We can see from our interactive script 
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that the error code returned to the client process by TCP gets translated into "Connection 
timed out," which is what happened. 

Other End Crashes and Reboots

In this example we'll see what happens when the client crashes and reboots. The initial 
scenario is the same as before, but after we verify that the connection is up, we 
disconnect the server from the Ethernet, reboot it, and then reconnect it to the Ethernet. 
We expect the next keepalive probe to generate a reset from the server, because the server 
now knows nothing about this connection. Here is the interactive session: 

bsdi % sock -K svr4 echo -K to enable keepalive option 

hi there type this to verify connection is up 

hi there and this is echoed back from other end 

here server is rebooted while disconnected from 
Ethernet 

read error: Connection 
reset by peer 

Figure 23.2 shows the tcpdump output. (We have removed the connection 
establishment and the window advertisements.) 

1 0.0 
bsdi.1057 > svr4.echo: P 1:10(9) ack 
1 

2 0.006406 ( 0.0064) 
svr4.echo > bsdi.1057: P 1:10(9) ack 
10 

3 0.176922 ( 0.1705) bsdi.1057 > svr4.echo: . ack 10 

4
7200.067151 
(7199.8902) 

arp who-has svr4 tell bsdi

5
7200.069751 ( 
0.0026) 

arp reply svr4 is-at 0:0:c0:c2:9b:26 

6
7200.070468 ( 
0.0007) 

bsdi.1057 > svr4.echo: . ack 10 

7
7200.075050 ( 
0.0046) 

svr4.echo > bsdi.1057: R 
1135563275:1135563275(0) 

Figure 23.2 Keepalive example when other host has crashed and rebooted.

We establish the connection and send 9 bytes of data from the client to the server (lines 1-
3). Two hours later the first keepalive probe is sent by the client, and the response is a 
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reset from the server. "The client application prints the error "Connection reset by peer," 
which makes sense. 

Other End Is Unreachable

In this example the client has not crashed, but is not reachable during the 10-minute 
period when the keepalive probes are sent. An intermediate router may have crashed, a 
phone line may be temporarily out of order, or something similar. 

To simulate this example we'll establish a TCP connection from our host slip through our 
dialup SLIP link to the host vangogh.cs.berkeley.edu, and then take the link 
down. First, here is the interactive output: 

slip % sock -K vangogh.cs.berkeley.edu echo 

testing we type this line 

testing and see it echoed 

sometime in here the dialup SLIP link is taken 
down 

read error: No route to 
host

Figure 23.3 shows the tcpdump output that was collected on the router bsdi. (The 
connection establishment and window advertisements have been removed.) 

1 0.0 
slip.1056 > vangogh.echo: P 1:9(8) 
ack 1 

2 0.277669 0.424423 
vangogh.echo > slip.1056: P 1:9(8) 
ack 9 

3 0.2777) 0.1468) 
slip. 1056 > vangogh. echo: . ack 
9 

4
7200.818081 
(7200.3937) 

slip. 1056 > vangogh. echo: . ack 
9 

5
7201.243046 ( 
0.4250) 

vangogh, echo > slip. 1056: . ack 
9 

6 
14400.688106 
(7199.4451) 

slip.1056 > vangogh.echo: . ack 9 

7
14400.689261 ( 
0.0012) 

sun > slip: icmp; net vangogh 
unreachable 

8 
14475.684360 ( 
74.9951) 

slip. 1056 > vangogh. echo: . ack 
9 
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9
14475.685504 ( 
0.0011) 

sun > slip: icmp: net vangogh 
unreachable 

14 lines deleted 

24
15075.759603 
(75.1008) 

slip.1056 > vangogh.echo: R 9:9(0) 
ack 9 

25
15075.760761 ( 
0.0012) 

sun > slip: icmp: net vangogh 
unreachable 

Figure 23.3 Keepalive example when other end is unreachable.

We start the example the same as before: lines 1-3 verify that the connection is up. The 
first keepalive probe 2 hours later is fine (lines 4 and 5), but before the next one occurs in 
another 2 hours, we bring down the SLIP connection between the routers sun and netb. 
(Refer to the inside front cover for the topology.) 

The keepalive probe in line 6 elicits an ICMP network unreachable from the router sun. 
As we described in Section 21.10, this is just a soft error to the receiving TCP on the host 
slip. It records that the ICMP error was received, but the receipt of the error does not take 
down the connection. Nine more keepalive probes are sent, 75 seconds apart, before the 
sending host gives up. The error returned to the application generates a different message 
this time: "No route to host." We saw in Figure 6.12 that this corresponds to the ICMP 
network unreachable error. 

23.4 Summary

As we said earlier, the keepalive feature is controversial. Protocol experts continue to 
debate whether it belongs in the transport layer, or should be handled entirely by the 
application. 

It operates by sending a probe packet across a connection after the connection has been 
idle for 2 hours. Four different scenarios can occur: the other end is still there, the other 
end has crashed, the other end has crashed and rebooted, or the other end is currently 
unreachable. We saw each of these scenarios with an example, and saw different errors 
returned for the last three conditions. 

In the first two examples that we looked at, had this feature not been provided, and 
without any application-level timer, our client would never have known that the other end 
had crashed, or crashed and rebooted. In the final example, however, nothing was wrong 
with the other end, the connection between them was temporarily down. We must be 
aware of this limitation when using keepalives. 

Exercises
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23.1 List some advantages of the keepalive feature. 

23.2 List some disadvantages of the keepalive feature. 
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TCP Futures and Performance
24.1 Introduction

TCP has operated for many years over data links ranging from 1200 bits/sec dialup SLIP 
links to Ethernets. Ethernets were the predominant form of data link for TCP/IP in the 
1980s and early 1990s. Although TCP operates correctly at speeds higher than an 
Ethernet (T3 phone lines, FDDI, and gigabit networks, for example), certain TCP limits 
start to be encountered at these higher speeds. 

This chapter looks at some proposed modifications to TCP that allow it to obtain the 
maximum throughput at these higher speeds. We first look at the path MTU discovery 
mechanism, which we've seen earlier in the text, focusing this time on how it operates 
with TCP. This often lets TCP use an MTU greater than 536 for nonlocal connections, 
increasing its throughput. 

We then look at long fat pipes, networks that have a large bandwidth-delay product, and 
the TCP limits that are encountered on these networks. Two new TCP options are 
described that deal with long fat pipes: a window scale option (to increase TCP's 
maximum window above 65535 bytes) and a timestamp option. This latter option lets 
TCP perform more accurate RTT measurement for data segments, and also provides 
protection against wrapped sequence numbers, which can occur at high speeds. These 
two options are defined in RFC 1323 [Jacobson, Braden, and Borman 1992]. 

We also look at the proposed T/TCP, modifications to TCP for transactions. The 
transaction mode of communication features a client request responded to by a server 
reply. It is a common paradigm for client-server computing. The goal of T/TCP is to 
reduce the number of segments exchanged by the two ends, avoiding the three-way 
handshake and the four segments to close the connection, so that the client receives the 
server's reply in one RTT plus the time required to process the request. 

What is impressive about these new options-path MTU discovery, the window scale 
option, the tirnestamp option, and T/TCP - is that they are backward compatible with 
existing TCP implementations. Newer systems that include these options can still 
interoperate with all older systems. With the exception of an additional field in an ICMP 
message that can be used by path MTU discovery, these newer options need only be 
implemented on the end systems that want to take advantage of them. 

We finish the chapter by looking at recently published figures dealing with TCP 
performance. 

24.2 Path MTU Discovery
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In Section 2.9 we described the concept of the path MTU. It is the minimum MTU on any 
network that is currently in the path between two hosts. Path MTU discovery entails 
setting the "don't fragment" (DF) bit in the IP header to discover if any router on the 
current path needs to fragment IP datagrams that we send. In Section 11.6 we showed the 
ICMP unreachable error returned by a router that is asked to forward an IP datagram with 
the DF bit set when the MTU is less than the datagram size. In Section 11.7 we showed a 
version of the traceroute program that used this mechanism to determine the path 
MTU to a destination. In Section 11.8 we saw how UDP handled path MTU discovery. 
In this section we'll examine how this mechanism is used by TCP, as specified by RFC 
1191 [Mogul and Deering 1990]. 

Of the various systems used in this text (see the Preface) only Solaris 2.x supports path MTU discovery. 

TCP's path MTU discovery operates as follows. When a connection is established, TCP 
uses the minimum of the MTU of the outgoing interface, or the MSS announced by the 
other end, as the starting segment size. Path MTU discovery does not allow TCP to 
exceed the MSS announced by the other end. If the other end does not specify an MSS, it 
defaults to 536. It is also possible for an implementation to save path MTU information 
on a per-route basis, as we mentioned in Section 21.9. 

Once the initial segment size is chosen, all IP datagrams sent by TCP on that connection 
have the DF bit set. If an intermediate router needs to fragment a datagram that has the 
DF bit set, it discards the datagram and generates the ICMP "can't fragment" error we 
described in Section 11.6. 

If this ICMP error is received, TCP decreases the segment size and retransmits. If the 
router generated the newer form of this ICMP error, the segment size can be set to the 
next-hop MTU minus the sizes of the IP and TCP headers. If the older ICMP error is 
returned, the probable value of the next smallest MTU (Figure 2.5) must be tried. When a 
retransmission caused by this ICMP error occurs, the congestion window should not 
change, but slow start should be initiated. 

Since routes can change dynamically, when some time has passed since the last decrease 
of the path MTU, a larger value (up to the minimum of the MSS announced by the other 
end, or the outgoing interface MTU) can be tried. RFC 1191 recommends this time 
interval be about 10 minutes. (We saw in Section 11.8 that Solaris 2.2 uses a 30-sec-ond 
timer for this.) 

Given the normal default MSS of 536 for nonlocal destinations, path MTU discovery 
avoids fragmentation across intermediate links with an MTU of less than 576 (which is 
rare). It can also avoid fragmentation on local destinations when an intermediate link 
(e.g., an Ethernet) has a smaller MTU than the end-point networks (e.g., a token ring). 
But for path MTU discovery to be more useful, and take advantage of wide area 
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networks with MTUs greater than 576, implementations must stop using a default MSS 
of 536 bytes for nonlocal destinations. A better choice for the MSS is the MTU of the 
outgoing interface (minus the size of the IP and TCP headers, of course). (In Appendix E 
we'll see that most implementations allow the system administrator to change this default 
MSS value.) 

An Example

We can see how path MTU discovery operates when an intermediate router has an MTU 
less than either of the end point's interface MTUs. Figure 24.1 shows the topology for 
this example. 

Figure 24.1 Topology for path MTU example.

We'll establish a connection from the host solaris (which supports the path MTU 
discovery mechanism) to the host slip. This setup is identical to the one used for our 
UDP path MTU discovery example (Figure 11.13) but here we have set the MTU of the 
interface on slip to 552, instead of its normal 296. This causes slip to announce an 
MSS of 512. But leaving the MTU of the SLIP link on bsdi at 296 will cause TCP 
segments greater than 256 to be fragmented, and we can see how the path MTU 
discovery mechanism on solaris handles this. 

We'll run our sock program on solaris and perform one 512-byte write to the discard 
server on slip: 

solaris % sock -i -nl -w512 slip discard 

Figure 24.2 shows the tcpdump output, collected on the SLIP interface on the host sun. 

1 0.0 
solaris.33016 > slip.discard: S 
1171660288:1171660288(0) 
win 8760 <mss 1460> (DF) 

file:///D|/Documents%20and%20Settings/bigini/Docum...i/homenet2run/tcpip/tcp-ip-illustrated/tcp_fut.htm (3 of 20) [12/09/2001 14.47.33]



Chapter 24. TCP Futures and Performance

2
0.101597 
(0.1016) 

slip.discard > solaris.33016: S 
137984001:137984001(0) 
ack 1171660289 win 4096 <mss 512> 

3
0.630609 
(0.5290) 

solaris.33016 > slip.discard: P 1:513(512) 
ack 1 win 9216 (DF) 

4
0.634433 
(0.0038) 

bsdi > solaris: icmp: 
slip unreachable - need to frag, mtu = 296 
(DF) 

5
0.660331 
(0.0259) 

solaris.33016 > slip.discard: F 513:513(0) 
ack 1 win 9216 (DF) 

6
0.752664 
(0.0923) 

slip.discard > solaris.33016: . ack 1 win 
4096 

7
1.110342 
(0.3577) 

solaris.33016 > slip.discard: P 1:257(256) 
ack 1 win 9216 (DF) 

8
1.439330 
(0.3290) 

slip.discard > solaris.33016: . ack 257 
win 3840 

9
1.770154 
(0.3308) 

solaris.33016 > slip.discard: FP 
257:513(256) 
ack 1 win 9216 (DF) 

10
2.095987 
(0.3258) 

slip.discard > solaris.33016: . ack 514 
win 3840 

11
2.138193 
(0.0422) 

slip.discard > solaris.33016: F 1:1(0) ack 
514 win 4096 

12
2.310103 
(0.1719) 

solaris.33016 > slip.discard: . ack 2 win 
9216 (DF) 

Figure 24.2 tcpdump output for path MTU discovery.

The MSS values in lines 1 and 2 are what we expect. We then see solaris send a 512-
byte segment (line 3) containing the 512 bytes of data and the ACK of the SYN. (We saw 
this combination of the ACK of a SYN along with the first segment of data in Exercise 
18.9.) This generates the ICMP error in line 4 and we see that the router bsdi generates 
the newer ICMP error containing the MTU of the outgoing interface. 

It appears that before this error makes it back to solaris, the FIN is sent (line 5). Since 
slip never received the 512 bytes of data discarded by the router bsdi, it is not 
expecting this sequence number (513), so it responds in line 6 with the expected 
sequence number (1). 

At this time the ICMP error has made it back to solaris and it retransmits the 512 
bytes of data in two 256-byte segments (lines 7 and 9). Both are sent with the DF bit set, 
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since there could be another router beyond bsdi with a smaller MTU. 

A longer transfer was run (taking about 15 minutes) and after moving from the 512-byte 
initial segment to 256-byte segments, solaris never tried the higher segment size 
again. 

Big Packets or Small Packets?

Conventional wisdom says that bigger packets are better [Mogul 1993, Sec. 15.2.8] 
because sending fewer big packets "costs less" than sending more smaller packets. (This 
assumes the packets are not large enough to cause fragmentation, since that introduces 
another set of problems.) The reduced cost is that associated with the network (packet 
header overhead), routers (routing decisions), and hosts (protocol processing and device 
interrupts). Not everyone agrees with this [Bellovin 1993]. 

Consider the following example. We send 8192 bytes through four routers, each 
connected with a Tl telephone line (1,544,000 bits/sec). First we use two 4096-byte 
packets, as shown in Figure 24.3. 

Figure 24.3 Sending two 4096-byte packets through four routers.

The basic problem is that routers are store-and-forward devices. They normally receive 
the entire input packet, validate the IP header including the IP checksum, make their 
routing decision, and start sending the output packet. In this figure we're assuming the 
ideal case where it takes no time for these operations to occur at the router (the horizontal 
dashed lines). Nevertheless, it takes four units of time to send all 8192 bytes from Rl to 
R4. The time for each hop is 

(4096 + 40 bytes) x 8 bits/bytes / 1'544'000 bits/sec = 21.4 ms per hop

(4096 + 40 bytes) x 8 bits/bytes

= 21.4 ms per hop

1,544,000 bits/sec
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(We account for the 40 bytes of IP and TCP header.) The total time to send the data is the 
number of packets plus the number of hops, minus one, which we can see visually in this 
example is four units of time, or 85.6 ms. Each link is idle for two units of time, or 42.8 
ms. Figure 24.4 shows what happens if we send sixteen 512-byte packets. 

Figure 24.4 Sending sixteen 512-byte packets through four routers.

It takes more units of time, but the units are shorter since a smaller packet is being sent. 

(512 + 40 bytes) x 8 bits/byte / 1,544,000 bits/sec = 2.9 ms per hop

The total time is now (18 x 2.9) = 52.2 ms. Each link is again idle for two units of time, 
which is now 5.8 ms. 

In this example we have ignored the time required for the ACKs to be returned, the 
connection establishment and termination times, and the possible sharing of the links 
with other traffic. Nevertheless, measurements in [Bellovin 1993] indicate that bigger is 
not always better. More research is required in this area on various networks. 

24.3 Long Fat Pipes

In Section 20.7 we showed the capacity of a connection as 

capacity (bits) = bandwidth (bits/sec) x round-trip time (sec)

and called this the bandwidth-delay product. This is also called the size of the pipe 
between the end points. 

Existing limits in TCP are being encountered as this product increases to larger and 
larger values. Figure 24.5 shows some values for various types of networks. 
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Network
Bandwidth
(bits/sec)

Round-
trip

time (ms)

Bandwidth-
delay

product 
(bytes)

Ethernet LAN
T1 telephone line, transcontinental
T1 telephone line, satellite
T3 telephone line, transcontinental
gigabit, transcontinental 

10,000,000
1,544,000
1,544,000
45,000,000

1,000,000,000

3
60
500
60
60

3,750
11,580
95,500
337,500

7,500,000

Figure 24.5 Bandwidth-delay product for various networks.

We show the bandwidth-delay product in bytes, because that's how we typically measure 
the buffer sizes and window sizes required on each end. 

Networks with large bandwidth-delay products are called long fat networks (LFNs, 
pronounced "elefan(t)s"), and a TCP connection operating on an LFN is called a long fat 
pipe. Going back to Figure 20.11 and Figure 20.12, the pipe can be stretched in the 
horizontal direction (a longer RTT), or stretched in the vertical direction (a higher 
bandwidth), or both. Numerous problems are encountered with long fat pipes. 

1.  The TCP window size is a 16-bit field in the TCP header, limiting the window to 
65535 bytes. As we can see from the final column in Figure 24.5, existing 
networks already require a larger window than this, for maximum throughput. 

The window scale option described in Section 24.4 solves this problem. 

2.  Packet loss in an LFN can reduce throughput drastically. If only a single segment 
is lost, the fast retransmit and fast recovery algorithm that we described in 

Section 21.7 is required to keep the pipe from draining. But even with this 
algorithm, the loss of more than one packet within a window typically causes the 
pipeline to drain. (If the pipe drains, slow start gets things going again, but that 
takes multiple round-trip times to get the pipe filled again.) 

Selective acknowledgments (SACKs) were proposed in RFC 1072 [Jacobson and 
Braden 1988] to handle multiple dropped packets within a window. But this 
feature was omitted from RFC 1323, because the authors felt several technical 
problems needed to be worked out before including them in TCP. 

3.  We saw in Section 21.4 that many TCP implementations only measure one round-
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trip time per window. They do not measure the RTT of every segment. Better 
RTT measurements are required for operating on an LFN. 

The timestamp option, which we describe in Section 24.5, allows more segments 
to be timed, including retransmissions. 

4.  TCP identifies each byte of data with a 32-bit unsigned sequence number. What's 
to prevent a segment that gets delayed in the network from reappearing at a later 
time, after the connection that it was associated with has been terminated, and 
after a new connection has been established between the same two hosts and port 
numbers? First recall that the TTL field in the IP header puts an upper bound on 
the lifetime of any IP datagram-255 hops or 255 seconds, whichever comes first. 
In Section 18.6 we defined the maximum segment lifetime (MSL) as an 
implementation parameter used to prevent this scenario from happening. The 
recommended value of the MSL is 2 minutes (giving a 2MSL of 240 seconds), but 
we saw in Section 18.6 that many implementations use an MSL value of 30 
seconds. 

A different problem with TCP's sequence numbers appears with LFNs. Since the 
sequence number space is finite, the same sequence number is reused after 
4,294,967,296 bytes have been transmitted. What if a segment containing the byte 
with a sequence number N gets delayed in the network and then reappears later, 
while the connection is still up? This is only a problem if the same sequence 
number N is reused within the MSL period, that is, if the network is so fast that 
sequence number wrap occurs in less than MSL. On an Ethernet it takes almost 60 
minutes to send this much data, so there is no chance of this happening, but the 
time required for the wrap to occur drops as the bandwidth increases: a T3 
telephone line (45 Mbits/sec) wraps in 12 minutes, FDDI (100 Mbits/sec) in 5 
minutes, and a gigabit network (1000 Mbits/sec) in 34 seconds. The problem here 
is not the bandwidth-delay product, but the bandwidth itself. 

In Section 24.6 we describe a way to handle this: the PAWS algorithm (protection 
against wrapped sequence numbers), which uses the TCP timestamp option. 

4.4BSD contains all the options and algorithms that we describe in the following sections: the 
window scale option, the timestamp option, and the protection against wrapped sequence 
numbers. Numerous vendors are also starting to support these options. 

Gigabit Networks

When networks reach gigabit speeds, things change. [Partridge 1994] covers gigabit 
networks in detail. Here we'll look at the differences between latency and bandwidth 
[Kleinrock 1992]. 
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Consider sending a one million byte file across the United States, assuming a 30-ms 
latency. Figure 24.6 shows two scenarios, the top illustration uses a Tl telephone line 
(1,544,000 bits/sec) and the bottom uses a 1 gigabit/sec network. Time is shown along 
the x-axis, with the sender on the left and the receiver on the right, and capacity on the y-
axis. The shaded area in both pictures is the one million bytes to send. 

Figure 24.6 Sending a 1-Mbyte file across networks with a 30-ms latency.

Figure 24.6 shows the status of both networks after 30 ms. With both networks the first 
bit of data reaches the other end after 30 ms (the latency), but with the T1 network the 
capacity of the pipe is only 5,790 bytes, so 994,210 bytes are still at the sender, waiting 
to be sent. The capacity of the gigabit network, however, is 3,750,000 bytes, so the entire 
file uses just over 25% of the pipe. The last bit of the file reaches the receiver 8 ms after 
the first bit. 

The total time to transfer the file across the T1 network is 5.211 seconds. If we throw 
more bandwidth at the problem, a T3 network (45,000,000 bits/sec), the total time 
decreases to 0.208 seconds. Increasing the bandwidth by a factor of 29 reduces the total 
time by a factor of 25. 

With the gigabit network the total time to transfer the file is 0.038 seconds: the 30-ms 
latency plus the 8 ms for the actual file transfer. Assuming we could double the 
bandwidth to 2 gigabits/sec, we only reduce the total time to 0.034 seconds: the same 30-
ms latency plus 4 ms to transfer the file. Doubling the bandwidth now decreases the total 
time by only 10%. At gigabit speeds we are latency limited, not bandwidth limited. 

The latency is caused by the speed of light and can't be decreased (unless Einstein was 
wrong). The effect of this fixed latency becomes worse when we consider the packets 
required to establish and terminate a connection. Gigabit networks will cause several 
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networking issues to be looked at differently. 

24.4 Window Scale Option

The window scale option increases the definition of the TCP window from 16 to 32 bits. 
Instead of changing the TCP header to accommodate the larger window, the header still 
holds a 16-bit value, and an option is defined that applies a scaling operation to the 16-bit 
value. TCP then maintains the "real" window size internally as a 32-bit value. 

We saw an example of this option in Figure 18.20. The 1-byte shift count is between 0 
(no scaling performed) and 14. This maximum value of 14 is a window of 1,073,725,440 
bytes (65535 x 214). 

This option can only appear in a SYN segment; therefore the scale factor is fixed in each 
direction when the connection is established. To enable window scaling, both ends must 
send the option in their SYN segments. The end doing the active open sends the option in 
its SYN, but the end doing the passive open can send the option only if the received SYN 
specifies the option. The scale factor can be different in each direction. 

If the end doing the active open sends a nonzero scale factor, but doesn't receive a 
window scale option from the other end, it sets its send and receive shift count to 0. This 
lets newer systems interoperate with older systems that don't understand the new option. 

The Host Requirements RFC requires TCP to accept an option in any segment. (The only previously 
defined option, the maximum segment size, only appeared in SYN segments.) It further requires TCP to 
ignore any option it doesn't understand. This is made easy since all the new options have a length field 
(Figure 18.20). 

Assume we are using the window scale option, with a shift count of S for sending and a 
shift count of R for receiving. Then every 16-bit advertised window that we receive from 
the other end is left shifted by R bits to obtain the real advertised window size. Every 
time we send a window advertisement to the other end, we take our real 32-bit window 
size and right shift it S bits, placing the resulting 16-bit value in the TCP header. 

The shift count is automatically chosen by TCP, based on the size of the receive buffer. 
The size of this buffer is set by the system, but the capability is normally provided for the 
application to change it. (We discussed this buffer in Section 20.4.) 

An Example

If we initiate a connection using our sock program from the 4.4BSD host 
vangogh.cs.berkeley.edu, we can see its TCP calculate the window scale factor. 
The following interactive output shows two consecutive runs of the program, first 
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specifying a receive buffer of 128000 bytes, and then a receive buffer of 220000 bytes: 

vangogh % sock -v -R128000 bsdi.tuc.noao.edu echo 

SO_RCVBUF = 128000

connected on 128.32.130.2.4107 to 140.252.13.35.7 

TCP_MAXSEG = 512

hello, world we type this line 

hello, world and it's echoed here 

^D type end-of-file character to terminate 

vangogh % sock -v -R220000 bsdi.tuc.noao.edu echo 

SO_RCVBUF = 220000

connected on 128.32.130.2.4108 to 140.252.13.35.7 

TCP_MAXSEG = 512

bye, bye type this line

bye, bye and it's echoed here 

^D type end-of-file character to terminate 

Figure 24.7 shows the tcpdump output for these two connections. (We have deleted the 
final 8 lines for the second connection, because nothing new is shown.) 

1 0.0 

vangogh.4107 > bsdi.echo: S 
462402561:462402561(0) 
win 65535
<mss 512,nop,wscale l,nop,nop,timestamp 
995351 0> 

2
0.003078 ( 
0.0031) 

bsdi.echo > vangogh.4107: S 
177032705:177032705(0)
ack 462402562 win 4096 <mss 512> 

3
0.300255 ( 
0.2972) 

vangogh.4107 > bsdi.echo: . ack 1 win 
65535 

4
16.920087 
(16.6198) 

vangogh.4107 > bsdi.echo: P 1:14(13) ack 
1 win 65535 

5
16.923063 ( 
0.0030) 

bsdi.echo > vangogh.4107: P 1:14(13) ack 
14 win 4096 

6
17.220114 ( 
0.2971) 

vangogh.4107 > bsdi.echo: . ack 14 win 
65535 

7
26.640335 ( 
9.4202) 

vangogh.4107 > bsdi.echo: F 14:14(0) ack 
14 win 65535 
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8
26.642688 ( 
0.0024) 

bsdi.echo > vangogh.4107: . ack 15 win 
4096 

9
26.643964 ( 
0.0013) 

bsdi.echo > vangogh.4107: F 14:14(0) ack 
15 win 4096 

10
26.880274 ( 
0.2363) 

vangogh.4107 > bsdi.echo: . ack 15 win 
65535 

11
44.400239 
(17.5200) 

vangogh.4108 > bsdi.echo: S 
468226561:468226561(0) 
win 65535
<mss 512,nop,wscale 2,nop,nop,timestamp 
995440 0> 

12
44.403358 ( 
0.0031) 

bsdi.echo > vangogh.4108: S 
182792705:182792705(0)
ack 468226562 win 4096 <mss 512> 

13
44.700027 ( 
0.2967) 

vangogh.4108 > bsdi.echo: . ack 1 win 
65535 

remainder of this connection deleted 

Figure 24.7 Example of window scale option.

In line 1 vangogh advertises a window of 65535 and specifies the window scale option 
with a shift count of 1. This advertised window is the largest possible value that is less 
than the receive buffer size (128000), because the window field in a SYN segment is 
never scaled. 

The scale factor of 1 means vangogh would like to send window advertisements up to 
131070 (65535 x 21). This will accommodate our receive buffer size (128000). Since 
bsdi does not send the window scale option in its SYN (line 2), the option is not used. 

Notice that vangogh continues to use the largest window possible (65535) for the 
remainder of the connection. 

For the second connection vangogh requests a shift count of 2, meaning it would like to 
send window advertisements up to 262140 (65535 x 22), which is greater than our 
receive buffer size (220000). 

24.5 Timestamp Option

The timestamp option lets the sender place a timestamp value in every segment. The 
receiver reflects this value in the acknowledgment, allowing the sender to calculate an 
RTT for each received ACK. (We must say "each received ACK" and not "each 
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segment" since TCP normally acknowledges multiple segments per ACK.) We said that 
many current implementations only measure one RTT per window, which is OK for 
windows containing eight segments. Larger window sizes, however, require better RTT 
calculations. 

Section 3.1 of RFC 1323 gives the signal processing reasons for requiring better RTT estimates for 
bigger windows. Basically the RTT is measured by sampling a data signal (the data segments) at a lower 
frequency (once per window). This introduces aliasing into the estimated RTT. When there are eight 
segments per window, the sample rate is one-eighth the data rate, which is tolerable, but with 100 
segments per window, the sample rate is 1/IOOth the data rate. This can cause the estimated RTT to be 
inaccurate, resulting in unnecessary retransmissions. If a segment is lost, it only gets worse. 

Figure 18.20 showed the format of the timestamp option. The sender places a 32-bit 
value in the first field, and the receiver echoes this back in the reply field. TCP headers 
containing this option will increase from the normal 20 bytes to 32 bytes. 

The timestamp is a monotonically increasing value. Since the receiver echoes what it 
receives, the receiver doesn't care what the timestamp units are. This option does not 
require any form of clock synchronization between the two hosts. RFC 1323 
recommends that the timestamp value increment by one between 1 ms and 1 second. 

4.4BSD increments the timestamp clock once every 500 ms and this timestamp clock is reset to 0 on a 
reboot. 

In Figure 24.7, if we look at the timestamp in segment 1 and the timestamp in segment II, the difference 

(89 units) corresponds to 500 ms per unit for the time difference of 44.4 seconds. 

The specification of this option during connection establishment is handled the same way 
as the window scale option in the previous section. The end doing the active open 
specifies the option in its SYN. Only if it receives the option in the SYN from the other 
end can the option be sent in future segments. 

We've seen that a receiving TCP does not have to acknowledge every data segment that it 
receives. Many implementations send an ACK for every other data segment. If the 
receiver sends an ACK that acknowledges two received data segments, which received 
timestamp is sent back in the timestamp echo reply field? 

To minimize the amount of state maintained by either end, only a single timestamp value 
is kept per connection. The algorithm to choose when to update this value is simple. 

1.  TCP keeps track of the timestamp value to send in the next ACK (a variable 
named tsrecent) and the acknowledgment sequence number from the last ACK 
that was sent (a variable named lastack). This sequence number is the next 
sequence number the receiver is expecting. 
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2.  When a segment arrives, if the segment contains the byte numbered lastack, then 
the timestamp value from the segment is saved in tsrecent. 

3.  Whenever a timestamp option is sent, tsrecent is sent as the timestamp echo reply 
field and the sequence number field is saved in lastack. 

This algorithm handles the following two cases: 

1.  If ACKs are delayed by the receiver, the timestamp value returned as the echo 
value will correspond to the earliest segment being acknowledged. 

For example, if two segments containing bytes 1-1024 and 1025-2048 arrive, both 
with a timestamp option, and the receiver acknowledges them both with an ACK 
2049, the timestamp in the ACK will be the value from the first segment 
containing bytes 1-1024. This is correct because the sender must calculate its 
retransmission timeout taking the delayed ACKs into consideration. 

2.  If a received segment is in-window but out-of-sequence, implying that a previous 
segment has been lost, when that missing segment is received, its time-stamp will 
be echoed, not the timestamp from the out-of-sequence segment. 

For example, assume three segments, each containing 1024 bytes, are received in 
the following order: segment 1 with bytes 1-1024, segment 3 with bytes 2049-
3072, then segment 2 with bytes 1025-2048. The ACKs sent back will be ACK 
1025 with the timestamp from segment 1 (a normal ACK for data that was 
expected), ACK 1025 with the timestamp from segment 1 (a duplicate ACK in 
response to the in-window but the out-of-sequence segment), then ACK 3073 with 
the timestamp from segment 2 (not the later timestamp from segment 3). This has 
the effect of overestimating the RTT when segments are lost, which is better than 
underestimating it. Also, if the final ACK contained the timestamp from segment 
3, it might include the time required for the duplicate ACK to be returned and 
segment 2 to be retransmitted, or it might include the time for the sender's 
retransmission timeout for segment 2 to expire. In either case, echoing the 
timestamp from segment 3 could bias the sender's RTT calculations. 

Although the timestamp option allows for better RTT calculations, it also provides a way 
for the receiver to avoid receiving old segments and considering them part of the existing 
data segment. The next section describes this. 

24.6 PAWS: Protection Against Wrapped Sequence 
Numbers

Consider a TCP connection using the window scale option with the largest possible 
window, 1 gigabyte (230). (The largest window is just smaller than this, 65535 x 214, not 
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216 x 214, but that doesn't affect this discussion.) Also assume the timestamp option is 
being used and that the timestamp value assigned by the sender increments by one for 
each window that is sent. (This is conservative. Normally the timestamp increments 
faster than this.) Figure 24.8 shows the possible data flow between the two hosts, when 
transferring 6 gigabytes. To avoid lots of IO-digit numbers, we use the notation G to 
mean a multiple of 1,073,741,824. We also use the notation from tcpdump that J:K 
means byte 1 through and including byte K - 1. 

Time Bytes sent
Send 

sequence#
Send

timestamp
Receive

A 0G:1G 0G:1G 1 OK 

B 1G:2G 1G:2G 2 OK but one segment lost and retransmitted 

C 2G:3G 2G:3G 3 OK 

D 3G:4G 3G:4G 4 OK 

E 4G:5G 0G:1G 5 OK 

F 5G:6G 1G:2G 6 OK but retransmitted segment reappears 

Figure 24.8 Transferring 6 gigabytes in six 1-gigabyte windows.

The 32-bit sequence number wraps between times D and E. We assume that one segment 
gets lost at time B and is retransmitted. We also assume that this lost segment reappears 
at time F. 

This assumes that the time difference between the segment getting lost and reappearing is 
less than the MSL; otherwise the segment would have been discarded by some router 
when its TTL expired. As we mentioned earlier, it is only with high-speed connections 
that this problem appears, where old segments can reappear and contain sequence 
numbers currently being transmitted. 

We can also see from Figure 24.8 that using the timestamp prevents this problem. The 
receiver considers the timestamp as a 32-bit extension of the sequence number. Since the 
lost segment that reappears at time F has a timestamp of 2, which is less than the most 
recent valid timestamp (5 or 6), it is discarded by the PAWS algorithm. 

The PAWS algorithm does not require any form of time synchronization between the 
sender and receiver. All the receiver needs is for the timestamp values to be mono-
tonically increasing, and to increase by at least one per window. 

24.7 T/TCP: A TCP Extension for Transactions
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TCP provides a virtual-circuit transport service. There are three distinct phases in the life 
of a connection: establishment, data transfer, and termination. Applications such as 
remote login and file transfer are well suited to a virtual-circuit service. 

Other applications, however, are designed to use a transaction service. A transaction is a 
client request followed by a server response with the following characteristics: 

1.  The overhead of connection establishment and connection termination should be 
avoided. When possible, send one request packet and receive one reply packet. 

2.  The latency should be reduced to RTT plus SPT, where RTT is the round-trip 
time and SPT is the server processing time to handle the request. 

3.  The server should detect duplicate requests and not replay the transaction when a 
duplicate request arrives. (Avoiding the replay means the server does not process 
the request again. The server sends back the saved reply corresponding to that 
request.) 

One application that we've already seen that uses this type of service is the Domain Name 
System (Chapter 14), although the DNS is not concerned with the server replaying 
duplicate requests. 

Today the choice an application designer has is TCP or UDP. TCP provides too many 
features for transactions, and UDP doesn't provide enough. Usually the application is 
built using UDP (to avoid the overhead of TCP connections) but many of the desirable 
features (dynamic timeout and retransmission, congestion avoidance, etc.) are placed into 
the application, where they're reinvented over and over again. 

A better solution is to provide a transport layer that provides efficient handling of 
transactions. The transaction protocol we describe in this section is called T/TCP. Our 
description is from its definition, RFC 1379 [Braden 1992b] and [Braden 1992c]. 

Most TCPs require 7 segments to open and close a connection (see Figure 18.13). Three 
more segments are then added: one with the request, another with the reply and an ACK 
of the request, and a third with the ACK of the reply. If additional control bits are added 
onto the segments-that is, the first segment contains a SYN, the client request, and a FIN-
the client still sees a minimal overhead of twice the RTT plus SPT. (Sending a SYN 
along with data and a FIN is legal; whether current TCPs handle it correctly is another 
question.) 

Another problem with TCP is the TIME_WAIT state and its required 2MSL wait. As 
shown in Exercise 18.14, this limits the transaction rate between two hosts to about 268 
per second. 

The two modifications required for TCP to handle transactions are to avoid the three-way 
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handshake and shorten the TIME_WAIT state. T/TCP avoids the three-way handshake 
by using an accelerated open: 

1.  It assigns a 32-bit connection count (CC) value to connections it opens, either 
actively or passively. A host's CC value is assigned from a global counter that gets 
incremented by 1 each time it's used. 

2.  Every segment between two hosts using T/TCP includes a new TCP option named 
CC. This option has a length of 6 bytes and contains the sender's 32-bit CC value 
for the connection. 

3.  A host maintains a per-host cache of the last CC value received in an acceptable 
SYN segment from that host. 

4.  When a CC option is received on an initial SYN, the receiver compares the value 
with the cached value for the sender. If the received CC is greater than the cached 
CC, the SYN is new and any data in the segment is passed to the receiving 
application (the server). The connection is called half-synchronized. 

If the received CC is not greater than the cached CC, or if the receiving host 
doesn't have a cached CC for this client, the normal TCP three-way handshake is 
performed. 

5.  The SYN, ACK segment in response to an initial SYN echoes the received CC 
value in another new option named CCECHO. 

6.  The CC value in a non-SYN segment detects and rejects any duplicate segments 
from previous incarnations of the same connection. 

The accelerated open avoids the need for a three-way handshake unless either the client 
or server has crashed and rebooted. The cost is that the server must remember the last CC 
received from each client. 

The TIME_WAIT state is shortened by calculating the TIME_WAIT delay dynamically, 
based on the measured RTT between the two hosts. The TIME_WAIT delay is set to 8 
times RTO, the retransmission timeout value (Section 21.3). 

Using these features the minimal transaction sequence is an exchange of three segments: 

1.  Client to server, caused by an active open: client-SYN, client-data (the request), 
client-FIN, and client-CC. 

When the server TCP with the passive open receives this segment, if the client-CC 
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is greater than the cached CC for this client host, the client-data is passed to the 
server application, which processes the request. 

2.  Server to client: server-SYN, server-data (reply), server-FIN, ACK of client-FIN, 
server-CC, and CCECHO of client-CC. Since TCP acknowledgments are 
cumulative, this ACK of the client FIN acknowledges the client's SYN, data, and 
FIN. 

When the client TCP receives this segment it passes the reply to the client 
application. 

3.  Client to server: ACK of server-FIN, which acknowledges the server's SYN, data, 
and FIN. 

The client's response time to its request is RTT plus SPT. 

There are many fine points to the implementation of this TCP option that are covered in 
the references. We summarize them here: 

●     The server's SYN, ACK (the second segment) should be delayed, to allow the 
reply to piggyback with it. (Normally the ACK of a SYN is not delayed.) It can't 
delay too long, or the client will time out and retransmit. 

●     The request can require multiple segments, but the server must handle their 
possible out-of-order arrival. (Normally when data arrives before the SYN, the 
data is discarded and a reset is generated. With T/TCP this out-of-order data 
should be queued instead.) 

●     The API must allow the server process to send data and close the connection in a 
single operation to allow the FIN in the second segment to piggyback with the 
reply (Normally the application would write the reply, causing a data segment to 
be sent, and then close the connection, causing the FIN to be sent.) 

●     The client is sending data in the first segment before receiving an MSS 
announcement from the server. To avoid restricting the client to an MSS of 536, 
the MSS for a given host should be cached along with its CC value. 

●     The client is also sending data to the server without receiving a window 
advertisement from the server. T/TCP suggests a default window of 4096 bytes 
and also caching the congestion threshold for the server. 

●     With the minimal three-segment exchange there is only one RTT that can be 
measured in each direction. Plus the client's measured RTT includes the server's 
processing time. This means the smoothed RTT value and its variance also must 
be cached for the server, similar to what we described in Section 21.9. 

The appealing feature of T/TCP is that it is a minimal set of changes to an existing 
protocol but allows backward compatibility with existing implementations. It also takes 
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advantage of existing engineering features of TCP (dynamic timeout and retransmission, 
congestion avoidance, etc.) instead of forcing the application to deal with these issues. 

An alternative transaction protocol is VMTP, the Versatile Message Transaction 
Protocol. It is described in RFC 1045 [Cheriton 1988]. Unlike T/TCP, which is a small 
set of extensions to an existing protocol, VMTP is a complete transport layer that uses IP 
VMTP handles error detection, retransmission, and duplicate suppression. It also 
supports multicast communication. 

24.8 TCP Performance

Published numbers in the mid-1980s showed TCP throughput on an Ethernet to be 
around 100,000 to 200,000 bytes per second. (Section 17.5 of [Stevens 1990] gives these 
references.) A lot has changed since then. It is now common for off-the-shelf hardware 
(workstations and faster personal computers) to deliver 800,000 bytes or more per 
second. 

It is a worthwhile exercise to calculate the theoretical maximum throughput we could see 
with TCP on a 10 Mbits/sec Ethernet [Warnock 1991]. We show the basics for this 
calculation in Figure 24.9. This figure shows the total number of bytes exchanged for a 
full-sized data segment and an ACK. 

Field
Data

#bytes
ACK
#bytes

Ethernet preamble
Ethernet destination address
Ethernet source address
Ethernet type field
IP header
TCP header
user data
pad (to Ethernet minimum)
Ethernet CRC
interpacket gap (9.6 microsec) 

8
6
6
2
20
20

1460
0
4
12

8
6
6
2
20
20
0
6
4
12

total 1538 84

Figure 24.9 Field sizes for Ethernet theoretical maximum throughput calculation.

We must account for all the overhead: the preamble, the PAD bytes that are added to the 
acknowledgment, the CRC, and the minimum interpacket gap (9.6 microseconds, which 
equals 12 bytes at 10 Mbits/sec). 
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We first assume the sender transmits two back-to-back full-sized data segments, and then 
the receiver sends an ACK for these two segments. The maximum throughput (user data) 
is then 

throughput = 2 x 1460 bytes / (2 x 1538 + 84 bytes) x 10,000,000 bits/sec / 8 buts/byte =
= 1,155,063 bytes/sec

If the TCP window is opened to its maximum size (65535, not using the window scale 
option), this allows a window of 44 1460-byte segments. If the receiver sends an ACK 
every 22nd segment the calculation becomes 

throughput = 22 x 1460 bytes / (22 x 1538 + 84 bytes) x 10,000,000 bits/sec / 8 buts/byte 
=

= 1,183,667 bytes/sec

This is the theoretical limit, and makes certain assumptions: an ACK sent by the receiver 
doesn't collide on the Ethernet with one of the sender's segments; the sender can transmit 
two segments with the minimum Ethernet spacing; and the receiver can generate the 
ACK within the minimum Ethernet spacing. Despite the optimism in these numbers, 
[Wamock 1991] measured a sustained rate of 1,075,000 bytes/sec on an Ethernet, with a 
standard multiuser workstation (albeit a fast workstation), which is within 90% of the 
theoretical value. 

Moving to faster networks, such as FDDI (100 Mbits/sec), [Schryver 1993] indicates that 
three commercial vendors have demonstrated TCP over FDDI between 80 and 98 
Mbits/sec. When even greater bandwidth is available, [Borman 1992] reports up to 781 
Mbits/sec between two Cray
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SNMP: Simple Network Management 
Protocol
25.1 Introduction

As the number of networks within an organization grows, along with the diversity of systems 
comprising this internet (routers from various vendors, hosts with embedded router functionality, 
terminal servers, etc.), managing all these systems within a coherent framework becomes important. 
This chapter looks at the standards used within the Internet protocol suite for network management. 

Network management of a TCP/IP internet consists of network management stations (managers) 
communicating with network elements. The network elements can be anything that runs the TCP/IP 
protocol suite: hosts, routers, X terminals, terminal servers, printers, and so on. The software in the 
network element that runs the management software is called the agent. Management stations are 
normally workstations with color monitors that graphically display relevant facts about the elements 
being monitored (which links are up and down, volume of traffic across various links over time, 
etc.). 

"The communication can be two way: the manager asking the agent for a specific value ("how many 
ICMP port unreachables have you generated?"), or the agent telling the manager that something 
important happened ("an attached interface has gone down"). Also, the manager should be able to 
set variables in the agent ("change the value of the default IP TTL to 64"), in addition to reading 
variables from the agent. TCP/IP network management consists of three pieces. 

1.  A Management Information Base (MIB) that specifies what variables the network elements 
maintain (the information that can be queried and set by the manager). RFC 1213 
[McCloghrie and Rose 1991] defines the second version of this, called MIB-II. 

2.  A set of common structures and an identification scheme used to reference the variables in 
the MIB. This is called the Structure of Management Information (SMI) and is specified in 
RFC 1155 [Rose and McCloghrie 1990]. For example, the SMI specifies that a Counter is a 
nonnegative integer that counts from 0 through 4,294,967,295 and then wraps around to 0. 

3.  The protocol between the manager and the element, called the Simple Network Management 
Protocol (SNMP). RFC 1157 [Case et al. 1990] specifies the protocol. This details the 
format of the packets exchanged. Although a wide variety of transport protocols could be 
used, UDP is normally used with SNMP. 

These RFCs define what is now called SNMPv1, or just SNMP, which is the topic of this chapter. 
During 1993 additional RFCs were published specifying SNMP Version 2 (SNMPv2), which we 
describe in Section 25.12. 

Our approach to SNMP in this chapter is to describe the protocol between the manager and the 
agent first, and then look at the data types for the variables maintained by the agent. We describe 
the database of information maintained by the agent (the MIB), looking at the groups that we've 
described in this text: IP, UDP, TCP, and so on. We show examples at each point along the way, 
tying network management back to the protocol concepts from earlier chapters. 
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25.2 Protocol

SNMP defines only five types of messages that are exchanged between the manager and agent. 

1.  Fetch the value of one or more variables: the get-request operator. 
2.  Fetch the next variable after one or more specified variables: the get-next-request 

operator. (We describe what we mean by "next" later in this chapter.) 
3.  Set the value of one or more variables: the set-request operator. 
4.  Return the value of one or more variables: the get-response operator. This is the 

message returned by the agent to the manager in response to the get-request, get-
next-request, and set-request operators. 

5.  Notify the manager when something happens on the agent: the trap operator. 

The first three messages are sent from the manager to the agent, and the last two are from the agent 
to the manager. (We'll refer to the first three as the get, get-next, and set operators.) Figure 
25.1 summarizes these five operators. 

Since four of the five SNMP messages are simple request-reply protocols (the manager sends a 
request, the agent sends back a reply) SNMP uses UDP. This means that a request from the manager 
may not arrive at the agent, and the agent's reply may not make it back to the manager. The manager 
probably wants to implement a timeout and retransmission. 

Figure 25.1 Summary of the five SNMP operators.

The manager sends its three requests to UDP port 161. The agent sends traps to UDP port 162. By 
using two different port numbers, a single system can easily run both a manager and an agent. (See 
Exercise 25.1.) 

Figure 25.2 shows the format of the five SNMP messages, encapsulated in a UDP datagram. 
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Figure 25.2 Format of the five SNMP messages.

In this figure we specify the size in bytes of the IP and UDP headers only. This is because the 
encoding used for the SNMP message-called ASN.1 and BER, which we describe later in this 
chapter-varies depending on the type of variable and its value. 

The version is 0. This value is really the version number minus one, as the version of SNMP that we 
describe is called SNMPv1. 

Figure 25.3 shows the values for the PDU type. (PDU stands for Protocol Data Unit, a fancy word 
for "packet.") 

PDU type Name 

0 get-request 

1 get-next-request 

2 set-request 

3 get-response 

4 trap 

Figure 25.3 PDU types for SNMP messages.

The community is a character string that is a cleartext password between the manager and agent. A 
common value is the 6-character string public. 

For the get, get-next, and set operators, the request ID is set by the manager, and returned by 
the agent in the get-response message. We've seen this type of variable with other UDP 
applications. (Recall the DNS identification field in Figure 14.3, and the transaction ID field in 
Figure 16.2.) It lets the client (the manager in this case) match the responses from the server (the 
agent) to the queries that the client issued. "This field also allows the manager to issue multiple 
requests to one or more agents, and then be able to sort out the returned replies. 
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The error status is an integer returned by the agent specifying an error. Figure 25.4 shows the 
values, names, and descriptions. 

error status Name Description

0 noError all is OK

1 tooBig agent could not fit reply into a single SNMP message 

2 noSuchName operation specified a nonexistent variable 

3 badValue a set operation specified an invalid value or syntax 

4 readonly manager tried to modify a read-only variable 

5 genErr some other error

Figure 25.4 SNMP error status values.

If an error occurred, the error index is an integer offset specifying which variable was in error. It is 
set by the agent only for the noSuchName, badValue, and readonly errors. 

A list of variable names and values follows in the get, get-next, and set requests. The value 
portion is ignored for the get and get-next operators. 

For the trap operator (a PDU type of 4), the format of the SNMP message changes. We describe 
the fields in the trap header when we describe this operator in Section 25.10. 

25.3 Structure of Management Information

SNMP uses only a few different types of data. In this section we'll look at those data types, without 
worrying about how the data is actually encoded (that is, the bit pattern used to store the data). 

●     INTEGER. Some variables are declared as an integer with no restrictions (e.g., the MTU of 
an interface), some are defined as taking on specific values (e.g., the IP forwarding flag is 1 
if forwarding is enabled or 2 if forwarding is disabled), and others are defined with a 
minimum and maximum value (e.g., UDP and TCP port numbers are between 0 and 65535). 

●     OCTET STRING. A string of 0 or more 8-bit bytes. Each byte has a value between 0 and 
255. In the BER encoding used for this data type and the next, a count of the number of 
bytes in the string precedes the string. These strings are not null-terminated strings. 

●     DisplayString. A string of 0 or more 8-bit bytes, but each byte must be a character from 
the NVT ASCII set (Section 26.4). All variables of this type in the MIB-II must contain no 
more than 255 characters. (A O-length string is OK.) 

●     OBJECT IDENTIFIER. We describe these in the next section. 
●     NULL. This indicates that the corresponding variable has no value. It is used, for example, as 

the value of all the variables in a get or get-next request, since the values are being queried, 
not set. 

●     lpAddress. An OCTET STRING of length 4, with 1 byte for each byte of the IP address. 
●     PhysAddress. An OCTET STRING specifying a physical address (e.g., a 6-byte Ethernet 

address). 
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●     Counter. A nonnegative integer whose value increases monotonically from 0 to 232-1 
(4,294,967,295), and then wraps back to 0. 

●     Gauge. A nonnegative integer between 0 and 232 -1, whose value can increase or decrease, 
but latches at its maximum value. That is, if the value increments to 232 - 1, it stays there 
until reset. The MIB variable tcpCurrEstab is an example: it is the number of TCP 
connections currently in the ESTABLISHED or CLOSE_WAIT state. 

●     TimeTicks. A counter that counts the time in hundredths of a second since some epoch. 
Different variables can specify this counter from a different epoch, so the epoch used for 
each variable of this type is specified when the variable is declared in the MIB. For example, 
the variable sysUpTime is the number of hundredths of a second that the agent has been 
up. 

●     SEQUENCE. This is similar to a structure in the C programming language. For example, 
we'll see that the MIB defines a SEQUENCE named UdpEntry containing information 
about an agent's active UDP end points. (By "active" we mean ports currently in use by an 
application.) Two entries are in the structure: 

1.  udpLocalAddress, of type lpAddress, containing the local IP address. 
2.  udpLocalPort, of type INTEGER, in the range 0 through 65535, specifying the 

local port number. 
●     SEQUENCE OF. This is the definition of a vector, with all elements having the same data 

type. If each element has a simple data type, such as an integer, then we have a simple vector 
(a one-dimensional array). But we'll see that SNMP uses this data type with each element of 
the vector being a SEQUENCE (structure). We can then think of it as a two-dimensional 
array or table. 

For example, the UDP listener table is named udpTable and it is a SEQUENCE OF the 2-
element SEQUENCE (structure) UdpEntry that we just described. Figure 25.5 shows this 
two-dimensional array. 

Figure 25.5 UDP listener table (udpTable) as a two-dimensional array in SNMP.

The number of rows in these tables is not specified by SNMP, but we'll see that a manager using the 
get-next operator (Section 25.7) can determine when the final row of a table has been returned. 
Also, in Section 25.6 we'll see how the manager specifies which row of a table it wants to get or set. 

25.4 Object Identifiers

An object identifier is a data type specifying an authoritatively named object. By "authoritative" we 
mean that these identifiers are not assigned randomly, but are allocated by some organization that 
has responsibility for a group of identifiers. 
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An object identifier is a sequence of integers separated by decimal points. These integers traverse a 
tree structure, similar to the DNS (Figure 14.1) or a Unix filesystem. There is an unnamed root at 
the top of the tree where the object identifiers start. (This is the same direction of tree traversal that's 
used with a Unix filesystem.) 

Figure 25.6 shows the structure of this tree when used with SNMP. All variables in the MIB start 
with the object identifier 1.3.6.1.2.1. 

Each node in the tree is also given a textual name. The name corresponding to the object identifier 
1.3.6.1.2.1 is iso.org.dod.internet.mgmt.mib. These names are for human readability. 
The names of the MIB variables that are in the packets exchanged between the manager and agent 
(Figure 25.2) are the numeric object identifiers, all of which begin with 1.3.6.1.2.1. 

Figure 25.6 Object identifiers in the Management Information Base.

Besides the mib object identifiers in Figure 25.6 we also show one named 
iso.org.dod.internet.private.enterprises (1.3.6.1.4.1). "This is where vendor-
specific MIBs are located. The Assigned Numbers RFC lists around 400 identifiers registered below 
this node. 

25.5 Introduction to the Management Information Base
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The Management Information Base, or MIB, is the database of information maintained by the agent 
that the manager can query or set. We describe what's called MIB-II, specified in RFC 1213 
[McCloghrie and Rose 1991]. 

As shown in Figure 25.6, the MIB is divided into groups named system, interfaces, at 
(address translation), ip, and so on. 

In this section we describe only the variables in the UDP group. This is a simple group with only a 
few variables and a single table. In the next sections we use this group to show the details of 
instance identification, lexicographic ordering, and some simple examples of these features. After 
these examples we return to the MIB in Section 25.8 and describe some of the other groups in the 
MIB. 

In Figure 25.6 we showed the group named udp beneath mib. Figure 25.7 shows the structure of 
the UDP group. 

Figure 25.7 Tree structure of IP address table.

There are four simple variables and a table containing two simple variables. Figure 25.8 describes 
the four simple variables. 

Name Datatype R/W Description

udpInDatagrams Counter 
Number of UDP datagrams delivered to user 
processes. 

udpNoPorts Counter 
Number of received UDP datagrams for which no 
application process was at the destination port. 

udpInErrors Counter 
Number of undeliverable UDP datagrams for reasons 
other than no application at destination port (e.g., 
UDP checksum error). 

udpOutDatagrams Counter Number of UDP datagrams sent. 

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/snmp_sim.htm (7 of 33) [12/09/2001 14.47.40]



Chapter 25. SNMP: Simple Network Management Protocol

Figure 25.8 Simple variables in udp group.

We'll use this format to describe all the MIB variables in this chapter. The column labeled "R/W" is 
empty if the variable is read-only, or contains a bullet (*) if the variable is read-write. We always 
include this column, even if all the variables in a group are read-only (since they are in the udp 
group) to reiterate that none of the variables can be set by the manager. Also, when the data type is 
an INTEGER with bounds, we specify the lower limit and upper limit, as we do for the UDP port 
number in the next figure. 

Figure 25.9 describes the two simple variables in the udpTable. 

UDP listener table, index = < udpLocalAddress >.< udpLocalPort >

Name Datatype R/W Description

udpLocalAddress lpAddress 
Local IP address for this listener. 0.0.0.0 indicates 
the listener is willing to receive datagrams on any 
interface. 

udpLocalPort [0..65535] Local port number for this listener. 

Figure 25.9 Variables in udpTable.

Each time we describe the variables in an SNMP table, the first row of the figure indicates the value 
of the "index" used to reference each row of the table. We show some examples of this in the next 
section. 

Case Diagrams

There is a relationship between the first three counters in Figure 25.8. Case Diagrams [Case and 
Partridge 1989] visually illustrate the relationships between the various MIB variables in a given 
group. Figure 25.10 is a Case Diagram for the UDP group. 

Figure 25.10 Case Diagram for UDP group.

What this diagram shows is that the number of UDP datagrams delivered to applications 
(udpInDatagrams) is the number of UDP datagrams delivered from IP to UDP, minus 
udpInErrors, minus udpNoPorts. Also, the number of UDP datagrams delivered to IP 
(udpOutDatagrams) is the number passed to UDP from the applications. This illustrates that 
udpInDatagrams does not include udpInErrors or udpNoPorts. 
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These diagrams were used during the development of the MIB to verify that all data paths for a 
packet were accounted for. [Rose 1994] shows Case Diagrams for all the groups in the MIB. 

25.6 Instance Identification

Every variable in the MIB must be identified when SNMP is referencing it, to fetch or set its value. 
First, only leaf nodes are referenced. SNMP does not manipulate entire rows or columns of tables. 
Returning to Figure 25.7, the leaf nodes are the four that we described in Figure 25.8 and the two in 
Figure 25.9. mib, udp, udpTabie, and udpEntry are not leaf nodes. 

Simple Variables

Simple variables are referenced by appending ".0" to the variable's object identifier. For example, 
the counter udpInDatagrams from Figure 25.8, whose object identifier is 1.3.6.1.2.1.7.1, is 
referenced as 1.3.6.1.2.1.7.1.0. The textual name of this reference is 
iso.org.dod.internet.mgmt.mib.udp.udpInDatagrams.0. 

Although references to this variable are normally abbreviated as just udpInDatagrams.0, we 
reiterate that the name of the variable that appears in the SNMP message (Figure 25.2) is the object 
identifier 1.3.6.1.2.1.7.1.0. 

Tables

Instance identification of table entries is more detailed. Let's return to the UDP listener table (Figure 
25.7). 

One or more indexes are specified in the MIB for each table. For the UDP listener table, the MIB 
defines the index as the combination of the two variables udpLocalAddress, which is an IP 
address, and udpLocalPort, which is an integer. (We showed this index in the top row in Figure 
25.9.) 

Assume there are three rows in the UDP listener table: the first row is for IP address 0.0.0.0 and 
port 67, the second for 0.0.0.0 and port 161, and the third for 0.0.0.0 and port 520. Figure 25.11 
shows this table. 

udpLocalAddress udpLocalPort

0.0.0.0 67

0.0.0.0 161

0.0.0.0 520

Figure 25.11 Sample UDP listener table.

This implies that the system is willing to receive UDP datagrams on any interface for ports 67 
(BOOTP server), 161 (SNMP), and 520 (RIP). The three rows in the table are referenced as shown 
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in Figure 25.12. 

Lexicographic Ordering

There is an implied ordering in the MIB based on the order of the object identifiers. All the entries 
in MIB tables are lexicographically ordered by their object identifiers. This means the six variables 
in Figure 25.12 are ordered in the MIB as shown in Figure 25.13. Two key points result from this 
lexicographic ordering. 

Row Object identifier Abbreviated name Value

1
1.3.6.1.2.1.7.5.1.1.0.0.0.0.67
1.3.6.1.2.1.7.5.1.2.0.0.0.0.67

udpLocalAddress.0.0.0.0.67
udpLocalPort.0.0.0.0.67 

0.0.0.0
67

2
1.3.6.1.2.1.7.5.1.1.0.0.0.0.161
1.3.6.1.2.1.7.5.1.2.0.0.0.0.161

udpLocalAddress.0.0.0.0.161
udpLocalPort.0.0.0.0.161 

0.0.0.0 
161

3
1.3.6.1.2.1.7.5.1.1.0.0.0.0.520
1.3.6.1.2.1.7.5.1.2.0.0.0.0.520

udpLocalAddress.0.0.0.0.520
udpLocalPort.0.0.0.0.520 

0.0.0.0 
520

Figure 25.12 Instance identification for rows in UDP listener table.

Column
Object identifier

(lexicographically ordered)
Abbreviated name Value

1
1.3.6.1.2.1.7.5.1.1.0.0.0.0.67 
1.3.6.1.2.1.7.5.1.1.0.0.0.0.161
1.3.6.1.2.1.7.5.1.1.0.0.0.0.520 

udpLocalAddress.0.0.0.0.67
udpLocalAddress.0.0.0.0.161
udpLocalAddress.0.0.0.0.520 

0.0.0.0
0.0.0.0
0.0.0.0

2
1.3.6.1.2.1.7.5.1.2.0.0.0.0.67 
1.3.6.1.2.1.7.5.1.2.0.0.0.0.161
1.3.6.1.2.1.7.5.1.2.0.0.0.0.520 

udpLocalPort.0.0.0.0.67
udpLocalPort.0.0.0.0.161
udpLocalPort.0.0.0.0.520 

67
161
520

Figure 25.13 Lexicographic ordering of UDP listener table.

1.  Since all instances for a given variable (udpLocalAddress) appear before all instances 
for the next variable in the table (udpLocalPort), this implies that tables are accessed in a 
column-row order. This results from the lexicographic ordering of the object identifiers, not 
the human-readable names. 

2.  The ordering of the rows in a table depends on the values of the indexes for the table. In 
Figure 25.13, 67 is lexicographically less than 161, which is lexicographically less than 520. 

Figure 25.14 shows this column-row order for our sample UDP listener table. 
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Figure 25.14 UDP listener table, showing column-row ordering.

We'll also see this column-row ordering when we use the get-next operator in the next section. 

25.7 Simple Examples

In this section we'll show some examples that fetch the values of variables from an SNMP agent. 
The software used to query the agent is called snmpi and is from the ISODE system. Both are 
described briefly in [Rose 1994]. 

Simple Variables

We'll query a router for two simple variables from the UDP group: 

sun % snmpi -a gateway -c secret 

snmpi> get udpInDatagrams.0 udpNoPorta.0
udplnDatagrams.0=616168
udpNoPorts.0=33 

snmpi> quit 

The -a option identifies the agent we want to communicate with, and the -c option specifies the 
SNMP community. It is a password supplied by the client (snmpi in this case) and if the server (the 
agent in the system gateway) recognizes the community name, it honors the manager's request. 
An agent could allow clients within one community read-only access to its variables, and clients in 
another community read-write access. 

The program outputs its snmpi> prompt, and we can type commands such as get, which 
translates into an SNMP get-request message. When we're done, we type quit. (In all further 
examples we'll remove this final quit command.) Figure 25.15 shows the two lines of tcpdump 
output for this example. 

1 0.0 
sun.1024 > gateway.161: GetRequest(42) 
1.3.6.1.2.1.7.1.0 1.3.6.1.2.1.7.2.0 

2
0.348875 
(0.3489) 

gateway.161 > sun.1024: GetResponse(46)
1.3.6.1.2.1.7.1.0=616168
1.3.6.1.2.1.7.2.0=33 

Figure 25.15 tcpdump output for simple SNMP query.

The request for the two variables is sent in a single UDP datagram, and the response is also a single 
UDP datagram. 

We show the variables as their respective object identifiers, because that is what's sent in the SNMP 
messages. We had to specify the instance of the two variables as 0. Notice also that the name of the 
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variable (its object identifier) is always returned in the response. We'll see below that this is 
required for the get-next operator to work. 

get-next Operator

The operation of the get-next operator is based on the lexicographic ordering of the MIB. We 
start the following example by asking for the next object identifier after udp (without specifying 
any instance, since this is not a leaf object). This returns the first object in the UDP group. We then 
ask for the next entry after this one, and the second entry is returned. We repeat this one more time 
to get the third entry: 

sun % sninpi -a gateway -c secret 

snmpi> next udp
udpInDatagrams.0=616318 

snmpi> next udpInDatagraros.0 
udpNoPorts.0=33 

snmpi> next udpNoPorts.0 
udpInErrors.0=0 

This example shows why a get-next operator must return the name of the variable: we ask the 
agent for the next variable, and the agent returns its name and value. 

Using the get-next operator in this fashion, one could imagine a manager with a loop that starts 
at the beginning of the MIB and queries the agent for every variable that the agent maintains. 
Another use of this operator is to iterate through tables. 

Table Access

We can reiterate the column-row ordering of tables using our simple query program to step through 
the entire UDP listener table. We start by asking for the next variable after udpTable. Since this is 
not a leaf object we can't specify an instance, but the get-next operator still returns the next 
object in the table. We then work our way through the table, with the agent returning the next 
variable, in column-row order: 

sun % snmpi-a gateway -c secret 

snmpi> next udpTable 
udpLocalAddress.0.0.0.0.67=0.0.0.0 

snmpi> next udpLocalAddress.0.0.0.0.67 
udpLocalAddress.0.0.0.0.161-0.0.0.0 

snmpi> next udpLocalAddress.0.0.0.0.161 
udpLocalAddress.0.0.0.0.52 0=0.0.0.0 
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snmpi> next udpLocalAddress.0.0.0.0.520 
udpLocalPort.0.0.0.0.67=67 

snmpi> next udpLocalPort.0.0.0.0.67 
udpLocalPort.0.0.0.0.161=161 

snmpi> next udpLocalPort.0.0.0.0.161 
udpLocalPort.0.0.0.0.520=520 

snmpi> next udpLocalPort.0.0.0.0.520 
snmpInPkts.0=59 we're finished with the UDP listener table 

We see that the order returned corresponds to Figure 25.14. 

How does a manager know when it reaches the end of a table? Since the response to the get-next 
operator contains the name of the next entry in the MIB after the table, the manager can tell when 
the name changes. In our example the last entry in the UDP listener table is followed by the variable 
snmpInPkts. 

25.8 Management Information Base (Continued)

We now return to the description of the MIB. We describe only the following groups: system 
(system identification), if (interfaces) , at (address translation), ip, icmp, and tcp. Additional 
groups are defined. 

system Group

The system group is simple; it consists of seven simple variables (i.e., no tables). Figure 25.16 
shows their names, data types, and descriptions. 

Name Datatype R/W Description

sysDescr
Display 
String 

Textual description of entity. 

sysObjectID ObjectID Vendor's ID within the subtree 1.3.6.1.4.1. 

sysUpTime TimeTicks 
Time in hundredths of a second since network 
management portion of system was rebooted. 

sysContact DisplayString * Name of contact person and how to contact them. 

sysName DisplayString * Node's fully qualified domain name (FQDN). 

sysLocation DisplayString * Physical location of node. 
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sysServices [0..127] 

Value indicating services provided by node. It is the 
sum of the layers in the OSI model supported by the 
node. The following values are added together, 
depending on the services provided: 0x01 
(physical) , 0x02 (datalink), 0x04 (internet), 0x08 
(end-to-end), 0x40 (application). 

Figure 25.16 Simple variables in system group.

We can query the router netb for some of these variables: 

sun % snmpi -a netb -c secret 

snmpi> get sysDescr.0 sysObjectID.0 sysDpTime.0 sysServices.0
sysDescr.0="Epilogue Technology SNMP agent for Telebit NetBlazer"
sysObjectID.0=1.3.6.1.4.1.12.42.3.1
sysUpTime.0=22 days, 11 hours, 23 minutes, 2 seconds (194178200 
timeticks)
sysServices.0=0xc<internet,transport> 

The system's object identifier is in the internet.private.enterprises group (1.3.6.1.4.1) 
from Figure 25.6. From the Assigned Numbers RFC we can determine that the next object identifier 
(12) is assigned to the vendor (Epilogue). 

We can also see that the sysServices variable is the sum of 4 and 8: this element supports the 
Internet layer (i.e., routing) and the transport layer (i.e., end-to-end). 

interface Group

Only one simple variable is defined for this group: the number of interfaces on the system, shown in 
Figure 25.17. 

Name Datatype R/W Description

ifNumber INTEGER Number of network interfaces on system. 

Figure 25.17 Simple variable in if group.

This group also defines a table with 22 columns. Each row of the table defines the characteristics 
for each interface, as shown in Figure 25.18. 

Interface table, index = < IfIndex >

Name Datatype R/W Description

ifIndex INTEGER 
Index of interface, between one and if 
Number. 
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ifDescr DisplayString Textual description of interface. 

ifType INTEGER 
Type, for example: 6 = Ethernet, 7 = 802.3 
Ethernet, 9 = 802.5 token ring, 23 = PPP, 
28 = SLIP, and many other values. 

ifMtu INTEGER MTU of interface. 

ifSpeed Gauge Speed in bits/sec. 

ifPhysAddress PhysAddress 
Physical address, or string of 0 length for 
interfaces without physical addresses (e.g., 
serial links). 

ifAdminStatus [1..3] *
Desired state of interface: 1 = up, 2 = down, 
3 = testing. 

ifOperStatus [1..3] 
Current state of interface: 1 = up, 2 = down, 
3 = testing. 

ifLastChange TimeTicks 
Value of sysUpTime when interface 
entered current operational state. 

ifInoctets Counter 
Total number of bytes received, including 
framing characters. 

ifInUcastPkts Counter 
Number of unicast packets delivered to 
higher layers. 

ifInNUcastPkts Counter 
Number of nonunicast (i.e., broadcast or 
multicast) packets delivered to higher 
layers. 

ifInDiscards Counter 
Number of received packets discarded even 
though no error in packet (i.e., out of 
buffers). 

ifInErrors Counter 
Number of received packets discarded 
because of errors. 

ifInUnknownProtos Counter 
Number of received packets discarded 
because of unknown protocol. 

ifOutoctets Counter 
Number of bytes transmitted, including 
framing characters. 

ifOutUcastPkts Counter 
Number of unicast packets received from 
higher layers. 

ifOutNUcastPkts Counter 
Number of nonunicast (i.e., broadcast or 
multicast) packets received from higher 
layers. 

ifOutDiscards Counter 
Number of outbound packets discarded 
even though no error in packet (i.e., out of 
buffers). 

ifOutErrors Counter 
Number of outbound packets discarded 
because of errors. 

ifOutQLen Gauge Number of packets in output queue. 
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ifSpecific ObjectID 
A reference to MIB definitions specific to 
this particular type of media. 

Figure 25.18 Variables in interface table: ifTable.

We can query the host sun for some of these variables for all its interfaces. Wet expect to find three 
interfaces, as in Section 3.8, if the SLIP interface is up: 

sun % snmpi -a sun 

snropi> next ifTable first see what index of first interface is
if Index.1=1 

snmpi> get ifDescr.1 if Type.1 ifMtu.1 if Speed.1 ifPhysAddress.1 
ifDescr.1="le0"
if Type.1=ethernet-csmacd(6)
ifMtu.1=1500
ifSpeed, 1=10000000
ifPhysAddress.1=0x08:00:20;03:f6:42 

snmpi> next ifDescr.1 if Type.1 ifMtu.1 if Speed.1 ifPhysAddress.1 

ifDescr.2="sl0"
ifType.2=propPointToPointSerial(22) 
ifMtu.2=552
ifSpeed.2=0
ifPhysAddress.2=0x00:00:00:00:00:00 

snmpi> next ifDescr.2 ifType.2 ifMtu.2 if Speed.2 ifPhysAddress.2 
ifDescr.3="lo0"
ifType.3=softwareLoopback(24)
ifMtu.3=1536
ifSpeed.3=0
ifPhysAddress.3=0x00:00:00:00:00:00 

We first get five variables for the first interface using the get operator, and then get the same five 
variables for the second interface using the get-next operator. The last command gets these same 
five variables for the third interface, again using the get-next command. 

The interface type for the SLIP link is reported as proprietary point-to-point serial, not SLIP. Also, 
the speed of the SLIP link is not reported. 

It is critical to understand the relationship between the get-next operator and the column-row 
ordering. When we say next ifDescr.1 it returns the next row of the table for this variable, not 
the next variable in the same row. If tables were stored in a row-column order instead, we wouldn't 
be able to step to the next occurrence of a given variable this way. 
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at Group

The address translation group is mandatory for all systems, but was deprecated by MIB-II. Starting 
with MIB-II, each network protocol group (e.g., IP) contains its own address translation tables. For 
IP it is the ipNetToMediaTable. 

Only a single table with three columns is defined for the at group, shown in Figure 25.19. 

We can use a new command within the snmpi program to dump an entire table. We'll query the 
router named kinetics (which routes between a TCP/IP network and an AppleTalk network) for 
its entire ARP cache. This output reiterates the lexicographic ordering of the entries in the table: 

Address translation table, index = < atIflndex >.1.< atNetAddress > 

Name Datatype R/W Description

atiflndex INTEGER * Interface number: ifIndex. 

atPhysAddress PhysAddress *
Physical address. Setting this to a string of 0 
length invalidates the entry. 

atNetAddress NetworkAddress * IP address. 

Figure 25.19 Address translation table: atTable.

sun % snmpi -a kinetics -c secret dump at 

atiflndex.1.1.140.252.1.4=1
atiflndex.1.1.140.252.1.22=1
atiflndex.1.1.140.252.1.183=1
atiflndex.2.1.140.252.6.4=2
atiflndex.2.1.140.252.6.6=2 

atPhysAddress.1.1.140.252.1.4=0xaa:00:04:00:f4:14
atPhysAddress.1.1.140.252.1.22=0x08:00:20:0f:2d:38 
atPhysAddress.1.1.140.252.1.183=0x00:80:ad:03:6a:80
atPhysAddress.2.1.140.252.6.4=0x00:02:16:48
atPhysAddress.2.1.140.252.6.6=0x00:02:3c:48 

atNetAddress.1.1.140.252.1.4=140.252.1.4
atNetAddress.1.1.140.252.1.22=140.252.1.22 
atNetAddress.1.1.140.252.1.183=140.252.1.183
atNetAddress.2.1.140.252.6.4=140.252.6.4
atNetAddress.2.1.140.252.6.6=140.252.6.6 

If we watch the packet exchange using tcpdump, when snmpi dumps an entire table it first issues 
a get-next for the table name (at in this example) to get the first entry. It prints the first entry 
and issues another get-next. This continues until the entire table has been dumped. 

Figure 25.20 shows the arrangement of this table. 
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atIflndex atPhysAddress atNetAddress

1 0xaa:00:04:00:f4:14 140.252.1.4

1 0x08:00:20:0f:2d:38 140.252.1.22

1 0x00:80:ad:03:6a:80 140.252.1.183

2 0x00:02:16:48 140.252.6.4

2 0x00:02:3c:48 140.252.6.6

Figure 25.20 Example of at table (ARP cache).

The AppleTalk physical addresses on interface number 2 are 32-bit values, not the 48-bit Ethernet 
addresses to which we're accustomed. Also note that an entry exists for our router (netb at 
140.252.1.183), which we expect, since kinetics and netb are on the same Ethernet 
(140.252.1) and kinetics must use ARP to send the SNMP responses back to us. 

ip Group

The ip group defines numerous variables and three tables. Figure 25.21 defines the simple 
variables. 

Name Datatype R/W Description

ipForwarding [1..2] *
1 means the system is forwarding IP datagrams, and 
2 means it is not. 

ipDefaultTTL INTEGER *
Default TTL value when transport layer doesn't 
provide one. 

ipInReceives Counter 
Total number of received IP datagrams from all 
interfaces. 

ipInHdrErrors Counter 
Number of IP datagrams discarded because of 
header errors (e.g., checksum error, version number 
mismatch, TTL exceeded, etc.). 

ipInAddrErrors Counter 
Number of IP datagrams discarded because of 
incorrect destination address. 

ipForwDatagrams Counter 
Number of IP datagrams for which an attempt was 
made to forward. 

ipInUnknownProtos Counter 
Number of locally addressed IP datagrams with an 
invalid protocol field. 

ipInDiscards Counter 
Number of received IP datagrams discarded because 
of a lack of buffer space. 

ipInDelivers Counter 
Number of IP datagrams delivered to appropriate 
protocol module. 
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ipOutRequests Counter 
Total number of IP datagrams passed to IP for 
transmission. Does not include those counted in 
ipForwDatagrams. 

ipOutDiscards Counter 
Number of output IP datagrams discarded because 
of a lack of buffer space. 

ipOutNoRoutes Counter 
Number of IP datagrams discarded because no route 
could be found. 

ipReasmTimeout INTEGER 
Maximum number of seconds that received 
fragments are held while awaiting reassembly. 

ipReasmReqds Counter 
Number of IP fragments received that needed to be 
reassembled. 

ipReasmOKs Counter Number of IP datagrams successfully reassembled. 

ipReasmFails Counter Number of failures by IP reassembly algorithm. 

ipFragOKs Counter 
Number of IP datagrams that have been successfully 
fragmented. 

ipFragFails Counter 
Number of IP datagrams that needed to be 
fragmented but couldn't because the "don't 
fragment" flag was set. 

ipFragCreates Counter 
Number of IP fragments generated by 
fragmentation. 

ipRoutingDiscards Counter 
Number of routing entries chosen to be discarded 
even though they were valid. 

Figure 25.21 Simple variables in ip group.

The first table in the ip group is the IP address table. It contains one row for each IP address on the 
system. Each row contains five variables, described in Figure 25.22. 

IP address table, index = < ipAdEntAddr >

Name Datatype R/W Description

ipAdEntAddr lpAddress IP address for this row. 

ipAdEntIf Index INTEGER Corresponding interface number: ifIndex. 

ipAdEntNetMask lpAddress Subnet mask for this IP address. 

ipAdEntBcastAddr [0..1] 
Value of least-significant bit of the IP 
broadcast address. Normally 1. 

ipAdEntReasmMaxSize [0..65535] 
Size of largest IP datagram received on this 
interface that can be reassembled. 

Figure 25.22 IP address table: ipAddrTable.

We can query the host sun for its entire IP address table: 
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sun % snmpi -a sun dump ipAddrTable 

ipAdEntAddr.127.0.0.1=127.0.0.1 
ipAdEntAddr.140.252.1.29=140.252.1.29
ipAdEntAddr.140.252.13.33=140.252.13.33 

ipAdEntIfIndex.127.0.0.1=3
ipAdEntIfIndex.140.252.1.29=2
ipAdEntIfIndex.140.252.13.33=1 

loopback interface, lo0 
SLIP interface, sl0 
Ethernet interface, le0 

ipAdEntNetMask.127.0.0.1=255.0.0.0 
ipAdEntNetMask.140.252.1.29=255.255.255.0
ipAdEntNetMask.140.252.13.33=255.255.255.224 

ipAdEntBcastAddr.127.0.0.1=1
ipAdEntBcastAddr.140.252.1.29=1
ipAdEntBcastAddr.140.252.13.33=1 

all three use one bits for broadcast 

ipAdEntReasmMaxSize.127.0.0.1=65535
ipAdEntReasmMaxSize.140.252.1.29=65535
ipAdEntReasmMaxSize.140.252.13.33=65535 

The interface numbers can be compared with the output following Figure 25.18, and the IP 
addresses and subnet masks can be compared with the values output by the ifconfig command 
in Section 3.8. 

The next table, Figure 25.23, is the IP routing table. (Recall our description of routing tables in 
Section 9.2.) The index used to access each row of the table is the destination IP address. 

Figure 25.24 is the IP routing table on the host sun obtained with the dump ipRouteTable 
command using snmpi. We have deleted all five of the routing metrics, since they are all -1. In the 
column headings we've also removed the prefix ipRoute from each variable name. 

IP routing table, index = < ipRouteDest >

Name Datatype R/W Description

ipRouteDest lpAddress *
Destination IP address. A value of 0.0.0.0 indicates a 
default entry. 

ipRoutelfIndex INTEGER * Interface number: ifIndex. 

ipRouteMetricI INTEGER *
Primary routing metric. The meaning of the metric 
depends on the routing protocol (ipRouteProto). 
A value of -1 means it's not used. 

ipRouteMetric2 INTEGER * Alternative routing metric. 

IpRouteMetric3 INTEGER * Alternative routing metric. 

IpRouteMetric4 INTEGER * Alternative routing metric. 

IpRouteNextHop IpAddress * IP address of next-hop router. 

IpRouteType INTEGER *
Route type: 1 = other, 2 = invalidated route, 3 = 
direct, 4 = indirect. 
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IpRouteProto INTEGER 
Routing protocol: 1 = other, 4 = ICMP redirect, 8 = 
RIP, 13 = OSPF, 14 = BGP, and others. 

IpRouteAge INTEGER *
Number of seconds since route was last updated or 
determined to be correct. 

IpRouteMask IpAddress *
Mask to be logically ANDed with destination IP 
address before being compared with 
ipRouteDest. 

IpRouteMetrics INTEGER * Alternative routing metric. 

ipRouteInfo ObjectID 
Reference to MIB definitions specific to this 
particular routing protocol. 

Figure 25.23 IP routing table: ipRouteTable.

Dest IfIndex NextHop Type Proto Mask 

0.0.0.0 
127.0.0.1
140.252.1.183
140.252.13.32
140.252.13.65 

2
3
2
1
1

140.252.1.183
127.0.0.1
140.252.1.29
140.252.13.33
140.252.13.35 

indirect(4)
direct(3)
direct(3)
direct(3)
indirect(4) 

other(1)
other(1)
other(1)
other(1)
other(1) 

0.0.0.0
255.255.255.255
255.255.255.255
255.255.0.0
255.255.255.255 

Figure 25.24 IP routing table for the router sun.

For comparison, here is the IP routing table in the format output by netstat (which we discussed 
in Section 9.2). Figure 25.24 is lexicographically ordered, unlike the netstat output: 

sun % netstat -rn 

Routing tables 

Destination Gateway Flags Refcnt Use Interface 

140.252.13.65 140.252.13.35 UGH 0 115 le0

127.0.0.1 127.0.0.1 UH 1 1107 lo0

140.252.1.183 140.252.1.29 UH 0 86 sl0

default 140.252.1.183 UG 2 1628 sl0

140.252.13.32 140.252.13.33 U 8 68359 le0

The final table in the ip group is the address translation table. Figure 25.25. As we said earlier, the 
at group is now deprecated, and this IP table replaces it. 

IP address translation table, index = < ipNetToMedialfIndex >.< ipNetToMediaNetAddress >

Name Datatype R/W Description

ipNetToMedialfIndex INTEGER * Corresponding interface: if Index. 

ipNetfoMediaPhysAddress PhysAddress * Physical address. 
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ipNetToMediaNetAddress lpAddress * IP address. 

ipNetToMediaType [1..4] *
Type of mapping: 1 = other, 2 = 
invalidated, 3 = dynamic, 4 = static. 

Figure 25.25 IP address translation table: ipNetToMediaTable.

Here is the ARP cache on the system sun: 

sun % arp -a 

svr4 (140.252.13.34) at 0:0:c0:c2:9b:26
bsdi (140.252.13.35) at 0:0:c0:6f:2d:40 

and the corresponding SNMP output: 

sun % snmpi -a sun dump ipHetToMediaTable 

ipNetToMedialfIndex.1.140.252.13.34=1
ipNetToMedialfIndex.1.140.252.13.35=1 
ipNetToMediaPhysAddress.1.140.252.13.34=0x00:00:c0:c2:9b:26
ipNetToMediaPhysAddress.1.140.252.13.35=0x00:00:c0:6f:2d:40
ipNetToMediaNetAddress.1.140.252.13.34=140.252.13.34
ipNetToMediaNetAddress.1.140.252.13.35=140.252.13.35
ipNetToMediaType.1.140.252.13.34=dynamic(3)
ipNetToMediaType.1.140.252.13.35=dynamic(3) 

icrop Group

The icmp group consists of four general counters (total number of input and output ICMP 
messages, and number of input and output ICMP messages with errors) and 22 counters for the 
different ICMP message types: II input counters and II output counters. These are shown in Figure 
25.26. 

Name Datatype R/W Description

icmpInMsgs Counter Total number of received ICMP messages. 

icmpInErrors Counter 
Number of received ICMP messages with errors 
(e.g., invalid ICMP checksum). 

icmpInDestUnreachs Counter 
Number of received ICMP destination 
unreachable message. 

icmpInTimeExcds Counter 
Number of received ICMP time exceeded 
message. 

icmpInParmProbs Counter 
Number of received ICMP parameter problem 
message. 
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icmpInSrcQuenchs Counter 
Number of received ICMP source quench 
messages. 

icmpInRedirects Counter Number of received ICMP redirect messages. 

icmpInEchos Counter 
Number of received ICMP echo request 
messages. 

icmpInEchoReps Counter Number of received ICMP echo reply messages. 

icmpInTimestamps Counter 
Number of received ICMP timestamp request 
messages. 

icmpInTimestampReps Counter 
Number of received ICMP timestamp reply 
messages. 

icmpInAddrMasks Counter 
Number of received ICMP address mask request 
messages. 

icmpInAddrMaskReps Counter 
Number of received ICMP address mask reply 
messages. 

icmpOutMsgs Counter Total number of output ICMP messages. 

icmpOutErrors Counter 
Number of ICMP messages not sent because of a 
problem within ICMP (e.g., lack of buffers). 

icmpOutDestUnreachs Counter 
Number of ICMP destination unreachable 
messages sent. 

icmpOutTimeExcds Counter Number of ICMP time exceeded messages sent. 

icmpOutParmProbs Counter 
Number of ICMP parameter problem messages 
sent. 

icmpOutSrcQuenchs Counter Number of ICMP source quench messages sent. 

icmpOutRedirects Counter Number of ICMP redirect messages sent. 

icmpOutEchos Counter Number of ICMP echo request messages sent. 

icmpOutEchoReps Counter Number of ICMP echo reply messages sent. 

icmpOutTimestamps Counter Number of ICMP timestamp requests sent. 

icmpOutTimestampReps Counter Number of ICMP timestamp reply messages sent. 

icmpOutAddrMasks Counter 
Number of ICMP address mask request messages 
sent. 

icmpOutAddrMaskReps Counter 
Number of ICMP address mask reply messages 
sent. 

Figure 25.26 Simple variables in icmp group.

For the ICMP messages with additional codes (recall from Figure 6.3 that there are 15 different 
codes for destination unreachable), a separate counter is not maintained by SNMP for each code. 

tcp Group

Figure 25.27 describes the simple variables in the tcp group. Many of these refer to the TCP states 
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that we showed in Figure 18.12. 

Name Datatype R/W Description

tcpRtoAlgorithm INTEGER 

Algorithm used to calculate retransmission timeout 
value: 1 = none of the following, 2 = a constant RTO, 3 
= MIL-STD-1778 Appendix B, 4 = Van Jacobson's 
algorithm. 

tcpRtoMin INTEGER Minimum retransmission timeout value, in milliseconds. 

tcpRtoMax INTEGER 
Maximum retransmission timeout value, in 
milliseconds. 

tcpMaxConn INTEGER 
Maximum number of TCP connections. Value is -1 if 
dynamic. 

tcpActiveOpens Counter 
Number of transitions from CLOSED to SYNSENT 
states. 

tcpPassiveOpens Counter 
Number of transitions from LISTEN to SYNRCVD 
states. 

tcpAttemptFails Counter 
Number of transitions from SYNSENT or SYNRCVD 
to CLOSED, plus number of transitions from 
SYNRCVD to LISTEN. 

tcpEstabResets Counter 
Number of transitions from ESTABLISHED or 
CLOSEWAIT states to CLOSED. 

tcpCurrEstab Gauge 
Number of connections currently in ESTABLISHED or 
CLOSEWAIT states. 

tcpInSegs Counter Total number of segments received. 

tcpOutSegs Counter 
Total number of segments sent, excluding those 
containing only retransmitted bytes. 

tcpRetransSegs Counter Total number of retransmitted segments. 

tcpInErrs Counter 
Total number of segments received with an error (such 
as invalid checksum). 

tcpOutRsts Counter Total number of segments sent with RST flag set. 

Figure 25.27 Simple variables in tcp group.

We can query some of these variables on the system sun: 

sun % snmpi -a sun 

snmpi> get tcpRtoAlgorithm.0 tcpRtoMin.0 tcpRtoMax.0 tcpMaxConn.0
tcpRtoAlgorithm.0=vanj(4)
tcpRtoMin.0=200
tcpRtoMax.O=12800
tcpMaxConn.0=-1 
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This system (SunOS 4.1.3) uses the Van Jacobson retransmission timeout algorithm, uses timeouts 
between 200 ms and 12.8 seconds, and has no fixed limit on the number of TCP connections. (This 
upper limit of 12.8 seconds appears wrong, since most implementations use an upper limit of 64 
seconds, as we saw in Chapter 21.) 

The tcp group has a single table, the TCP connection table, shown in Figure 25.28. This contains 
one row for each connection. Each row contains five variables; the state of the connection, local IP 
address, local port number, remote IP address, and remote port number. 

index = < tcpConnLocalAddress >.< tcpConnLocalPort >.< tcpConnRemAddress >.< 
tcpConnRemPort >

Name Datatype R/W Description 

tcpConnState [1..12] *

State of connection: 1 = CLOSED, 2 = 
LISTEN, 3 = SYNSENT, 4 = SYNRCVD, 5 = 
ESTABLISHED, 6 = FINWAIT1,7= 
FINWAIT2,8= CLOSEWAIT, 9 = 
LASTACK, 10 = CLOSING, 11 = 
TIMEWAIT, 12 = delete TCB. The only value 
that the manager can set this variable to is 12 
(e.g., immediately terminate the connection). 

tcpConnLocalAddress IpAddress 
Local IP address. 0.0.0.0 indicates the listener 
is willing to accept connections on any 
interface. 

tcpConnLocalPort [0..65535] Local port number. 

tcpConnRemAddress IpAddress Remote IP address. 

tcpConnRemPort [0..65535] Remote port number. 

Figure 25.28 TCP connection table: tcpConnTable.

Let's look at this table on the system sun. We show only a portion of the table, since there are many 
servers listening for connections. Before dumping this table two TCP connections were established: 

sun % rlogin gemini IP address o/gemini is 140.252.1.11 

and

sun % telnet localhost IP address should be 127.0.0.1 

The only listening server that we show is the FTP server, on port 21: 

sun % snmpi -a sun dump tcpConnTable 

tcpConnState.0.0.0.0.21.0.0.0.0.0=listen(2)
tcpConnState.127.0.0.1.23.127.0.0.1.1415=established(5) 
tcpConnState.127.0.0.1.1415.127.0.0.1.23=established(5)
tcpConnState.140.252.1.29.1023.140.252.1.11.513=established(5) 
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tcpConnLocalAddress.0.0.0.0.21.0.0.0.0.0=0.0.0.0
tcpConnLocalAddress.127.0.0.1.23.127.0.0.1.1415-127.0.0.1 
tcpConnLocalAddress.127.0.0.1.1415.127.0.0.1.23=127.0.0.1
tcpConnLocalAddress.140.252.1.29.1023.140.252.1.11.513=140.252.1.29 

tcpConnLocalPort.0.0.0.0.21.0.0.0.0.0=21
tcpConnLocalPort.127.0.0.1.23.127.0.0.1.1415=23 
tcpConnLocalPort.127.0.0.1.1415.127.0.0.1.23=1415
tcpConnLocalPort.140.252.1.29.1023.140.252.1.11.513=1023 

tcpConnRemAddress.0.0.0.0.21.0.0.0.0.0=0.0.0.0
tcpConnRemAddress.127.0.0.1.23.127.0.0.1.1415=127.0.0.1 
tcpConnRemAddress.127.0.0.1.1415.127.0.0.1.23=127.0.0.1
tcpConnRemAddress.140.252.1.29.1023.140.252.1.11.513=140.252.1.11 

tcpConnReinPort.0.0.0.0.21.0.0.0.0.0=0
tcpConnRemPort.127.0.0.1.23.127.0.0.1.1415=1415 
tcpConnRemPort.127.0.0.1.1415.127.0.0.1.23=23
tcpConnRemPort.140.252.1.29.1023.140.252.1.11.513=513 

For the rlogin to gemini only one entry appears, since gemini is a different host. We only see 
the client end of the connection (local port 1023), but both ends of the Telnet connection appear 
(client port 1415 and server port 23), since the connection is through the loopback interface. We can 
also see that the listening FTP server has a local IP address of 0.0.0.0, indicating it will accept 
connections on any interface. 

25.9 Additional Examples

We now return to some earlier problems we encountered in the text, and use SNMP to
understand what's happening. 

Interface MTU

Recall our experiment in Section 11.6, in which we tried to determine the MTU of the SLIP link 
from netb to sun. We can now use SNMP to obtain this MTU. We first obtain the interface 
number (ipRoutelfIndex) of the SLIP link (140.252.1.29) from the IP routing table. Using this 
we go into the interface table and fetch the MTU (along with the description and type) of the SLIP 
link: 

sun % snmpi -a netb -c secret 

snmpi> get ipRouteIfIndex.140.252.1.29 
ipRouteIfIndex.140.252.1.29=12 

snmpi> get ifDescr.l2 ifType.12 ifMtu.l2
ifDescr.l2="Telebit NetBlazer dynamic dial virtual interface"
ifType.l2=other(1)
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ifMtu.l2=1500 

We see that even though the link is a SLIP link, the MTU is set to the Ethernet value of 1500, 
probably to avoid fragmentation. 

Routing Tables

Recall our discussion of address sorting performed by the DNS in Section 14.4. We showed how 
the first IP address returned by the name server was the one that shared a subnet with the client. We 
also mentioned that using the other IP address would probably work, but could be less efficient. 
Let's look at using the alternative IP address and see what happens. We'll use SNMP to look at a 
routing table entry, and tie together many concepts from earlier chapters dealing with IP routing. 

The host gemini is multihomed, with two Ethernet interfaces. First let's verify that we can Telnet 
to both addresses: 

sun % telnet 140.252.1.11 daytime
Trying 140.252.1.11 ...
Connected to 140.252.1.11.
Escape character is '^]'.
Sat Mar 27 09:37:24 1993
Connection closed by foreign host. 

sun % telnet 140.252.3.54 daytime
Trying 140.252.3.54 ...
Connected to 140.252.3.54.
Escape character is '^]'.
Sat Mar 27 09:37:35 1993
Connection closed by foreign host. 

So there is no connectivity difference between the two addresses. Now we'll use traceroute to 
see if there is a different route for each address: 

sun % traceroute 140.252.1.11 
traceroute to 140.252.1.11 (140.252.1.11), 30 hops max, 40 byte 
packets
1 netb (140.252.1.183) 299 ms 234 ms 233 ms
2 gemini (140.252.1.11) 233 ms 228 ms 234 ms 

sun % traceroute 140.252.3.54 
traceroute to 140.252.3.54 (140.252.3.54), 30 hops max, 40 byte 
packets
1 netb (140.252.1.183) 245 ms 212 ms 234 ms
2 swnrt (140.252.1.6) 233 ms 229 ms 234 ms
3 gemini (140.252.3.54) 234 ms 233 ms 234 ms 

There is an extra hop if we use the address on subnet 140.252.3. Let's find the reason for the extra 
hop. (The router swnrt is R3 from Figure 3.6.) 
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Figure 25.29 shows the arrangement of the systems. We can tell from the traceroute output that 
the host gemini and the router swnrt are both connected to two networks: 140.252.1 and 
140.252.3. 

Figure 25.29 Topology of systems being used for example.

Recall in Figure 4.6 that we explained how proxy ARP is used by the router netb to make it appear 
as though sun was directly connected to the Ethernet 140.252.1. We've also omitted the modems 
on the SLIP link between sun and netb, since they're not relevant to this discussion. 

In Figure 25.29 we show the path of the Telnet data using dashed arrows, when the address 
140.252.3.54 is specified. How do we know that the return packets go directly from gemini to 
netb, and don't go back the way they came? We use our version of traceroute with loose 
source routing from Section 8.5: 

sun % traceroute -g 140.252.3.54 sun
traceroute to sun (140.252.13.33), 30 hops max, 40 byte packets 
1 netb (140.252.1.183) 244 ms 256 ms 234 ms
2 * * *
3 gemini (140.252.3.54) 285 ms 227 ms 234 ms
4 netb (140.252.1.183) 263 ms 259 ms 294 ms
5 sun (140.252.13.33) 534 ms 498 ms 504 ms 

When we specify loose source routing, the router swnrt never responds. If we look at the earlier 
output from traceroute, without source routing, we see that swnrt is indeed the second hop. 
The reason for the timeouts must be that the router does not generate the ICMP time exceeded 
errors when the datagram specifies loose source routing. What we are looking for in this 
traceroute output is that the return path from gemini (TTLs 3,4, and 5) goes directly to 
netb, and not through the router swnrt. 

The question that we need SNMP to answer is what does the routing table entry on netb look like 

file:///D|/Documents%20and%20Settings/bigini/Doc...omenet2run/tcpip/tcp-ip-illustrated/snmp_sim.htm (28 of 33) [12/09/2001 14.47.40]



Chapter 25. SNMP: Simple Network Management Protocol

for the destination network 140.252.3? It is netb that sends the packets to swnrt and not directly 
to gemini. We use the get command to fetch the value of the next-hop router for this destination: 

sun % snmpi -a netb -c secret get ipRouteNextHop.140.252.3.0
ipRouteNextHop.l40.252.3.0=140.252.1.6 

This routing table entry tells netb to send the packets to swnrt, which is what we see happen. 

Why does gemini send the packets directly back through netb? Because on gemini the 
destination address of the return packets is 140.252.1.29, and that network (140.252.1) is a directly 
connected interface. 

What we're seeing in this example is a policy routing decision. The default route to network 
140.252.3 is through the router swnrt because gemini is intended to be a multihomed host, not a 
router. This is an example of a multihomed host that does not want to be a router. 

25.10 Traps

All the examples we've looked at so far in this chapter have been from the manager to the agent. As 
shown in Figure 25.1, it's also possible for the agent to send a trap to the manager, to indicate that 
something has happened on the agent that the manager might want to know about. Traps are sent to 
UDP port 162 on the manager. 

In Figure 25.2 we showed the format of the trap PDU. We'll go through all the fields in this 
message when we look at some tcpdump output below. 

Six specific traps are defined, with a seventh one allowing a vendor to implement an enterprise-
specific trap. Figure 25.30 describes the values for the trap type in the trap message (Figure 25.2). 

trap
type

Name Description

0 coldStart Agent is initializing itself. 

1 warmStart Agent is reinitializing itself. 

2 linkDown 
An interface has changed from the up to the down state 
(Figure 25.18). The first variable in the message identifies 
the interface. 

3 linkUp 
An interface has changed from the down to the up state 
(Figure 25.18). The first variable in the message identifies 
the interface. 

4 authenticationFailure 
A message was received from an SNMP manager with an 
invalid community. 

5 egpNeighborLoss 
An EGP peer has changed to the down state. The first 
variable in the messages contains the IP address of the 
peer. 
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6 enterpriseSpecific Look in the specific code field for information on the trap. 

Figure 25.30 Trap types.

We can see some traps using tcpdump. We'll start the SNMP agent on the system sun and see it 
generate a coldStart trap. (We tell the agent to send traps to the host bsdi. Although we're not 
running a manager on bsdi to handle the traps, we can run tcpdump and see what packets get 
generated. Recall from Figure 25.1 that a trap is sent from the agent to the manager, but there is no 
acknowledgment sent by the manager, so we don't need a manager to handle the traps.) We then 
send a request using the snmpi program, but with an invalid community name. This should 
generate an authenticationFailure trap. Figure 25.31 shows the output. 

1 0.0 
sun.snmp > bsdi.snmp-trap: C=traps Trap (28) 
E:unix.1.2.5 [140.252.13.33] coldStart 20 

2
18.86 
(18.86) 

sun.snmp > bsdi.snmp-trap: C=traps Trap (29) 
E:unix.1.2.5 [140.252.13.33] 
authenticationFailure 1907 

Figure 25.31 tcpdump output of traps generated by SNMP agent.

First we notice that both UDP datagrams are from the SNMP agent (port 161, printed as the name 
snmp) with a destination port of 162 (printed as the name snmp-trap). 

The notation C=traps is the community name of the trap message. This is a configuration option 
with the ISODE SNMP agent being used. 

The next notation. Trap(28) in line 1 and Trap(29) in line 2 is the PDU type and length. 

The next field of output for both lines is E:unix.1.2.5. This is the enterprise: the agent's 
sysObjectID. It falls under the 1.3.6.1.4.1 node of the tree in Figure 25.6 
(iso.org.dod.internet.private.enterprises), so this agent's object identifier is 
1.3.6.1.4.1.4.1.2.5. Its abbreviated name is unix.agents.fourBSD-isode.5. The final 
number (5) is the version number of this release of the ISODE agent. This enterprise value identifies 
the agent software generating the trap. 

The next field output by tcpdump is the IP address of the agent (140.252.13.33). 

The trap type is printed as coldStart on line 1, and authenticationFailure on line 2. 
These correspond to trap type values of 0 and 4, respectively (Figure 25.30). Since these are not 
enterprise-specific traps, the specific code must be 0, and is not printed. 

Next comes the timestamp field, printed as 20 and 1907. This is a TimeTicks value, representing 
the number of hundredths of a second since the agent initialized. In the case of the cold start trap, 
the trap was generated 200 ms after the agent was initialized. The tcpdump output indicates that 
the second trap occurred 18.86 seconds after the first one, which corresponds to the printed value of 
1907 hundredths of a second, minus 200 ms. 
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Figure 25.2 indicates that a trap message can contain interesting variables that the agents wants to 
send to the manager, but there aren't any in our examples. 

25.11 ASN.1 and BER

The formal specification of SNMP uses Abstract Syntax Notation 1 (ASN.1) and the actual 
encoding of the bits in the SNMP messages (Figure 25.2) uses the corresponding Basic Encoding 
Rules (BER). Unlike most texts that describe SNMP, we have purposely left a discussion of ASN.1 
and BER until the end. When they're discussed first, it can confuse the reader and obfuscate the real 
purpose of SNMP-network management. In this section we only give an overview of these two 
topics. Chapter 8 of [Rose 1990] covers ASN.1 and BER in detail. 

ASN.1 is a formal language for describing data and the properties of the data. It says nothing about 
how the data is stored or encoded. All the fields in the MIB and the SNMP messages are described 
using ASN.1. For example, the ASN.1 definition of the data type IpAddress from the SMI looks 
like: 

IpAddress ::=

[APPLICATION 0] -- in network-byte order

IMPLICIT OCTET STRING (SIZE 
(4)) 

Similarly, from the MIB we find the following definition of a simple variable: 

udpNoPorts OBJECT-TYPE

SYNTAX Counter 

ACCESS read-only 

STATUS mandatory 

DESCRIPTION 

"The total number of received UDP datagrams 
for which there was no application at the 
destination port." 

:: = { udp 2 } 

The definition of tables using SEQUENCE and SEQUENCE OF is more complex. 

Given these ASN.1 definitions, there are many ways to encode the data into a stream of bits for 
transmission. SNMP uses BER. The representation of a small integer, such as 64, requires 3 bytes 
using BER. One byte says the value is an integer, the next byte says how many bytes are used to 
store the integer (1), and the final byte contains the binary value. 

Fortunately the details of ASN.1 and BER are only important to implementors of SNMP. They are 
not fundamental to the understanding and use of network management. 
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25.12 SNMP Version 2

During 1993 11 RFCs were published defining revisions to SNMP The first of these, RFC 1441 
[Case et al. 1993], provides an introduction to SNMP Version 2 (SNMPv2). Two books also 
describe SNMPv2 [Stallings 1993; Rose 1994]. Two publicly available implementations already 
exist (see Appendix B.3 of [Rose 1994]), but vendor implementations probably won't be widely 
available until 1994. 

In this section we describe the major differences from SNMPv1 to SNMPv2. 

1.  A new packet type get-bulk-request allows the manager to retrieve large blocks of 
data efficiently. 

2.  Another new packet type inform-request allows one manager to send information to 
another manager. 

3.  Two new MIBs are defined: the SNMPv2 MIB and the SNMPv2-M2M MIB (Manager-to-
Manager). 

4.  SNMPv2 provides security enhancements over SNMPv1. In SNMPv1 the community name 
passed from the manager to the agent is a cleartext password. SNMPv2 can provide 
authentication and privacy. 

As vendors start to provide SNMPv2-capable agents, management stations will also appear that can 
handle both. [Routhier 1993] describes extending an implementation of SNMPv1 to support 
SNMPv2. 

25.13 Summary

SNMP is a simple request-reply protocol between an SNMP manager and an SNMP agent. The 
management information base (MIB) defines the variables that are maintained by the agent, for the 
manager to query or set. Only a limited number of data types are used to define these variables. 

All the variables are identified by object identifiers, a hierarchical naming scheme consisting of 
long strings of numbers that are normally abbreviated into a simple name, for human readability. A 
specific instance of a variable is identified by appending an instance to the object identifier. 

Many SNMP variables are contained in tables, with a fixed number of columns, but a variable 
number of rows. Fundamental to SNMP is the identification scheme used to identify each row in a 
table (when we don't know how many rows are in the table), and the lexicographic ordering 
(column-row order). The end result, SNMP's get-next operator, is basic to any SNMP manager. 

We then described the following groups of SNMP variables: system, interface, address translation, 
IP, ICMP, TCP, and UDP. This was followed by two examples, one to determine the MTU of an 
interface, and the other to look at the routing table of a router. 

We completed the chapter by looking at SNMP traps, a way for the agent to notify the manager that 
something significant has occurred, and a brief mention of ASN.1 and BER. These latter two topics 
are probably the most confusing aspects of SNMP, but fortunately their details are needed only by 
implementors. 
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Exercises

25.1 We said that using two different ports (161 and 162) allows a system to run both a manager 
and agent. What would happen if the same port number were used for both? 

25.2 How would you list an entire routing table using get-next? 
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Telnet and Rlogin: Remote Login
26.1 Introduction

Remote login is one of the most popular Internet applications. Instead of having a 
hardwired terminal on each host, we can login to one host and then remote login across the 
network to any other host (that we have an account on, of course). 

Two popular applications provide remote login across TCP/IP internets. 

1.  Telnet is a standard application that almost every TCP/IP implementation provides. 
It works between hosts that use different operating systems. Telnet uses option 
negotiation between the client and server to determine what features each end can 
provide. 

2.  Rlogin is from Berkeley Unix and was developed to work between Unix systems 
only, but it has been ported to other operating systems also. 

In this chapter we look at both Telnet and Rlogin. We start with Rlogin because it's 
simpler. 

Telnet is one of the oldest of the Internet applications, dating back to 1969 on the ARPANET. Its name is 
actually an acronym that stands for "telecommunications network protocol." 

Remote login uses the client-server paradigm. Figure 26.1 shows the typical arrangement of 
the Telnet client and server. (We could draw a similar picture for an Rlogin client and 
server.) 

Figure 26.1 Overview of Telnet client-server.

There are numerous points in this figure. 

1.  The Telnet client interacts with both the user at the terminal and the TCP/IP 
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protocols. Normally everything we type is sent across the TCP connection, and 
everything received from the connection is output to our terminal. 

2.  The Telnet server often deals with what's called a pseudo-terminal device, at least 
under Unix systems. This makes it appear to the login shell that's invoked on the 
server, and to any programs run by the login shell, that they're talking to a terminal 
device. Some applications, such as full-screen editors, assume they're talking to a 
terminal device. Indeed, making the login shell on the server think that it's talking to 
a terminal is often one of the hardest programming aspects involved in writing a 
remote login server. 

3.  Only a single TCP connection is used. Since there are times when the Telnet client 
must talk to the Telnet server (and vice versa) there needs to be some way to 
delineate commands that are sent across the connection, versus user data. We'll see 
how both Telnet and Rlogin handle this. 

4.  We show dashed boxes in Figure 26.1 to note that the terminal and pseudoterminal 
drivers, along with the TCP/IP implementation, are normally part of the operating 
system kernel. The Telnet client and server, however, are often user applications. 

5.  We show the login shell on the server host to reiterate that we have to login to the 
server. We must have an account on that system to login to it, using either Telnet or 
Rlogin. 

It is interesting to compare the complexity of Telnet and Rlogin by looking at the number 
of lines of source code required to implement the client and server for each. Figure 26.2 
shows these counts for the standard Telnet and Rlogin client and server, as distributed in 
different versions from Berkeley (Figure 1.10). 

Figure 26.2 Comparison of Telnet/Rlogin/client/server, number of lines of source code.

It is the continuing addition of new options to Telnet that causes its implementation to 
grow, while Rlogin remains simple and stable. 

Remote login is not a high-volume data transfer application. As we've mentioned earlier, 
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lots of small packets are normally exchanged between the two end systems. [Paxson 1993] 
found that the ratio of bytes sent by the client (the user typing at the terminal) to the 
number of bytes sent back by the server is about 1:20. This is because we type short 
commands that often generate lots of output. 

26.2 Rlogin Protocol

Rlogin appeared with 4.2BSD and was intended for remote login only between Unix hosts. 
This makes it a simpler protocol than Telnet, since option negotiation is not required when 
the operating system on the client and server are known in advance. Over the past few 
years, Rlogin has also been ported to several non-Unix environments. 

RFC 1282 [Kantor 1991] specifies the Rlogin protocol. As with the Routing Information 
Protocol (RIP) RFC, however, this one was written after Rlogin had been in use for many 
years. Chapter 15 of [Stevens 1990] describes programming remote login clients and 
servers, and provides the complete source code for the Rlogin client and server. Chapters 
25 and 26 of [Comer and Stevens 1993] provide the implementation details and source 
code for a Telnet client. 

Application Startup

Rlogin uses a single TCP connection between the client and server. After the normal TCP 
connection establishment is complete, the following application protocol takes place 
between the client and server. 

1.  The client writes four strings to the server; (a) a byte of 0, (b) the login name of the 
user on the client host, terminated by a byte of 0, (c) the login name of the user on 
the server host, terminated by a byte of 0, (d) the name of the user's terminal type, 
followed by a slash, followed by the terminal speed, terminated by a byte of 0. Two 
login names are required because users aren't required to have the same login name 
on each system. 

The terminal type is passed from the client to the server because many full-screen 
applications need to know it. The terminal speed is passed because some 
applications operate differently depending on the speed. For example, the vi editor 
works with a smaller window when operating at slower speeds, so it doesn't take 
forever to redraw the window. 

2.  The server responds with a byte of 0. 
3.  The server has the option of asking the user to enter a password. This is handled as 

normal data exchange across the Rlogin connection-there is no special protocol. The 
server sends a string to the client (which the client displays on the terminal), often 
Password:. If the client does not enter a password within some time limit (often 
60 seconds), the server closes the connection. 
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We can create a file in our home directory on the server (named .rhosts) with 
lines containing a hostname and our username. If we login from the specified host 
with that username, we are not prompted for a password. Most security texts, such 
as [Curry 1992], strongly suggest never using this feature because of the security 
hole it presents. 

If we are prompted by the server for a password, what we type is sent to the server 
as cleartext. Each character of the password that we type is sent as is. Anyone who 
can read the raw network packets can read the characters of our password. Newer 
implementations of the Rlogin client, such as 4.4BSD, first try to use Kerberos, 
which avoids sending cleartext passwords across the network. This requires a 
compatible server that also supports Kerberos. ([Curry 1992] describes Kerberos in 
more detail.) 

4.  The server normally sends a request to the client asking for the terminal's window 
size (described later). 

The client sends 1 byte at a time to the server and all echoing is done by the server. We saw 
this in Section 19.2. Also, the Nagle algorithm is normally enabled (Section 19.4), causing 
multiple input bytes to be sent as a single TCP segment across slower networks. The 
operation is simple: everything typed by the user is sent to the server, and everything sent 
by the server to the client is displayed on the terminal. 

Additional commands exist that can be sent from the client to the server and from the 
server to the client. Let's first describe the scenarios that require these commands. 

Flow Control

By default, flow control is done by the Rlogin client. The client recognizes the ASCII 
STOP and START characters (Control-S and Control-Q) typed by the user, and stops or 
starts the terminal output. 

If this isn't done, each time we type Control-S to stop the terminal output, the Control-S 
character is sent across the network to the server, and the server stops writing to the 
network-but up to a window's worth of output may have been already written by the server 
and will be displayed before the output is stopped. Hundreds or thousands of bytes of data 
will scroll down the screen before the output stops. Figure 26.3 shows this scenario. 

Figure 26.3 Rlogin connection if server performs STOP/START processing.

To an interactive user this delayed response to the Control-S character is bad. 
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Sometimes, however, the application running on the server needs to interpret each byte of 
input, and doesn't want the client looking at the input bytes and treating Control-S and 
Control-Q specially. (The emacs editor is an example of an application that uses these two 
characters for its own commands.) To handle this, the capability is provided for the server 
to tell the client whether or not to perform flow control. 

Client Interrupt

A problem similar to flow control occurs when we type the interrupt key (often DELETE 
or Control-C), to abort the process currently running on the server. The scenario is similar 
to what we show in Figure 26.3, with up to one window full of data in the pipe from the 
server to the client, while the interrupt key makes its way across the connection in the other 
direction. We want the interrupt key to terminate what's being displayed on the screen as 
quickly as possible. 

In both this case and the flow control scenario, it is rare for the flow of data from the client 
to the server to be stopped by flow control. This direction contains only characters that we 
type. Therefore it is not necessary for these special input characters (Control-S or interrupt) 
to be sent from the client to the server using TCP's urgent mode. 

Window Size Changes

With a windowed display we can dynamically change the size of the window while an 
application is running. Some applications (typically those that manipulate the entire 
window, such as a full-screen editor) need to know these changes. Most current Unix 
systems provide the capability for an application to be told of these window size changes. 

With remote login, however, the change in the window size occurs on the client, but the 
application that needs to be told is running on the server. Some form of notification is 
required for the Rlogin client to tell the server that the window size has changed, and what 
the new size is. 

Server to Client Commands

We can now summarize the four commands that the Rlogin server can send to the client 
across the TCP connection. The problem is that only a single TCP connection is used, so 
the server needs to mark these command bytes so the client knows to interpret them as 
commands, and not display the bytes on the terminal. TCP's urgent mode is used for this 
(Section 20.8). 

When the server sends a command to the client, the server enters urgent mode with the last 
byte of urgent data being the command byte from the server. When the client receives the 
urgent mode notification, it reads from the connection, saving the data until the command 
byte (the last byte of urgent data) is encountered. The data that's saved by the client can be 
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displayed on the terminal, or discarded, depending on the command. Figure 26.4 describes 
the four command bytes. 

Byte Description

0x02

Flush output. The client discards all the data received from the server, up through 
the command byte (the last byte of urgent data). The client also discards any 
pending terminal output that may be buffered. The server sends this command 
when it receives the interrupt key from the client. 

0x10 The client stops performing flow control. 

0x20 The client resumes flow control processing. 

0x80
The client responds immediately by sending the current window size to the server, 
and notifies the server in the future if the window size changes. This command is 
normally sent by the server immediately after the connection is established. 

Figure 26.4 Rlogin commands from the server to the client.

One reason for sending these commands using TCP's urgent mode is that the first command 
("flush output") needs to be sent to the client even if the flow of data from the server to the 
client is stopped by TCP's windowed flow control. This condition-the server's output to the 
client being flow control stopped-is likely to occur, since processes running on the server 
can usually generate output faster than the client's terminal can display it. Conversely, it is 
rare for the flow of data from the client to the server to be flow control stopped, since this 
direction of data flow contains the characters that we type. 

Recall our example in Figure 20.14 where we saw the urgent notification go across the 
connection even though the window size was 0. (We'll see another example of this in the 
next section.) The remaining three commands aren't time critical, but they use the same 
technique for symplicity. 

Client to Server Commands

Only one command from the client to the server is currently defined: sending the current 
window size to the server. Window size changes from the client are not sent to the server 
unless the client receives the command 0x80 (Figure 26.4) from the server. 

Again, since a single TCP connection is used, the client must have some way of marking 
the commands that it sends across the connection, so that the server doesn't pass them to the 
application running on the server. The client does this by sending 2 bytes of 0xff followed 
by two special flag bytes. 

For the window size command, the two flag bytes are each the ASCII character s. 
Following this are four 16-bit values (in network byte order): the number of rows (e.g., 25), 
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the number of characters per column (e.g., 80), the number of pixels in the X direction, and 
the number of pixels in the Y direction. Often the final two 16-bit values are 0, because 
most applications invoked by the Rlogin server deal with the size of the screen in 
characters, not pixels. 

This form of command that we've described from the client to the server is called in-band 
signaling since the command bytes are sent in the normal stream of data. The bytes used to 
denote these in-band commands, 0xff, are chosen because we are unlikely to type keys 
that generate these bytes. But the Rlogin method is not perfect. If we could generate two 
consecutive bytes of 0xff from our keyboard, followed by two ASCII s's, the next 8 bytes 
we type will be interpreted as window sizes. 

The Rlogin commands from the server to the client, which we described in Figure 26.4, are 
termed out-of-band signaling since the technique used is called "out-of-band data" by most 
APIs. But recall our discussion of TCP's urgent mode in Section 20.8 where we said that 
urgent mode is not out-of-band data, and the command byte is sent in the normal stream of 
data, pointed to by the urgent pointer. 

Since in-band signaling is used from the client to the server, the server must examine every 
byte that it receives from the client, looking for two consecutive bytes of 0xff. But with 
out-of-band signaling used from the server to the client, the client does not need to examine 
the data that it receives from the server, until the server enters urgent mode. Even in urgent 
mode, the client only needs to look at the byte pointed to by the urgent pointer. Since the 
ratio of bytes from the client to server, versus from the server to client, is about 1:20, it 
makes sense to use in-band signaling for the low-volume data flow (client to server) and 
out-of-band signaling for the higher volume data flow (server to client). 

Client Escapes

Normally everything we type to the Rlogin client is sent to the server. Occasionally, 
however, we want to talk directly to the Rlogin client program itself, and not have what we 
type sent to the server. This is done by typing a tilde (~) as the first character of a line, 
followed by one of the following four characters: 

1.  A period terminates the client. 
2.  The end-of-file character (often Control-D) terminates the client. 
3.  The job control suspend character (often Control-Z) suspends the client. 
4.  The job-control delayed-suspend character (often Control-Y) suspends only the 

client input. Everything we type is now interpreted by whatever program we run on 
the client host, but anything sent to the Rlogin client by the Rlogin server is output 
to our terminal. This can be used when we start a long running job on the server and 
we want to know when it outputs something, but we want to continue running other 
programs on the client. 
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The last two commands are supported only if the client Unix system supports job control. 

26.3 Rlogin Examples

We'll look at two examples: the first shows the client-server protocol at the start of an 
Rlogin session, and the second shows what happens when we type our interrupt key to 
abort a running process on the server that is generating lots of output. In Figure 19.2 we 
showed the normal flow of data across an Rlogin session. 

Initial Client-Server Protocol

Figure 26.5 shows the time line for an Rlogin connection from the host bsdi to the server 
on svr4. (We have removed the normal TCP connection establishment, the window 
advertisements, and the type-of-service information.) 
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Figure 26.5 Time line for an Rlogin connection.

The protocol we described in the previous section can be seen in segments 1-9. The client 
sends a single byte of 0 (segment 1) followed by three strings (segment 3). In this example 
the three strings are rstevens (the login name on the client), rstevens (the login 
name on the server), and ibmpc3/9600 (the terminal type and speed). The server 
authenticates this and responds with a byte of 0 (segment 5). 

The server then sends the window request command (segment 7). It is sent using TCP's 
urgent mode and again we see an implementation (SVR4) that uses the older, but more 
common interpretation, where the urgent pointer specifies the sequence number plus one of 
the last byte of urgent data. The client responds with 12 bytes of data: 2 bytes of 0xff, 2 
bytes of s, and 4 16-bit values. 

The next four segments from the server (10, 12, 14, and 16) are the operating system 
greeting from the server. This is followed by the 7-byte shell prompt on the server: "svr4 
% " in segment 18. 

The data entered by the client is then sent 1 byte at a time, as shown in Figure 19.2. The 
connection can be closed by either end. If we type a command that causes the shell running 
on the server to terminate, the server's end does the active close. If we type an escape to the 
Rlogin client (normally a tilde), followed by a period or our end-of-file character, the client 
does the active close. 

The client port number in Figure 26.5 is 1023, which is within the range controlled by the IANA (Section 
1.9). The Rlogin protocol requires the client to have a port number less than 1024, termed a reserved port. 
On Unix systems, a client cannot obtain a reserved port unless the process has superuser privilege. This is 
part of the authentication between the client and server, which allows the user to login without entering a 
password. [Stevens 1990] discusses these reserved ports and the authentication used between the client and 
server in more detail. 

Client Interrupt Key

Let's look at another example, this one involving TCP's urgent mode, when the flow of data 
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has been stopped and we type the interrupt key. This example brings together many of the 
TCP algorithms we described earlier: urgent mode, silly window avoidance, windowed 
flow control, and the persist timer. We start the client on the host sun. We login to bsdi, 
output a big text file to the terminal, and then stop the output by typing Control-S. When 
the output stops we type our interrupt key (DELETE) to abort the program: 

sun % rlogin bsdi 

all the operating system greetings 

bsdi % cat 
/usr/share/misc/termcap 

output big file to terminal 

lots of terminal output 
we type Control-S to stop the output, and 
wait until the output stops 

^? type our interrupt key, and this is echoed 

bsdi % then our prompt is output 

The following points summarize the state of the client, the server, and the connection. 

1.  We stop the terminal output by typing Control-S. 
2.  The Rlogin client is blocked from writing to the terminal, since the terminal's output 

buffer will fill. 
3.  The Rlogin client therefore cannot read from the network, so the client's TCP 

receive buffer fills. 
4.  The client's TCP advertises a window of 0 to stop the sender (the Rlogin server's 

TCP) when the receive buffer fills. 
5.  The server's TCP send buffer fills when its output is stopped by the client's window 

of 0. 
6.  The Rlogin server is stopped, since the send buffer is full. Therefore, the Rlogin 

server cannot read from the application that's running on the server (cat). 
7.  The cat application stops when its output buffer fills. 
8.  We then type the interrupt key to terminate the cat application on the server. This is 

sent from the client TCP to the server TCP because this direction of data flow has 
not been flow-control stopped. 

9.  The cat application receives the interrupt, and terminates. This causes its output 
buffer (which the Rlogin server is reading) to be flushed, which wakes up the Rlogin 
server. The Rlogin server then enters urgent mode and sends the "flush output" 
command (0x02) to the client. 

Figure 26.6 is a summary of the data flow from the server to the client. (The sequence 
numbers are taken from the time line that we show next.) 

file:///D|/Documents%20and%20Settings/bigini/Docum...ti/homenet2run/tcpip/tcp-ip-illustrated/telnet.htm (10 of 26) [12/09/2001 14.47.45]



Chapter 26. Telnet and Rlogin: Remote Login

Figure 26.6 Summary of data flow from server to client in Rlogin example.

The shaded portion of the send buffer is the unused portion of the 4096-byte buffer. Figure 
26.7 is the time line for this example. 
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Figure 26.7 Rlogin example when client stops output and then aborts program on server.

In segments 1-3 the server sends full-sized segments to the client. The ACK in segment 4 
only advertises a window of 1024 because the output is stopped: since the client can't write 
to the terminal, it can't read from the network. Segment 5 is not full sized, and the ACK in 
segment 6 advertises only the remaining space in the 4096-byte receive buffer. The client 
must advertise a window of 349 bytes, because if it advertised a window of 0 (which we 
might expect from silly window avoidance. Section 22.3), it would be moving the right 
edge of the window to the left, which must not happen (Section 20.3). Since the server can't 
send a full-sized buffer when it receives segment 6, it performs silly window avoidance, 
sends nothing, and sets a 5-second persist timer. When the timer expires it sends 349 bytes 
(segment 7) and since the client's output is still stopped, the acknowledgment in segment 8 
advertises a window of 0. 

At this point we type our interrupt key and it is transmitted in segment 9. A window of 0 
bytes is still advertised. When the Rlogin server receives the interrupt key it passes it to the 
application (cat) and the application terminates. Since the application was terminated by a 
terminal interrupt, its output is flushed and this is passed to the Rlogin server. This causes 
the server to send the "flush output" command to the client using TCP's urgent mode. We 
see this in segment 10. Notice, however, that the command byte of 0x02 is at sequence 
number 30146 (the urgent pointer minus one). There are 3419 bytes ahead of the command 
byte (sequence numbers 26727:30145) buffered at the server that the server wants to send. 

Segment 10, with the urgent notification, contains the next byte of data from the server to 
the client (sequence number 26727). It does not contain the "flush output" command byte. 
The server can send this single byte in segment 10 because we saw in Section 22.2 that a 
sender with data can always probe a closed window by sending 1 byte of data. The client's 
TCP responds immediately in segment II with a zero window, but the receipt of the urgent 
notification in segment 10 causes the client's TCP to notify the Rlogin client that the other 
end of the connection has entered urgent mode. 

Once the Rlogin client receives the urgent notification from its TCP, and starts reading the 
data that's already waiting for it, the window opens up (segment 13). The data buffered by 
the server is then sent (segments 14, 15, 17, and 18). The last of these contains the final 
byte of urgent data (sequence number 30146), which contains the command byte from the 
server to the client. When the client reads this byte it discards all the data that it read in 
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segments 14, 15, 17, and 18, and flushes its terminal output queue. The next 2 bytes, in 
segment 19, are the echo of the interrupt key: "^?". The final segment we show (21) 
contains the shell prompt from the client. 

This example shows how data can be buffered at both ends of the connection when the 
client types the interrupt key. If this action only discarded the 3419 bytes buffered at the 
server, without discarding the 4096 bytes at the client, these 4096 bytes of data, along with 
whatever was buffered in the terminal output queue on the client, would be output. 

26.4 Telnet Protocol

Telnet was designed to work between any host (i.e., any operating system) and any 
terminal. Its specification in RFC 854 [Postel and Reynolds 1983a] defines the lowest 
common denominator terminal, called the network virtual terminal (NVT). The NVT is an 
imaginary device from which both ends of the connection, the client and server, map their 
real terminal to and from. That is, the client operating system must map whatever type of 
terminal the user is on to the NVT. The server must then map the NVT into whatever 
terminal type the server supports. 

The NVT is a character device with a keyboard and printer. Data typed by the user on the 
keyboard is sent to the server, and data received from the server is output to the printer. By 
default the client echoes what the user types to the printer, but we'll see that options are 
normally supported to change this. 

NVT ASCII

The term NVT ASCII refers to the 7-bit U.S. variant of the ASCII character set used 
throughout the Internet protocol suite. Each 7-bit character is sent as an 8-bit byte, with the 
high-order bit set to 0. 

An end-of-line is transmitted as the 2-character sequence CR (carriage return) followed by 
an LF (linefeed). We show this as \r\n. A carriage return is transmitted as the 2-character 
sequence CR followed by a NUL (byte of 0). We show this as \r\0. 

In the following chapters we'll see that FTP, SMTP, Finger, and Whois all use NVT ASCII 
for client commands and server responses. 

Telnet Commands

Telnet uses in-band signaling in both directions. The byte 0xff (255 decimal) is called 
IAC, for "interpret as command." The next byte is the command byte. To send the data byte 
255, two consecutive bytes of 255 are sent. (In the previous paragraph we said that the data 
stream is NVT ASCII, which are 7-bit values, implying a data byte of 255 cannot be sent 
by Telnet. There is a binary option for Telnet, RFC 856 [Postel and Reynolds 1983b], 
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which we don't discuss, that allows 8-bit data transmission.) Figure 26.8 lists all the Telnet 
commands. 

Name
Code 

(decimal)
Description

EOF 236 end-of-file

SUSP 237 suspend current process (job control) 

ABORT 238 abort process

EOR 239 end of record

SE 240 suboption end

NOP 241 no operation

DM 242 data mark

BRK 243 break

IP 244 interrupt process

AO 245 abort output

AYT 246 are you there?

EC 247 escape character

EL 248 erase line

GA 249 go ahead

SB 250 suboption begin

WILL 251 option negotiation (Figure 26.9) 

WONT 252 option negotiation

IX) 253 option negotiation

DONT 254 option negotiation

IAC 255 data byte 255

Figure 26.8 Telnet commands, when preceded by IAC (255).

Since many of these commands are rarely used, we describe the important commands when 
we encounter them in the discussion below and in the examples in the next section. 

Option Negotiation

Although Telnet starts with both sides assuming an NVT, the first exchange that normally 
takes place across a Telnet connection is option negotiation. The option negotiation is 
symmetric - either side can send a request to the other. Either side can send one of four 
different requests for any given option. 
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1.  WILL. The sender wants to enable the option itself. 
2.  DO. The sender wants the receiver to enable the option. 
3.  WONT. The sender wants to disable the option itself. 
4.  DONT. The sender wants the receiver to disable the option. 

Since the rules of Telnet allow a side to either accept or reject a request to enable an option 
(cases 1 and 2 above), but require a side to always honor a request to disable an option 
(cases 3 and 4 above), these four cases lead to the six scenarios shown in Figure 26.9. 

Sender Receiver Description

1. WILL 
-> 
<- DO

sender wants to enable option 
receiver says OK 

2. WILL 
->
<- DONT 

sender wants to enable option 
receiver says NO 

3. DO 
->
<- WILL 

sender wants receiver to enable option
receiver says OK 

4. DO 
->
<- WONT 

sender wants receiver to enable option
receiver says NO 

5. WONT 
->
<- DONT 

sender wants to disable option 
receiver must say OK 

6. DONT 
->
<- WONT 

sender wants receiver to disable option
receiver must say OK 

Figure 26.9 Six scenarios for Telnet option negotiation.

Option negotiation requires 3 bytes: the IAC byte, followed by the byte for WILL, DO, 
WONT, or DONT, followed by an ID byte specifying the option to enable or disable. 
Currently more than 40 different options can be negotiated. The Assigned Numbers RFC 
specifies the value for the option byte and the relevant RFC that describes the option. 
Figure 26.10 shows the option codes that we'll see in this chapter. 

Option ID 
(decimal)

Name RFC

1 echo 857

3 suppress go ahead 858

5 status 859

6 timing mark 860

24 terminal type 1091 

31 window size 1073 
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32 terminal speed remote 1079 

33 flow control 1372 

34 linemode 1184 

36 environment variables 1408 

Figure 26.10 Telnet option codes discussed in the text.

Telnet option negotiation, like most of the Telnet protocol, is intended to be symmetrical. 
Either end can initiate the negotiation of an option. But remote login is not a symmetrical 
application. The client performs some tasks, and the server performs others. We'll see as we 
look at some of the Telnet options that some are intended only for the client (asking to 
enable linemode, for example), and some are only for the server. 

Suboption Negotiation

Some options require more information than just "enable" or "disable." Specifying the 
terminal type is an example: an ASCII string must be sent by the client identifying the type 
of terminal. To handle these options, suboption negotiation is defined. 

RFC 1091 [VanBokkelen 1989] defines the suboption negotiation for the terminal type. 
First one side (normally the client) asks to enable the option by sending the 3-byte 
sequence 

<IAC, WILL, 24> 

where 24 (decimal) is the option ID for the terminal type option. If the receiver (the server) 
says OK, its response is 

<IAC, DO, 24> 

The server then sends 

<IAC, SB, 24, 1, IAC, SE> 

asking the client for its terminal type. SB is the suboption-begin command. The next byte 
of 24 identifies that this is a suboption for the terminal type option. (SB is always followed 
by the option number to which the suboption refers.) The next byte of 1 means "send your 
terminal type." The suboption-end command must be prefixed by an IAC, just like the SB 
command. The client responds with the command 

<IAC, SB, 24, 0, 'I', 'B', 'M', 'P', 'C', IAC, SE> 
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if its terminal type is the string ibmpc. The fourth byte, 0, means "my terminal type is." 
(The "official" list of acceptable terminal types is in the Assigned Numbers RFC, but on 
Unix systems at least, any name that is acceptable to the server is OK. This is normally the 
terminals supported by either the termcap or terminfo database.) The terminal type is 
specified in the Telnet suboption as all uppercase, and normally converted to lowercase by 
the server. 

Half-Duplex, Character at a Time, Line at a Time, or Linemode? 

There are four modes of operation for most Telnet clients and servers. 

1.  Half-duplex. 

This is the default mode, but it is rarely used today. The default NVT is a half-
duplex device that requires a GO AHEAD command (GA) from the server before 
accepting user input. The user input is echoed locally from the NVT keyboard to the 
NVT printer so that only completed lines are sent from the client to the server. 

While this provides the lowest common denominator for terminal support, it doesn't 
adequately handle full-duplex terminals communicating with hosts that support full-
duplex communications, which is the norm today. RFC 857 [Postel and Reynolds 
1983c] defines the ECHO option and RFC 858 [Postel and Reynolds 1983d] defines 
the SUPPRESS GO AHEAD option. The combination of these two options provides 
support for the next mode, character at a time, with remote echo. 

2.  Character at a time. 

This is what we saw with Rlogin. Each character we type is sent by itself to the 
server. The server echoes most characters, unless the application on the server turns 
echoing off. 

The problems with this mode are perceptible delays in echoing across long delay 
networks and the high volume of network traffic. Nevertheless, we'll see this is the 
common default for most implementations today. 

We'll see that the way to enter this mode is for the server to have the SUPPRESS 
GO AHEAD option enabled. This can be negotiated by having the client send a DO 
SUPPRESS GO AHEAD (asking to enable the option at the server), or the server 
sending a WILL SUPPRESS GO AHEAD to the client (asking to enable the option 
itself). The server normally follows this with a WILL ECHO, asking to do the 
echoing. 

3.  Line at a time. 
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This is often called "kludge line mode," because its implementation comes from 
reading between the lines in RFC 858. This REG states that both the ECHO and 
SUPPRESS GO AHEAD options must be in effect to have character-at-a-time input 
with remote echo. Kludge line mode takes this to mean that when either of these 
options is not enabled, Telnet is in a line-at-a-time mode. In the next section we'll 
see an example of how this mode is negotiated, and how it is disabled when a 
program that needs to receive every keystroke is run on the server. 

4.  Linemode. 

We use this term to refer to the real linemode option, defined in RFC 1184 [Bor-
man 1990]. This option is negotiated between the client and server and corrects all 
the deficiencies in the kludge line mode. Newer implementations support this 
option. 

Figure 26.11 shows the default operating mode between various Telnet clients and servers. 
The entry "char" means character at a time, "kludge" means the kludge line mode, and 
"linemode" means the real RFC 1184 linemode. 

Client Server

SunOS 4.1.3 Solaris 2.2 SVR4 AIX 3.2.2 BSD/386 4.4BSD

SunOS 4.1.3 char char char char kludge kludge

Solaris 2.2 char char char char kludge kludge

SVR4 char char char char kludge kludge

AIX 3.2.2 char char char char kludge kludge

BSD/386 char char char char linemode linemode

4.4BSD char char char char linemode linemode

Figure 26.11 Default modes of operation between various Telnet clients and servers.

The only two implementations in this figure that support real linemode are BSD/386 and 
4.4BSD. These two servers are also the only ones that attempt to negotiate kludge line 
mode if real linemode isn't supported by the client. All the clients and servers shown in this 
figure do support kludge line mode, but they don't select it by default, unless negotiated by 
the server. 

Synch Signal

Telnet defines its synch signal as the Data Mark command (DM in Figure 26.8) sent as 
TCP urgent data. The DM command is the synchronization mark in the data stream that 
tells the receiver to return to normal processing. It can be sent in either direction across a 
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Telnet connection. 

When one end receives notification that the other end has entered urgent mode, it starts 
reading the data stream, discarding all data other than Telnet commands. The final byte of 
urgent data is the DM byte. The reason for using TCP's urgent mode is to allow the Telnet 
commands to be sent across the connection, even if the TCP data flow has been stopped by 
TCP's flow control. We'll see examples of Telnet's synch signal in the next section. 

Client Escapes

As with the Rlogin client, the Telnet client also lets us talk to it, instead of sending what we 
type to the server. The normal client escape character is Control-] (control and the right 
bracket, commonly printed as "^]"). This causes the client to print its prompt, normally 
"telnet> ". There are lots of commands that we can type at this point to change 
characteristics of the session or to print information. A help command is provided by 
most Unix clients that displays the available commands. 

We'll see examples of the client escape, and some of the commands we can issue, in the 
next section. 

26.5 Telnet Examples

We'll now look at Telnet option negotiation, along with the three different modes of 
operation: character at a time, real linemode, and kludge line mode. We also see what 
happens when an interactive user aborts a running process on the server with the interrupt 
key. 

Character-at-a-Time Mode

We start with the basic character-at-a-time mode, similar to Rlogin. Each character we type 
on the terminal is sent by itself to the server, and the server echoes the character. But we'll 
run a newer client (BSD/386) that tries to enable many newer options, and see them refused 
by the older server (SVR4). 

To see what's negotiated between the client and server we'll enable a client option that 
displays all the option negotiation, and we'll also run tcpdump to obtain a time line of the 
packet exchange. Figure 26.12 shows the interactive session. 

bsdi % telnet 
invoke client without any command-line 
options 

telnet> toggle options 
tell client to display all the option 
processing 

Will show option processing.
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telnet> open svr4 now establish connection with server 

Trying 140.252.13.34...

Connected to svr4.

Escape character is '^]'.

SENT DO SUPPRESS GO AHEAD 1. (line numbers for discussion that follows) 

SENT WILL TERMINAL TYPE 2. 

SENT WILL NAWS 3. 

SENT WILL TSPEED 4. 

SENT WILL LFLOW 5. 

SENT WILL LINEMODE 6. 

SENT WILL ENVIRON 7. 

SENT DO STATUS 8. 

RCVD DO TERMINAL TYPE 9. 

RCVD WILL SUPPRESS GO AHEAD 10. 

RCVD DONT NAWS 11. 

RCVD DONT TSPEED 12. 

RCVD DONT LFLOW 13. 

RCVD DONT LINEMODE 14. 

RCVD DONT ENVIRON 15. 

RCVD WONT STATUS 16. 

RCVD IAC SB TERMINAL-TYPE SEND 17. 

SENT IAC SB TERMINAL-TYPE IS 
"IBMPC3" 

18.

RCVD WILL ECHO 19. 

SENT DO ECHO 20. 

RCVD DO ECHO 21. 

SENT WONT ECHO 22. 

UNIX(r) System V Release 4.0 
(svr4) 

RCVD DONT ECHO 23.

login: rstevens we type our login name 

Password:
and password, which the server does not 
echo operating system greeting is then 
output ... then shell prompt 

Figure 26.12 Initial option negotiation by Telnet client and server.

file:///D|/Documents%20and%20Settings/bigini/Docum...ti/homenet2run/tcpip/tcp-ip-illustrated/telnet.htm (20 of 26) [12/09/2001 14.47.45]



Chapter 26. Telnet and Rlogin: Remote Login

We've numbered the option negotiation lines that begin with SENT or RCVD, for the 
discussion that follows. 

1.  The client initiates the negotiation of the SUPPRESS GO AHEAD option. This 
option starts with a DO since the GO AHEAD command is normally sent by the 
server to the client, and the client wants the server to enable the option. (This is 
confusing since enabling the option disables the GA commands from being sent.) 
The server OKs this option in line 10. 

2.  The client wants to send its terminal type as specified in RFC 1091 [VanBokkelen 
1989]. This is common with Unix clients. This option starts with a WILL since the 
client wants to enable the option at its end. 

3.  NAWS stands for "negotiate about window size" and is defined in RFC 1073 
[Waitzman 1988]. If the server agrees (which it doesn't, in line II), the client then 
sends a suboption with the number of rows and columns in the terminal window. 
Additionally, the client will send this suboption at any time later if the window size 
changes. (This is similar to what we saw with the Rlogin 0x80 command in Figure 
26.4.) 

4.  The TSPEED option lets the sender (normally the client) send its terminal speed, as 
defined in RFC 1079 [Hedrick 1988b]. If the server agrees (which it doesn't, in line 
12), the client then sends a suboption with its transmit speed and receive speed. 

5.  LFLOW stands for "local flow control," and is defined in RFC 1372 [Hedrick and 
Borman 1992]. The client sends this option to the server stating that it is willing to 
enable and disable flow control on command. If the server agrees (which it doesn't 
in line 13), the server would send a suboption to the client whenever the processing 
of Control-S and Control-Q needs to switch between the client and server. (This is 
similar to what we saw with the Rlogin 0x10 and 0x20 commands in Figure 26.4.) 
As we said in our discussion of Rlogin, the interactive user obtains better response 
to flow control when it's done by the client, not by the server. 

6.  LINEMODE is the real linemode that we mentioned in Section 26.4. All the 
terminal character processing is done by the Telnet client (backspace, erase line, 
etc.) and complete lines are sent to the server. We'll see an example of it later in this 
section. This option is refused in line 14. 

7.  The ENVIRON option lets the client send environment variables to the server, as 
defined in RFC 1408 [Borman 1993a]. "This can automatically propagate variables 
in the user's environment on the client host to the server. The server refuses this 
option in line 15. (An environment variable in Unix is often an uppercase name, 
followed by an equals sign, followed by a string value, but this is only a 
convention.) By default the BSD/386 Telnet client sends only the two variables 
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DISPLAY and PRINTER, if they're defined and if the option is enabled. The Telnet 
user can specify additional environment variables to be sent. 

8.  The STATUS option (RFC 859 [Postel and Reynolds 1983e]) lets one end ask the 
other for its perception of the current status of the Telnet options. In this example 
the client is asking the server to enable the option (DO). If the server agreed (which 
it doesn't in line 16), the client could ask the server in a suboption to send its status. 

9.  This is the first response from the server. The server agrees to enable the terminal 
type option. (Almost every Unix server supports this option.) The client, however, 
cannot send its terminal type until the server asks for it with a suboption (line 17). 

10.  The server agrees to suppress sending the GO AHEAD command. 

11.  The server does not agree to let the client send its window size. 

12.  The server does not agree to let the client send its terminal speed. 

13.  The server does not agree to let the client perform flow control. 

14.  The server does not agree to let the client enable the linemode option. 

15.  The server does not agree to let the client send environment variables. 

16.  The server will not send status information. 

17.  This is a suboption with the server asking the client to send its terminal type. 

18.  The client sends its terminal type as the 6-character string IBMPC3. 

19.  The server asks the client to let the server perform echoing. This is the first time the 
server has initiated the negotiation of an option. 

20.  The client agrees to let the server perform echoing. 

21.  The server asks the client to perform echoing. This command seems superfluous, 
given the exchange in the previous two lines, and it is. This is yet another kludge in 
most Unix Telnet servers to determine if the client is a 4.2BSD host or a later BSD 
release. If the client responds with WILL ECHO, it is probably an older 4.2BSD 
host and does not support TCP's urgent mode correctly. (In that case urgent mode 
won't be used.) 

22.  The client responds with WONT ECHO, implying it is not a 4.2BSD host. 
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23.  The server responds to the received WONT ECHO with a DONT ECHO. 

Figure 26.13 shows the time line for this client-server exchange. (We have removed the 
connection establishment.) 

Figure 26.13 Initial option negotiation by Telnet client and server.

Segment 1 contains lines 1-8 from Figure 26.12. Each option occupies 3 bytes, for a 
segment containing 24 bytes. It is the client that starts the option negotiation. This segment 
shows that multiple Telnet options can appear in a single TCP segment. 

Segment 3 is line 9 from Figure 26.12, the DO TERMINAL TYPE command. Segment 5 
contains the next eight option responses from the server, lines 10-17 from Figure 26.12. 
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The length of this segment is 27 bytes because lines 10-16 are regular options, each 
requiring 3 bytes, along with the suboption (line 17), which requires 6 bytes. The 12 bytes 
in segment 6 correspond to line 18, the client sending the suboption with its terminal type. 

Segment 8 (53 bytes) is a combination of two Telnet commands with 47 bytes of data to be 
output on the terminal. The first 6 bytes are the two commands from the server: WILL 
ECHO and DO ECHO (lines 19 and 21). The next 47 bytes are: 

\r\n\r\nUNIX(r) System V Release 4.0 (svr4)\r\n\r\0\r\n\r\0 

The first 4 bytes produce the two blank lines before the string is output. The 2-byte 
sequence \r\n is considered a newline by Telnet. The 2-byte sequence \r\0 is 
considered a carriage return. This segment shows that data and commands can appear in the 
same segment. The Telnet client and Telnet server must scan every byte they receive, 
looking for the IAC byte and then processing what follows. 

Segment 9 contains the final two options from the client: lines 20 and 22. The response in 
segment 10 is line 23, the final option from the server. 

From this point in the time line user data is exchanged across the connection. There is 
nothing to prevent additional option negotiation, we just don't see any in this example. 
Segment 12 is the login: prompt from the server. Segment 14 is the first character we 
type of our login name, with its echo returned in segment 15. This is the type of interactive 
traffic we saw in Section 19.2 with Rlogin: one character at a time sent by the client, with 
the server performing the echo. 

The option negotiation in Figure 26.12 is initiated by the client, but throughout this text we've been using 
the Telnet client to connect to standard servers such as the daytime server and the echo server, to 
demonstrate various feature of TCP. When we watched the packet exchange in these examples, such as 
Figure 18.1, we never saw the client initiate option negotiation. Why? The Unix Telnet client does not 
initiate any option negotiation if a port number other than the standard Telnet port (23) is specified. This 
lets the Telnet client, using the standard NVT, exchange data with other, non-Telnet servers. We've used it 
with the daytime, echo, and discard servers throughout the text, and we'll use it with the FTP and SMTP 
servers in later chapters. 

Linemode

To see Telnet's linemode option in action we'll run the client on our host bsdi, connecting to 
the 4.4BSD server on vangogh.cs.berkeley.edu. Both BSD/386 and 4.4BSD 
support this option. 

We won't go through all the packets and option and suboption negotiations, because they're 
similar to the previous example and the linemode option is quite detailed. Instead we'll note 
the following differences with the option negotiation. 
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1.  The 4.4BSD server supports more of the options that the BSD/386 tries to negotiate: 
window size, local flow control, status, accepting environment variables, and 
terminal speed. 

2.  The 4.4BSD server tries to negotiate a newer option that the BSD/386 client doesn't 
support: authentication (to avoid sending the user's password in clear-text across the 
connection). 

3.  The client sends the WILL LINEMODE option, as before, but the server responds 
with DO LINEMODE, since it's supported. This causes the client to send its 16 
special characters to the server as a suboption. These are the current values of the 
special terminal characters in effect at the client: the interrupt character, the end-of-
file character, and so on.

The server sends a suboption to the client telling the client to process all input lines, 
performing any editing functions (erase character, erase line, etc.). The client sends 
only completed lines to the server. The server also tells the client to translate any 
interrupts keys or signal keys into the corresponding Telnet character. For example, 
if the interrupt key is Control-C, and we type Control-C to interrupt a running 
process on the server, the client sends the Telnet IP command (<IAC, IP>) to the 
server. 

4.  Another difference occurs when we type our password. With Rlogin and char-acter-
at-a-time Telnet, the server is responsible for echoing, so when the server reads the 
password, it doesn't echo the characters. In linemode, however, the client does the 
echoing. To handle this, the following exchange takes place:
(a) The server sends WILL ECHO, telling the client that the server will echo.
(b) The client responds with DO ECHO.
(c) "The server sends the string Password: to the client, and the client outputs 
the string to the terminal. 
(d) We type our password and the client sends it to the server when we type the 
RETURN key. The password is not echoed, since the client thinks the server will 
echo it.
(e) The server sends the 2-byte sequence CR, LF, to move the cursor, since the 
RETURN that completed the password was not echoed.
(f) The server sends WONT ECHO.
(g) The client responds with DONT ECHO. The client resumes echoing. 

Once we login, the client builds complete lines and sends them to the server. This is the 
intent of the linemode option. It reduces the number of segments exchanged between the 
client and server, and provides faster response to client keystrokes (i.e., echoing and 
editing). Figure 26.14 shows the packet exchange when we type the command 

vangogh % date 

across a Telnet connection using linemode. (We have removed the type-of-service 
information, along with the window advertisements.) 
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Figure 26.14 Sending a command from client to server using Telnet linemode.

If we compare this with the same command typed to Rlogin (<a href="tcp_int.htm

file:///D|/Documents%20and%20Settings/bigini/Docum...ti/homenet2run/tcpip/tcp-ip-illustrated/telnet.htm (26 of 26) [12/09/2001 14.47.45]



Chapter 27. FTP: File Transfer Protocol

FTP: File Transfer Protocol
27.1 Introduction

FTP is another commonly used application. It is the Internet standard for file transfer. We 
must be careful to differentiate between file transfer, which is what FTP provides, and file 
access, which is provided by applications such as NFS (Sun's Network File System, 
Chapter 29). The file transfer provided by FTP copies a complete file from one system to 
another system. To use FTP we need an account to login to on the server, or we need to 
use it with a server that allows anonymous FTP (which we show an example of in this 
chapter). 

Like Telnet, FTP was designed from the start to work between different hosts, running 
different operating systems, using different file structures, and perhaps different character 
sets. Telnet, however, achieved heterogeneity by forcing both ends to deal with a single 
standard: the NVT using 7-bit ASCII. FTP handles all the differences between different 
systems using a different approach. FTP supports a limited number of file types (ASCII, 
binary, etc.) and file structures (byte stream or record oriented). 

RFC 959 [Postel and Reynolds 1985] is the official specification for FTP. This RFC 
contains a history of the evolution of file transfer over the years. 

27.2 FTP Protocol

FTP differs from the other applications that we've described because it uses two TCP 
connections to transfer a file. 

1.  The control connection is established in the normal client-server fashion. The 
server does a passive open on the well-known port for FTP (21) and waits for a 
client connection. The client does an active open to TCP port 21 to establish the 
control connection. The control connection stays up for the entire time that the 
client communicates with this server. This connection is used for commands from 
the client to the server and for the server's replies. 

The IP type-of-service for the control connection should be "minimize delay" since 
the commands are normally typed by a human user (Figure 3.2). 

2.  A data connection is created each time a file is transferred between the client and 
server. (It is also created at other times, as we'll see later.) 

The IP type-of-service for the data connection should be "maximize throughput" 
since this connection is for file transfer. 
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Figure 27.1 shows the arrangement of the client and server and the two connections 
between them. 

Figure 27.1 Processes involved in file transfer.

This figure shows that the interactive user normally doesn't deal with the commands and 
replies that are exchanged across the control connection. Those details are left to the two 
protocol interpreters. The box labeled "user interface" presents whatever type of interface 
is desired to the interactive user (full-screen menu selection, line-at-a-time commands, 
etc.) and converts these into FTP commands that are sent across the control connection. 
Similarly the replies returned by the server across the control connection can be converted 
to any format to present to the interactive user. 

This figure also shows that it is the two protocol interpreters that invoke the two data 
transfer functions, when necessary. 

Data Representation

Numerous choices are provided in the FTP protocol specification to govern the way the
file is transferred and stored. A choice must be made in each of four dimensions. 

1.  File type. 

a.  ASCII file type.
(Default) The text file is transferred across the data connection in NVT 
ASCII. This requires the sender to convert the local text file into NVT 
ASCII, and the receiver to convert NVT ASCII to the local text file type. 
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The end of each line is transferred using the NVT ASCII representation of a 
carriage return, followed by a linefeed. This means the receiver must scan 
every byte, looking for the CR, LF pair. (We saw the same scenario with 
TFTP's ASCII file transfer in Section 15.2.) 

b.  EBCDIC file type.
An alternative way of transferring text files when both ends are 
EBCDICsystems. 

c.  Image file type. (Also called binary.)
The data is sent as a contiguous stream of bits. Normally used to transfer 
binary files. 

d.  Local file type.
A way of transferring binary files between hosts with different byte sizes. 
The number of bits per byte is specified by the sender. For systems using 8-
bit bytes, a local file type with a byte size of 8 is equivalent to the image file 
type. 

2.  Format control. This choice is available only for ASCII and EBCDIC file types. 

a.  Nonprint.
(Default) The file contains no vertical format information. 

b.  Telnet format control. 
The file contains Telnet vertical format controls for a printer to interpret. 

c.  Fortran carriage control.
The first character of each line is the Fortran format control character. 

3.  Structure. 

a.  File structure.
(Default) The file is considered as a contiguous stream of bytes. There is no 
internal file structure. 

b.  Record structure.
This structure is only used with text files (ASCII or EBCDIC). 

c.  Page structure.
Each page is transmitted with a page number to let the receiver store the 
pages in a random order. Provided by the TOPS-20 operating system. (The 
Host Requirements RFC recommends against implementing this structure.) 
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4.  Transmission mode. This specifies how the file is transferred across the data 
connection. 

a.  Stream mode.
(Default) The file is transferred as a stream of bytes. For a file structure, the 
end-of-file is indicated by the sender closing the data connection. For a 
record structure, a special 2-byte sequence indicates the end-of-record and 
end-of-file. 

b.  Block mode.
The file is transferred as a series of blocks, each preceded by one or more 
header bytes. 

c.  Compressed mode.
A simple run-length encoding compresses consecutive appearances of the 
same byte. In a text file this would commonly compress strings of blanks, 
and in a binary file this would commonly compress strings of 0 bytes. (This 
is rarely used or supported. There are better ways to compress files for 
FTP.) 

If we calculate the number of combinations of all these choices, there could be 72 
different ways to transfer and store a file. Fortunately we can ignore many of the options, 
because they are either antiquated or not supported by most implementations. 

Common Unix implementations of the FTP client and server restrict us to the following 
choices: 

●     Type: ASCII or image. 
●     Format control: nonprint only. 
●     Structure: file structure only 
●     Transmission mode: stream mode only. 

This limits us to one of two modes: ASCII or image (binary). 

This implementation meets the minimum requirements of the Host Requirements RFC. (This RFC also 
requires support for the record structure, but only if the operating system supports it, which Unix doesn't.) 

Many non-Unix implementations provide FTP capabilities to handle their own file formats. The Host 
Requirements RFC states "The FTP protocol includes many features, some of which are not commonly 
implemented. However, for every feature in FTP, there exists at least one implementation." 

FTP Commands

The commands and replies sent across the control connection between the client and 
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server are in NVT ASCII. This requires a CR, LF pair at the end of each line (i.e., each 
command or each reply). 

The only Telnet commands (those that begin with IAC) that can be sent by the client to the 
server are interrupt process (<IAC, IP>) and the Telnet synch signal (<IAC, DM> in 
urgent mode). We'll see that these two Telnet commands are used to abort a file transfer 
that is in progress, or to query the server while a transfer is in progress. Additionally, if the 
server receives a Telnet option command from the client (WILL, WONT, DO, or DONT) 
it responds with either DONT or WONT. 

The commands are 3 or 4 bytes of uppercase ASCII characters, some with optional 
arguments. More than 30 different FTP commands can be sent by the client to the server. 
Figure 27.2 shows some of the commonly used commands, most of which we'll encounter 
in this chapter. 

Command Description

ABOR 
LIST filelist
PASS password
PORT n1,n2,n3,n4,n5,n6
QUIT
RETR filename
STOP filename
SYST
TYPE type
USER username 

abort previous FTP command and any data transfer
list files or directories
password on server
client IP address (nl.n2.n3.n4) and port (n5 x 256 + n6)
logoff from server
retrieve (get) a file
store (put) a file
server returns system type
specify file type: A for ASCII, I for image
usemame on server 

Figure 27.2 Common FTP commands.

We'll see in the examples in the next section that sometimes there is a one-to-one 
correspondence between what the interactive user types and the FTP command sent across 
the control connection, but for some operations a single user command results in multiple 
FTP commands across the control connection. 

FTP Replies

The replies are 3-digit numbers in ASCII, with an optional message following the number. 
The intent is that the software needs to look only at the number to determine how to 
process the reply, and the optional string is for human consumption. Since the clients 
normally output both the numeric reply and the message string, an interactive user can 
determine what the reply says by just reading the string (and not have to memorize what 
all the numeric reply codes mean). 
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Each of the three digits in the reply code has a different meaning. (We'll see in Chapter 28 
that the Simple Mail Transfer Protocol, SMTP, uses the same conventions for commands 
and replies.) 

Figure 27.3 shows the meanings of the first and second digits of the reply code.

Reply Description

1yz
Positive preliminary reply. The action is being started but expect another reply 
before sending another command 

2yz Positive completion reply A new command can be sent 

3yz
Positive intermediate reply. The command has been accepted but another 
command must be sent 

4yz
Transient negative completion reply The requested action did not take place, 
but the error condition is temporary so the command can be reissued later. 

5yz
Permanent negative completion reply. The command was not accepted and 
should not be retried. 

X0z Syntax errors. 

x1z Information. 

x2z Connections. Replies referring to the control or data connections. 

x3z Authentication and accounting. Replies for the login or accounting commands. 

x4z Unspecified. 

x5z Filesystem status. 

Figure 27.3 Meanings of first and second digits of 3-digit reply codes.

The third digit gives additional meaning to the error message. For example, here are some 
typical replies, along with a possible message string. 

●     125Data connection already open; transfer starting. 
●     200 Command OK. 
●     214 Help message (for human user). 
●     331 Username OK, password required. 
●     425 Can't open data connection. 
●     452 Error writing file. 
●     500 Syntax error (unrecognized command). 
●     501 Syntax error (invalid arguments). 
●     502 Unimplemented MODE type. 

Normally each FTP command generates a one-line reply For example, the QUIT 
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command could generate the reply: 

221 Goodbye. 

If a multiline reply is needed, the first line contains a hyphen instead of a space after the 3-
digit reply code, and the final line contains the same 3-digit reply code, followed by a 
space. For example, the HELP command could generate the reply: 

214- The following commands are recognized (* =>'s 
unimplemented). 

USER PORT STOR MSAM* RNTO NLST MKD CDUP 

PASS PASV APPE MRSQ* ABOR SITE XMKD XCUP 

ACCT* TYPE MLFL* MRCP* DELE SYST RMD STOU 

SMNT* STRU MAIL* ALLO CWD STAT XRMD SIZE 

REIN* MODE MSND* REST XCWD HELP PWD MDTM 

QUIT RETR MSOM* RNFR LIST NOOP XPWD

214 Direct comments to ftp-bugs@bsdi.tuc.noao.edu. 

Connection Management

There are three uses for the data connection. 

1.  Sending a file from the client to the server. 
2.  Sending a file from the server to the client. 
3.  Sending a listing of files or directories from the server to the client. 

The FTP server sends file listings back across the data connection, rather than as multiline 
replies across the control connection. This avoids any line limits that restrict the size of a 
directory listing and makes it easier for the client to save the output of a directory listing 
into a file, instead of printing the listing to the terminal. 

We've said that the control connection stays up for the duration of the client-server 
connection, but the data connection can come and go, as required. How are the port 
numbers chosen for the data connection, and who does the active open and passive open? 

First, we said earlier that the common transmission mode (under Unix the only 
transmission mode) is the stream mode, and that the end-of-file is denoted by closing the 
data connection. This implies that a brand new data connection is required for every file 
transfer or directory listing. The normal procedure is as follows: 

1.  The creation of the data connection is under control of the client, because it's the 
client that issues the command that requires the data connection (get a file, put a 
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file, or list a directory). 
2.  The client normally chooses an ephemeral port number on the client host for its end 

of the data connection. The client issues a passive open from this port. 
3.  The client sends this port number to the server across the control connection using 

the PORT command. 
4.  The server receives the port number on the control connection, and issues an active 

open to that port on the client host. The server's end of the data connection always 
uses port 20. 

Figure 27.4 shows the state of the connections while step 3 is being performed. We 
assume the client's ephemeral port for the control connection is 1173, and the client's 
ephemeral port for the data connection is 1174. The command sent by the client is the 
PORT command and its arguments are six decimal numbers in ASCII, separated by 
commas. The first four numbers specify the IP address on the client that the server should 
issue the active open to (140.252.13.34 in this example), and the next two specify the 16-
bit port number. Since the 16-bit port number is formed from two numbers, its value in 
this example is 4 x 256 +150 = 1174. 

Figure 27.4 PORT command going across FTP control connection.

Figure 27.5 shows the state of the connection when the server issues the active open to the 
client's end of the data connection. The server's end point is at port 20. 

Figure 27.5 FTP server doing active open of data connection.

The server always does the active open of the data connection. Normally the server also 
does the active close of the data connection, except when the client is sending a tile to the 
server in stream mode, which requires the client to close the connection (which gives the 
server the end-of-tile notification). 

It is also possible for the client to not issue the PORT command, in which case the server 
issues the active open to the same port number being used by the client for its end of the 
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control connection (1173 in this example). This is OK, since the server's port numbers for 
the two connections are different: one is 20 and the other is 21. Nevertheless, in the next 
section we'll see why current implementations normally don't do this. 

27.3 FTP Examples

We now look at some examples using FTP: its management of the data connection, how 
text files are sent using NVT ASCII, FTP'S use of the Telnet synch signal to abort an 
inprogress transfer, and finally the popular "anonymous FTP." 

Connection Management: Ephemeral Data Port

Let's first look at FTP's connection management with a simple FTP session that just lists a 
file on the server. We run the client on the host svr4 with the -d flag (debug). This tells 
it to print the commands and replies that are exchanged across the control connection. All 
the lines preceded by ---> are sent by the client to the server, and the lines that begin 
with a 3-digit number are the server's replies. The client's interactive prompt is ftp>. 

svr4 % ftp -d bsdi -d option for debug output 

Connected to bsdi. 
client does active open of control 
connection 

220 bsdi FTP server (Version 
5.60) ready. 

server responds it is ready 

Name (bsdi:rstevens): client prompts us for a login name 

---> USER rstevens we type RETURN, so client sends default 

331 Password required for 
rstevens. 

Password: we type our password; it's not echoed 

---> PASS XXXXXXX client sends it as cleartext 

230 User rstevens logged in. 

ftp> dir hello.c ask for directory listing of a single file 

---> PORT 140,252,13,34,4,150 see figure 27.4 

200 PORT command successful. 

---> LIST hello.c 

150 Opening ASCII mode data connection for /bin/ls. 

-rw-r--r-- 1 rstevens staff 38 Jul 17 12:47 hello.c 

226 Transfer complete. 

remote: hello.c output by client 

56 bytes received in 0.03 seconds (1.8 Kbytes/s) 
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ftp> quit we're done

---> QUIT 221 Goodbye. 

When the FTP client prompts us for a login name, it prints the default (our login name on 
the client). When we type the RETURN key, this default is sent. 

Asking for a directory listing of a single file causes a data connection to be established and 
used. This example follows the procedure we showed in Figures 27.4 and 27.5. The client 
asks its TCP for an ephemeral port number for its end of the data connection, and sends 
this port number (1174) to the server in a PORT command. We can also see that a single 
interactive user command (dir) becomes two FTP commands (PORT and LIST). 

Figure 27.6 is the time line of the packet exchange across the control connection. (We 
have removed the establishment and termination of the control connection, along with all 
the window size advertisements.) We note in this figure where the data connection is 
opened, used, and then closed. 
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Figure 27.6 Control connection for FTP example.

Figure 27.7 is the time line for the data connection. The times in this figure are from the 
same starting point as Figure 27.6. We have removed all window advertisements, but have 
left in the type-of-service field, to show that the data connection uses a different type-of-
service (maximize throughput) than the control connection (minimize delay). (The TOS 
values are in Figure 3.2.) 

Figure 27.7 Data connection for FTP example.

In this time line the FTP server does the active open of the data connection, from port 20 
(called ftp-data), to the port number from the PORT command (1174). Also in this 
example, where the server writes to the data connection, the server does the active close of 
the data connection, which tells the client when the listing is complete. 
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Connection Management: Default Data Port

If the client does not send a PORT command to the server, to specify the port number for 
the client's end of the data connection, the server uses the same port number for the data 
connection that is being used for the control connection. This can cause problems for 
clients that use the stream mode (which the Unix FTP clients and server always use), as 
we show below. 

The Host Requirements RFC recommends that an FTP client using the stream mode send a PORT 
command to use a nondefault port number before each use of the data connection. 

Returning to the previous example (Figure 27.6), what if we asked for another directory 
listing a few seconds after the first? The client would ask its kernel to choose another 
ephemeral port number (perhaps 1175) and the next data connection would be between 
svr4 port 1175 and bsdi port 20. But in Figure 27.7 the server did the active close of 
the data connection, and we showed in Section 18.6 that the server won't be able to assign 
port 20 to the new data connection, because that local port number was used by an earlier 
connection that is still in the 2MSL wait state. 

The server gets around this by specifying the SO_REUSEADDR option that we mentioned 
in Section 18.6. This lets it assign port 20 to the new connection, and the new connection 
will have a different foreign port number (1175) from the one that's in the 2MSL wait 
(1174), so everything is OK. 

This scenario changes if the client does not send the PORT command, specifying an 
ephemeral port number on the client. We can force this to happen by executing the user 
command sendport to the FTP client. Unix FTP clients use this command to turn off 
sending PORT commands to the server before each use of a data connection. 

Figure 27.8 shows the time line only for the data connections for two consecutive LIST 
commands. The control connection originates from port 1176 on host svr4, so in the 
absence of PORT commands, the client and server use this same port number for the data 
connection. (We have removed the window advertisements and type-of-service values.) 
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Figure 27.8 Data connection for two consecutive LIST commands.

The sequence of events is as follows. 

1.  The control connection is established from the client port 1176 to the server port 
21. (We don't show this.) 

2.  When the client does the passive open for the data connection on port 1176, it must 
specify the SO_REUSEADDR option since that port is already in use by the control 
connection on the client. 

3.  The server does the active open of the data connection (segment 1) from port 20 to 
port 1176. The client accepts this (segment 2), even though port 1176 is already in 
use on the client, because the two socket pairs 
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<svr4, 1176, bsdi, 21>
<svr4, 1176, bsdi, 20> 

are different (the port numbers on bsdi are different). TCP demultiplexes 
incoming segments by looking at the source IP address, source port number, 
destination IP address, and destination port number, so as long as one of the four 
elements differs, all is OK. 

4.  The server does the active close of the data connection (segment 5), which puts the 
socket pair 

<svr4, 1176, bsdi, 20> 

in a 2MSL wait on the server. 

5.  The client sends another LIST command across the control connection. (We don't 
show this.) Before doing this the client does a passive open on port 1176 for its end 
of the data connection. The client must specify the SO_REUSEADDR option again, 
since the port number 1176 is already in use. 

6.  The server issues an active open for the data connection from port 20 to port 1176. 
Before doing this the server must specify SO_REUSEADDR, since the local port 
(20) is associated with a connection that is in the 2MSL wait, but from what we 
showed in Section 18.6, the connection won't succeed. The reason is that the socket 
pair for the connection request equals the socket pair from step 4 that is still in a 
2MSL wait. The rules of TCP forbid the server from sending the SYN. There is no 
way for the server to override this 2MSL wait of the socket pair before reusing the 
same socket pair. 

At this point the BSD server retries the connection request every 5 seconds, up to 
18 times, for a total of 90 seconds. We see that segment 9 succeeds about 1 minute 
later. (We mentioned in Chapter 18 that SVR4 uses an MSL of 30 seconds, for a 
2MSL wait of 1 minute.) We don't see any SYNs from these failures in this time 
line because the active opens fail and the server's TCP doesn't even send a SYN. 

The reason the Host Requirements RFC recommends using the PORT command is to 
avoid this 2MSL wait between successive uses of a data connection. By continually 
changing the port number on one end, the problem we just showed disappears. 

Text File Transfer: NVT ASCII Representation or Image?

Let's verify that the transmission of a text file uses NVT ASCII by default. This time we 
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don't specify the -d flag, so we don't see the client commands, but notice that the client 
still prints the server's responses: 

sun % ftp bsdi 

Connected to bsdi.

220 bsdi FTP server (Version 5.60) 
ready. 

Name (bsdi:rstevens): we type RETURN 

331 Password required for 
rstevens. 

Password: we type our password 

230 User rstevens logged in.

ftp> get hello.c fetch a file

200 PORT command successful.

150 Opening ASCII mode data connection for hello.c (38 
bytes). 

226 Transfer complete. server says file contains 38 bytes 

local: hello.c remote: hello.c output by client

42 bytes received in 0.0037 
seconds (11 Kbytes/s) 

42 bytes across data connection 

ftp> quit 

221 Goodbye.

sun % ls -l hello.c 

-rw-rw-r-1 rstevens 38 Jul 18 
08:48 hello.c 

but file contains 38 bytes 

sun % wc -l hello.c count the lines in the file 

4 hello.c

Forty-two bytes are transferred across the data connection because the file contains four 
lines. Each Unix newline character (\n) is converted into the NVT ASCII 2-byte end-of-
line sequence (\r\n) by the server for transmission, and then converted back by the client 
for storage. 

Newer clients attempt to determine if the server is of the same system type, and if so, 
transfer files in binary (image file type) instead of ASCII. This helps in two ways. 

1.  The sender and receiver don't have to look at every byte (a big savings). 
2.  Fewer bytes are transferred if the host operating system uses fewer bytes for the 

end-of-line than the 2-byte NVT ASCII sequence (a smaller savings). 
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We can see this optimization using a BSD/386 client and server. We'll enable the debug 
mode, to see the client FTP commands: 

bsdi % ftp -d slip specify -d to see client commands 

Connected to slip. 

220 slip FTP server (Version 5.60) 
ready. 

Name (slip:rstevens): we type RETURN

---> USER rstevens 

331 Password required for rstevens. 

Password: we type our password 

---> PASS XXXX 

230 User rstevens logged in. 

---> SYST
this is sent automatically by 
client 

215 UNIX Type: L8 Version: BSD-
199103 

server's reply

Remote system type is UNIX. information output by client 

Using binary mode to transfer files. information output by client 

ftp> get hello.c fetch a file

---> TYPE I sent automatically by client 

200 Type set to I. 

---> PORT 140,252,13,66,4,84 port number=4x256+84=1108 

200 PORT command successful. 

---> RETR hello.c 

150 Opening BINARY mode data connection for hello.c (38 
bytes). 

226 Transfer complete. 

38 bytes received in 0.035 seconds 
(1.1 Kbytes/s) 

only 38 bytes this time

ftp> quit 

---> QUIT

221 Goodbye.

After we login to the server, the client FTP automatically sends the SYST command, 
which the server responds to with its system type. If the reply begins with the string "215 
UNIX Type: L8", and if the client is running on a Unix system with 8 bits per byte, 
binary mode (image) is used for all file transfers, unless changed by the user. 
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When we fetch the file hello.c the client automatically sends the command TYPE I to 
set the file type to image. Only 38 bytes are transferred across the data connection. 

The Host Requirements RFC says an FTP server must support the SYST command (it was an option in 
RFC 959). But the only systems used in the text (see inside front cover) that support it are BSD/386 and 
AIX 3.2.2. SunOS 4.1.3 and Solaris 2.x reply with 500 (command not understood). SVR4 has the 
extremely unsocial behavior of replying with 500 and closing the control connection! 

Aborting A File Transfer: Telnet Synch Signal

We now look at how the FTP client aborts a file transfer from the server. Aborting a file 
transfer from the client to the server is easy - the client stops sending data across the data 
connection and sends an ABOR to the server on the control connection. Aborting a 
receive, however, is more complicated, because the client wants to tell the server to stop 
sending data immediately. We mentioned earlier that the Telnet synch signal is used, as 
we'll see in this example. 

We'll initiate a receive and type our interrupt key after it has started. Here is the interactive 
session, with the initial login deleted: 

ftp> get a.out fetch a large file 

---> TYPE I
client and server are both 8-bit byte Unix 
systems 

200 Type set to I.

---> PORT 140,252,13,66,4,99

200 PORT command successful.

---> RETR a.out

150 Opening BINARY mode data connection for a.out (28672 
bytes). 

^? type our interrupt key 

receive aborted output by client 

waiting for remote to finish 
abort 

output by client 

426 Transfer aborted. Data connection closed. 

226 Abort successful

1536 bytes received in 1.7 seconds (0.89 Kbytes/s) 

After we type our interrupt key, the client immediately tells us it initiated the abort and is 
waiting for the server to complete. The server sends two replies: 426 and 226. Both replies 
are sent by the Unix server when it receives the urgent data from the client with the ABOR 
command. 
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Figures 27.9 and 27.10 show the time line for this session. We have combined the control 
connection (solid lines) and the data connection (dashed lines) to show the relationship 
between the two. 

Figure 27.9 Aborting a file transfer (first half).

The first 12 segments in Figure 27.9 are what we expect. The commands and replies 
across the control connection set up the file transfer, the data connection is opened, and 
the first segment of data is sent from the server to the client. 
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Figure 27.10 Aborting a file transfer (second half).

In Figure 27.10, segment 13 is the receipt of the sixth data segment from the server on the 
data connection, followed by segment 14, which is generated by our typing the interrupt 
key. Ten bytes are sent by the client to abort the transfer: 

<IAC, IP, IAC, DM, A, B, O, R, \r, \n> 

We see two segments (14 and 15) because of the problem we detailed in Section 20.8 
dealing with TCP's urgent pointer. (We saw the same handling of this problem in Figure 
26.17 with Telnet.) The Host Requirements RFC says the urgent pointer should point to 
the last byte of urgent data, while most Berkeley-derived implementations have it point 1 
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byte beyond the last byte of urgent data. The FTP client purposely writes the first 3 bytes 
as urgent data, knowing the urgent pointer will (incorrectly) point to the next byte that is 
written (the data mark, DM, at sequence number 54). This first write with 3 bytes of 
urgent data is sent immediately, along with the urgent pointer, followed by the next 7 
bytes. (The BSD FTP server does not have a problem with which interpretation of the 
urgent pointer is used by the client. When the server receives urgent data on the control 
connection it reads the next FTP command, looking for ABOR or STAT, ignoring any 
embedded Telnet commands.) 

Notice that despite the server saying the transfer was aborted (segment 18, on the control 
connection), the client receives 14 more segments of data (sequence numbers 1537 
through 5120) on the data connection. These segments were probably queued in the 
network device driver on the server when the abort was received, but the client prints 
"1536 bytes received" meaning it ignores all the segments of data that it receives 
(segments 17 and later) after sending the abort (segments 14 and 15). 

In the case of a Telnet user typing the interrupt key, we saw in Figure 26.17 that by default 
the Unix client does not send the interrupt process command as urgent data. We said this 
was OK because there is little chance that the flow of data from the client to the server is 
stopped by flow control. With FTP the client is also sending an interrupt process 
command across the control connection, and since two connections are being used there is 
little chance that the control connection is stopped by flow control. Why does FTP send 
the interrupt process command as urgent data when Telnet does not? The answer is that 
FTP uses two connections, whereas Telnet uses one, and on some operating systems it 
may be hard for a process to monitor two connections for input at the same time. FTP 
assumes that these marginal operating systems at least provide notification that urgent data 
has arrived on the control connection, allowing the server to then switch from handling the 
data connection to the control connection. 

Anonymous FTP

One form of FTP is so popular that we'll show an example of it. It's called anonymous 
FTP, and when supported by a server, allows anyone to login and use FTP to transfer files. 
Vast amounts of free information are available using this technique. 

How to find which site has what you're looking for is a totally different problem. We 
mention it briefly in Section 30.4. 

We'll use anonymous FTP to the site ftp.uu.net (a popular anonymous FTP site) to 
fetch the errata file for this book. To use anonymous FTP we login with the username of 
"anonymous" (you learn to spell it correctly after a few times). When prompted for a 
password we type our electronic mail address. 
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sun % ftp ftp.uu.net 

Connected to ftp.uu.net.

220 ftp.UU.NET FTP server (Version 2.0WU(13) Fri Apr 9 
20:44:32 EDT 1993) ready. 

Name (ftp.uu.net:rstevens): anonymous 

331 Guest login ok, send your complete e-mail address as 
password. 

Password: we type rstevens@noao.edu; it's not echoed 

230-

230- Welcome to the UUNET archive. 

230- A service of UUNET Technologies Inc, Falls Church, 
Virginia 

230- For information about UUNET, call +1 703 204 8000, or 
see the files 

230- in /uunet-info

more greeting lines 

230 Guest login ok, access restrictions apply. 

ftp> cd published/books change to the desired directory 

250 CWD command 
successful.

ftp> binary we'll transfer a binary file 

200 Type set to I.

ftp> get 
stevens.tcpipivl.errata.Z 

fetch the file

200 PORT command 
successful.

150 Opening BINARY mode data connection for 
stevens.tcpipivl.errata.Z (105 bytes). 

226 Transfer complete, (you may get a different file size) 

local: stevens.tcpipivl.errata.Z remote: 
stevens.tcpipivl.errata.Z 

105 bytes received in 4.1 seconds (0.83 Kbytes/s) 

ftp> quit 

221 Goodbye.

sun % uncompress stevens.tcpipivl.errata.Z 

sun % more stevens.tcpipivl.errata 

The uncompress is because many files available for anonymous FTP are compressed 
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using the Unix compress(l) program, resulting in a file extension of .Z. These files 
must be transferred using the binary file type, not the ASCII file type. 

Anonymous FTP from an Unknown IP Address

We can tie together some features of routing and the Domain Name System using 
anonymous FTP. In Section 14.5 we talked about pointer queries in the DNS - taking an 
IP address and returning the hostname. Unfortunately not all system administrators set up 
their name servers correctly with regard to pointer queries. They often add new hosts to 
the file required for name-to-address mapping, but forget to add them to the file for 
address-to-name mapping. We often see this with traceroute, when it prints an IP 
address instead of a hostname. 

Some anonymous FTP servers require that the client have a valid domain name. This 
allows the server to log the domain name of the host that's doing the transfer. Since the 
only client identification the server receives in the IP datagram from the client is the IP 
address of the client, the server can call the DNS to do a pointer query, and obtain the 
domain name of the client. If the name server responsible for the client host is not set up 
correctly, this pointer query can fail. To see this error we'll do the following steps. 

1.  Change the IP address of our host slip (see the figure on the inside front cover) 
to 140.252.13.67. This is a valid IP address for the author's subnet, but not entered 
into the name server for the noao.edu domain. 

2.  Change the destination IP address of the SLIP link on bsdi to 140.252.13.67. 
3.  Add a routing table entry on sun that directs datagrams for 140.252.13.67 to the 

router bsdi. (Recall our discussion of this routing table in Section 9.2.) 

Our host slip is still reachable across the Internet, because we saw in Section 10.4 that 
the routers gateway and netb just sent any datagram destined for the subnet 140.252.13 
to the router sun. Our router sun knows what to do with these datagrams from the 
routing table entry we made in step 3 above. What we have created is a host with complete 
Internet connectivity, but without a valid domain name. That is, a pointer query for the IP 
address 140.252.13.67 will fail. 

We now use anonymous FTP to a server that we know requires a valid domain name: 

slip % ftp ftp.uu.net 

Connected to ftp.uu.net.

220 ftp.UU.NET FTP server (Version 2.0WU(13) Fri Apr 9 
20:44:32 EDT 1993) ready. 

Name (ftp.uu.net:rstevens): anonymous 
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530- Sorry, we're unable to map your IP address 
140.252.13.67 to a hostname 

530- in the DNS. This is probably because your nameserver 
does not have a 

530- PTR record for your address in its tables, or because 
your reverse 

530- nameservers are not registered. We refuse service to 
hosts whose 

530- names we cannot resolve. If this is simply because 
your nameserver is 

530- hard to reach or slow to respond then try again in a 
minute or so, and 

530- perhaps our nameserver will have your hostname in its 
cache by then. 

530- If not, try reaching us from a host that is in the DNS 
or have your 

530- system administrator fix your servers. 

530 User anonymous access denied.. 

Login failed.

Remote system type is UNIX.

Using binary mode to transfer files. 

ftp> quit 

221 Goodbye.

The error reply from the server is self-explanatory. 

27.4 Summary

FTP is the Internet standard for file transfer. Unlike most other TCP applications, it uses 
two TCP connections between the client and server-a control connection that is left up for 
the duration of the client-server session, and a data connection that is created and deleted 
as necessary. 

The connection management used by FTP for the data connection has let us examine in 
more detail the connection management requirements of TCP. We saw the interaction of 
TCP's 2MSL wait state on clients that don't issue PORT commands. 

FTP uses NVT ASCII from Telnet for all commands and replies across the control 
connection. The default data transfer mode is often NVT ASCII also. We saw that newer 
Unix clients automatically send a command to see if the server is an 8-bit byte Unix host, 
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and if so, use binary mode for all file transfers, which is more efficient. 

We also showed an example of anonymous FTP, a popular form of software distribution 
on the Internet. 

Exercises

27.1 In Figure 27.8, what would change if the client did the active open of the second data 
connection instead of the server? 

27.2 In the FTP client examples in this chapter we added the notation to lines such as 

local: hello.c remote: hello.c
42 bytes received in 0.0037 seconds (11 Kbytes/s) 

that the lines were output by the client. Without looking at the source code, how are we 
certain these are not from the server? 
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SMTP: Simple Mail Transfer 
Protocol
28.1 Introduction

Electronic mail (e-mail) is undoubtedly one of the most popular applications. [Caceres et 
al. 1991] shows that about one-half of all TCP connections are for the Simple Mail 
Transfer Protocol, SMTP. (On a byte count basis, FTP connections carry more data.) 
[Paxson 1993] found that the average mail message contains around 1500 bytes of data, 
but some messages contain megabytes of data, because electronic mail is sometimes used 
to send files. Figure 28.1 shows an outline of e-mail exchange using TCP/IP. 

Figure 28.1 Outline of Internet electronic mail.

Users deal with a user agent, of which there are a multitude to choose from. Popular user 
agents for Unix include MH, Berkeley Mail, Elm, and Mush. 

The exchange of mail using TCP is performed by a message transfer agent (MTA). The 
most common MTA for Unix systems is Sendmail. Users normally don't deal with the 
MTA. It is the responsibility of the system administrator to set up the local MTA. Users 
often have a choice, however, for their user agent. 

This chapter examines the exchange of electronic mail between the two MTAs using TCP. 
We do not look at the operation or design of user agents. 

RFC 821 [Postel 1982] specifies the SMTP protocol. This is how two MTAs 
communicate with each other across a single TCP connection. RFC 822 [Crocker 1982] 
specifies the format of the electronic mail message that is transmitted using RFC 821 
between the two MTAs. 
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28.2 SMTP Protocol

The communication between the two MTAs uses NVT ASCII. Commands are sent by the 
client to the server, and the server responds with numeric reply codes and optional human-
readable strings. This is similar to what we saw with FTP in the previous chapter. 

There are a small number of commands that the client can send to the server: less than a 
dozen. (By comparison, FTP has more than 40 commands.) Rather than describing each 
one, we'll start with a simple example to show what happens when we send mail. 

Simple Example

We'll send a simple one-line message and watch the SMTP connection. We invoke our 
user agent with the -v flag, which is passed to the mail transport agent (Sendmail in this 
case). This MTA displays what is sent and received across the SMTP connection when 
this flag is specified. Lines beginning with >>> are commands sent by the SMTP client, 
and lines beginning with a 3-digit reply code are from the SMTP server. Here is the 
interactive session: 

sun % mail -v 
rstevens@noao.edu 

invoke our user agent 

To: rstevens@noao.edu this is output by user agent 

Subject : testing we're then prompted for a subject 

user agent adds one blank line between headers 
and body 

1, 2, 3. this is what we type as the body of the message 

. 
we type a period on a line by itself to say we're 
done 

Sending letter ... 
rstevens@noao.edu... 

verbose output from user agent 

following is output by MTA (Sendmail) 

Connecting to mailhost via ether... 

Trying 140.252.1.54... connected. 

220 noao.edu Sendmail 4.1/SAG-Noao.G89 ready at Mon, 19 Jul 
93 12:47:34 MST 

>>> HELO sun.tuc.noao.edu. 

250 noao.edu Hello sun.tuc.noao.edu., pleased to meet you 

>>> MAIL From: <rstevens@sun.tuc.noao.edu> 

250 <rstevens@sun.tuc.noao.edu>... Sender ok 

>>> RCPT To:<rstevens@noao.edu> 
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250 <rstevens@noao.edu>... Recipient ok 

>>> DATA 

354 Enter mail, end with "." on a line by itself 

>>> . 

250 Mail accepted 

>>> QUIT 

221 noao.edu delivering mail 

rstevens@noao.edu... Sent 

sent. this is output by user agent 

Only five SMTP commands are used to send the mail: HELO, MAIL, RCPT, DATA, and 
QUIT. 

We type mail to invoke our user agent. We're then prompted for a subject, and after 
typing that, we type the body of the message. Typing a period on a line by itself 
completes the message and the user agent passes the mail to the MTA for delivery. 

The client does the active open to TCP port 25. When this returns, the client waits for a 
greeting message (reply code 220) from the server. This server's response must start with 
the fully qualified domain name of the server's host: noao.edu in this example. 
(Normally the text that follows the numeric reply code is optional. Here the domain name 
is required. The text beginning with Sendmail is optional.) 

Next the client identifies itself with the HELO command. The argument must be the fully 
qualified domain name of the client host: sun.tuc.noao.edu. 

The MAIL command identifies the originator of the message. The next command, RCPT, 
identifies the recipient. More than one RCPT command can be issued if there are multiple 
recipients. 

The contents of the mail message are sent by the client using the DATA command. The 
end of the message is specified by the client sending a line containing just a period. The 
final command, QUIT, terminates the mail exchange. 

Figure 28.2 is a time line of the SMTP connection between the sender SMTP (the client) 
and the receiver SMTP (the server). We have removed the connection establishment and 
termination, and the window size advertisements. 

The amount of data we typed to our user agent was a one-line message ("1, 2, 3."), yet 
393 bytes of data are sent in segment 12. The following 12 lines comprise the 393 bytes 
that are sent by the client: 
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Received: by sun.tuc.noao.edu. (4.1/SMI-4.1) 
id AA00502; Mon, 19 Jul 93 12:47:32 MST
Message-Id: <9307191947.AAO0502@sun.tuc.noao.edu.>
From: rstevens@sun.tuc.noao.edu (Richard Stevens)
Date: Mon, 19 Jul 1993 12:47:31 -0700
Reply-To: rstevens@noao.edu
X-Phone: +1 602 676 1676
X-Mailer: Mail User's Shell (7.2.5 10/14/92)
To: rstevens@noao.edu
Subject: testing 

1, 2, 3. 
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Figure 28.2 Basic SMTP mail delivery.

The first three lines, Received: and Message-Id:, are added by the MTA, and the 
next nine are generated by the user agent. 

SMTP Commands

The minimal SMTP implementation supports eight commands. We saw five of them in 
the previous example: HELO, MAIL, RCPT, DATA, and QUIT. 

The RSET command aborts the current mail transaction and causes both ends to reset. 
Any stored information about sender, recipients, or mail data is discarded. 

The VRFY command lets the client ask the sender to verify a recipient address, without 
sending mail to the recipient. It's often used by a system administrator, by hand, for 
debugging mail delivery problems. We'll show an example of this in the next section. 

The NOOP command does nothing besides force the server to respond with an OK reply 
code (200). 

There are additional, optional commands. EXPN expands a mailing list, and is often used 
by the system administrator, similar to VRFY. Indeed, most versions of Sendmail handle 
the two identically. 

Version 8 of Sendmail in 4.4BSD no longer handles the two identically. VRFY does not expand aliases 
and doesn't follow .forward files. 

The TURN command lets the client and server switch roles, to send mail in the reverse 
direction, without having to take down the TCP connection and create a new one. 
(Sendmail does not support this command.) There are three other commands (SEND, 
SOML, and SAML), which are rarely implemented, that replace the MAIL command. 
These three allow combinations of the mail being delivered directly to the user's terminal 
(if logged in), or sent to the recipient's mailbox. 

Envelopes, Headers, and Body

Electronic mail is composed of three pieces. 

1.  The envelope is used by the MTAs for delivery. In our example the envelope was 
specified by the two SMTP commands: 
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MAIL From: <rstevens@sun.tuc.noao.edu>
RCPT To:<rstevens@noao.edu> 

RFC 821 specifies the contents and interpretation of the envelope, and the protocol 
used to exchange mail across a TCP connection. 

2.  Headers are used by the user agents. We saw nine header fields in our example: 
Received, Message-Id, From, Date, Reply-To, X-Phone, X-Mailer, 
To, and Subject. Each header field contains a name, followed by a colon, 
followed by the field value. RFC 822 specifies the format and interpretation of the 
header fields. (Headers beginning with an X- are user-defined fields. The others 
are defined by RFC 822.) Long header fields, such as Received in the example, are 
folded onto multiple lines, with the additional lines starting with white space. 

3.  The body is the content of the message from the sending user to the receiving user. 
RFC 822 specifies the body as lines of NVT ASCII text. When transferred using 
the DATA command, the headers are sent first, followed by a blank line, followed 
by the body. Each line transferred using the DATA command must be less than 
1000 bytes. 

The user agent takes what we specify as the body, adds some headers, and passes the 
result to the MTA. The MTA adds a few headers, adds the envelope, and sends the result 
to another MTA. 

The term content is often used to describe the combination of headers and the body. The 
content is sent by the client with the DATA command. 

Relay Agents

The first line of informational output by our local MTA in our example is "Connecting to 
mailhost via ether." This is because the author's system has been configured to send all 
nonlocal outgoing mail to a relay machine for delivery. 

This is done for two reasons. First, it simplifies the configuration of all MTAs other than 
the relay system's MTA. (Configuring an MTA is not simple, as anyone who has ever 
worked with Sendmail can attest to.) Second, it allows one system at an organization to 
act as the mail hub, possibly hiding all the individual systems. 

In this example the relay system has a hostname of mailhost in the local domain 
(.tuc.noao.edu) and all the individual systems are configured to send their mail to 
this host. We can execute the host command to see how this name is defined to the DNS: 
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sun % host mailhost 

mailhost.tuc.noao.edu CNAME noao.edu canonical name 

noao.edu A 140.252.1.54 its real IP address 

If the host used as the relay changes in the future, only its DNS name need change-the 
mail configuration of all the individual systems does not change. 

Most organizations are using relay systems today. Figure 28.3 is a revised picture of 
Internet mail (Figure 28.2), taking into account that both the sending host and the final 
receiving host probably use a relay host. 
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Figure 28.3 Internet electronic mail, with a relay system at both ends.

In this scenario there are four MTAs between the sender and receiver. The local MTA on 
the sender's host just delivers the mail to its relay MTA. (This relay MTA could have a 
hostname of mailhost in the organization's domain.) This communication uses SMTP 
across the organization's local internet. The relay MTA in the sender's organization then 
sends the mail to the receiving organization's relay MTA across the Internet. This other 
relay MTA then delivers the mail to the receiver's host, by communication with the local 
MTA on the receiver's host. All the MTAs in this example use SMTP, although the 
possibility exists for other protocols to be used. 

NVT ASCII

One feature of SMTP is that it uses NVT ASCII for everything: the envelope, the headers, 
and the body. As we said in Section 26.4, this is a 7-bit character code, transmitted as 8-
bit bytes, with the high-order bit set to 0. 

In Section 28.4 we discuss some newer features of Internet mail, extended SMTP and 
multimedia mail (MIME), that allow the sending and receiving of data such as audio and 
video. We'll see that MIME works with NVT ASCII for the envelope, headers, and body, 
with changes required only in the user agents. 

Retry Intervals

When a user agent passes a new mail message to its MTA, delivery is normally attempted 
immediately. If the delivery fails, the MTA must queue the message and try again later. 

The Host Requirements RFC recommends an initial timeout of at least 30 minutes. The 
sender should not give up for at least 4-5 days. Furthermore, since delivery failures are 
often transient (the recipient has crashed or there is a temporary loss of network 
connectivity), it makes sense to try two connection attempts during the first hour that the 
message is in the queue. 

28.3 SMTP Examples

We showed normal mail delivery in the previous section, so here we'll show how MX 
records are used for mail delivery, and illustrate the VRFY and EXPN commands. 

MX Records: Hosts Not Directly Connected to the Internet

In Section 14.6 we mentioned that one type of resource record in the DNS is the mail 
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exchange record, called MX records. In the following example we'll show how MX 
records are used to send mail to hosts that are not directly connected to the Internet. RFC 
974 [Partridge 1986] describes the handling of MX records by MTAs. 

The host mlfarm.com is not directly connected to the Internet, but has an MX record 
that points to a mail forwarder that is on the Internet: 

sun % host -a-v-t mx mlfarm.com 

The following answer is not authoritative: 

mlfarm.com 86388 IN MX
10 
mercury.hsi.com

mlfarm.com 86388 IN MX 15 hsi86.hsi.com

Additional information:

mercury.hsi.com 86388 IN A 143.122.1.91

hsi86.hsi.com 172762 IN A 143.122.1.6

There are two MX records, each with a different preference. We expect the MTA to start 
with the lower of the two preference values. 

The following script shows mail being sent to this host: 

sun % mail -v ron@mlf arm.com -v flag to see what the MTA does 

To: ron@mlf arm.com 

Subject: MX test message 

the body of the message is typed here (not 
shown) period on a line by itself to 
terminate message 

Sending letter ... 
ron@mlfarm.com... 

Connecting to mlfarm.com via 
tcp 

... mail exchanger is 
mercury.hsi.com 

the MX records are found 

Trying 143.122.1.91... 
connected. 

First tries the one with lower preference 

220 mercury.hsi.com ... remainder is normal SMTP mail transfer 

We can see in this output that the MTA discovered that the destination host had an MX 
record and used the MX record with the lowest preference value. 
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Before running this example from the host sun, it was configured not to use its normal 
relay host, so we could see the mail exchange with the destination host. It was also 
configured to use the name server on the host noao.edu (which is across its dialup SLIP 
link), so we could capture both the mail transfer and the DNS traffic using tcpdump on the 
SLIP link. Figure 28.4 shows the starting portion of the tcpdump output. 

1 0.0 
sun.1624 > noao.edu.53: 2+ MX? mlfarm.com. 
(28) 

2
0.445572 
(0.4456) 

noao.edu.53 > sun.1624: 2* 2/0/2 MX 
mercury.hsi.com. 10 (113) 

3
0.505739 
(0.0602) 

sun.1143 > mercury.hsi.com.25: S 
1617536000:1617536000(0) win 4096 

4
0.985428 
(0.4797) 

mercury.hsi.com.25 > sun.1143: S 
1832064000:1832064000(0) ack 1617536001 
win 16384 

5
0.986003 
(0.0006) 

sun.1143 > mercury.hsi.com.25: . ack 1 win 
4096 

6
1.735360 
(0.7494) 

mercury.hsi.com.25 > sun.1143: P 1:90(89) 
ack 1 win 16384 

Figure 28.4 Sending mail to a host that uses MX records.

In line 1 the MTA queries its name server for an MX record for mlfarm.com. The plus 
sign following the 2 means the recursion-desired flag is set. The response in line 2 has the 
authoritative bit set (the asterisk following the 2) and contains 2 answer RRs (the two MX 
host names), 0 authority RRs, and 2 additional RRs (the IP addresses of the two hosts). 

In lines 3-5 a TCP connection is established with the SMTP server on the host 
mercury.hsi.com. The server's initial 220 response is shown in line 6. 

Somehow the host mercury.hsi.com must deliver this mail message to the 
destination, mlfarm.com. The UUCP protocols are a popular way for a system not 
connected to the Internet to exchange mail with its MX site. 

In this example the MTA asks for an MX record, gets a positive result, and sends the mail. 
Unfortunately the interaction between an MTA and the DNS can differ between 
implementations. RFC 974 specifies that an MTA should ask for MX records first, and if 
none are found, attempt delivery to the destination host (i.e., ask the DNS for an A record 
for the host, for its IP address). MTAs must also deal with CNAME records in the DNS 
(canonical names). 

As an example, if we send mail to rstevens@mailhost.tuc.noao.edu from a 
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BSD/386 host, the following steps are executed by the MTA (Sendmail). 

1.  Sendmail asks the DNS for CNAME records for mailhost.tuc.noao.edu. 
We see that a CNAME record exists: 

sun % host -t cname mailhost.tuc.noao.edu 
mailhost.tuc.noao.edu CNAME noao.edu 

2.  A DNS query is issued for CNAME records for noao.edu and the response says 
none exist. 

3.  Sendmail then asks the DNS for MX records for noao.edu and gets one MX 
record: 

sun % host -t mx noao.edu 
noao.edu MX noao.edu 

4.  Sendmail queries the DNS for an A record (IP address) for noao.edu and gets 
back the value 140.252.1.54. (This A record was probably returned by the name 
server for noao.edu as an additional RR with the MX reply in step 3.) 

5.  An SMTP connection is initiated to 140.252.1.54 and the mail is sent. 

A CNAME query is not tried for the data returned in the MX record (noao.edu). The 
data in the MX record cannot be an alias-it must be the name of a host that has an A 
record. 

The version of Sendmail distributed with SunOS 4.1.3 that uses the DNS only queries for MX records, 
and gives up if an MX record isn't found. 

MX Records: Hosts That Are Down

Another use of MX records is to provide an alternative mail receiver when the destination 
host is down. If we look at the DNS entry for our host sun we see that it has two MX 
records: 

sun % host -a-v-t mx sun.tuc.noao.edu 

sun.tuc.noao.edu 86400 IN MX 0 sun.tuc.noao.edu

sun.tuc.noao.edu 86400 IN MX 10 noao.edu

Additional information:

sun.tuc.noao.edu 86400 IN A 140.252.1.29

sun.tuc.noao.edu 86400 IN A 140.252.13.33
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noao.edu 86400 IN A 140.252.1.54

The MX record with the lowest preference indicates that direct delivery to the host itself 
should be tried first, and the next preference is to deliver the mail to the host noao.edu. 

In the following script we send mail to ourself at the host sun.tuc.noao.edu, from 
the host vangogh.cs.berkeley.edu, after turning off the destination's SMTP 
server. When a connection request arrives for port 25, TCP should respond with an RST, 
since no process has a passive open pending for that port. 

vangogh % mail -v rstevens@sun.tuc.noao.edu 

A test to a host that's down. 

EOT

rstevens@sun.tuc.noao.edu... Connecting to 
sun.tuc.noao.edu. (smtp)... 

rstevens@sun.tuc.noao.edu... Connecting to noao.edu. 
(smtp)... 

220 noao.edu remainder is normal SMTP mail transfer 

We see that the MTA tries to contact sun.tuc.noao.edu and then gives up and 
contacts noao.edu instead. 

Figure 28.5 is the tcpdump output that shows that TCP responds to the incoming SYNs 
with an RST. 

1 0.0 
vangogh.3873 > 140.252.1.29.25: S 
2358303745:2358303745(0) ... 

2
0.000621 
(0.0006) 

140.252.1.29.25 > vangogh.3873: R 0:0(0) 
ack 2358303746 win 0 

3
0.300203 
(0.2996) 

vangogh.3874 > 140.252.13.33.25: S 
2358367745:2358367745(0) ... 

4
0.300620 
(0.0004) 

140.252.13.33.25 > vangogh.3874; R 0:0(0) 
ack 2358367746 win 0 

Figure 28.5 Attempt to connect to an SMTP server that is not running.

In line 1 vangogh sends a SYN to port 25 at the primary IP address for sun: 
140.252.1.29. This is rejected in line 2. The SMTP client on vangogh then tries the next 
IP address for sun: 140.252.13.33 (line 3), and it also causes an RST to be returned (line 
4). 
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The SMTP client doesn't try to differentiate between the different error returns from its 
active open on line 1, which is why it tries the other IP address on line 3. If the error had 
been something like "host unreachable" for the first attempt, it's possible that the second 
attempt could work. 

If the reason the SMTP client's active open fails is because the server host is down, we 
would see the client retransmit the SYN to IP address 140.252.1.29 for a total of 75 
seconds (similar to Figure 18.6), followed by the client sending another three SYNs to IP 
address 140.252.13.33 for another 75 seconds. After 150 seconds the client would move 
on to the next MX record with the higher preference. 

VRFY and EXPN Commands

The VRFY command verifies that a recipient address is OK, without actually sending 
mail. EXPN is intended to expand a mailing list, without sending mail to the list. Many 
SMTP implementations (such as Sendmail) consider the two the same, but we mentioned 
that newer versions of Sendmail do differentiate between the two. 

As a simple test we can connect to a newer version of Sendmail and see the difference. 
(We have removed the extraneous Telnet client output.) 

sun % telnet vangogh.cs.berkeley.edu 25
220-vangogh.CS. Berkeley. EDU Sendmail 8.1C/6.32 ready at 
Tue, 3 Aug 1993 14: 59:12 -0700
220 ESMTP spoken here 

helo bsdi.fcuc.noao.edu 
250 vangogh.CS.Berkeley.EDU Hello sun.tuc.noao.edu 
[140.252.1.29], pleased to meet you 

vrfy nosuchname
550 nosuchname... User unknown 

vrfy rstevens
250 Richard Stevens <rstevens@vangogh.CS.Berkeley.EDU> 

expn rstevens
250 Richard Stevens <rstevens@noao.edu> 

First notice that we purposely typed the wrong hostname on the HELO command: bsdi 
instead of sun. Most SMTP servers take the IP address of the client and perform a DNS 
pointer query (Section 14.5) and compare the hostnames. This allows the server to log the 
client connection based on the IP address, not the name that a user might have mistyped. 

file:///D|/Documents%20and%20Settings/bigini/Doc...omenet2run/tcpip/tcp-ip-illustrated/smtp_sim.htm (13 of 23) [12/09/2001 14.47.52]



Chapter 28. SMTP: Simple Mail Transfer Protocol

Some servers respond with humorous messages, such as "You are a charlatan," or "why 
do you call yourself...". We see in this example that this server just prints our real domain 
name from the pointer query along with our IP address. 

We then type a VRFY command for an invalid name, and the server responds with a 550 
error. Next we type a valid name, and the server responds with the usemame on the local 
host. Next we try the EXPN command and get a different response. The EXPN command 
determines that the mail for this user is being forwarded, and prints the forwarding 
address. 

Many sites disable the VRFY and EXPN commands, sometimes for privacy, and 
sometimes in the belief that it's a security hole. For example, we can try these commands 
with the SMTP server at the White House: 

sun % telnet whitehouse.gov 25
220 whitehouse.gov SMTP/smap Ready. 

helo aun.tuc.noao.edu
250 (sun.tuc.noao.edu) pleased to meet you. 

vrfy Clinton
500 Command unrecognized 

expn Clinton
500 Command unrecognized 

28.4 SMTP Futures

Changes are taking place with Internet mail. Recall the three pieces that comprise Internet 
mail: the envelope, headers, and body. New SMTP commands are being added that affect 
the envelope, non-ASCII characters can be used in the headers, and structure is being 
added to the body (MIME). In this section we consider the extensions to each of these 
three pieces in order. 

Envelope Changes: Extended SMTP

RFC 1425 [Klensin et al. 1993a] defines the framework for adding extensions to SMTP. 
The result is called extended SMTP (ESMTP). As with other new features that we've 
described in the text, these changes are being added in a backward compatible manner, so 
that existing implementations aren't affected. 

A client that wishes to use the new features initiates the session with the server by issuing 
a EHLO command, instead of HELO. A compatible server responds with a 250 reply 
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code. This reply is normally multiline, with each line containing a keyword and an 
optional argument. These keywords specify the SMTP extensions supported by the server. 
New extensions will be described in an RFC and will be registered with the IANA. (In a 
multiline reply all lines except the last have a hyphen after the numeric reply code. The 
last line has a space after the numeric reply code.) 

We'll show the initial connection to four SMTP servers, three of which support extended 
SMTP. We connect to them using Telnet, but have removed the extraneous Telnet client 
output. 

sun % telnet vangogh.cs.berkeley.edu 25
220-vangogh.CS.Berkeley.EDU Sendmail 8.1C/6.32 ready at Mon, 
2 Aug 1993 15: 47:48 -0700
220 ESMTP spoken here 

ehlo sun.tuc.noao.edu
250-vangogh.CS.Berkeley.EDU Hello sun.tuc.noao.edu 
[140.252.1.29], pleased to meet you
250-EXPN
250-SIZE
250 HELP 

This server gives a multiline 220 reply for its greeting message. The extended commands 
listed in the 250 reply to the EHLO command are EXPN, SIZE, and HELP The first and 
last are from the original RFC 821 specification, but they are optional commands. ESMTP 
servers state which of the optional RFC 821 commands they support, in addition to newer 
commands. 

The SIZE keyword that this server supports is defined in RFC 1427 [Klensin, Freed, and 
Moore 1993]. It lets the client specify the size of the message in bytes on the MAIL 
FROM command line. This lets the server verify that it will accept a message of that size, 
before the client starts to send it. This command was added since the size of Internet mail 
messages is growing, with the support for message content other than ASCII lines (i.e., 
images, audio, etc.). 

The next host also supports ESMTP. Notice that the 250 reply specifying that the SIZE 
keyword is supported contains an optional argument. This indicates that this server will 
accept a message size up to 461 Mbytes. 

sun % telnet ymir.claremont.edu 25
220 ymir.claremont.edu -- Server SMTP (PMDF V4.2-13 #4220) 

ehlo sun.tuc.noao.edu
250-ymir.claremont.edu
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250-8BITMIME
250-EXPN
250-HELP
250-XADR
250 SIZE 461544960 

The keyword 8BITMIME is from RFC 1426 [Klensin et al. 1993b]. This allows the client 
to add the keyword BODY to the MAIL FROM command, specifying whether the body 
contains NVT ASCII characters (the default) or 8-bit data. Unless the client receives the 
8BITMIME keyword from the server in response to a EHLO command, the client is 
forbidden from sending any characters other than NVT ASCII. (When we talk about 
MIME in this section, we'll see that an 8-bit SMTP transport is not required by MIME.) 

This server also advertises the XADR keyword. Any keyword that begins with an X refers 
to a local SMTP extension. 

The next server also supports ESMTP, advertising the HELP and SIZE keywords that 
we've already seen. It also supports three local extensions that begin with an X. 

sun % telnet dbc.mtview.ca.us 25
220 dbc.mtview.ca.us Sendmail 5.65/3.1.090690, it's Mon, 2 
Aug 93 15:48:50 -0700 

ehlo sun. tuc.noao.edu 
250-Hello sun.tuc.noao.edu, pleased to meet you
250-HELP
250-SIZE
250-XONE
250-XVRB
250 XQUE 

Finally we see what happens when the client tries to use ESMTP by issuing the EHLO 
command to a server that doesn't support it. 

sun % telnet relay1.uu.net 25
220 relay1.UU.NET Sendmail 5.61/UUNET-internet-primary ready 
at Mon, 2 Aug 93 18:50:27 -0400 

ehlo sun.tuc.noao.edu
500 Command unrecognized 

rset
250 Reset state 
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Instead of receiving a 250 reply to the EHLO command, the client receives a 500 reply. 
The client should then issue the RSET command, followed by a HELO command. 

Header Changes: Non-ASCII Characters

RFC 1522 [Moore 1993] specifies a way to send non-ASCII characters in RFC 822 
message headers. The main use of this is to allow additional characters in the sender and 
receiver names, and in the subject. The header fields can contain encoded words. They 
have the following format: 

=? charset ? encoding ? encoded-text ?= 

charset is the character set specification. Valid values are the two strings us-ascii and 
iso-8859-X, where X is a single digit, as in iso-8859-1. 

encoding is a single character to specify the encoding method. Two values are supported. 

1.  Q encoding means quoted-printable, and is intended for Latin character sets. Most 
characters are sent as NVT ASCII (with the high-order bit set to 0, of course). Any 
character to be sent whose eighth bit is set is sent instead as three characters: first 
the character =, followed by two hexadecimal digits. For example, the character 
*e* (whose binary 8-bit value is 0xe9) is sent as the three characters =E9. Spaces 
are always sent as either an underscore or the three characters =20. This encoding 
is intended for text that is mostly ASCII, with a few special characters. 

2.  B means base-64 encoding. Three consecutive bytes of text (24 bits) are encoded 
as four 6-bit values. The 64 NVT ASCII characters used to represent each of the 
possible 6-bit values are shown in Figure 28.6. 

6-bit 
value

ASCII 
char 

6-bit 
value 

ASCII 
char

6-bit 
value

ASCII 
char 

6-bit 
value 

ASCII 
char

0 A 10 Q 20 g 30 w 

1 B 11 R 21 h 31 x 

2 C 12 S 22 i 32 y 

3 D 13 T 23 j 33 z 

4 E 14 U 24 k 34 0 

5 F 15 V 25 l 35 1 

6 G 16 W 26 m 36 2 

7 H 17 X 27 n 37 3 

8 I 18 Y 28 o 38 4 
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9 J 19 Z 29 p 39 5 

a K 1a a 2a q 3a 6 

b L 1b b 2b r 3b 7 

c M 1c c 2c s 3c 8 

d N 1d d 2d t 3d 9 

e O 1e e 2e u 3e + 

f P 1f f 2f v 3f / 

Figure 28.6 Encoding of 6-bit values (base-64 encoding).

When the number of characters to encode is not a multiple of three, equal signs are 
used as the pad characters. 

The following example of these two encodings is from RFC 1522: 

From: =?US-ASCII?Q?Keith_Moore?= <moore@cs.utk.edu> 
To: =?ISO-8859-l?Q?Kelcl_J=F8rn_Simonsen?= <keld@dkuug.dk>
CC: =?ISO-8859-l?Q?Andr=E9_?= Pirard <PIRARD@vml.ulg.ac.be> 
Subject: =?ISO-8859-1?B?SWYgeW911GNhbiByZWFklHRoaXMgeW8=?= 
=?ISO-8859-2?B?dSBIbinRlcnNOYW5klHRoZSBIeGFtcGxlLg==?= 

A user agent capable of handling these headers would output: 

From: Keith Moore <moore@cs.utk.edu>
To: Keld J0rn Simonsen <keld@dkuug.dk> 
CC: Andre Pirard <PIRARD@vml.ulg.ac.be>
Subject: If you can read this you understand the example. 

To see how base-64 encoding works, look at the first four encoded characters in the 
subject line: SWYg. Write out the 6-bit values for these four characters from Figure 28.6 
(S=0xl2,W=0xl6,Y=0xl8,and g=0x20) in binary: 

010010 010110 011000 100000 

Then regroup these 24 bits into three 8-bit bytes: 

01001001 01100110 00100000

=0x49 =0x66 =0x20

which are the ASCII representations for I, f, and a space. 
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Body Changes: Multipurpose Internet Mail Extensions (MIME) 

We've said that RFC 822 specifies the body as lines of NVT ASCII text, with no structure. 
RFC 1521 [Borenstein and Freed 1993] defines extensions that allow structure in the 
body. This is called MIME, for Multipurpose Internet Mail Extensions. 

MIME does not require any of the extensions that we've described previously in this 
section (extended SMTP or non-ASCII headers). MIME just adds some new headers (in 
accordance with RFC 822) that tell the recipient the structure of the body The body can 
still be transmitted using NVT ASCII, regardless of the mail contents. While some of the 
extensions we've just described might be nice to have along with MIME-the extended 
SMTP SIZE command, since MIME messages can become large, and non-ASCII headers-
these extensions are not required by MIME. All that's required to exchange MIME 
messages with another party is for both ends to have a user agent that understands MIME. 
No changes are required in any of the MTAs. MIME defines the five new header fields: 

Mime-Version:
Content-Type:
Content-Transfer-Encoding:
Content-ID:
Content-Description: 

As an example, the following two header lines can appear in an Internet mail message: 

Mime-Version: 1.0
Content-Type: TEXT/PLAIN; charset=US-ASCII 

The current MIME version is 1.0 and the content type is plain ASCII text, the default for 
Internet mail. The word PLAIN is considered a subtype of the content type (TEXT), and 
the string charset=US-ASCII is a parameter. 

Text is just one of MIME'S seven defined content types. Figure 28.7 summarizes the 16 
different content types and subtypes defined in RFC 1521. Numerous parameters can be 
specified for certain content types and subtypes. 

The content type and the transfer encoding used for the body are independent. The former 
is specified by the Content-Type header field, and the latter by the Content-
Transfer-Encoding header field. There are five different encoding formats defined 
in RFC 1521. 

1.  7bit, which is NVT ASCII, the default. 
2.  quoted-printable, which we saw an example of earlier with non-ASCII 

headers. It is useful when only a small fraction of the characters have their eighth 
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bit set. 
3.  base64, which we showed in Figure 28.6. 
4.  8bit containing lines of characters, some of which are non-ASCII and have their 

eighth bit set. 
5.  binary encoding, which is 8-bit data that need not contain lines. 

Content-Type Subtype Description

text
plain 
richtext
enriched 

Unformatted text.
Text with simple formatting, such as bold, italic, 
underline, and so on.
A clarification, simplification, and refinement of 
richtext. 

multipart

mixed
parallel
digest
alternative 

Multiple body parts to be processed sequentially.
Multiple body parts that can be processed in parallel.
An electronic mail digest.
Multiple body parts are present, all with identical 
semantic content. 

message

rfc822
partial
external-
body 

Content is another RFC 822 mail message.
Content is a fragment of a mail message.
Content is a pointer to the actual message. 

application
octet-
stream
postscript 

Arbitrary binary data.
A PostScript program. 

image
jpeg
gif 

ISO 10918 format.
CompuServe's Graphic Interchange Format. 

audio basic Encoded using 8-bit ISDN //-law format. 

video mpeg ISO 11172 format.

Figure 28.7 MIME content types and subtypes.

Only the first three of these are valid for an RFC 821 MTA, since these three generate a 
body containing only NVT ASCII characters. Using extended SMTP with 8BITMIME 
support allows 8bit encoding to be used. 

Although the content type and encoding are independent, RFC 1521 recommends 
quoted-printable for text with non-ASCII data, and base64 for image, 
audio, video, and octet-stream application data. This allows maximum 
interoperability with RFC 821 conformant MTAs. Also, the multipart and message 
content types must be encoded as 7bit. 
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As an example of a multipart content type. Figure 28.8 shows a mail message from 
the RFC distribution list. The subtype is mixed, meaning each of the parts should be 
processed sequentially, and the boundary between the parts is the string NextPart, 
preceded by two hyphens at the start of a line. 

Each boundary can be followed with a line specifying the header fields for the next part. 
Everything in the message before the first boundary is ignored, as is everything following 
the final boundary. 

Since a blank line follows the first boundary, and not header fields, the content type of the 
data between the first and second boundaries is assumed to be text/plain with a 
character set of us-ascii. This is a textual description of the new RFC. 

The second boundary, however, is followed by header fields. It specifies another 
multipart message, with a boundary of OtherAccess. The subtype is 
alternative, and two different alternatives are present. The first OtherAccess 
alternative is to fetch the RFC using electronic mail, and the second is to fetch it using 
anonymous FTP. A MIME user agent would list the two alternatives, allow us to choose 
one, and then automatically fetch a copy of the RFC using either mail or anonymous FTP. 

To: rfc-dist@nic.ddn.mil 
Subject: RFC1479 on IDPR Protocol
Mime-Version: 1.0
Content-Type: Multipart/Mixed; Boundary="NextPart"
Date: Fri, 23 Jul 93 12:17:43 PDT
From: "Joyce K. Reynolds" <jkrey@isi.edu> 

--NextPart the first boundary

A new Request for Comments is now available in online RFC 
libraries. 

... (details here on the new RFC) 

Below is the data which will enable a MIME compliant Mail 
Reader implementation to automatically retrieve the ASCII 
version of the RFCs. 

--NextPart the second boundary

Content-Type: Multipart/Alternative; Boundary="OtherAccess" 

a nested multipart message with a new 
boundary 

--OtherAccess 

Content-Type: Message/External-body; 
access-type="mail-server";
server="mail-server@nisc-sri.com" 
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Content-Type; text/plain 

SEND rfcl479.txt 

--OtherAccess 

Content-Type: Message/External-body; 
name="rfcl479.txt";
site="ds.internic.net",
access-type="anon-ftp";
directory="rfc" 

Content-Type: text/plain 

--OtherAccess-- 

--NextPart-- the final boundary

Figure 28.8 Example of a MIME multipart message.

This section has been a brief overview of MIME. For additional details and examples of 
MIME, see RFC 1521 and [Rose 1993]. 

28.5 Summary

Electronic mail involves a user agent at both ends (the sender and receiver) and two or 
more message transfer agents. We can divide a mail message into three parts: the 
envelope, the headers, and the body. We've seen how all three parts are exchanged using 
SMTP, the Internet standard. All three are exchanged as NVT ASCII characters. 

We've also looked at newer extensions for all three parts: extended SMTP for the 
envelope, non-ASCII headers, and the addition of structure to the body using MIME. The 
structure and encoding used by MIME allow arbitrary binary data to be exchanged, using 
existing 7-bit SMTP MTAs. 

Exercises

28.1 Read RFC 822 to find out what a domain literal is. Try sending mail to yourself 
using one. 

28.2 Excluding the connection establishment and termination, what is the minimum 
number of network round trips to send a small mail message? 

28.3 TCP is a full-duplex protocol, yet SMTP uses TCP in a half-duplex fashion. The 
client sends a command then stops and waits for the reply. Why doesn't the client send 
multiple commands at once, for example, a single write that contains the HELO, MAIL, 
RCPT, DATA, and QUIT commands (assuming the body isn't too large)? 
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28.4 How can this half-duplex operation of SMTP fool the slow start mechanism when 
the network is running near capacity? 

28.5 When multiple MX records exist with the same preference value, should they always 
be returned by a name server in the same order? 

file:///D|/Documents%20and%20Settings/bigini/Doc...omenet2run/tcpip/tcp-ip-illustrated/smtp_sim.htm (23 of 23) [12/09/2001 14.47.53]



Chapter 29. NFS: Network File System

NFS: Network File System
29.1 Introduction

In this chapter we describe NFS, the Network File System, another popular application 
that provides transparent file access for client applications. The building block of NFS is 
Sun RPC: Remote Procedure Call, which we must describe first. 

Nothing special need be done by the client program to use NFS. The kernel detects that 
the file being accessed is on an NFS server and automatically generates the RPC calls to 
access the file. 

Our interest in NFS is not in all the details on file access, but in its use of the Internet 
protocols, especially UDP. 

29.2 Sun Remote Procedure Call

Most network programming is done by writing application programs that call system-
provided functions to perform specific network operations. For example, one function 
performs a TCP active open, another performs a TCP passive open, another sends data 
across a TCP connection, another sets specific protocol options (enable TCP's keepalive 
timer), and so on. In Section 1.15 we mentioned that two popular sets of functions for 
network programming (called APIs) are sockets and TLI. The API used by the client and 
the API used by the server can be different, as can the operating systems running on the 
client and server. It is the communication protocol and application protocol that determine 
if a given client and server can communicate with each other. A Unix client written in C 
using sockets and TCP can communicate with a mainframe server written in COBOL 
using some other API and TCP, if both hosts are connected across a network and both 
have a TCP/IP implementation. 

Typically the client sends commands to the server, and the server sends replies back to the 
client. All the applications we've looked at so far - Ping, Traceroute, routing daemons, and 
the clients and servers for the DNS, TFTP, BOOTP, SNMP, Telnet, FTP, and SMTP-are 
built this way. 

RPC, Remote Procedure Call, is a different way of doing network programming. A client 
program is written that just calls functions in the server program. This is how it appears to 
the programmer, but the following steps actually take place. 

1.  When the client calls the remote procedure, it's really calling a function on the 
local host that's generated by the RPC package. This function is called the client 
stub. The client stub packages the procedure arguments into a network message, 
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and sends this message to the server. 
2.  A server stub on the server host receives the network message. It takes the 

arguments from the network message, and calls the server procedure that the 
application programmer wrote. 

3.  When the server function returns, it returns to the server stub, which takes the 
return values, packages them into a network message, and sends the message back 
to the client stub. 

4.  The client stub takes the return values from the network message and returns to the 
client application. 

The network programming done by the stubs and the RPC library routines uses an API 
such as sockets or TLI, but the user application-the client program, and the server 
procedures called by the client-never deal with this API. The client application just calls 
the server procedures and all the network programming details are hidden by the RPC 
package, the client stub, and the server stub. An RPC package provides numerous 
benefits. 

1.  The programming is easier since there is little or no network programming 
involved. The application programmer just writes a client program and the server 
procedures that the client calls. 

2.  If an unreliable protocol such as UDP is used, details like timeout and 
retransmission are handled by the RPC package. This simplifies the user 
application. 

3.  The RPC library handles any required data translation for the arguments and return 
values. For example, if the arguments consist of integers and floating point 
numbers, the RPC package handles any differences in the way integers and floating 
point numbers are stored on the client and server. This simplifies coding clients 
and servers that can operate in heterogeneous environments. 

Details of RPC programming are provided in Chapter 18 of [Stevens 1990]. Two popular 
RPC packages are Sun RPC and the RPC package in the Open Software Foundation's 
(OSF) Distributed Computing Environment (DCE). Our interest in RPC is to see what the 
procedure call and procedure return messages look like for the Sun RPC package, since 
it's used by the Network File System, which we describe in this chapter. Version 2 of Sun 
RPC is defined in RFC 1057 [Sun Microsystems 1988a]. 

Sun RPC

Sun RPC comes in two flavors. One version is built using the sockets API and works with 
TCP and UDP. Another, called TI-RPC (for "transport independent"), is built using the 
TLI API and works with any transport layer provided by the kernel. From our perspective 
the two are the same, although we talk only about TCP and UDP in this chapter. 

Figure 29.1 shows the format of an RPC procedure call message, when UDP is used. 
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Figure 29.1 Format of RPC procedure call message as a UDP datagram.

The IP and UDP headers are the standard ones we showed earlier (Figures 3.1 and 11.2). 
What follows after the UDP header is defined by the RPC package. 

The transaction ID (XID) is set by the client and returned by the server. When the client 
receives a reply it compares the XID returned by the server with the XID of the request it 
sent. If they don't match, the client discards the message and waits for the next one from 
the server. Each time the client issues a new RPC, it changes the XID. But if the client 
retransmits a previously sent RPC (because it hasn't received a reply), the XID does not 
change. 

The call variable is 0 for a call, and 1 for a reply. The current RPC version is 2. The next 
three variables, program number, version number, and procedure number, identify the 
specific procedure on the server to be called. 

The credentials identify the client. In some instances nothing is sent here, and in other 
instances the numeric user ID and group IDs of the client are sent. The server can look at 
the credentials and determine if it will perform the request or not. The verifier is used with 

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/nfs_netw.htm (3 of 23) [12/09/2001 14.47.56]



Chapter 29. NFS: Network File System

Secure RPC, which uses DES encryption. Although the credentials and verifier are 
variable-length fields, their length is encoded as part of the field. 

Following this are the procedure parameters. The format of these depends on the 
definition of the remote procedure by the application. How does the receiver (the server 
stub) know the size of the parameters? Since UDP is being used, the size of the UDP 
datagram, minus the length of all the fields up through the verifier, is the size of the 
parameters. When TCP is used instead of UDP, there is no inherent length, since TCP is a 
byte stream protocol, without record boundaries. To handle this, a 4-byte length field 
appears between the TCP header and the XID, telling the receiver how many bytes 
comprise the RPC call. This allows the RPC call message to be sent in multiple TCP 
segments, if necessary. (The DNS uses a similar technique; see Exercise 14.4.) 

Figure 29.2 shows the format of an RPC reply. This is sent by the server stub to the client 
stub, when the remote procedure returns. 

Figure 29.2 Format of RPC procedure reply message as a UDP datagram.

The XID in the reply is just copied from the XID in the call. The reply is 1, which we said 
differentiates this message from a call. The status is 0 if the call message was accepted. 
(The message can be rejected if the RPC version number isn't 2, or if the server cannot 
authenticate the client.) The verifier is used with secure RPC to identify the server. 

The accept status is 0 on success. A nonzero value can indicate an invalid version number 
or an invalid procedure number, for example. As with the RPC call message, if TCP is 
used instead of UDP, a 4-byte length field is sent between the TCP header and the XID. 
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29.3 XDR: External Data Representation

XDR, External Data Representation, is the standard used to encode the values in the RPC 
call and reply messages-the RPC header fields (XID, program number, accept status, etc.), 
the procedure parameters, and the procedure results. Having a standard way of encoding 
all these values is what lets a client on one system call a procedure on a system with a 
different architecture. XDR is defined in RFC 1014 [Sun Microsystems 1987]. 

XDR defines numerous data types and exactly how they are transmitted in an RPC 
message (bit order, byte order, etc.). The sender must build an RPC message in XDR 
format, then the receiver converts the XDR format into its native representation. We see, 
for example, in Figures 29.1 and 29.2, that all the integer values we show (XID, call, 
program number, etc.) are 4-byte integers. Indeed, all integers occupy 4 bytes in XDR. 
Other data types supported by XDR include unsigned integers, booleans, floating point 
numbers, fixed-length arrays, variable-length arrays, and structures. 

29.4 Port Mapper

The RPC server programs containing the remote procedures use ephemeral ports, not well-
known ports. This requires a "registrar" of some form that keeps track of which RPC 
programs are using which ephemeral ports. In Sun RPC this registrar is called the port 
mapper. 

The term "port" in this name originates from the TCP and UDP port numbers, features of the Internet 
protocol suite. Since TI-RPC works over any transport layer, and not just TCP and UDP, the name of the 
port mapper in systems using TI-RPC (SVR4 and Solaris 2.2, for example) has become rpcbind. We'll 
continue to use the more familiar name of port mapper. 

Naturally, the port mapper itself must have a well-known port: UDP port 111 and TCP 
port 111. The port mapper is also just an RPC server program. It has a program number 
(100000), a version number (2), a TCP port of 111, and a UDP port of 111. Servers 
register themselves with the port mapper using RPC calls, and clients query the port 
mapper using RPC calls. The port mapper provides four server procedures: 

1.  PMAPPROC_SET. Called by an RPC server on startup to register a program 
number, version number, and protocol with a port number. 

2.  PMAPPROCJJNSET. Called by server to remove a previously registered mapping. 
3.  PMAPPROC_GETPORT. Called by an RPC client on startup to obtain the port 

number for a given program number, version number, and protocol. 
4.  PMAPPROC_DUMP. Returns all entries (program number, version number, 

protocol, and port number) in the port mapper database. 

When an RPC server program starts, and is later called by an RPC client program, the 
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following steps take place. 

1.  The port mapper must be started first, normally when the system is bootstrapped. It 
creates a TCP end point and does a passive open on TCP port 111. It also creates a 
UDP end point and waits for a UDP datagram to arrive for UDP port 111. 

2.  When the RPC server program starts, it creates a TCP end point and a UDP end 
point for each version of the program that it supports. (A given RPC program can 
support multiple versions. The client specifies which version it wants when it calls 
a server procedure.) An ephemeral port number is bound to both end points. (It 
doesn't matter whether the TCP port number is the same or different from the UDP 
port number.) The server registers each program, version, protocol, and port 
number by making a remote procedure call to the port mapper's PMAPPROC_SET 
procedure. 

3.  When the RPC client program starts, it calls the port mapper's PMAP-
PROC_GETPORT procedure to obtain the ephemeral port number for a given 
program, version, and protocol. 

4.  The client sends an RPC call message to the port number returned in step 3. If 
UDP is being used, the client just sends a UDP datagram containing an RPC call 
message (Figure 29.1) to the server's UDP port number. The server responds by 
sending a UDP datagram containing an RPC reply message (Figure 29.2) back to 
the client. 

If TCP is being used, the client does an active open to the server's TCP port 
number, and then sends an RPC call message across the connection. The server 
responds with an RPC reply message across the connection. 

The program rpcinfo(8) prints out the port mapper's current mappings. (It calls the port 
mapper's PMAPPROC_DUMP procedure.) Here is some typical output: 

sun % /usr/etc/rpcinfo -p 

program vers proto port 

100005 1 tcp 702 mountd mount daemon for NFS 

100005 1 udp 699 mountd

100005 2 tcp 702 mountd

100005 2 udp 699 mountd 

100003 2 udp 2049 nfs NFS itself 

100021 1 tcp 709 niockmgr NFS lock manager 

100021 1 udp 1036 niockmgr

100021 2 tcp 721 niockmgr

100021 2 udp 1039 niockmgr

100021 3 tcp 713 niockmgr 
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100021 3 udp 1037 niockmgr

We see that some programs do support multiple versions, and each combination of a 
program number, version number, and protocol has its own port number mapping 
maintained by the port mapper. 

Both versions of the mount daemon are accessed through the same TCP port number 
(702) and the same UDP port number (699), but each version of the lock manager has its 
own port number. 

29.5 NFS Protocol

NFS provides transparent file access for clients to files and filesystems on a server. This 
differs from FTP (Chapter 27), which provides file transfer. With FTP a complete copy of 
the file is made. NFS accesses only the portions of a file that a process references, and a 
goal of NFS is to make this access transparent. This means that any client application that 
works with a local tile should work with an NFS file, without any program changes 
whatsoever. 

NFS is a client-server application built using Sun RPC. NFS clients access tiles on an NFS 
server by sending RPC requests to the server. While this could be done using normal user 
processes - that is, the NFS client could be a user process that makes explicit RPC calls to 
the server, and the server could also be a user process-NFS is normally not implemented 
this way for two reasons. First, accessing an NFS tile must be transparent to the client. 
Therefore the NFS client calls are performed by the client operating system, on behalf of 
client user processes. Second, NFS servers are implemented within the operating system 
on the server for efficiency. If the NFS server were a user process, every client request 
and server reply (including the data being read or written) would have to cross the 
boundary between the kernel and the user process, which is expensive. 

In this section we look at version 2 of NFS, as documented in RFC 1094 [Sun 
Microsystems 1988b]. A better description of Sun RPC, XDR, and NFS is given in 
[X/Open 1991]. Details on using and administering NFS are in [Stern 1991]. The 
specifications for version 3 of the NFS protocol were released in 1993, which we cover in 
Section 29.7. 

Figure 29.3 shows the typical arrangement of an NFS client and an NFS server. There are 
many subtle points in this figure. 
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Figure 29.3 Typical arrangement of NFS client and NFS server.

1.  It is transparent to the client whether it's accessing a local file or an NFS file. The 
kernel determines this when the file is opened. After the tile is opened, the kernel 
passes all references to local tiles to the box labeled "local file access," and all 
references to an NFS tile are passed to the "NFS client" box. 

2.  The NFS client sends RPC requests to the NFS server through its TCP/IP module. 
NFS is used predominantly with UDP, but newer implementations can also use 
TCP. 

3.  The NFS server receives client requests as UDP datagrams on port 2049. Although 
NFS could be made to use the port mapper, allowing the server to use an 
ephemeral port, UDP port 2049 is hardcoded into most implementations. 

4.  When the NFS server receives a client request, the requests are passed to its local 
file access routines, which access a local disk on the server. 

5.  It can take the NFS server a while to handle a client's request. The local file-system 
is normally accessed, which can take some time. During this time, the server does 
not want to block other client requests from being serviced. To handle this, most 
NFS servers are multithreaded-that is, there are really multiple NFS servers 
running inside the server kernel. How this is handled depends on the operating 
system. Since most Unix kernels are not multithreaded, a common technique is to 
start multiple instances of a user process (often called nfsd) that performs a single 
system call and remains inside the kernel as a kernel process. 

6.  Similarly, it can take the NFS client a while to handle a request from a user process 
on the client host. An RPC is issued to the server host, and the reply is waited for. 
To provide more concurrency to the user processes on the client host that are using 
NFS, there are normally multiple NFS clients running inside the client kernel. 
Again, the implementation depends on the operating system. Unix systems often 
use a technique similar to the NFS server technique: a user process named biod 
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that performs a single system call and remains inside the kernel as a kernel process. 

Most Unix hosts can operate as either an NFS client, an NFS server, or both. Most PC 
implementations (MS-DOS) only provide NFS client implementations. Most IBM 
mainframe implementations only provide NFS server functions. 

NFS really consists of more than just the NFS protocol. Figure 29.4 shows the various 
RPC programs normally used with NFS. 

Application
Program 
number 

Version 
numbers

Number of
procedures

port mapper
NFS
mount
lock manager
status monitor 

100000
100003
100005
100021
100024

2
2
1

1,2,3
1

4
15
5

19
6

Figure 29.4 Various RPC programs used with NFS.

The versions we show in this figure are the ones found on systems such as SunOS 4.1.3. Newer 
implementations are providing newer versions of some of the programs. Solaris 2.2, for example, also 
supports versions 3 and 4 of the port mapper, and version 2 of the mount daemon. SVR4 also supports 
version 3 of the port mapper. 

The mount daemon is called by the NFS client host before the client can access a 
filesystem on the server. We discuss this below. 

The lock manager and status monitor allow clients to lock portions of files that reside on 
an NFS server. These two programs are independent of the NFS protocol because locking 
requires state on both the client and server, and NFS itself is stateless on the server. (We 
say more about NFS's statelessness later.) Chapters 9, 10, and 11 of [X/Open 1991] 
document the procedures used by the lock manager and status monitor for file locking 
with NFS. 

File Handles

A fundamental concept in NFS is the file handle. It is an opaque object used to reference a 
file or directory on the server. The term opaque denotes that the server creates the file 
handle, passes it back to the client, and then the client uses the file handle when accessing 
the file. The client never looks at the contents of the file handle-its contents only make 
sense to the server. 

Each time a client process opens a file that is really a file on an NFS server, the NFS client 
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obtains a file handle for that file from the NFS server. Each time the NFS client reads or 
writes that file for the user process, the file handle is sent back to the server to identify the 
file being accessed. 

Normal user processes never deal with file handles - it is the NFS client code and the NFS 
server code that pass them back and forth. In version 2 of NFS a file handle occupies 32 
bytes, although this increases with version 3 to 64 bytes. 

Unix servers normally store the following information in the file handle: the filesystem identifier (the 
major and minor device numbers of the filesystem), the i-node number (a unique number within a 
filesystem), and an i-node generation number (a number that changes each time an i-node is reused for a 
different file). 

Mount Protocol

The client must use the NFS mount protocol to mount a server's filesystem, before the 
client can access files on that filesystem. This is normally done when the client is 
bootstrapped. The end result is for the client to obtain a file handle for the server's file-
system. 

Figure 29.5 shows the sequence of steps that takes place when a Unix client issues the 
mount (8) command, specifying an NFS mount. 

Figure 29.5 Mount protocol used by Unix mount command.

The following steps take place. 

0.  The port mapper is started on the server, normally when the server bootstraps. 
1.  The mount daemon (mountd) is started on the server, after the port mapper. It 

creates a TCP end point and a UDP end point, and assigns ephemeral port number 
to each. It then registers these port numbers with the port mapper. 
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2.  The mount command is executed on the client and it issues an RPC call to the port 
mapper on the server to obtain the port number of the server's mount daemon. 
Either TCP or UDP can be used for this client exchange with the port mapper, but 
UDP is normally used. 

3.  The port mapper replies with the port number. 
4.  The mount command issues an RPC call to the mount daemon to mount a file-

system on the server. Again, either TCP or UDP can be used, but UDP is typical. 
The server can now validate the client, using the client's IP address and port 
number, to see if the server lets this client mount the specified filesystem. 

5.  The mount daemon replies with the file handle for the given filesystem. 
6.  The mount command issues the mount system call on the client to associate the file 

handle returned in step 5 with a local mount point on the client. This file handle is 
stored in the NFS client code, and from this point on any references by user 
processes to files on that server's filesystem will use that file handle as the starting 
point. 

This implementation technique puts all the mount processing, other than the mount system 
call on the client, in user processes, instead of the kernel. The three programs we show-the 
mount command, the port mapper, and the mount daemon-are all user processes. As an 
example, on our host sun (the NFS client) we execute 

sun # mount -t nfs bsdi:/usr /nfs/bsdi/usr 

This mounts the directory /usr on the host bsdi (the NFS server) as the local file-
system /nfs/bsdi/usr. Figure 29.6 shows the result. 

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/nfs_netw.htm (11 of 23) [12/09/2001 14.47.56]



Chapter 29. NFS: Network File System

Figure 29.6 Mounting the bsdi:/usr directory as /nfs/bsdi/usr on the host sun.

When we reference the file /nfs/bsdi/usr/rstevens/hello.c on the client 
sun we are really referencing the file /usr/rstevens/hello.c on the server bsdi. 

NFS Procedures

The NFS server provides 15 procedures, which we now describe. (The numbers we use 
are not the same as the NFS procedure numbers, since we have grouped them according to 
functionality.) Although NFS was designed to work between different operating systems, 
and not just Unix systems, some of the procedures provide Unix functionality that might 
not be supported by other operating systems (e.g., hard links, symbolic links, group 
owner, execute permission, etc.). Chapter 4 of [Stevens 1992] contains additional 
information on the properties of Unix filesystems, some of which are assumed by NFS. 

1.  GETATTR. Return the attributes of a file; type of file (regular file, directory, etc.), 
permissions, size of file, owner of file, last-access time, and so on. 

2.  SETATTR. Set the attributes of a file. Only a subset of the attributes can be set: 
permissions, owner, group owner, size, last-access time, and last-modification 
time. 

3.  STATFS. Return the status of a filesystem: amount of available space, optimal size 
for transfer, and so on. Used by the Unix df command, for example. 

4.  LOOKUP. Lookup a file. This is the procedure called by the client each time a user 
process opens a file that's on an NFS server. A file handle is returned, along with 
the attributes of the file. 
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5.  READ. Read from a file. The client specifies the file handle, starting byte offset, 
and maximum number of bytes to read (up to 8192). 

6.  WRITE. Write to a file. The client specifies the file handle, starting byte offset, 
number of bytes to write, and the data to write. 

7.  *NFS writes are required to be synchronous. The server cannot respond OK until it 
has successfully written the data (and any other file information that gets updated) 
to disk. 

8.  CREATE. Create a file. 
9.  REMOVE. Delete a file. 

10.  RENAME. Rename a file. 
11.  LINK. Make a hard link to a file. A hard link is a Unix concept whereby a given 

file on disk can have any number of directory entries (i.e., names, also called hard 
links) that point to the file. 

12.  SYMLINK. Create a symbolic link to a file. A symbolic link is a file that contains 
the name of another file. Most operations that reference the symbolic link (e.g., 
open) really reference the file pointed to by the symbolic link. 

13.  READLINK. Read a symbolic link, that is, return the name of the file to which the 
symbolic link points. 

14.  MKDIR. Create a directory. 
15.  RMDIR. Delete a directory. 
16.  READDIR. Read a directory. Used by the Unix ls command, for example. 

These procedure names actually begin with the prefix NFSPROC_, which we've dropped. 

UDP or TCP?

NFS was originally written to use UDP, and that's what all vendors provide. Newer 
implementations, however, also support TCP. TCP support is provided for use on wide 
area networks, which are getting faster over time. NFS is no longer restricted to local area 
use. 

The network dynamics can change drastically when going from a LAN to a WAN. The 
round-trip times can vary widely and congestion is more frequent. These characteristics of 
WANs led to the algorithms we examined with TCP - slow start and congestion 
avoidance. Since UDP does not provide anything like these algorithms, either the same 
algorithms must be put into the NFS client and server or TCP should be used. 

NFS Over TCP

The Berkeley Net/2 implementation of NFS supports either UDP or TCP. [Macklem 
1991] describes this implementation. Let's look at the differences when TCP is used. 

1.  When the server bootstraps, it starts an NFS server that does a passive open on 
TCP port 2049, waiting for client connection requests. This is usually in addition to 
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the normal NFS UDP server that waits for incoming datagrams to UDP port 2049. 
2.  When the client mounts the server's filesystem using TCP, it does an active open to 

TCP port 2049 on the server. This results in a TCP connection between the client 
and server for this filesystem. If the same client mounts another file-system on the 
same server, another TCP connection is created. 

3.  Both the client and server set TCP's keepalive option on their ends of the 
connection (Chapter 23). This lets either end detect if the other end crashes, or 
crashes and reboots. 

4.  All applications on the client that use this server's filesystem share the single TCP 
connection for this filesystem. For example, in Figure 29.6 if there were another 
directory named smith beneath /usr on bsdi, references to files in 
/nfs/bsdi/usr/rstevens and /nfs/bsdi/usr/smith would share the 
same TCP connection. 

5.  If the client detects that the server has crashed, or crashed and rebooted (by 
receiving a TCP error of either "connection timed out" or "connection reset by 
peer"), it tries to reconnect to the server. The client does another active open to 
reestablish the TCP connection with the server for this filesystem. Any client 
requests that timed out on the previous connection are reissued on the new 
connection. 

6.  If the client crashes, so do the applications that are running when it crashes. When 
the client reboots, it will probably remount the server's filesystem using TCP, 
resulting in another TCP connection to the server. The previous connection 
between this client and server for this filesystem is half-open (the server thinks it's 
still open), but since the server set the keepalive option, this half-open connection 
will be terminated when the next keepalive probe is sent by the server's TCP. 

Over time, additional vendors plan to support NFS over TCP. 

29.6 NFS Examples

Let's use tcpdump to see which NFS procedures are invoked by the client for typical file 
operations. When tcpdump detects a UDP datagram containing an RPC call (call equals 
0 in Figure 29.1) with a destination port of 2049, it decodes the datagram as an NFS 
request. Similarly if the UDP datagram is an RPC reply (reply equals 1 in Figure 29.2) 
with a source port of 2049, it decodes the datagram as an NFS reply. 

Simple Example: Reading a File

Our first example just copies a file to the terminal using the cat(l) command, but the file 
is on an NFS server: 

sun % cat 
/nfs/bsdi/usr/rstevens/hello.c 

copy file to terminal 
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main ()

{

printf ("hello, world\n"); 

}

On the host sun (the NFS client) the filesystem /nfs/bsdi/usr is really the /usr 
file-system on the host bsdi (the NFS server), as shown in Figure 29.6. The kernel on 
sun detects this when cat opens the file, and uses NFS to access the file. Figure 29.7 
shows the tcpdump output. 

1 0.0 sun.7aa6 > bsdi. nfs: 104 getattr 

2
0.003587 
(0.0036) 

bsdi.nfs > sun.7aa6: reply ok 96 

3
0.005390 
(0.0018) 

sun.7aa7 > bsdi.nfs: 116 lookup 
"rstevens" 

4
0.009570 
(0.0042) 

bsdi.nfs > sun.7aa7: reply ok 128 

5
0.011413 
(0.0018) 

sun.7aa8 > bsdi.nfs: 116 lookup 
"hello.c" 

6
0.015512 
(0.0041) 

bsdi.nfs > sun.7aa8: reply ok 128 

7
0.018843 
(0.0033) 

sun.7aa9 > bsdi.nfs: 104 getattr 

8
0.022377 
(0.0035) 

bsdi.nfs > sun.7aa9: reply ok 96 

9
0.027621 
(0.0052) 

sun.7aaa > bsdi.nfs: 116 read 1024 
bytes @ 0 

10
0.032170 
(0.0045) 

bsdi.nfs > sun.7aaa: reply ok 140 

Figure 29.7 NFS operations to read a file.

When tcpdump decodes an NFS request or reply, it prints the XID field for the client, 
instead of the port number. The XID field in lines 1 and 2 is 0x7aa6. 

The filename /nfs/bsdi/usr/rstevens/hello.c is processed by the open 
function in the client kernel one element at a time. When it reaches /nfs/bsdi/usr it 
detects that this is a mount point to an NFS mounted filesystem. 

In line 1 the client calls the GETATTR procedure to fetch the attributes of the server's 
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directory that the client has mounted (/usr). This RPC request contains 104 bytes of 
data, exclusive of the IP and UDP headers. The reply in line 2 has a return value of OK 
and contains 96 bytes of data, exclusive of the IP and UDP headers. We see in this figure 
that the minimum NFS message contains around 100 bytes of data. 

In line 3 the client calls the LOOKUP procedure for the file rstevens and receives an 
OK reply in line 4. The LOOKUP specifies the filename rstevens and the file handle 
that was saved by the kernel when the remote filesystem was mounted. The reply contains 
a new file handle that is used in the next step. 

In line 5 the client does a LOOKUP of hello.c using the file handle from line 4. It 
receives another file handle in line 6. This new file handle is what the client uses in lines 7 
and 9 to reference the file /nfs/bsdi/usr/rstevens/hello.c. We see that the 
client does a LOOKUP for each component of the pathname that is being opened. 

In line 7 the client does another GETATTR, followed by a READ in line 9. The client 
asks for 1024 bytes, starting at offset 0, but receives less. (After subtracting the sizes of 
the RPC fields, and the other values returned by the READ procedure, 38 bytes of data are 
returned in line 10. This is indeed the size of the file hello.c.) 

In this example the user process knows nothing about these NFS requests and replies that 
are being done by the kernel. The application just calls the kernel's open function, which 
causes 3 requests and 3 replies to be exchanged (lines 1-6), and then calls the kernel's read 
function, which causes 2 requests and 2 replies (lines 7-10). It is transparent to the client 
application that the file is on an NFS server. 

Simple Example: Creating a Directory

As another simple example we'll change our working directory to a directory that's on an 
NFS server, and then create a new directory: 

sun % cd 
/nfs/bsdi/usr/rstevens 

change working directory 

sun % mkdir Mail and create a directory 

Figure 29.8 shows the tcpdump output. 

1 0.0 sun.7ad2 > bsdi.nfs: 104 getattr 

2 0.004912 ( 0.0049) bsdi.nfs > sun.7ad2: reply ok 96 

3 0.007266 ( 0.0024) sun.7ad3 > bsdi.nfs: 104 getattr 

4 0.010846 ( 0.0036) bsdi.nfs > sun.7ad3: reply ok 96 
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5
35.769875 
(35.7590) 

sun.7ad4 > bsdi.nfs: 104 getattr 

6
35.773432 ( 
0.0036) 

bsdi.nfs > sun.7ad4: reply ok 96 

7
35.775236 ( 
0.0018) 

sun.7ad5 > bsdi.nfs: 112 lookup 
"Mail" 

8
35.780914 ( 
0.0057) 

bsdi.nfs > sun.7ad5: reply ok 28 

9
35.782339 ( 
0.0014) 

sun.7ad6 > bsdi.nfs: 144 mkdir "Mail" 

10
35.992354 ( 
0.2100) 

bsdi.nfs > aun.7ad6: reply ok 128 

Figure 29.8 NFS operations for cd to NFS directory, then mkdir.

Changing our directory causes the client to call the GETATTR procedure twice (lines 1-
4). When we create the new directory, the client calls the GETATTR procedure (lines 5 
and 6), followed by a LOOKUP (lines 7 and 8, to verify that the directory doesn't already 
exist), followed by a MKDIR to create the directory (lines 9 and 10). The reply of OK in 
line 8 doesn't mean that the directory exists. It just means the procedure returned, 
tcpdump doesn't interpret the return values from the NFS procedures. It normally prints 
OK and the number of bytes of data in the reply. 

Statelessness

One of the features of NFS (critics of NFS would call this a wart, not a feature) is that the 
NFS server is stateless. "The server does not keep track of which clients are accessing 
which files. Notice in the list of NFS procedures shown earlier that there is not an open 
procedure or a close procedure. The LOOKUP procedure is similar to an open, but the 
server never knows if the client is really going to reference the file after the client does a 
LOOKUP. 

The reason for a stateless design is to simplify the crash recovery of the server after it 
crashes and reboots. 

Example: Server Crash

In the following example we are reading a file from an NFS server when the server 
crashes and reboots. This shows how the stateless server approach lets the client "not 
know" that the server crashes. Other than a time pause while the server crashes and 
reboots, the client is unaware of the problem, and the client application is not affected. 
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On the client sun we start a cat of a long file (/usr/share/lib/termcap on the 
NFS server svr4), disconnect the Ethernet cable during the transfer, shut down and 
reboot the server, then reconnect the cable. The client was configured to read 1024 bytes 
per NFS read. Figure 29.9 shows the tcpdump output. 

1 0.0 sun.7ade > svr4.nfs: 104 getattr 

2
0.007653 ( 
0.0077) 

svr4.nfs > sun.7ade: reply ok 96 

3
0.009041 ( 
0.0014) 

sun.7adf > svr4.nfs: 116 lookup 
"share" 

4
0.017237 ( 
0.0082) 

svr4.nfs > sun.7adf: reply ok 128 

5
0.018518 ( 
0.0013) 

sun.7ae0 > svr4.nfs: 112 lookup "lib" 

6
0.026802 ( 
0.0083) 

svr4.nfs > sun.7ae0: reply ok 128 

7
0.028096 ( 
0.0013) 

sun.7ael > svr4.nfs: 116 lookup 
"termcap" 

8
0.036434 ( 
0.0083) 

svr4.nfs > sun.7ael: reply ok 128 

9
0.038060 ( 
0.0016) 

sun.7ae2 > svr4.nfs: 104 getattr 

10
0.045821 ( 
0.0078) 

svr4.nfs > sun.7ae2: reply ok 96 

11
0.050984 ( 
0.0052) 

sun.7ae3 > svr4.nfs: 116 read 1024 
bytes @ 0 

12
0.084995 ( 
0.0340) 

svr4.nfs > sun.7ae3: reply ok 1124 

reading continues 

128
3.430313 ( 
0.0013) 

sun.7b22 > svr4.nfs: 116 read 1024 
bytes @ 64512 

129
3.441828 ( 
0.0115) 

svr4.nfs > sun.7b22: reply ok 1124 

130
4.125031 ( 
0.6832) 

sun.7b23 > svr4.nfs: 116 read 1024 
bytes @ 65536 

131
4.868593 ( 
0.7436) 

sun.7b24 > svr4.nfs: 116 read 1024 
bytes @ 73728 

132
4.993021 ( 
0.1244) 

sun.7b23 > svr4.nfs: 116 read 1024 
bytes @ 65536 
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133
5.732217 ( 
0.7392) 

sun.7b24 > svr4.nfs: 116 read 1024 
bytes @ 73728 

134
6.732084 ( 
0.9999) 

sun.7b23 > svr4.nfs: 116 read 1024 
bytes @ 65536 

135
7.472098 ( 
0.7400) 

sun.7b24 > svr4.nfs: 116 read 1024 
bytes @ 73728 

136
10.211964 ( 
2.7399) 

sun.7b23 > svr4.nfs: 116 read 1024 
bytes @ 65536 

137
10.951960 ( 
0.7400) 

sun.7b24 > svr4.nfs: 116 read 1024 
bytes @ 73728 

138
17.171767 ( 
6.2198) 

sun.7b23 > svr4.nfs: 116 read 1024 
bytes @ 65536 

139
17.911762 ( 
0.7400) 

sun.7b24 > svr4.nfs: 116 read 1024 
bytes @ 73728 

140
31.092136 
(13.1804) 

sun.7b23 > svr4.nfs: 116 read 1024 
bytes @ 65536 

141
31.831432 ( 
0.7393) 

sun.7b24 > svr4.nfs: 116 read 1024 
bytes @ 73728 

142
51.090854 
(19.2594) 

sun.7b23 > svr4.nfs: 116 read 1024 
bytes @ 65536 

143
51.830939 ( 
0.7401) 

sun.7b24 > svr4.nfs: 116 read 1024 
bytes @ 73728 

144
71.090305 
(19.2594) 

sun.7b23 > svr4.nfs: 116 read 1024 
bytes @ 65536 

145
71.830155 ( 
0.7398) 

sun.7b24 > svr4.nfs: 116 read 1024 
bytes @ 73728 

retransmissions continue 

167
291.824285 ( 
0.7400) 

sun.7b24 > svr4.nfs: 116 read 1024 
bytes @ 73728 

168
311.083676 
(19.2594) 

sun.7b23 > svr4.nfs: 116 read 1024 
bytes @ 65536 

server reboots 

169
311.149476 ( 
0.0658) 

arp who-has sun tell svr4

170
311.150004 ( 
0.0005) 

arp reply sun is-at 8:0:20:3:f6:42 

171
311.154852 ( 
0.0048) 

svr4.nfs > sun.7b23: reply ok 1124 

172
311.156671 ( 
0.0018) 

sun.7b25 > svr4.nfs: 116 read 1024 
bytes @ 66560 
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173
311.168926 ( 
0.0123) 

svr4.nfs > sun.7b25: reply ok 1124 

reading continues 

Figure 29.9 Client reading a file when an NFS server crashes 
and reboots.

Lines 1-10 correspond to the client opening the file. The operations are similar to those 
shown in Figure 29.7. In line II we see the first READ of the file, with 1024 bytes of data 
returned in line 12. This continues (a READ of 1024 followed by a reply of OK) through 
line 129. 

In lines 130 and 131 we see two requests that time out and are retransmitted in lines 132 
and 133. The first question is why are there two read requests, one starting at offset 65536 
and the other starting at 73728? The client kernel has detected that the client application is 
performing sequential reads, and is trying to prefetch data blocks. (Most Unix kernels do 
this read-ahead.) The client kernel is also running multiple NFS block I/O daemons 
(biod processes) that try to generate multiple RPC requests on behalf of clients. One 
daemon is reading 8192 bytes starting at 65536 (in 1024-byte chunks) and the other is 
performing the read-ahead of 8192 bytes starting at 73728. 

Client retransmissions occur in lines 130-168. In line 169 we see the server has rebooted, 
and it sends an ARP request before it can reply to the client's NFS request in line 168. The 
response to line 168 is sent in line 171. The client READ requests continue. 

The client application never knows that the server crashes and reboots, and except for the 
5-minute pause between lines 129 and 171, this server crash is transparent to the client. 

To examine the timeout and retransmission interval in this example, realize that there are 
two client daemons with their own timeouts. The intervals for the first daemon (reading at 
offset 65536), rounded to two decimal points, are: 0.68, 0.87, 1.74, 3.48, 6.96, 13.92, 20.0, 
20.0, 20.0, and so on. The intervals for the second daemon (reading at offset 73728) are 
the same (to two decimal points). It appears that these NFS clients are using a timeout that 
is a multiple of 0.875 seconds with an upper bound of 20 seconds. After each timeout the 
retransmission interval is doubled: 0.875, 1.75,3.5, 7.0, and 14.0. 

How long does the client retransmit? The client has two options that affect this. First, if 
the server filesystem is mounted hard, the client retransmits forever, but if the server 
filesystem is mounted soft, the client gives up after a fixed number of retransmissions. 
Also, with a hard mount the client has an option of whether to let the user interrupt the 
infinite retransmissions or not. If the client host specifies interruptibility when it mounts 
the server's filesystem, if we don't want to wait 5 minutes for the server to reboot after it 
crashes, we can type our interrupt key to abort the client application. 
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Idempotent Procedures

An RPC procedure is called idempotent if it can be executed more than once by the server 
and still return the same result. For example, the NFS read procedure is idempotent. As 
we saw in Figure 29.9, the client just reissues a given READ call until it gets a response. 
In our example the reason for the retransmission was that the server had crashed. If the 
server hasn't crashed, and the RPC reply message is lost (since UDP is unreliable), the 
client just retransmits and the server performs the same READ again. The same portion of 
the same file is read again and sent back to the client. 

This works because each READ request specifies the starting offset of the read. If there 
were an NFS procedure asking the server to read the next N bytes of a file, this wouldn't 
work. Unless the server is made stateful (as opposed to stateless), if a reply is lost and the 
client reissues the READ for the next N bytes, the result is different. This is why the NFS 
READ and WRITE procedures have the client specify the starting offset. The client 
maintains the state (the current offset of each file), not the server. 

Unfortunately, not all filesystem operations are idempotent. For example, consider the 
following steps: the client NFS issues the REMOVE request to delete a file; the server 
NFS deletes the file and responds OK; the server's response is lost; the client NFS times 
out and retransmits the request; the server NFS can't find the file and responds with an 
error; the client application receives an error saying the file doesn't exist. This error return 
to the client application is wrong-the file did exist and was deleted. 

The NFS operations that are idempotent are: GETATTR, STATES, LOOKUP, READ, 
WRITE, READLINK, and READDIR. The procedures that are not idempotent are: 
CREATE, REMOVE, RENAME, LINK, SYMLINK, MKDIR, and RMDIR. SETATTR 
is normally idempotent, unless it's being used to truncate a file. 

Since lost responses can always happen with UDP, NFS servers need a way to handle the 
nonidempotent operations. Most servers implement a recent-reply cache in which they 
store recent replies for the nonidempotent operations. Each time the server receives a 
request, it first checks this cache, and if a match is found, returns the previous reply 
instead of calling the NFS procedure again. [Juszczak 1989] provides details on this type 
of cache. 

This concept of idempotent server procedures applies to any UDP-based application, not 
just NFS. The DNS, for example, provides an idempotent service. A DNS server can 
execute a resolver's request any number of times with no ill effects (other than wasted 
network resources). 

29.7 NFS Version 3
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During 1993 the specifications for version 3 of the NFS protocol were released [Sun 
Microsystems 1994]. Implementations are expected to become available during 1994. 

Here we summarize the major differences between versions 2 and 3. We'll refer to the two 
as V2 and V3. 

1.  The file handle in V2 is a fixed-size array of 32 bytes. With V3 it becomes a 
variable-length array up to 64 bytes. A variable-length array in XDR is encoded 
with a 4-byte count, followed by the actual bytes. This reduces the size of the file 
handle on implementations such as Unix that only need about 12 bytes, but allows 
non-Unix implementations to maintain additional information. 

2.  V2 limits the number of bytes per READ or WRITE RPC to 8192 bytes. This limit 
is removed in V3, meaning an implementation over UDP is limited only by the IP 
datagram size (65535 bytes). This allows larger read and write packets on faster 
networks. 

3.  File sizes and the starting byte offsets for the READ and WRITE procedures are 
extended from 32 to 64 bits, allowing larger file sizes. 

4.  A file's attributes are returned on every call that affects the attributes. This reduces 
the number of GETATTR calls required by the client. 

5.  WRITEs can be asynchronous, instead of the synchronous WRITEs required by 
V2. This can improve WRITE performance. 

6.  One procedure was deleted (STATES) and seven were added: ACCESS (check file 
access permissions), MKNOD (create a Unix special file), READDIRPLUS 
(returns names of files in a directory along with their attributes), FSINFO (returns 
the static information about a filesystem), FSSTAT (returns the dynamic 
information about a filesystem), PATHCONF (returns the POSIX.1 information 
about a file), and COMMIT (commit previous asynchronous writes to stable 
storage). 

29.8 Summary

RPC is a way to build a client-server application so that it appears that the client just calls 
server procedures. All the networking details are hidden in the client and server stubs, 
which are generated for an application by the RPC package, and in the RPC library 
routines. We showed the format of the RPC call and reply messages, and mentioned that 
XDR is used to encode the values, allowing RPC clients and servers to run on machines 
with different architectures. 

One of the most widely used RPC applications is Sun's NFS, a heterogeneous file access 
protocol that is widely implemented on hosts of all sizes. We looked at NFS and the way 
that it uses UDP and TCP. Fifteen procedures define the NFS Version 2 protocol. 

A client's access to an NFS server starts with the mount protocol, returning a file handle to 
the client. The client can then access files on the server's filesystem using that file handle. 
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Filenames are looked up on the server one element at a time, returning a new file handle 
for each element. The end result is a file handle for the file being referenced, which is 
used in subsequent reads and writes. 

NFS tries to make all its procedures idempotent, so that the client can just reissue a 
request if the response gets lost. We saw an example of this with a client reading a file 
while the server crashed and rebooted. 

Exercises

29.1 In Figure 29.7 we saw that tcpdump interpreted the packets as NFS requests and 
replies, printing the XID. Can tcpdump do this for any RPC request or reply? 

29.2 On a Unix system, why do you think RPC server programs use ephemeral ports and 
not well-known ports? 

29.3 An RPC client calls two server procedures. The first server procedure takes 5 
seconds to execute, and the second procedure takes 1 second to execute. The client has a 
timeout of 4 seconds. Draw a time line of what's exchanged between the client and server. 
(Assume it takes no time for messages from the client to the server, and vice versa.) 

29.4 What would happen in the example shown in Figure 29.9 if, while the NFS server 
were down, its Ethernet card were replaced? 

29.5 When the server reboots in Figure 29.9, it handles the request starting at byte offset 
65536 (lines 168 and 171), and then handles the next request starting at offset 66560 (lines 
172 and 173). What happened to the request starting at offset 73728 (line 167)? 

29.6 When we described idempotent NFS procedures we gave an example of a REMOVE 
reply being lost in the network. What happens in this case if TCP is used, instead of UDP? 

29.7 If the NFS server used an ephemeral port instead of 2049, what would happen to an 
NFS client when the server crashes and reboots? 

29.8 Reserved port numbers (Section 1.9) are scarce, since there are a maximum of 1023 
per host. If an NFS server requires its clients to have reserved ports (which is common) 
and an NFS client using TCP mounts N filesystems on N different servers, does the client 
need a different reserved port number for each connection? 
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Other TCP/IP Applications
30.1 Introduction

In this chapter we describe additional TCP/IP applications that many implementations 
support. Some are simple and easy to cover completely (Finger and Whois), while another is 
complex (the X Window System). We provide only a brief overview of this complex 
application, focusing on its use of the TCP/IP protocols. 

Additionally we provide an overview of some Internet resource discovery tools. These are 
tools to help us navigate our way around the Internet, searching for items whose location and 
exact name we don't know. 

30.2 Finger Protocol

The Finger protocol returns information on one or more users on a specified host. It's 
commonly used to see if someone is currently logged on, or to figure out someone's login 
name, to send them mail. RFC 1288 [Zimmerman 1991] specifies the protocol. 

Many sites do not run a Finger server for two reasons. First, a programming error in an 
earlier version of the server was one of the entry points used by the infamous Internet worm 
of 1988. (RFC 1135 [Reynolds 1989] and [Curry 1992] describe the worm in more detail.) 
Second, the Finger protocol can reveal detailed information on users (login names, phone 
numbers, when they last logged in, etc.) that many administrators consider private. Section 3 
of RFC 1288 details the security aspects of this service. 

From a protocol perspective, the Finger server has a well-known port of 79. The client does 
an active open to this port and sends a one-line query The server processes the query, sends 
back the output, and closes the connection. The query and response are NVT ASCII, similar 
to what we saw with FTP and SMTP. 

While most Unix users access the Finger server using the finger(l) client, we'll start by using 
the Telnet client to connect directly to the server and see the one-line commands issued by 
the client. If the client query is an empty line (which in NVT ASCII is transmitted as a CR 
followed by an LF), it is a request for information on all online users. 

sun % telnet slip 
finger 

Trying 140.252.13.65 
... 

first three lines are output by Telnet client 

Connected to slip.
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Escape character is 
'^]' . 

here we type RETURN as the Finger client command 

Login Name Tty Idle
Login 
Time 

Office 
Office 
Phone 

rstevens
Richard 
Stevens 

*co 45
Jul 31 
09:13 

rstevens
Richard 
Stevens 

*c2 45
Aug 5 
09:41 

Connection closed by foreign 
host. 

output by Telnet client

The blank output fields for the office and office phone are taken from optional fields in the 
user's password file entry (which aren't present in this example). 

The server must be the end that does the active close, since a variable amount of information 
is returned by the server, and the reception of the end-of-file by the client is how the client 
knows when the output is complete. 

When the client request consists of a usemame, the server responds with information only 
about that user. Here's another example, with the Telnet client output removed: 

sun % telnet vangogh.cs.berkeley.edu finger 

rstevens this is the client request we type 

Login: rstevens Name: Richard Stevens 

Directory: /a/guest/rstevens Shell: /bin/csh 

Last login Thu Aug 5 09:55 (PDT) on ttyq2 from 
sun.tuc.noao.edu 

Mail forwarded to: rstevens@noao.edu 

No Plan.

When a system has the Finger service completely disabled, the client's active open will 
receive an RST from the server, since no process has a passive open on port 79: 

sun % finger @svr4
[svr4.tuc.noao.edu] connect: Connection refused 

Some sites provide a server on port 79, but it just outputs information to the client, and 
doesn't honor any client requests: 

sun % finger @att.com 
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[att.com]
this line output by Finger client; remainder from 
server 

--------------------------------------------------------------
-------------------- 

There are no user accounts on the AT&T Internet gateway, To 
send email to an AT&T employee, send email to their name 
separated by periods at att.com. If the employee has an email 
address registered in the employee database, they will 
receive email - otherwise, you'll receive a non-delivery 
notice. For example: John.Q.Public@att.com 

sun % finger clinton@whitehouse.gov 

[whitehouse.gov]

Finger service for arbitrary addresses on whitehouse.gov is 
not supported. If you wish to send electronic mail, valid 
addresses are "PRESIDENT@WHITEHOUSE.GOV", and "VICE-
PRESIDENT@WHITEHOUSE.GOV" 

Another possibility is for an organization to implement a firewall gateway: a router between 
the organization and the Internet that filters out (i.e., discards) certain IP datagrams. 
([Cheswick and Bellovin 1994] discuss firewall gateways in detail.) The firewall gateway 
can be configured to discard incoming datagrams that are TCP segments for port 79. In this 
case the Finger client times out after about 75 seconds. 

There are additional options for the Finger server, and for the Unix finger client. Refer to 
RFC 1288 and the finger(l) manual page for the details. 

RFC 1288 states that vending machines with TCP/IP connections that provide a Finger server should reply 
to a client request consisting of a blank line with a list of all items currently available. They should reply to 
a client request consisting of a name with a count or list of available items for that product. 

30.3 Whois Protocol

The Whois protocol is another information service. Although any site can provide a Whois 
server, the one at the InterNIC, rs.internic.net, is most commonly used. This server 
maintains information about all registered DNS domains and many system administrators 
responsible for systems connected to the Internet. (Another server is provided at 
nic.ddn.mil, but contains information only about the MILNET.) Unfortunately the 
information can be out of data or incomplete. RFC 954 [Harrenstien, Stahl, and Feinler 
1985] documents the Whois service. 

From a protocol perspective, the Whois server has a well-known TCP port of 43. It accepts 
connection requests from clients, and the client sends a one-line query to the server. The 
server responds with whatever information is available and then closes the connection. The 
requests and replies are transmitted using NVT ASCII. This is almost identical to the Finger 
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server, although the requests and replies contain different information. 

The common Unix client is the whois(1) program, although we can use Telnet and type in 
the commands ourself. The starting place is to send a request consisting of just a question 
mark, which returns more detailed information on the supported client requests. 

When the NIC moved to the InterNIC in 1993, the site for the Whois server moved from nic.ddn.mil to 
rs.internic.net. Many vendors still ship versions of the whois client with the name 
nic.ddn.mil built in. You may need to specify the command-line argument -h rs.internic.net 
to contact the correct server. 

Alternately, we can Telnet to rs.internic.net and login as whois. 

We'll use the Whois server to track down the author. (We've removed the extraneous Telnet 
client output.) Our first request is for all names that match "stevens." 

sun % telnet rs.internic.net whois 

stevens this is the client command we type 

information on 25 other "stevens" that we omit 

Stevens, W. Richard (WRS28) stevens@kohala.com +1 602 297 
9416 

The InterNIC Registration Services Host ONLY contains 
Internet Information (Networks, ASN's, Domains, and POC's). 
Please use the whois server at nic.ddn.mil for MILNET 
Information. 

The three uppercase letters followed by a number in parentheses after the name, (WRS28), 
are the person's NIC handle. The next query contains an exclamation point and a NIC 
handle, to fetch more information about this person. 

sun % telnet rs.internic.net whois 

!wrs28 client request that we type 

Stevens, W. Richard (WRS28) stevens@kohala.com 

Kohala Software 1202 E. Paseo del Zorro 
Tucson, AZ 85718 +1 602 297 9416 

Record last updated on 11-Jan-
91.

Lots of additional information about Internet variables can also be queried. For example, the 
request net 140.252 returns information about the class B address 140.252. 

White Pages
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Using the VRFY command of SMTP, along with the Finger protocol and the Whois protocol 
to locate users on the Internet is similar to using the white pages of a telephone book to find 
someone's phone number. At the present time ad hoc tools such as these are all that's widely 
available, but research is under way to improve this type of service. 

[Schwartz and Tsirigotis 1991] contains additional information on various white pages 
services being tried on the Internet. The particular tool, called Netfind, can be accessed by 
using Telnet to either bruno.cs.colorado.edu or ds.internic.net and logging 
in as netfind. 

RFC 1309 [Weider, Reynolds, and Heker 1992] provides an overview of the OSI directory 
service, called X.500, and compares and contrasts it with current Internet techniques (Finger 
and Whois). 

30.4 Archie, WAIS, Gopher, Veronica, and WWW

The tools that we described in the previous two sections-Finger, Whois, and a white pages 
service-are for locating information on people. Other tools exist to locate files and 
documents, and this section gives an overview of these tools. We only provide an overview, 
because examining the details of each tool is beyond the scope of this book. Methods are 
given for accessing these tools across the Internet, and you are encouraged to do so, to find 
which tool can help you. Additional tools are continually being developed. [Obraczka, 
Danzig, and Li 1993] provide an overview of resource discovery services on the Internet. 

Archie

Many of the resources used in this text were obtained using anonymous FTP. The problem is 
finding which FTP site has the program we want. Sometimes we don't even know the exact 
filename, but we know some keywords that probably appear in the filename. 

Archie provides a directory of thousands of FTP servers across the Internet. We can access 
this directory by logging into an Archie server and searching for files whose name contains a 
specified regular expression. The output is a list of servers with matching filenames. We 
then use anonymous FTP to that site to fetch the file. 

There are many Archie servers across the world. One starting point is to use Telnet to 
ds.internic.net, login as archie, and execute the command servers. This 
provides a list of all the Archie servers, and their location. 

WAIS: Wide Area Information Servers

Archie helps us locate filenames that contain keywords, but sometimes we're looking for a 
file or database that contains a keyword. That is, we want to search for a file that contains a 
keyword, not a filename containing a keyword. 
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WAIS knows about hundreds of databases that contain information on both computer-related 
topics and other general topics. To use WAIS we select the databases to search and specify 
the keywords. To try WAIS Telnet to quake.think.com and login as wais. 

Gopher

Gopher is a menu-driven front end to other Internet resource services, such as Archie, 
WAIS, and anonymous FTP Gopher is one of the easiest to use, since its user interface is the 
same, regardless of which resource service it's using. 

To use Gopher, Telnet into is.internic.net and login as gopher. 

Veronica: Very Easy Rodent-Oriented Netwide Index to Computerized 
Archives

Just as Archie is an index of anonymous FTP servers. Veronica is an index of titles of 
Gopher items. A Veronica search typically searches hundreds of Gopher servers. 

To access Veronica we must go through a Gopher client. Select the Gopher menu item 
"Beyond InterNIC: Virtual Treasures of the Internet" and then select Veronica from the next 
menu. 

WWW: World Wide Web

World Wide Web lets us browse a large, worldwide set of services and documents using a 
tool called hypertext. As information is displayed, certain keywords are highlighted, and we 
can select more information on those keywords. To access WWW, Telnet to 
info.cern.ch. 

30.5 X Window System

The X Window System, or just X, is a client-server application that lets multiple clients 
(applications) use the bit-mapped display managed by a server. "The server is the software 
that manages a display, keyboard, and mouse. The client is an application program that runs 
on either the same host as the server or on a different host. In the latter case the common 
form of communication between the client and server is TCP, although other protocols such 
as DECNET can be used. In some instances the server is a dedicated piece of hardware (an 
X terminal) that communicates with clients on other hosts. In another instance, a stand-alone 
workstation, the client and server are on the same host and communicate using interprocess 
communication on that host, without any network involvement at all. Between these two 
extremes is a workstation that supports clients on the same host and clients on other hosts. 

X requires a reliable, bidirectional stream protocol, such as TCP. (X was not designed for an 
unreliable protocol such as UDP.) The communication between the client and server consists 
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of 8-bit bytes exchanged across this connection. [Nye 1992] gives the format of the more 
than 150 messages exchanged between the client and server across their TCP connection. 

On a Unix system, when the X client and X server are on the same host, the Unix domain 
protocols are normally used instead of TCP, because there is less protocol processing than if 
TCP were used. The Unix domain protocols are a form of interprocess communication that 
can be used between clients and servers on the same host. Recall in Figure 2.4 that when 
TCP is used for communication between two processes on the same host, the loopback of 
this data takes place below the IP layer, implying that all the TCP and IP processing takes 
place. 

Figure 30.1 shows one possible scenario with three clients using one display. One client is 
on the same host as the server, using the Unix domain protocols. The other two clients are on 
different hosts, using TCP. One client is normally a window manager that has authority for 
the layout of windows on the display. The window manager allows us to move windows 
around the screen, or change their size, for example. 

Figure 30.1 Three X clients using one display.

On first glance the terms client and server appear backward. With applications such as 
Telnet and FTP we think of the client as the interactive user at the keyboard and display. But 
with X, the keyboard and display belong to the server. Think of the server as the end 
providing the service. The service provided by X is access to a window, keyboard, and 
mouse. With Telnet the service is logging in to the remote host. With FTP the service is the 
filesystem on the server. 

The X server is normally started when the X terminal or workstation is bootstrapped. The 
server creates a TCP end point and does a passive open on port 6000 + n, where n is the 
display number (normally 0). Most Unix servers also create a Unix domain socket with the 
name /tmp/.X11-unix/Xn, where n is again the display number. 

When a client is started on another host, it creates a TCP end point and performs an active 
open to port 6000 + n on the server. Each client gets its own TCP connection to the server. It 
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is the server's responsibility to multiplex all the clients. From this point on the client sends 
requests to the server across the TCP connection (e.g., create a window), the server sends 
back replies, and the server also sends events to the client (mouse button pushed, keyboard 
key pressed, window exposed, window resized, etc.). 

Figure 30.2 is a redo of Figure 30.1, emphasizing that the clients communicate with the X 
server process, which in turn manages the windows on the display. Not shown here is that 
the X server also manages the keyboard and mouse. 

Figure 30.2 Three clients using one display.

This design, where a single server handles multiple clients, differs from the normal TCP 
concurrent server design that we described in Section 18.11. The FTP and Telnet servers, for 
example, spawn a new process each time a new TCP connection request arrives, so each 
client communicates with a different server process. With X, however, all clients, running on 
the same host or on a different host, communicate with a single server. 

Lots of data can be exchanged across the TCP connection between an X client and its server. 
The amount depends on the specific application design. For example, if we run the Xclock 
client, which displays the current time and date on the client in a window on the server, 
specifying an update of once a second, an X message is sent across the TCP connection from 
the client to the server once a second. If we run the X terminal emulator, Xterm, each 
keystroke we type becomes a 32-byte X message (72 bytes with the standard IP and TCP 
headers), with a larger X message in the reverse direction with the character echo. [Droms 
and Dyksen 1990] measure the TCP traffic between various X clients and one particular 
server. 

Xscope Program

A handy program for examining what's exchanged between an X client and its server is 
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Xscope. It's provided with most X window implementations. It sits between a client and 
server, passing everything in both directions, and also deciphering all the client requests and 
server replies. Figure 30.3 shows the setup. 

Figure 30.3 Using xscope to monitor an X connection.

We first start the xscope process on the same host as the server, but xscope listens for 
TCP connection requests on port 6001, not 6000. We then start a client on another host and 
specify display number 1, not 0, so the client connects to xscope, not directly to the server. 
When the connection request from the client arrives, xscope creates a TCP connection to 
the real server at port 6000, and copies everything between the client and server, and 
produces a readable description of the requests and replies. 

We'll start xscope on our host sun and then run the xclock client on the host svr4. 

svr4 % DISPLAY=sun:l xclock -digital -update 5 

This displays the time and date in the digital format 

Thu Sep 9 10:32:55 1993 

in a window on the host sun. We specify an update time of once every 5 seconds. 

We specify the -q option for xscope to produce minimal output. Various levels of 
verbosity are available, to see all the fields in each message. The following output shows the 
first three requests and replies. 

sun % xscope -q
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0.00: Client -> 12 bytes

0.02: 152 bytes <-- X11 Server 

0.03: Client -> 48 bytes

............REQUEST: CreateGC

............REQUEST: 
GetProperty

0.20: 396 bytes <-- X11 Server 

..............REPLY: 
GetProperty 

0.30: Client -> 8 bytes

0.38: Client -> 20 bytes

............REQUEST: 
InternAtom

0.43: 32 bytes <-- XII Server 

..............REPLY: 
InternAtom 

The first client message at time 0.00 and the server's response at time 0.02 are the standard 
connection setup between the client and server. The client identifies its byte ordering and the 
version of the server that it expects. The server responds with various information about 
itself. 

The next message at time 0.03 contains two client requests. The first request creates a 
graphics context in the server in which the client will draw. The second gets a property from 
the server (the RESOURCEJVIANAGER property). Properties provide for communication 
between clients, often between an application and the window manager. The server's 396-
byte reply at time 0.20 contains this property. 

The next two messages from the client at times 0.30 and 0.38 form a single request to return 
an atom. (Each property has a unique integer ID called an atom.) The server replies at time 
0.43 with the atom. 

It is impossible to delve farther into this example without providing lots of details about the 
X window system, which isn't the purpose of this section. In this example a total of 12 
segments comprising 1668 bytes is sent by the client and a total of 10 segments comprising 
1120 bytes is sent by the server, before the window is displayed. The elapsed time was 3.17 
seconds. From this point the client sent a small request every 5 seconds, averaging 44 bytes, 
with an update to the window. This continued until the client was terminated. 

LBX: Low Bandwidth X

The encoding used by the X protocol is optimized for LANs, where the time spent encoding 
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and decoding the data is more important than minimizing the amount of data transmitted. 
While this is OK for an Ethernet, it becomes a problem for slow serial lines, such as SLIP 
and PPP links (Sections 2.4 and 2.6). 

Work is progressing to define a standard called Low Bandwidth X (LBX) that uses the 
following techniques to reduce the amount of network traffic: caching, sending differences 
from previous packets, and compression. Specifications should appear early in 1994 with a 
sample implementation in the X window system Release 6. 

30.6 Summary

The first two applications that we covered. Finger and Whois, are for obtaining information 
on users. Finger clients query a server, often to find someone's login name (for sending them 
mail) or to see if someone is currently logged in. The Whois client normally contacts the 
server run by the InterNIC, looking for information on a person, institution, domain, or 
network number. 

The other Internet resource discovery services that we briefly described, Archie, WAIS, 
Gopher, Veronica, and WWW, help us locate files and documents across the Internet. Other 
resource discovery tools are currently being developed. 

This chapter finished with a brief look at the X Window System, another heavy user of 
TCP/IP. We saw that the X server manages multiple windows on a display, and handles the 
communication between a client and its window. Each client has its own TCP connection to 
the server and a single server manages all the clients for a given display. With the Xscope 
program we saw how it's possible to place another program between a client and server to 
output information about the messages exchanged between the two. 

Exercises

30.1 Use Whois to find the owner of the class A network ID 88. 

30.2 Use Whois to find the DNS servers for the whitehouse.gov domain. Does the reply 
match the answer given by the DNS? 

30.3 In Figure 30.3, do you think the xscope process must be run on the same host as the X 
server? 
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The tcpdump Program
The tcpdump program was written by Van Jacobson, Craig Leres, and Steven 
McCanne, all of Lawrence Berkeley Laboratory, University of California, Berkeley. 
Version 2.2.1 (June 1992) is used in this text. 

tcpdump operates by putting the network interface card into promiscuous mode so that 
every packet going across the wire is captured. Normally interface cards for media such 
as Ethernet only capture link level frames addressed to the particular interface or to the 
broadcast address (Section 2.2). 

The underlying operating system must allow an interface to be put into promiscuous 
mode and let a user process capture the frames, tcpdump support is provided or can be 
added to the following Unix systems: 4.4BSD, BSD/386, SunOS, Ultrix, and HP-UX. 
Consult the README file that accompanies the tcpdump distribution for the details on 
what operating system and which versions are supported. 

There are alternatives to tcpdump. In Figure 10.8 we use the Solaris 2.2 program snoop 
to look at some packets. AIX 3.2.2 provides the program iptrace, which provides 
similar features. 

A.1 BSD Packet Filter

Current BSD-derived kernels provide the BSD Packet Filter (BPF), which is one method 
used by tcpdump to capture and filter packets from a network interface that has been 
placed into promiscuous mode. BPF also works with point-to-point links, such as SLIP 
(Section 2.4), which require nothing special to capture all packets going through the 
interface, and with the loopback interface (Section 2.7). 

BPF has a long history. The Enet packet filter was created in 1980 by Mike Accetta and Rick Rashid at 
Carnegie Mellon University. Jeffrey Mogul at Stanford ported the code to BSD and continued its 
development from 1983 on. Since then, it has evolved into the Ultrix Packet Filter at DEC, a STREAMS 
NIT module under SunOS 4.1, and BPF. Steven McCanne, of Lawrence Berkeley Laboratory, 
implemented BPF in Summer 1990. Much of the design is from Van Jacobson. Details of the latest 
version, and a comparison with Sun's NIT, are given in [McCanne and Jacobson 1993]. 

Figure A.1 shows the features of BPF when used with an Ethernet. 
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Figure A.1 BSD Packet Filter.

BPF places the Ethernet device driver into promiscuous mode and then receives a copy 
from the driver of each received packet and each transmitted packet. These packets are 
run through a user-specified filter, so that only packets that the user process considers 
interesting are passed to the process. 

Multiple processes can be monitoring a given interface, and each process specifies its 
own filter. Figure A.1 shows two instances of tcpdump and an RARP daemon (Section 
5.4) both monitoring the same Ethernet. Each instance of tcpdump specifies its own 
filter. The filter for tcpdump can be specified by the user on the command line, while 
rarpd always uses the same filter to capture only RARP requests. ' 

In addition to specifying a filter, each user of BPF also specifies a timeout value. Since 
the data rate of the network can easily outrun the processing power of the CPU, and since 
it's costly for a user process to issue small reads from the kernel, BPF tries to pack 
multiple frames into a single read buffer and return only when the buffer is full, or the 
user-specified timeout has expired, tcpdump sets the timeout to 1 second since it 
normally receives lots of data from BPF, while the RARP daemon receives few frames, 
so rarpd sets the timeout to 0 (which returns when a frame is received). 

The user-specified filter to tell BPF what frames the process considers interesting is a list 
of instructions for a hypothetical machine. These instructions are interpreted by the BPF 
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filter in the kernel. Filtering in the kernel, and not in the user process, reduces the amount 
of data that must pass from the kernel to the user process. The RARP daemon always 
uses the same filter program, which is built into the program, tcpdump, on the other 
hand, lets the user specify a filter expression on the command line each time it's run. 
tcpdump converts the user-specified expression into the corresponding sequence of 
instructions for BPF. Examples of the tcpdump expressions are: 

% tcpdump tcp port 25
% tcpdump 'icmp[0] != 8 and icmp[0] <= 0' 

The first prints only TCP segments with a source or destination port of 25. The second 
prints only ICMP messages that are not echo requests or echo replies (i.e., not ping 
packets). This expression specifies that the first byte of the ICMP message, the type field 
from Figure 6.2, not equal 8 or 0, an echo request or echo reply from Figure 6.3. As you 
can see, fancy filtering requires knowledge of the underlying packet structure. The 
expression in the second example has been placed in single quotes to prevent the Unix 
shell from interpreting the special characters. 

Refer to the tcpdump(l) manual page for complete details of the expression that the user 
can specify. The bpf(4) manual page details the hypothetical machine instructions used 
by BPF. [McCanne and Jacobson 1993] compare the design and performance of this 
machine against other approaches. 

A.2 SunOS Network Interface Tap

SunOS 4.1.x provides a STREAMS pseudo-device driver called the Network Interface 
Tap or NIT. ([Rago 1993] contains additional details on streams device drivers. We'll call 
the feature "streams.") NIT is similar to the BSD Packet Filter, but not as powerful or as 
efficient. Figure A.2 shows the streams modules involved in using NIT. One difference 
between this figure and Figure A.1 is that BPF can capture packets received from and 
transmitted through the network interface, while NIT only captures packets received 
from the interface. Using tcpdump with NIT means we only see packets sent by other 
hosts on the network-we never see packets transmitted by our own host. (Although BPF 
works with SunOS 4.1.x, it requires source code changes to the Ethernet device driver, 
which are impossible for most users who don't have access to the source code.) 

When the device /dev/nit is opened, the streams driver nit_if is opened. Since 
NIT is built using streams, processing modules can be pushed on top of the nit_if 
driver, tcpdump pushes the module nit_buf onto the STREAM. This module 
aggregates multiple network frames into a single read buffer, with the user process 
specifying a timeout value. This is similar to what we described with BPF. The RARP 
daemon doesn't push this module onto its stream, since it deals with a low volume of 
packets. 
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Figure A.2 SunOS Network Interface Tap

The user-specified filtering is done by the streams module nit_pf. Notice in Figure A.2 
that this module is used by the RARP daemon, but not by tcpdump. Instead, under 
SunOS tcpdump performs its own filtering in the user process. The reason is that the 
hypothetical machine instructions used by nit_pf are different (and not as powerful) as 
those supported by BPF. This means that when the user specifies a filter expression to 
tcpdump more data crosses the kernel-to-user boundary with NIT than with BPF. 

A.3 SVR4 Data Link Provider Interface

SVR4 supports the Data Link Provider Interface (DLPI) which is a streams 
implementation of the OSI Data Link Service Definition. Most versions of SVR4 still 
support version 1 of the DLPI, SVR4.2 supports both versions 1 and 2, and Sun's Solaris 
2.x supports version 2, with additional enhancements. 

Network monitoring programs such as tcpdump must use the DLPI for raw access to 
the data-link device drivers. In Solaris 2.x the packet filter streams module has been 
renamed pfmod and the buffer module has been renamed bufmod. 

Although Solaris 2.x is still new, an implementation of tcpdump should appear 
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someday. Sun also supplies a program named snoop that performs functions similar to 
tcpdump. (snoop replaces the SunOS 4.x program named etherfind.) The author is 
not aware of any port of tcpdump to vanilla SVR4. 

A.4 tcpdump Output

The output produced by tcpdump is "raw." We'll modify it for inclusion in the text to 
make it easier to read. 

First, it always outputs the name of the network interface on which it is listening. We'll 
delete this line. 

Next, the timestamp output by tcpdump is of the form 09:11:22.642008 on a 
system with microsecond resolution, or 09:11:22.64 on a system with only 10-ms 
clock resolution. (In Appendix B we talk more about computer clock resolution.) In 
either case the HH:MM:SS format is not what we want. Instead we are interested in both 
the relative time of each packet from the start of the dump, and the time difference 
between successive packets. We'll modify the output to show these two differences. The 
first difference we print with six digits to the right of the decimal point when 
microsecond resolution is available (two digits when only 10-ms resolution is provided), 
and the second difference we print with either four digits or two digits to the right of the 
decimal point (depending on the clock resolution). 

In this text most tcpdump output was collected on the host sun, which provides microsecond 
resolution. Some output was collected on the host bsdi running BSD/386 Version 0.9.4, which only 
provided 10-ms resolution (e.g.. Figure 5.1). Some output was also collected on bsdi when it was 
running BSD/386 Version 1.0, which provides microsecond resolution. 

tcpdump always prints the name of the sending host, then a greater than sign, then the 
name of the destination host. This makes it hard to follow the flow of packets between 
two hosts. Although our tcpdump output will still show the direction of data flow like 
this, we'll often take this output and produce a time line instead. (The first of these in the 
text is Figure 6.11.) In our time lines one host will be on the left, and the other on the 
right. This makes it easier to see which side sends and which side receives each packet. 

We add line numbers to the tcpdump output, allowing us to reference specific lines in 
the text. We also add additional space between certain lines, to separate some packet 
exchanges. 

Finally, tcpdump output can exceed the width of the page. We wrap long lines around 
at convenient points in the line. 

As an example, the output produced by tcpdump corresponding to Figure 4.4 is shown 

file:///D|/Documents%20and%20Settings/bigini/Docu...homenet2run/tcpip/tcp-ip-illustrated/append_a.htm (5 of 7) [12/09/2001 14.47.59]



Appendix A: The tcpdump Program

in Figure A.3, assuming an 80-column terminal window. 

We won't show our typing the interrupt key (which terminates tcpdump) and we won't 
show the number of packets received and dropped. (Dropped packets are those that 
arrived faster than tcpdump could keep up with. Since the examples in the text were 
often run on an otherwise idle network, this is always 0.) 

sun % tcpdump -e 

tcpdump: listening on le0 

09:11:22.642008 0:0:c0:6f:2d:40 ff:ff:f f:ff:ff:ff arp 60: 
arp who-has svr4 tell bsdi 

09:11:22.644182 0;0:c0:c2:9b:26 0:0:c0:6f:2d:40 arp 60: arp 
reply svr4 is-at 0:0:c0:c2:9b:26 

09:11:22.644839 0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60: 
bsdi.1030 > svr4.discard: S 596459521:596459521(0) win 4096 
<mss 1024> [tos 0x10] 

09:11:22.649842 0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 ip 60: 
svr4.discard > bsdi.1030: S 3562228225:3562228225(0) ack 
596459522 win 4096 <mss 1024> 

09:11:22.651623 0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60: 
bsdi.1030 > svr4.discard: . ack 1 win 4096 [tos 0x10] 

4 other packets that we don't show 

^? type our interrupt key to terminate 

9 packets received by filter 

0 packets dropped by kernel 

Figure A.3 tcpdump output for Figure 4.4.

A.5 Security Considerations

It should be obvious that tapping into a network's traffic lets you see many things you 
shouldn't see. For example, the passwords typed by users of applications such as Telnet 
and FTP are transmitted across the network exactly as the user enters them. (This is 
called the cleartext representation of the password, in comparison to the encrypted 
representation. It is the encrypted representation that is stored in the Unix password file, 
normally /etc/passwd or /etc/shadow.) Nevertheless, there are many times when 
a network administrator needs to use a tool such as tcpdump to diagnose network 
problems. 

Our use of tcpdump is as a learning tool, to see what really gets transmitted across the 
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network. Access to tcpdump, and similar vendor-supplied utilities, depends on the 
system. Under SunOS, for example, access to the NIT device is restricted to the 
superuser. The BSD Packet Filter uses a different technique: access is controlled by the 
permissions on the devices /dev/bpfXX. Normally these devices are readable and 
writable only by the owner (which should be the superuser) and readable by the group 
(often the system administration group). This means normal users can't run programs 
such as tcpdump, unless the system administrator makes the program set-user-ID. 

A.6 Socket Debug Option

Another way to see what's going on with a TCP connection is to enable socket 
debugging, on systems that support this feature. This feature works only with TCP (not 
with other protocols) and requires application support (to enable a socket option when it's 
started). 

Most Berkeley-derived implementations support this, including SunOS, 4.4BSD, and SVR4. 

The program enables a socket option, and the kernel then keeps a trace record of what 
happens on that connection. At some later time all this information can be output by 
running the program trpt(8). It doesn't require special permission to enable the socket 
debug option, but it requires special privileges to run trpt, since it accesses the kernel's 
memory. 

Our sock program (Appendix C) supports this feature with its -D option, but the 
information output is harder to decipher and understand than the corresponding 
tcpdump output. We do, however, use it in Section 21.4 to look at kernel variables in 
the TCP connection block that tcpdump cannot access. 
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Computer Clocks
Since most of the examples in this text measure a time interval, we need to describe in 
more detail the type of timekeeping used by current Unix systems. The following 
description applies to the systems being used for the examples in this book, and for most 
Unix systems. Additional details are given in Sections 3.4 and 3.5 of [Leffler et al. 1989]. 

The hardware generates a clock interrupt at some frequency. For Sun SPARCs and Intel 
80386s the interrupts occur every 10 ms. 

It should be noted that most computers use an uncompensated crystal oscillator to 
generate these interrupts. As noted in Table 7 of RFC 1305 [Mills 1992], you don't want 
to ask what the drift per day of such an oscillator is. This means few computers keep 
accurate time (i.e., the interrupts don't occur exactly every 10 ms). A 0.01% tolerance 
gives an error of 8.64 seconds per day. To keep better time requires (1) a better oscillator, 
(2) an external time source with greater precision (e.g., the time source supplied by the 
Global Positioning Satellites), or (3) access across the Internet to systems with more 
precise clocks. The latter is provided by the Network Time Protocol, as described in 
detail in RFC 1305, which is beyond the scope of this book. 

Another common source of time errors in Unix systems is that the 10-ms clock interrupts 
only cause the kernel to increment a variable that keeps track of the time. If the kernel 
loses an interrupt (i.e., it's too busy for the 10 ms between two consecutive interrupts), 
the clock will lose 10 ms. Lost interrupts of this type often cause Unix systems to lose 
time. 

Even though the clock interrupts arrive approximately every 10 ms, newer systems such 
as SPARCs provide a higher resolution timer to measure time differences. tcpdump, 
through the NIT driver (described in Appendix A) has access to this higher resolution 
timer. On SPARCs this timer provides microsecond resolution. Access to this higher 
resolution timer is also provided for user processes through the gettimeofday(2) 
function. 

The author ran the following experiment. A program was run that called the 
gettimeofday function 10,000 times in a loop, saving each return value in an array. 
At the end of the loop the 9,999 differences were printed out. For a SPARC ELC the 
distribution of the differences are shown in Figure B.1. 

Microseconds Count
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Figure B.1 Distribution of time required to call gettimeofday 10,000 times on 
SPARC ELC.

The total clock time required to run the program was 0.38 seconds, on an otherwise idle 
system. From this we can say that the time for the process to call gettimeofday is 
about 37 microseconds. Since the ELC is rated around 21 MIPS (million instructions per 
second), 37 microseconds corresponds to about 800 instructions. This seems reasonable 
for the kernel to handle a system call from a user process, execute the system call, copy 
back 8 bytes of results, and return to the user process. (MIPS ratings are questionable, 
and it's hard to try to measure instruction times on current systems. All we're trying to do 
is get a rough idea and see if the values make sense.) 

From this simple experiment we can say that the values returned by gettimeofday do 
contain microsecond resolution. 

If we run similar tests under SVR4/386, however, the results are different. This is 
because many 386 Unix systems, such as SVR4, only count the 10-ms clock interrupts, 
and don't try to provide any higher resolution. Figure B.2 is the distribution of the 9,999 
differences under SVR4 on an 25 Mhz 80386. 

Microseconds Count

0 
10,000

9,871
128

Figure B.2 Distribution of time required to call gettimeofday 10,000 times under 
SVR4/386.

These values are worthless, since the differences are normally less than 10 ms, which is 
treated as 0. About all we can do on these systems is measure the clock time on an idle 
system, and divide by the number of loops. This provides an upper bound, since it 
includes the time required to call printf 9,999 times, writing the results to a file. (In 
the SPARC case. Figure B.1, the differences did not include the printf times since all 
10,000 values were first obtained, and then the results were printed.) Under SVR4 the 
clock time was 3.15 seconds, yielding 315 microseconds per system call. This system 
call time, about 8.5 times slower than the SPARC, seems about right. 
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BSD/386 Version 1.0 provides microsecond resolution similar to the SPARC. It reads the 
8253 clock register and calculates the number of microseconds since the last clock tick. 
This is made available to processes that call gettimeofday and to kernel modules 
such as the BSD Packet Filter. 

In relation to tcpdump these numbers mean that we can believe the millisecond and 
submillisecond values that are printed on the SPARC and BSD/386 systems, but the 
values printed by tcpdump under SVR4/386 will always be a multiple of 10 ms. For 
other programs that print round-trip times, such as ping (Chapter 7) and traceroute 
(Chapter 8), on the SPARC and BSD/386 systems we can believe the millisecond values 
that are output, but the values printed under SVR4/386 will always be multiples of 10. To 
measure anything like the ping time on a LAN, which we show in Chapter 7 to be around 
3 ms, requires running ping on the SPARC or BSD/386. 

Some of the examples in this text were run under BSD/386 Version 0.9.4, which was similar to SVR4 in 
that it provided only 10-ms clock resolution. When we show tcpdump output from this system, we 
show only two numbers to the right of the decimal point, since that's the resolution provided. 
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The sock Program
A simple test program named sock is used throughout the book to generate TCP and 
UDP data. It is used as both a client and server process. Having a test program like this, 
which is executable from a shell prompt, prevents us from having to write new client and 
server C programs for each specific feature that we want to examine. Since the purpose 
of this book is to understand the networking protocols, and not network programming, in 
this Appendix we only describe the program and its various options. 

There are numerous other programs with functionality similar to sock. Juergen Nickelsen wrote a 
program named socket and Dave Yost wrote a program named sockio. Both contain many similar 
features. Pieces of the sock program have also been inspired by the public domain ttcp program, 
written by Mike Muuss and Terry Slattery. 

The sock program operates in one of four modes: 

1.  Interactive client: the default. The program connects to a server and then copies 
standard input to the server and copies everything received from the server to 
standard output. This is shown in Figure C.1. 

Figure C.1 Default operation of sock as interactive client.

We must specify the name of the server host and the name of the service to 
connect to. The host can also be specified as a dotted-decimal number, and the 
service can be specified as an integer port number. Connecting to the standard 
echo server (Section 1.12), from sun to bsdi echoes everything we type: 

sun % sock bsdi 
echo 

a test line we type this line 

a test line and the echo server returns a copy 

^D type our end-of-file character to terminate 

2.  Interactive server: the -s option is specified. The service name (or port number) 
is required: 

sun % sock -s 5555 act as server listening on port 5555 
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The program waits for a connection from a client and then copies standard input 
to the client and copies everything received from the client to standard output. An 
Internet address can precede the port number on the command line, to specify on 
which local interface connections are accepted: 

sun % sock -s 
140.252.13.33 5555 

accept connections only on Ethernet 

The default mode is to accept a connection request on any local interface. 

3.  Source client: the -i option is specified. By default a 1024-byte buffer is written 
to the network 1024 times. The -n and -w options can change these defaults. For 
example, 

sun % sock -i -nl2 -w4096 bsdi discard 

writes 12 buffers, each containing 4096 bytes of data, to the discard server on host 
bsdi. 

4.  Sink server: the -i and -s options are specified. Data is read from the network 
and discarded. 

Although these examples used TCP (the default), the -u option specifies UDP. 

There are a multitude of options that provide finer control over exactly how the program 
operates. These options are needed to generate all the test conditions used throughout the 
text. 

-b n
Bind n as the client's local port number. (By default an ephemeral port 
number assigned by the system is used by the client.) 

-c

Convert newline characters that are read on standard input into a 
carriage return and a linefeed. Similarly, when reading from the 
network, convert the sequence <carriage return, linefeed> into a single 
newline character. Many Internet applications expect NVT ASCII 
(Section 26.4), which uses the carriage return and line-feed to terminate 
each line. 

-f 
a.b.c.d.p 

Specify the foreign IP address (a.b.c.d) and the foreign port number (p) 
for a UDP end point (Section 11.12). 
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-h

Implement TCP's half-close facility (Section 18.5). That is, do not 
terminate when an end-of-file is encountered on standard input. Instead, 
issue a half-close on the TCP connection but continue reading from the 
network until the peer closes the connection. 

-i

Source client or sink server. Either write data to the network (default) 
or if used in conjunction with the -s option, read data from the 
network. The -n option can specify the number of buffers to write (or 
read), the -w option can specify the size of each write, and the -r 
option can specify the size of each read. 

-n n 
When used with the -i option, n specifies the number of buffers to 
read or write. The default value of n is 1024. 

-p n 

Specify the number of seconds to pause between each read or write. 
This can be used with the source client (-i) or sink server (-is) to 
delay between each read or write of network. Also see the -P option to 
pause before the first read or write. 

-q n 
Specify the size of the pending connection queue for the TCP server: 
the number of accepted connections that TCP will queue for the 
application (Figure 18.23). The default is 5. 

-r n 
When used with the -is options, n specifies the size of each read from 
the network. The default is 1024 bytes per read. 

-s Operate as a server instead of as a client. 

-u Use UDP instead of TCP. 

-v
Verbose. Print additional details (such as the client and server 
ephemeral port numbers) onto standard error. 

-w n 
When used with the -i option, specifies the size of each write to the 
network. The default is 1024 bytes per write. 

-A

Enable the SO_REUSEADDR socket option. With TCP this allows the 
process to assign itself a port number that is part of a connection that is 
in the 2MSL wait. With UDP on a system that supports multicasting, it 
allows multiple processes to use the same local port to receive 
broadcast or multicast datagrams. 

-B
Enable the SO_BROADCAST socket option to allow UDP datagrams to 
be sent to a broadcast IP address. 

-D

Enable the SO_DEBUG socket option. This causes additional debugging 
information to be maintained by the kernel for this TCP connection 
(Section A.6). This information can be output later by running the 
trpt(8) program. 
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-E
Enable the IP_RECVDSTADDR socket option, if supported by the 
implementation (Section 11.12). This is intended for UDP servers, to 
print the destination IP address of the received UDP datagram. 

-F
Specifies a concurrent TCP server. That is, the server creates a new 
process using the fork function for each client connection. 

-K Enable TCP's SO_KEEPALIVE socket option (Chapter 23). 

-L n 

Set the linger time (SO_LINGER socket option) for a TCP end point to 
n. A linger time of 0 means when the network connection is closed, any 
data still queued for sending is discarded and a reset is sent to the peer 
(Section 18.7). A positive linger time is the time (in 100ths of a second) 
that a close on the network connection should wait for all outstanding 
data to be sent and acknowledged. If, after closing the network 
connection, all the pending data has not been sent and acknowledged 
when this timer expires, the close will return an error. 

-N
Set the TCP_NODELAY socket option to disable the Nagle algorithm 
(Section 19.4). 

-O n 
Specify the number of seconds for a TCP server to pause before 
accepting the first client connection. 

-P n 

Specify the number of seconds to pause before the first read or write of 
the network. This can be used with the sink server (-is) to delay after 
accepting the connection request from the client but before performing 
the first read from the network. When used with the source client (-i) 
it delays after the connection has been established, but before the first 
write to the network. Also see the -p option to pause between each 
successive read or write. 

-Q n 
Specify the number of seconds for a TCP client or server to pause after 
receiving an end-of-file from the other end, but before closing its end of 
the connection. 

-R n 
Set the socket's receive buffer (SO_RCVBUF socket option) to n. This 
can directly affect the size of the receive window advertised by TCP. 
With UDP this specifies the largest UDP datagram that can be received. 

-S n 
Set the socket's send buffer (SO_SNDBUF socket option) to n. With 
UDP this specifies the largest UDP datagram that can be sent. 

-U n
Enter TCP's urgent mode after write number n to the network. One byte 
of data is written to initiate urgent mode (Section 20.8). 
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Solutions to Selected Exercises
Chapter 1

1.1 The value is 27-2 (126) plus 214 - 2 (16,382) plus 221 - 2 (2,097,150) for a total of 
2,113,658. We subtract 2 in each calculation since a network ID of all zero bits or all one 
bits is invalid. 

1.2 Figure D.1 shows a plot of the values through August 1993. 

Figure D.1 Number of networks announced to NSFNET.

The dashed line estimates that the maximum number of networks will be reached in the 
year 2000, if the exponential growth continues. 

1.3 "Be liberal in what you accept, and conservative in what you send." 

Chapter 3

3.1 No, any class A address with a network ID of 127 is OK, although most systems use 
127.0.0.1. 

3.2 kpno has five interfaces: three point-to-point links and two Ethernets. RIO has four 
Ethernet interfaces, gateway has three interfaces: two point-to-point links and one 
Ethernet. Finally, netb has one Ethernet interface and two point-to-point links. 

3.3 There's no difference: both have a subnet mask of 255.255.255.0, as does a class C 
address that is not subnetted. 
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3.5 It's valid and it's called a noncontiguous subnet mask since the 16 bits for the subnet 
mask are not contiguous. The RECs, however, recommend against using noncontiguous 
subnet masks. 

3.6 It's a historical artifact. The value is 1024+512 but the MTU values printed include 
any required headers. Solaris 2.2 sets the MTU of the loopback interface to 8232 (8192 + 
40), which allows room for 8192 bytes of user data along with the normal 20-byte IP 
header and 20-byte TCP header. 

3.7 First, datagrams eliminate the need for connection state in the routers. Second, 
datagrams provide the basic building block on which unreliable (UDP) and reliable 
(TCP) transport layers can be built. Third, datagrams represent the minimal network layer 
assumption, allowing a wide range of data-link layers to be used. 

Chapter 4

4.1 Issuing an rsh command establishes a TCP connection with the other host. Doing 
that causes IP datagrams to be exchanged between the two hosts. This requires the ARP 
cache on the other host to have an entry for our host. Therefore, even if the ARP cache 
was empty before we executed the rsh command, it's guaranteed to have an entry for our 
host when the rsh server executes the arp command. 

4.2 Make sure that your host does not have an entry in its ARP cache for some other host 
on its Ethernet, say foo. Make sure foo sends a gratuitous ARP request when it 
bootstraps, perhaps running tcpdump on another host when foo bootstraps. Then shut 
down the host foo and enter an incorrect entry into the ARP cache on your system for 
foo, using the arp command and being sure to specify the temp option. Bootstrap foo 
and when it's up, look at your host's ARP cache entry for it to see whether the incorrect 
entry has been corrected. 

4.3 Read Section 2.3.2.2 of the Host Requirements REC and Section 11.9 of this text. 

4.4 Assuming that a completed ARP entry existed for the server on the client when the 
server was taken down, if we continually try to contact the (down) server, the ARP 
timeout gets extended for another 20 minutes. When the server finally reboots with a new 
hardware address, if it doesn't issue a gratuitous ARP, the old, invalid ARP entry will still 
exist on the client. We won't be able to contact the server at its new hardware address 
until we either manually delete the ARP cache entry or stop trying to contact it for 20 
minutes. 

Chapter 5
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5.1 A separate frame type is not an absolute requirement, since the op field in Figure 4.3 
has a different value for all four operations (ARP request, ARP reply, RARP request, and 
RARP reply). But the implementation of an RARP server, separate from the kernel's ARP 
server, is made easier with the different frame type field. 

5.2 Each RARP server can delay for a small random time before sending a response. 

As a refinement, one RARP server can be designated the primary and the others as 
secondaries. The primary server can respond without a delay, and the secondaries with 
random delays. 

As yet another refinement, with a primary and secondaries, the secondaries can be 
programmed to respond only to a duplicate request received in a short time frame. This 
assumes that the reason for the duplicate request is that the primary is down. 

Chapter 6

6.1 If there were one hundred hosts on the local cable, each could try to send an ICMP 
port unreachable at about the same time. Many of these transmissions could lead to 
collisions (if an Ethernet is being used), which can render the network useless for a 
second or two. 

6.2 It is a "should." 

6.3 An ICMP error is always sent with a TOS of 0, as we indicated in Figure 3.2. An 
ICMP query request can be sent with any TOS, and the corresponding reply should be 
sent with the same TOS. 

6.4 netstat -s is the common way to see the per-protocol statistics. On a SunOS 
4.1.1 host (gemini) that has received 48 million IP datagrams, the ICMP statistics are: 

Output histogram:

echo reply: 1757 

destination unreachable: 700 

time stamp reply: 1 

Input histogram:

echo reply: 211

destination unreachable: 3071 

source quench: 249 

routing redirect: 2789 
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echo: 1757

#10: 21

time exceeded: 56 

time stamp: 1

The 21 input messages of type 10 are router solicitations that SunOS 4.1.1 doesn't 
support. 

SNMP can also be used (Figure 25.26) and some systems, such as Solaris 2.2, generate 
netstat -s output that uses SNMP variable names. 

Chapter 7

7.2 86 bytes divided by 960 bytes/sec, times 2 gives 179.2 ms. When ping is run at this 
speed, the printed values are 180 ms. 

7.3 (86 + 48) bytes divided by 960 bytes/sec, times 2 gives 279.2 ms. The additional 48 
bytes are because the final 48 bytes of the 56 bytes in the data portion must be escaped: 
0xc0 is the SLIP END character. 

7.4 CSLIP only compresses the TCP and IP headers for TCP segments. It has no effect on 
the ICMP messages used by ping. 

7.5 On a SPARCstation ELC a ping of the loopback address yields an RTT of 1.310 ms, 
while a ping of the host's Ethernet address yields an RTT of 1.460 ms. This difference is 
the additional processing done by the Ethernet driver, to determine that the datagram is 
really destined for the local host. You need a version of ping that outputs microsecond 
resolution to measure this. 

Chapter 8

8.1 If an incoming datagram has a TTL of 0, doing the decrement and then test would set 
the TTL to 255 and let the datagram continue. Although a router should never receive a 
datagram with a TTL of 0, it has occurred. 

8.2 We noted that traceroute stores 12 bytes of data in the data portion of the UDP 
datagram, part of which is the time the datagram was sent. From Figure 6.9, however, we 
see that ICMP only returns the first 8 bytes of the IP datagram that was in error, and we 
noted there that this is the 8-byte UDP header. Therefore the time value stored by 
traceroute is not returned in the ICMP error message. traceroute saves the time 
when it sends a packet, and when an ICMP reply is received, fetches the current time and 
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subtracts the two value to get the RTT. 

Recall from Chapter 7 that ping stored the time in the outgoing ICMP echo request and 
this data was echoed by the server. This allowed ping to print the correct RTT, even if 
the packets were returned out of order. 

8.3 The first line of output is correct and identifies R1. The next probe starts with a TTL 
of 2, and this is decremented by R1. When R2 receives this it decrements the TTL from 1 
to 0 but incorrectly forwards it to R3. R3 sees that the incoming TTL is 0 and sends back 
the time exceeded. This means the second line of output (for the TTL of 2) identifies R3, 
not R2. The third line of output correctly identifies R3. The clue that this bug is present is 
two consecutive lines of output that identify the same router. 

8.4 In this case the TTL of 1 identifies R1, the TTL of 2 identifies R2, and the TTL of 3 
identifies R3; but when the TTL is 4 the UDP datagram gets to the destination with an 
incoming TTL of 1. The ICMP port unreachable is generated, but its TTL is 1 
(incorrectly copied from the incoming TTL). This ICMP message goes to R3 where the 
TTL is decremented and the message discarded. An ICMP time exceeded is not 
generated, since the datagram that was discarded was an ICMP error message (port 
unreachable). A similar scenario occurs for the probe with a TTL of 5, but this time the 
outgoing port unreachable starts with a TTL of 2 (the incoming TTL) and makes it back 
to R2, where it's discarded. The port unreachable corresponding to the probe with a TTL 
of 6 makes it back to R1, where it's discarded. Finally the port unreachable for the probe 
with a TTL of 7 makes it all the way back, where it arrives with an incoming TTL of 1. 
(traceroute considers an arriving ICMP message with a TTL of 0 or 1 to be 
suspicious, so it prints an exclamation point after the RTT.) In summary, the lines for a 
TTL of 1, 2, and 3 correctly identify R1, R2, and R3, followed by three lines each 
containing three timeouts, followed by the line for a TTL of 7 that identifies the 
destination. 

8.5 It appears that all these routers initialize the outgoing TTL of an ICMP message to 
255. This is common. The incoming value of 255 from netb is what we expect, but the 
value of 253 from butch means there is probably a missing router between it and netb. 
Otherwise we would expect an incoming TTL of 254 at this point. Similarly, from 
enss142.UT.westnet.net we expect a value of 252, not 249. It appears these 
missing routers are not handling the outbound UDP datagram correctly, but they are 
decrementing the TTL on the returned ICMP message correctly. 

We must be careful when looking at the incoming TTL, since sometimes a value other 
than what we expect can be caused by the return ICMP message taking a different path 
from the outbound UDP datagram. In this example, however, it confirms what we suspect-
there are missing routers that traceroute is not finding when the loose source routing 
option is used. 
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8.7 The ping client sets the identifier field in the ICMP echo request message (Figure 
7.1) to its process ID. The ICMP echo reply contains this identifier field. Each client 
looks at this returned identifier field and handles only those that it sent. 

The traceroute client sets its UDP source port number to the logical-OR of its 
process ID and 32768. Since the returned ICMP message always contains the first 8 bytes 
of the IP datagram that generated the error (Figure 6.9), which includes the entire UDP 
header, this source port number is returned in the ICMP error. 

8.8 The ping client sets the optional data portion of the ICMP echo request message to 
the time at which the packet is sent. This optional data must be returned in the ICMP 
echo reply. This allows ping to calculate the accurate round-trip time, even if packets 
are returned out of order. 

The traceroute client can't operate this way because all that's returned in the ICMP 
error is the UDP header (Figure 6.9), none of the UDP data. Therefore traceroute 
must remember when it sends a request, wait for the reply, and calculate the time 
difference. 

This illustrates another difference between Ping and Traceroute: Ping sends one packet a 
second, regardless of whether it receives any replies, while Traceroute sends a request 
and then waits for either a reply or a timeout before sending the next request. 

8.9 Since Solaris 2.2 starts ephemeral UDP port numbers at 32768 by default, there is a 
much greater chance that the destination port is in use on the destination host. 

Chapter 9

9.1 When the ICMP standard was first specified, RFC 792 [Postel 1981b], subnetting was 
not in use. Also, using a single network redirect instead of N host redirects (for all N 
hosts on the destination network) saves some space in the routing table. 

9.2 The entry is not required, but if it is removed, all IP datagrams to slip are sent to the 
default router (sun), which then forwards them to the router bsdi. Since sun is 
forwarding a datagram out the same interface on which it was received, it sends an ICMP 
redirect to svr4. This creates the same routing table entry on svr4 that we removed, 
although this time it is created by a redirect instead of being added at bootstrap time. 

9.3 When the 4.2BSD host receives the datagram destined for 140.1.255.255 it finds that 
it has a route to the network (140.1) so it tries to forward the datagram. To do this it sends 
an ARP broadcast looking for 140.1.255.255. No reply is received for this ARP request, 
so the datagram is eventually discarded. If there are many of these 4.2BSD hosts on the 
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cable, every one sends out this ARP broadcast at about the same time, swamping the 
network temporarily. 

9.4 This time a reply is received for each ARP request, telling each 4.2BSD host to send 
the datagram to the specified hardware address (the Ethernet broadcast). If there are k of 
these 4.2BSD hosts on the cable, all receive their own ARP reply, causing each one to 
generate another broadcast. Each host receives each broadcast IP datagram destined to 
140.1.255.255, and since every host now has an ARP cache entry, the datagram is 
forwarded again to the broadcast address. This continues and generates an Ethernet 
meltdown. [Manber 1990] describes other forms of chain reactions in networks. 

Chapter 10

10.1 Thirteen of the routes came from kpno: all except 140.252.101.0 and 
140.252.104.0, the other networks to which gateway is directly connected. 

10.2 Sixty seconds will pass before the 25 routes advertised in the lost datagram are 
updated. This isn't a problem because RIP normally requires 3 minutes without an update 
before it declares a route dead. 

10.3 RIP runs on top of UDP, and UDP provides an optional checksum for the data 
portion of the UDP datagram (Section 11.3). OSPF, however, runs on top of IP. The IP 
checksum covers only the IP header, so OSPF must add its own checksum field. 

10.4 Load balancing increases the chances of packets being delivered out of order, and 
possibly distorts the round-trip times calculated by the transport layer. 

10.5 This is called simple split horizon. 

10.6 In Figure 12.1 we show that each of the 100 hosts processes the broadcast UDP 
datagram through the device driver, IP layer, and UDP layer, where it'll finally be 
discarded when it's discovered that UDP port 520 is not in use. 

Chapter 11

11.1 Since there are 8 additional bytes of header when IEEE 802 encapsulation is used, 
1465 bytes of user data is the smallest size that causes fragmentation. 

11.3 There are 8200 bytes of data for IP to send, the 8192 bytes of user data and the 8-
byte UDP header. Using the tcpdump notation, the first fragment is 1480@0+ (1480 
bytes of data, offset of 0, with the "more fragments" bit set). The second is 1480@1480+, 
the third is 1480@2960+, the fourth is 1480@4440+, the fifth is 1480@5920+, and the 
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sixth is 800@7400. 1480 x 5+ 800 = 8200, which is the number of bytes to send. 

11.4 Each 1480-byte fragment is divided into three pieces: two 528-byte fragments and 
one 424-byte fragment. The largest multiple of 8 less than 532 (552 - 20) is 528. The 800-
byte fragment is divided into two pieces: a 528-byte fragment and a 272-byte fragment. 
Thus, the original 8192-byte datagram becomes 17 frames across the SLIP link. 

11.5 No. The problem is that when the application times out and retransmits, the IP 
datagram generated by the retransmission has a new identification field. Reassembly is 
done only for fragments with the same identification field. 

11.6 The identification field in the IP header (47942) is the same. 

11.7 First, from Figure 11.4 we see that gemini does not have outgoing UDP 
checksums enabled. It's highly probable that the operating system on this host (SunOS 
4.1.1) is one that never verifies an incoming UDP checksum unless outgoing UDP 
checksums are enabled. Second, it could be that most of the UDP traffic is local traffic, 
instead of WAN traffic, and therefore not subject to all the vagaries of WANs. 

11.8 The loose and strict source routing options are copied into each fragment. The 
timestamp option and the record route option are not copied into each fragment-they 
appear only in the first fragment. 

11.9 No. We saw in Section 11.12 that many implementations can filter incoming 
datagrams destined for a given UDP port number based on the destination IP address, 
source IP address, and source port number. 

Chapter 12

12.1 Broadcasting by itself does not add to network traffic, but it adds extra host 
processing. Broadcasting can lead to additional network traffic if the receiving hosts 
incorrectly respond with errors such as ICMP port unreachables. Also, routers normally 
don't forward broadcast packets, whereas bridges normally do, so broadcasts on a bridged 
network can travel much farther than they would on a routed network. 

12.2 Every host receives a copy of every broadcast. The interface layer receives the 
frame, and passes it to the device driver. If the type field is for some other protocol, it is 
the device driver that discards the frame. 

12.3 First execute netstat -r to see the routing table. This shows the names of all the 
interfaces. Then execute ifconfig (Section 3.8) for each interface: the flags tell if the 
interface supports broadcasting, and if so the broadcast address is also output. 
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12.4 Berkeley-derived implementations do not allow a broadcast datagram to be 
fragmented. When we specified the length of 1472 bytes, the resulting IP datagram was 
exactly 1500 bytes, the Ethernet MTU. Refusing to allow a broadcast datagram to be 
fragmented is a policy decision-there is no technical reason (other than a desire to reduce 
the number of broadcast packets). 

12.5 Depending on the multicasting support in the various Ethernet interface cards in the 
100 hosts, the multicast datagram can be ignored by the interface card, or discarded by 
the device driver. 

Chapter 13

13.1 Use some host-unique value when generating the random value. The IP address and 
link-layer address are two values that should differ on every host. The time-of-day is a 
bad choice, especially if all the hosts run a protocol such as NTP to synchronize their 
clocks. 

13.2 They added an application protocol header that included a sequence number and a 
timestamp. 

Chapter 14

14.1 A resolver is always a client, but a name server is both a client and server. 

14.2 The question is returned, which accounts for the first 44 bytes. The single answer 
occupies the remaining 31 bytes: a 2-byte pointer for the domain name (i.e., a pointer to 
the domain name in the question), 10 bytes for the fixed-size fields (type, class, TTL, and 
resource length), and 19 bytes for the resource data (a domain name). Notice that the 
domain name in the resource data (svr4.tuc.noao.edu.) doesn't share a suffix with 
the domain name in the question (34.13.252.140.in-addr.arpa.) so a pointer 
can't be used. 

14.3 Reversing the order means using the DNS first, and if that fails, trying to convert the 
argument as a dotted-decimal number. This means every time a dotted-decimal number is 
specified, the DNS is used, involving a name server. This is a waste of resources. 

14.4 Section 4.2.2 of RFC 1035 specifies that a 2-byte length precedes the actual DNS 
message. 

14.5 When a name server starts it normally reads the (possibly out of date) list of root 
servers from a disk file. It then tries to contact one of these root servers, requesting the 
name server records (a query type of NS) for the root domain. This returns the current up-
to-date list of root servers. Minimally this requires one of the root server entries in the 
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start-up disk file to be current. 

14.6 The registration services of the InterNIC updates the root servers three times a week. 

14.7 Since the resolver comes and goes, as applications come and go, if the system is 
configured to use multiple name servers and the resolver maintains no state, the resolver 
cannot keep track of the round-trip times to its various name servers. This can lead to 
timeouts for resolver queries that are too short, causing unnecessary retransmissions. 

14.8 Sorting the A records should be done by the resolver, not the name server, since the 
resolver normally knows more than the server about the network topology of the client. 
(Newer releases of BIND provide for resolver sorting of A records.) 

Chapter 15

15.1 TFTP requests sent to the broadcast address should be ignored. As stated in the Host 
Requirements RFC, responding to a broadcast request can create a significant security 
hole. A problem, however, is that not all implementations and APIs provide the 
destination address of a UDP datagram to the process that receives the datagram (Section 
11.12). For this reason many TFTP servers don't enforce this restriction. 

15.2 Unfortunately, the RFC says nothing about this block number wrap. 
Implementations should be able to transfer files up through 33,553,920 bytes (65535 x 
512). Many implementations fail when the size of the file exceeds 16,776,704 (32767 x 
512) since they incorrectly maintain the block number as a signed 16-bit integer instead 
of an unsigned integer. 

15.3 This simplifies coding a TFTP client to fit in read-only memory, because the server 
is the sender of the bootstrap files, so the server must implement the timeout and 
retransmission. 

15.4 With its stop-and-wait protocol, TFTP can transfer a maximum of 512 bytes per 
client-server round trip. The maximum throughput of TFTP is then 512 bytes divided by 
the round-trip time between the client and server. On an Ethernet, assuming a round-trip 
time of 3 ms, the maximum throughput is around 170,000 bytes/sec. 

Chapter 16

16.1 A router could forward an RARP request to some other host on one of the router's 
other attached networks, but sending a reply then becomes a problem. The router would 
also have to forward RARP replies. 
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BOOTP doesn't have this reply problem since the address to reply to is a normal IP 
address that the routers know how to forward anyway. The problem is that RARP uses 
only link-layer addresses, and routers don't normally know these values for hosts on 
other, nonattached, networks. 

16.2 It could use its own hardware address, which should be unique, and which is set in 
the request and returned in the reply. 

Chapter 17

17.1 All are mandatory except the UDP checksum. The IP checksum covers only the IP 
header, while the others start immediately after the IP header. 

17.2 The source IP address, source port number, or protocol field might have been 
corrupted. 

17.3 Many Internet applications use a carriage return and linefeed to mark the end of each 
application record. This is NVT ASCII coding (Section 26.4). An alternative technique is 
to prefix each record with a byte count, which is used by the DNS (Exercise 14.4) and 
Sun RPC (Section 29.2). 

17.4 As we saw in Section 6.5, an ICMP error must return at least the first 8 bytes beyond 
the IP header of the IP datagram that caused the error. When TCP receives an ICMP error 
it needs to examine the two port numbers to determine which connection the error 
corresponds to, so the port numbers must be in the first 8 bytes of the TCP header. 

17.5 There are options at the end of the TCP header, but there are no options in the UDP 
header. 

Chapter 18

18.1 The ISN is a 32-bit counter that wraps around from 4,294,912,000 to 8,704 
approximately 9.5 hours after the system was bootstrapped. After approximately another 
9.5 hours it will wrap around to 17,408, then 26,112 after another 9.5 hours, and so on. 
Since the ISN starts at 1 when the system is bootstrapped, and since the lowest order digit 
cycles through 4, 8, 2, 6, and 0, the ISN should always be an odd number. 

18.2 In the first case we used our sock program, and by default it transmits the Unix 
newline character as itself-the single ASCII character 012 (octal). In the second case we 
used the Telnet client and it converts the Unix newline into two ASCII characters-a 
carriage return (octal 015) followed by a linefeed (octal 012). 
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18.3 On a half-closed connection one end has sent a FIN and is waiting for either data or 
a FIN from the other end. A half-open connection is when one end crashes, unbeknown to 
the other end. 

18.4 The 2MSL wait state is only entered for a connection that has gone through the 
ESTABLISHED state. 

18.5 First, the daytime server does the active close of the TCP connection after writing 
the time and date to the client. This is indicated by the message printed by our sock 
program: "connection closed by peer." The client's end of the connection goes through 
the passive close states. This puts the socket pair in the TIME_WAIT state on the server, 
not the client. 

Next, as shown in Section 18.6, most Berkeley-derived implementations allow a new 
connection request to arrive for a socket pair currently in the TIME_WAIT state, which is 
exactly what's happening here. 

18.6 A reset is sent in response to the FIN, because the FIN arrived for a connection that 
was CLOSED. 

18.7 The party that dials the number does the active open. The party whose telephone 
rings does the passive open. Simultaneous opens are not permitted, but a simultaneous 
close is OK. 

18.8 We would only see ARP requests, not TCP SYN segments, but the ARP requests 
would have the same timing as in the figure. 

18.9 The client is on the host solaris and the server is on the host bsdi. The client's 
ACK of the server's SYN is combined with the first data segment from the client (line 3). 
This is perfectly legal under the rules of TCP, although most implementations don't do 
this. Next, the client sends its FIN (line 4) before waiting for the ACK of its data. This 
allows the server to acknowledge both the data and the FIN in line 5. 

This exchange (sending one segment of data from the client to the server) requires seven 
segments. The normal connection establishment and termination (Figure 18.13), along 
with a single data segment and its acknowledgment, requires nine segments. 

18.10 First, the server's ACK of the client's FIN is normally not delayed (we discuss 
delayed ACKs in Section 19.3) but sent as soon as the FIN arrives. It takes the 
application a while to receive the EOF and tell its TCP to close its end of the connection. 
Second, the server that receives the FIN does not have to close its end of the connection 
on receiving the FIN from the client. As we saw in Section 18.5, data can still be sent. 
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18.11 If an arriving segment that generates an RST has an ACK field, the sequence 
number of the RST is the arriving ACK field. The ACK value of 1 in line 6 is relative to 
the ISN of 26368001 in line 2. 

18.12 See [Crowcroft et al. 1992] for comments on layering. 

18.13 Five queries are issued. Assume there are three packets to establish the connection, 
one for the query, one to ACK the query, one for the response, one to ACK the response, 
and four to terminate the connection. This means II packets per query, for a total of 55 
packets. Using UDP reduces this to 10 packets. 

This can be reduced to 10 packets per query if the ACK of the query is combined with the 
response (Section 19.3). 

18.14 The limit is about 268 connections per second: the maximum number of TCP port 
numbers (65536 -1024 = 64512, ignoring the well-known ports) divided by the 
TIME_WAIT state of 2MSL. 

18.15 The duplicate FIN is acknowledged and the 2MSL timer is restarted. 

18.16 The receipt of an RST while in the TIME_WAIT state causes the state to be 
prematurely terminated. This is called TIME_WAIT assassination. RFC 1337 [Braden 
1992a] discusses this in detail and shows the potential problems. The simple fix proposed 
by this RFC is to ignore RST segments while in the TIME_WAIT state. 

18.17 It's when the implementation does not support a half-close. Once the application 
causes a FIN to be sent, the application can no longer read from the connection. 

18.18 No. Incoming data segments are demultiplexed using the source IP address, source 
port number, destination IP address, and destination port number. For incoming 
connection requests we saw in Section 18.11 that a TCP server can normally prevent 
connections from being accepted based on the destination IP address. 

Chapter 19

19.1 Two application writes, followed by a read, cause a delay because the Nagle 
algorithm will probably be invoked. The first segment (with 8 bytes of data) is sent and 
its ACK is waited for before sending the 12 bytes of data. If the server implements 
delayed ACKs, there can be a delay of up to 200 ms (plus the RTT) before this ACK is 
received. 

19.2 Assuming 5-byte CSLIP headers (IP and TCP) and 2 bytes of data, the RTT across 
the SLIP link for these segments is about 14.5 ms. We have to add to this the RTT across 
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the Ethernet (normally 5-10 ms), plus the routing time on sun and bsdi. So yes, the 
observed times do appear correct. 

19.3 In Figure 19.6 the time difference between segments 6 and 9 is 533 ms. In Figure 
19.8 the time difference between segments 8 and 12 is 272 ms. (We measured the time 
for the F2 key, not the Fl key, since the first echo of the Fl key was lost in the second 
figure.) 

Chapter 20

20.1 Byte number 0 is the SYN and byte number 8193 is the FIN. The SYN and FIN each 
occupy 1 byte in the sequence number space. 

20.2 The first application write causes the first segment to be sent with the PUSH flag. 
Since BSD/386 always uses slow start, it waits for the first ACK before sending any more 
data. During this time the next three application writes occur, and the sending TCP 
buffers the data to send. The next three segments do not contain the PUSH flag since 
there is more data in the buffer to send. Eventually slow start catches up with the 
application writes and every application write causes a segment to be sent, and since that 
segment is the last one in the buffer, the PUSH flag is set. 

20.3 Solving the bandwidth-delay equation for the capacity, it is 1,920 bytes for the first 
case, and 2,062 for the satellite case. It appears that the receiving TCP is only advertising 
a window of 2,048 bytes. 

A window greater than 16,000 bytes should be able to saturate the satellite link. 

20.4 No, because TCP can repacketize data after a timeout, as we'll see in Section 21.11. 

20.5 Segment 15 is a window update sent automatically by the TCP module as a result of 
the application reading data, which causes the window to open. This is similar to segment 
9 in that figure. Segment 16, however, is a result of the application closing its end of the 
connection. 

20.6 This can cause the sender to inject packets into the network at a rate faster than the 
network can really handle. This is called ACK compression or ACK smashing [Mogul 
1993, Sec. 15.8.13]. This reference indicates that ACK compression occurs on the 
Internet, although it rarely leads to congestion. 

Chapter 21

21.1 The next timeout is for 48 seconds: 0+4x12. The factor of 4 is the next multiplier in 
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the exponential backoff. 

21.2 It appears SVR4 still uses the factor ID instead of 4D in the calculation of RTO. 

21.3 The stop-and-wait protocol used by TFTP is limited to 512 bytes of data per round 
trip. 32768/512 x 1.5 is 96 seconds. 

21.4 Show four segments, numbered 1,2,3, and 4. Assume the order of receipt is 1, 3, 2, 
and 4. The ACKs generated by the receiver will be ACK 1 (a normal ACK), ACK 1 (a 
duplicate ACK when segment 3 is received out of order), ACK 3 when segment 2 is 
received (acknowledging both segments 2 and 3), and then ACK 4. Here one duplicate 
ACK is generated. If the order of receipt were 1, 3, 4, 2, two duplicate ACKs would be 
generated. 

21.5 No, because the slope is still up and to the right, not downward. 

21.6 See Figure E.1. 

21.7 In Figure 21.2 the segments contain 256 bytes of data, which takes approximately 
250 ms to transfer across the 9600 bits/sec CSLIP link between slip and bsdi. Assuming 
the data segments are not queued somewhere between bsdi and vangogh, they arrive at 
vangogh about 250 ms apart. Since this exceeds the 200-ms delayed ACK timer, each 
segment is acknowledged when the next delayed ACK timer expires. 

Chapter 22

22.1 The ACKs are probably all delayed on the host bsdi, because there is no reason to 
send them immediately. That's why the relative times have 0.170 and 0.370 as the 
fractional part. It also appears that the 200-ms timer on bsdi is running about 18 ms 
behind the same timer on sun. 

22.2 The FIN flag, just like the SYN flag, occupies 1 byte in the sequence number space. 
"The advertised window appears to be 1 byte smaller because TCP allows room for the 1 
byte of sequence number space occupied by the FIN flag. 

Chapter 23

23.1 It is usually simpler to invoke the keepalive option than explicitly coding application 
probes; the keepalive probes take less network bandwidth than application probes (since 
keepalive probes and answers contain no data); no probes are sent unless the connection 
is idle. 
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23.2 The keepalive option can cause a perfectly good connection to be dropped because 
of a temporary network outage; the probe interval (2 hours) is normally not configurable 
on an application basis; 

Chapter 24

24.1 It means the sending TCP supports the window scale option, but doesn't need to 
scale its window for this connection. The other end (that receives this SYN) can then 
specify a window scale factor (that can be 0 or nonzero). 

24.2 64000: the receive buffer size (128000) right shifted 1 bit. 55000: the receive buffer 
size (220000) right shifted 2 bits. 

24.3 No. The problem is that acknowledgments are not reliably delivered (unless they're 
piggybacked with data) so a scale change appearing on an ACK could get lost. 

24.4 232x8/120 equals 286 Mbits/sec, 2.86 times the FDDI data rate. 

24.5 Each TCP would have to remember the last timestamp received on any connection 
from each host. Read Appendix B.2 of RFC 1323 for additional details. 

24.6 The application must set the size of the receive buffer before establishing the 
connection with the other end, since the window scale option is sent in the initial SYN 
segment. 

24.7 If the receiver ACKs every second data segment, the throughput is 1,118,881 
bytes/sec. Using a window of 62 segments, with an ACK for every 31 segments, the 
value is 1,158,675. 

24.8 With this option the timestamp echoed in the ACK is always from the segment that 
caused the ACK. There is no ambiguity about which retransmitted segment the ACK is 
for, but the other part of Karn's algorithm, dealing with the exponential backoff on 
retransmission, is still required. 

24.9 The receiving TCP queues the data, but it cannot be passed to the application until 
the three-way handshake is complete: when the receiving TCP moves into the 
ESTABLISHED state. 

24.10 Five segments are exchanged: 

1.  Client to server: SYN, data (request), and FIN. The server must queue the data as 
described in the previous exercise. 

2.  Server to client: SYN and ACK of client's SYN. 
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3.  Client to server: ACK of server's SYN and client FIN (again). This causes the 
server to move to the ESTABLISHED state, and the queued data from segment 1 
is passed to the server application. 

4.  Server to client: ACK of client FIN (which also acknowledges client data), data 
(server's reply), and server's FIN. This assumes that the SPT is short enough to 
allow this delayed ACK. When the client TCP receives this segment, the reply is 
passed to the client application, but the total time has been twice the RTT plus the 
SPT. 

5.  Client to server: ACK of server's FIN. 

24.11 16,128 transactions per second (64,512 divided by 4). 

24.12 The transaction time using T/TCP cannot be faster than the time required to 
exchange a UDP datagram between the two hosts. T/TCP should always take longer, 
since it still involves state processing that UDP doesn't do. 

Chapter 25

25.1 If a system is running both a manager and agent, they are probably different 
processes. The manager listens on UDP port 162 for traps, and the agent listens on UDP 
port 161 for requests. If the same port were used for both traps and requests, separating 
the manager from the agent would be hard. 

25.2 Refer to the section "Table Access" in Section 25.7. 

Chapter 26

26.1 We expect segments 2, 4, and 9 from the server to be delayed. The time difference 
between segments 2 and 4 is 190.7 ms and the time difference between segments 2 and 9 
is 400.7 ms. 

All the ACKs from the client to the server appear to be delayed: segments 6, II, 13, 15, 
17, and 19. The time differences of the last five from segment 6 are 400.0, 600.0, 800.0, 
1000.0, and 2.600 ms. 

26.2 If one end of a connection is in TCP's urgent mode, then every time a segment is 
received, one is sent. This segment does not tell the receiver anything new (it is not 
acknowledging new data, for example), and it contains no data, it just reiterates that 
urgent mode has been entered. 

26.3 There are only 512 of these reserved ports (512-1023), limiting a host to 512 Rlogin 
clients. The limit is normally less than 512 in real life, since some of the port numbers in 
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this range are used as well-known ports by various servers, such as the Rlogin server. 

TCP's limitation is that the socket pair defining a connection (the 4-tuple) must be 
unique. Since the Rlogin server always uses the same well-known port (513) multiple 
Rlogin clients on a given host can use the same reserved port only if they're connected to 
different server hosts. Rlogin clients, however, don't use this technique of trying to reuse 
reserved ports. If this technique were used, the theoretical limit is a maximum of 512 
Rlogin clients at any one time that are all connected to the same server host. 

Chapter 27

27.1 Theoretically the connection cannot be established while the socket pair is in the 
2MSL wait on either end. Realistically, however, we saw in Section 18.6 that most 
Berkeley-derived implementations do accept a new SYN for a connection in the 
TIME_WAIT state. 

27.2 These lines are not part of a server reply that begins with a 3-digit reply code, so 
they cannot be from the server. 

Chapter 28

28.1 A domain literal is a dotted-decimal IP address within square brackets. For example: 
mail rstevens@[140.252.1.54]. 

28.2 Six round trips: the HELO command, MAIL, RCPT, DATA, body of the message, 
and QUIT. 

28.3 This is legal and is called pipelining [Rose 1993, Sec. 4.4.4]. Unfortunately there 
exist brain-damaged SMTP receiver implementations that clear their input buffer after 
each command is processed, causing this technique to fail. If this technique is used, 
naturally the client cannot discard the message until all the replies have been checked to 
verify that the message was accepted by the server. 

28.4 Consider the first five network round trips from Exercise 28.2. Each is a small 
command (probably a single segment) that places little load on the network. If all five 
make it through to the server without retransmission, the congestion window could be six 
segments when the body is sent. If the body is large, the client could send the first six 
segments at once, which the network might not be able to handle. 

28.5 Newer releases of BIND shuffle the MX records with the same value, as a form of 
load balancing. 
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Chapter 29

29.1 No, because tcpdump cannot distinguish an RPC request or reply from any other 
UDP datagram. The only time it interprets the contents of UDP datagrams as NFS 
packets is when the source or destination port number is 2049. Random RPC requests and 
replies can use an ephemeral port number on each end. 

29.2 From Section 1.9 recall that a process must have superuser privileges to assign itself 
a port number less than 1024 (a well-known port). While this is OK for system-provided 
servers, such as the Telnet server, the FTP server, and the Port Mapper, we wouldn't want 
this restriction for all RPC servers. 

29.3 Two concepts in this example are that the client ignores any server reply that doesn't 
have the XID that the client is waiting for, and UDP queues received datagrams (up to 
some limit) until the application reads the datagram. Also, the XID does not change on a 
timeout and retransmission, it changes only when another server procedure is called. 

The events performed by the client stub are as follows: time 0: send request 1; time 4: 
time out and retransmit request 1; time 5: receive server's reply 1, return reply to 
application; time 5: send request 2; time 9: time out and retransmit request 2; time 10: 
receive server's reply 1, but ignore it since we're waiting for reply 2; time II: receive 
server's reply 2, return reply to application. 

The events at the server are as follows: time 0: receive request 1, start operation; time 5: 
send reply 1; time 5: receive request 1 (from client's retransmission at time 4), start 
operation; time 10: send reply 1; time 10: receive request 2 (from client's transmission at 
tune 5), start operation; time II: send reply 2; time II: receive request 2 (from client's 
retransmission at time 9), start operation; time 12: send reply 2. This final server reply is 
just queued by the client's UDP for the next receive done by the client. When the client 
reads it, the XID will be wrong, and the client will ignore it. 

29.4 Changing the server's Ethernet card changes its physical address. Even though we 
noted in Section 4.7 that SVR4 does not send a gratuitous ARP on bootstrap, it still must 
send an ARP request for the physical address of sun before it can reply to its NFS 
requests. Since sun already has an ARP entry for svr4, it updates this entry with the 
sender's (new) hardware address from the ARP request. 

29.5 The second of the client's block I/O daemons (reading at offset 73728) is out of sync 
with the first by about 0.74 seconds. That is, this second daemon times out 0.74 seconds 
after the first in lines 131-145. It appears the server never saw the request in line 167, but 
did see the request in line 168. The second block I/O daemon won't retransmit until 0.74 
seconds after line 168, and in the mean time the first block I/O daemon continues issuing 
requests. 
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29.6 If TCP is used, and the TCP segment containing the server's reply is lost in the 
network, the server's TCP will time out and retransmit the reply when it doesn't receive 
an ACK from the client's TCP. Eventually the segment will arrive at the client's TCP The 
difference here is that the two TCP modules do the timeout and retransmission, not the 
NFS client and server. (When UDP is used, the NFS client code performs the timeout and 
retransmission.) Therefore the NFS client never knows that the reply was lost and had to 
be retransmitted. 

29.7 It is possible for the NFS server to obtain a different port number after the reboot. 
This would complicate the client, because it would have to know that the server crashed 
and contact the server's port mapper after the reboot to find the NFS server's new port 
number. 

This scenario, where the server crashes and reboots and a server RPC application obtains 
a new ephemeral port, can happen to any RPC application that doesn't use a well-known 
port. 

29.8 No. The NFS client can reuse the same local, reserved port number for different 
servers. TCP requires the 4-tuple of local IP address, local port, foreign IP address, and 
foreign port to be unique, and the foreign IP address is different for each server host. 

Chapter 30

30.1 Type whois "net 88". Class A network IDs 64 through 95 are reserved. 

30.2 Type whois whitehouse-dom. Either the host command or nslookup can 
query the DNS. 

30.3 No, xscope can run on a different host from the server. If the hosts are different, 
then xscope can also use TCP port 6000 for its incoming connection. 
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Configurable Options
We've seen many features of TCP/IP that we've had to describe with the qualifier "it 
depends on the configuration." Typical examples are whether or not UDP checksums are 
enabled (Section 11.3), whether destination IP addresses with the same network ID but a 
different subnet ID are local or nonlocal (Section 18.4), and whether directed broadcasts 
are forwarded or not (Section 12.3). Indeed, many operating characteristics of a given 
TCP/IP implementation can be modified by the system administrator. 

This appendix lists some of the configurable options for the various TCP/IP 
implementations that have been used throughout the text. As you might expect, every 
vendor does things differently from all others. Nevertheless, this appendix gives an idea 
of the types of parameters different implementations allow one to modify. A few options 
that are highly implementation specific, such as the low-water mark for the memory 
buffer pool, are not described. 

These variables are described for informational purposes only. Their names, default 
values, or interpretation can change from one release to the next. Always check your 
vendor's documentation (or bug them for adequate documentation) for the final word on 
these variables. 

This appendix does not cover the initialization that takes place every time the system is 
bootstrapped: the initialization of each network interface using ifconfig (setting the 
IP address, the subnet mask, etc.), entering static routes into the routing table, and the 
like. Instead, this appendix focuses on the configuration options that affect how TCP/IP 
operates. 

E.1 BSD/386 Version 1.0

This system is an example of the "classical" BSD configuration that has been used since 
4.2BSD. Since the source code is distributed with the system, configuration options are 
specified by the administrator, and the kernel is recompiled. There are two types of 
options: constants that are defined in the kernel configuration file (see the config(8) 
manual page), and variable initializations in various C source files. Brave and 
knowledgeable administrators can also change the values of these C variables in either 
the running kernel or the kernel's disk image, using a debugger, to avoid rebuilding the 
kernel. Here are the constants that can be changed in the kernel's configuration file. 

IPFORWARDING
The value of this constant initializes the kernel variable ipforwarding. If 0 (default), 
IP datagrams are not forwarded. If 1, forwarding is always enabled. 
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GATEWAY
If defined, causes IPFORWARDING to be set to 1. Additionally, defining this constant 
causes certain system tables (the ARP cache and the routing table) to be larger. 

SUBNETSARELOCAL
The value of this constant initializes the kernel variable subnetsarelocal. If 1 
(default), a destination IP address with the same network ID as the sending host but a 
different subnet ID is considered local. If 0, only destination IP addresses on an attached 
subnet are considered local. This is summarized in Figure E.1. 

Network IDs Subnet IDs subnetsarelocal Comment

1 0

same 
same

different

same
different

-

local
local

nonlocal

local
nonlocal
nonlocal

always local
depends on configuration
always nonlocal 

Figure E.1 Interpretation of subnetsarelocal kernel variable.

This affects the MSS selected by TCP. When sending to local destinations, TCP chooses 
the MSS based on the MTU of the outgoing interface. When sending to nonlocal 
destinations, TCP uses the variable tcp_mssdflt as the MSS. 

IPSENDREDIRECTS
The value of this constant initializes the kernel variable ipsendredirects. If 1 
(default), the host will send ICMP redirects when forwarding IP datagrams. If 0, ICMP 
redirects are not sent. 

DIRECTED_BROADCAST
If 1 (default), received datagrams whose destination address is the directed broadcast 
address of an attached interface are forwarded as a link-layer broadcast. If 0, these 
datagrams are silently discarded. 

The following variables can also be modified. These variables are spread throughout 
different files in the /usr/src/sys/netinet directory. 

tcprexmtthresh
The number of consecutive ACKs that triggers the fast retransmit 
and fast recovery algorithm. The default value is 3. 

tcp_ttl
The default value for the TTL field for TCP segments. Default 
value is 60. 

tcp_mssdflt
The default TCP MSS for nonlocal destinations. Default value is 
512. 
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tcp_keepidle
Number of 500-ms clock ticks before sending a keepalive probe. 
Default value is 14400 (2 hours). 

tcp_keepintvl
Number of 500-ms clock ticks between successive keepalive 
probes, when no response is received. Default value is 150 (75 
seconds). 

tcp_sendspace The default size of the TCP send buffer. Default value is 4096. 

tcp_recvspace
The default size of the TCP receive buffer. This affects the 
window size that is offered. Default value is 4096. 

udpcksum

If nonzero, UDP checksums are calculated for outgoing UDP 
datagrams, and incoming UDP datagrams containing nonzero 
checksums have their checksum verified. If 0, outgoing UDP 
datagrams do not contain a checksum, and no checksum 
verification is performed on incoming UDP datagrams, even if 
the sender calculated a checksum. Default is 1. 

udp_ttl
The default value for the TTL field in UDP datagrams. Default 
value is 30. 

udp_sendspace
The default size of the UDP send buffer. Defines the maximum 
UDP datagram that can be sent. Default is 9216. 

udp_recvspace
The default size of the UDP receive buffer. The default is 41600, 
allowing for 40 1024-byte datagrams. 

E.2 SunOS 4.1.3

The method used with SunOS 4.1.3 is similar to what we saw with BSD/386. Since most 
of the kernel sources are not distributed, all the C variable initializations are contained in 
a single C source file that is provided. 

The administrator's kernel configuration file (see the config(8) manual page) can 
define the following variables. After modifying your configuration file, a new kernel 
must be made and rebooted. 

IPFORWARDING
The value of this constant initializes the kernel variable ip_forwarding. If -1, IP 
datagrams are never forwarded. Furthermore, the variable is never changed. If 0 
(default), IP datagrams are not forwarded, but the variable's value is changed to 1 if 
multiple interfaces are up. If 1, forwarding is always enabled. 

SUBNETSARELOCAL
The value of the kernel variable ip_subnetsarelocal is initialized from this 
constant. If 1 (default), a destination IP address with the same network ID as the sending 
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host but a different subnet ID is considered local. If 0, only destination IP addresses on 
an attached subnet are considered local. This is summarized in Figure E.1. When sending 
to local destinations, TCP chooses the MSS based on the MTU of the outgoing interface. 
When sending to nonlocal destinations, TCP uses the variable tcp_default_mss. 

IPSENDREDIRECTS
The value of this constant initializes the kernel variable ip_sendredirects. If 1 
(default), the host will send ICMP redirects when forwarding IP datagrams. If 0, ICMP 
redirects are not sent. 

DIRECTED_BROADCAST
The value of this constant initializes the kernel variable ip_dirbroadcast. If 1 
(default), received datagrams whose destination .address is the directed broadcast address 
of an attached interface are forwarded as a link-layer broadcast. If 0, these datagrams are 
silently discarded. 

The file /usr/kvm/sys/netinet/in_proto.c defines the following variables 
that can be changed. Once these variables are changed, a new kernel must be made and 
rebooted. 

tcp_default_mss
The default TCP MSS for nonlocal destinations. Default value 
is 512. 

tcp_sendspace The default size of the TCP send buffer. Default value is 4096. 

tcp_recvspace
The default size of the TCP receive buffer. This affects the 
window size that is offered. Default value is 4096. 

tcp_keeplen
A keepalive probe to a 4.2BSD host must contain a single byte 
of data to get a response. Set the variable to 1 for compatibility 
with these older implementations. Default value is 1. 

tcp_ttl
The default value for the TTL field for TCP segments. Default 
value is 60. 

tcp_nodelack If nonzero, ACKs are not delayed. Default value is 0. 

tcp_keepidle
Number of 500-ms clock ticks before sending a keepalive 
probe. Default value is 14400 (2 hours). 

tcp_keepintvl
Number of 500-ms clock ticks between successive keepalive 
probes, when no response is received. Default value is 150 (75 
seconds). 
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udp_cksum

If nonzero, UDP checksums are calculated for outgoing UDP 
datagrams, and incoming UDP datagrams containing nonzero 
checksums have their checksum verified. If 0, outgoing UDP 
datagrams do not contain a checksum, and no checksum 
verification is performed on incoming UDP datagrams, even if 
the sender calculated a checksum. Default is 0. 

udp_ttl
The default value for the TTL field in UDP datagrams. Default 
value is 60. 

udp_sendspace
The default size of the UDP send buffer. Defines the maximum 
UDP datagram that can be sent. Default is 9000. 

udp recvspace
The default size of the UDP receive buffer. The default is 
18000, allowing for two 9000-byte datagrams. 

E.3 System V Release 4

The TCP/IP configuration of SVR4 is similar to the previous two systems, but fewer 
options are available. In the file /etc/conf/pack.d/ip/space.c two constants 
can be defined, and the kernel must then be rebuilt and rebooted. 

IPFORWARDING
The value of this constant initializes the kernel variable ipforwarding. If 0 (default), 
IP datagrams are not forwarded. If 1, forwarding is always enabled. 

IPSENDREDIRECTS
The value of this constant initializes the kernel variable ipsendredirects. If 1 
(default), the host will send ICMP redirects when forwarding IP datagrams. If 0, ICMP 
redirects are not sent. 

Many of the variables that we've described in the previous two sections are defined in the 
kernel, but one must patch the kernel to modify them. For example, there is a variable 
named tcp_keepidle with a value of 14400. 

E.4 Solaris 2.2

Solaris 2.2 is typical of the newer Unix systems that provide a program for the 
administrator to run to change the configuration options of the TCP/IP system. This 
allows reconfiguration without having to modify source files and rebuild a kernel. 

The configuration program is ndd(l). We can run the program to see what parameters we 
can examine or modify in the UDP module: 
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solaris % ndd /dev/udp \? 

udp_wroff_extra (read and write) 

udp_def_ttl (read and write) 

udp_first_anon_port (read and write) 

udp_trust_optlen (read and write) 

udp_do_checksum (read and write) 

udp_status (read only) 

There are five modules we can specify: /dev/ip, /dev/icmp, /dev/arp, 
/dev/udp, and /dev/tcp. The question mark argument (which we have to prevent 
the shell from interpreting by preceding it with a backslash) tells the program to list all 
the parameters for that module. An example that queries the value of a variable is: 

solaris % ndd /dev/tcp tcp_mss_def
536 

To change the value of a variable we need superuser privilege and type: 

solaris # ndd -set /dev/ip ip_forwarding 0 

These variables can be divided into three categories: 

1.  Configuration variables that a system administrator can change (e.g., 
ip_forwarding). 

2.  Status variables that can only be displayed (e.g., the ARP cache). Normally this 
information is provided in an easier to understand format by the commands 
ifconfig, netstat, and arp. 

3.  Debugging variables intended for those with kernel source code. Enabling some 
of these generates kernel debug output at runtime, which can degrade 
performance. 

We now describe the parameters in each module. All parameters are read-write, unless 
marked "(Read only)." The read-only parameters are the status variables from case 2 
above. We also mark the "(Debug)" variables from case 3. Unless otherwise noted, all the 
timing variables are specified in milliseconds, which differs from the other systems that 
normally specify times as some number of 500-ms clock ticks. 

/dev/ip

ip_cksum_choice
(Debug) Selects between two independent implementations of the IP checksum 
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algorithm. 

ip_debug
(Debug) Enables printing of debug output by the kernel, if greater than 0. Larger values 
generate more output. Default is 0. 

ip_def_ttl
Default TTL for outgoing IP datagrams, if not specified by transport layer. Default is 
255. 

ip_forward_directed_broadcasts
If 1 (default), received datagrams whose destination address is the directed broadcast 
address of an attached interface are forwarded as a link-layer broadcast. If 0, these 
datagrams are silently discarded. 

ip_forward_src_routed
If 1 (default), received datagrams containing a source route option are forwarded. If 0, 
these datagrams are discarded. 

ip_forwarding
Specifies whether the system forwards incoming IP datagrams: 0 means never forward, 1 
means always forward, and 2 (default) means only forward when two or more interfaces 
are up. 

ip_icmp_return_data_bytes
The number of bytes of data beyond the IP header that are returned in an ICMP error. 
Default is 64. 

ip_ignore_delete_time
(Debug) Minimum lifetime of an IP routing table entry (IRE). Default is 30 seconds. 
(This parameter is in seconds, not milliseconds.) 

ip_ill_status
(Read only) Displays the status of each IP lower layer data structure. There is one lower 
layer structure for each interface. 

ip_ipif_status
(Read only) Displays the status of each IP interface data structure (IP address, subnet 
mask, etc.). There is one of these structures for each interface. 

ip_ire_cleanup_interval
(Debug) The interval at which the IP routing table entries are scanned for possible 
deletions. Default is 30000 ms (30 seconds). 
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ip_ire_flush_interval
The interval at which ARP information in unconditionally flushed from the IP routing 
table. Default is 1200000 ms (20 minutes). 

ip_irepathmtu_interval
The interval at which the path MTU discovery algorithm tries to increase the MTU. 
Default is 30000 ms (30 seconds). 

ip_ire_redirect_interval
The interval at which IP routing table entries that are from ICMP redirects are deleted. 
Default is 60000 ms (60 seconds). 

ip_ire_status
(Read only) Displays all the IP routing table entries. 

ip_local_cksum
If 0 (default), IP does not calculate the IP checksum or the higher layer protocol 
checksum (i.e., TCP, UDP, ICMP, or IGMP) for datagrams sent or received through the 
loopback interface. If 1, these checksums are calculated. 

ip_mrtdebug
(Debug) Enables printing of debug output concerning multicast routing by the kernel, if 
1. Default is 0. 

ip_path_mtu_discovery
If 1 (default), path MTU discovery is performed by IP. If 0, IP never sets the "don't 
fragment" bit in outgoing datagrams. 

ip_respond_to_address_mask
If 0 (default), the host does not respond to ICMP address mask requests. If 1, it does 
respond. 

ip_respond_to_echo_broadcast
If 1 (default), the host responds to ICMP echo requests that are sent to a broadcast 
address. If 0, it does not respond. 

ip_respond_to_timestamp
If 0 (default), the host does not respond to ICMP timestamp requests. If 1, the host 
responds. 

ip_respond_to_timestamp_broadcast
If 0 (default), the host does not respond to ICMP timestamp requests that are sent to a 
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broadcast address. If 1, it does respond. 

ip_rput_pullups
(Debug) Count of number of buffers from the network interface driver that needed to be 
pulled up to access the full IP header. Initialized to 0 at bootstrap time, and can be reset 
to 0. 

ip_send_redirects
If 1 (default), the host sends ICMP redirects when acting as a router. If 0, these are not 
sent. 

ip_send_source_quench
If 1 (default), the host generates ICMP source quench errors when incoming datagrams 
are discarded. If 0, these are not generated. 

ip_wroff_extra
(Debug) Number of bytes of extra space to allocate in buffers for IP headers. Default is 
32. 

/dev/icmp

icmp_bsd_compat
(Debug) If 1 (default), the length field in the IP header of received datagrams is adjusted 
to exclude the length of the IP header. This is compatible with Berkeley-derived 
implementations and is for applications reading raw IP or raw ICMP packets. If 0, the 
length field is not changed. 

icmp_def_ttl
The default TTL for outgoing ICMP messages. Default is 255. 

icmp_wroff_extra
(Debug) Number of bytes of extra space to allocate in buffers for IP options and data-link 
headers. Default is 32. 

/dev/arp

arp_cache_report
(Readonly) The ARP cache. 

arp_cleanup_interval
The interval after which ARP entries are discarded from ARP's cache. Default is 300000 
ms (5 minutes). (IP maintains its own cache of completed ARP translations; see ip_ire 
flush_interval.) 
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arp_debug
(Debug) If 1, enables printing of debug output by the ARP driver. Default is 0. 

/dev/udp

udp_def_ttl
The default TTL for outgoing UDP datagrams. Default value is 255. 

udp_do_checksum
If 1 (default), UDP checksums are calculated for outgoing UDP datagrams. If 0, outgoing 
UDP datagrams do not contain a checksum. (Unlike most other implementations, this 
UDP checksum flag does not affect incoming datagrams. If a received datagram has a 
nonzero checksum, it is always verified.) 

udp_largest_anon_port
Largest port number to allocate for UDP ephemeral ports. Default is 65535. 

udp_smallest_anon_port
Starting port number to allocate for UDP ephemeral ports. Default is 32768. 

udp_smallest_nonpriv_port
A process requires superuser privilege to assign itself a port number less than this. 
Default is 1024. 

udp_status
(Read only) The status of all local UDP end points: local IP address and port, foreign IP 
address and port. 

udp_trust_optlen
(Debug) No longer used. 

udp_wroff_extra
(Debug) Number of bytes of extra space to allocate in buffers for IP options and data-link 
headers. Default is 32. 

/dev/tcp

tcp_close_wait_interval
The 2MSL value: the time spent in the TIME_WAIT state. Default is 240000 ms (4 
minutes). 

tcp_conn_grace_period
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(Debug) Additional time added to the timer interval when sending a SYN. Default is 500 
ms. 

tcp_conn_req_max
The maximum number of pending connection requests queued for any listening end 
point. Default is 5. 

tcp_cwnd_max
The maximum value of the congestion window. Default is 32768. 

tcp_debug
(Debug) If 1, enables printing of debug output by TCP. Default is 0. 

tcp_deferred_ack_interval
The time to wait before sending a delayed ACK. Default is 50 ms. 

tcp_dupack_fast_retransmit
The number of consecutive duplicate ACKs that triggers the fast retransmit, fast recovery 
algorithm. Default is 3. 

tcp_eager_listeners
(Debug) If 1 (default), TCP completes the three-way handshake before returning a new 
connection to an application with a pending passive open. "This is the way most TCP 
implementations operate. If 0, TCP passes an incoming connection request (received 
SYN) to the application, and does not complete the three-way handshake until the 
application accepts the connection. (Setting this to 0 might break many existing 
applications.) 

tcp_ignore_path_mtu
(Debug) If 1, path MTU discovery ignores received ICMP fragmentation needed 
messages. If 0 (default), path MTU discovery is enabled for TCP. 

tcp_ip abort_cinterval
The total retransmit timeout value when TCP is performing an active open. Default is 
240000 ms (4 minutes). 

tcp_ip_abort_interval
The total retransmit timeout value for a TCP connection after it is established. Default is 
120000 ms (2 minutes). 

tcp_ip_notify_cinterval
The timeout value when TCP is performing an active open after which TCP notifies IP to 
find a new route. Default is 10000 ms (10 seconds). 
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tcp_ip_notify_interval
The timeout value for an established connection after which TCP notifies IP to find a 
new route. Default is 10000 ms (10 seconds). 

tcp_ip_ttl
The TTL to use for outgoing TCP segments. Default is 255. 

tcp_keepalive_interval
The time that a connection must be idle before a keepalive probe is sent. Default is 
7200000 ms (2 hours). 

tcp_largest_anon_port
Largest port number to allocate for TCP ephemeral ports. Default is 65535. 

tcp_maxpsz_multiplier
(Debug) Specifies the multiple of the MSS into which the stream head packetizes the 
application's write data. Default is 1. 

tcp_mss_def
Default MSS for nonlocal destinations. Default is 536. 

tcp_mss_max
The maximum MSS. Default is 65495. 

tcp_mss_min
The minimum MSS. Default is 1. 

tcp_naglim_def
(Debug) Maximum value of the per-connection Nagle algorithm threshold. Default is 
65535. The per-connection value starts out as the minimum of the MSS or this value. The 
per-connection value is set to 1 by the TCP_NODELAY socket option, which disables 
the Nagle algorithm. 

tcp_old_urp_interpretation
(Debug) If 1 (default), the older (but more common) BSD interpretation of the urgent 
pointer is used: it points 1 byte beyond the last byte of urgent data. If 0, the Host 
Requirements RFC interpretation is used; it points to the last byte of urgent data. 

tcp_rcv_push_wait
(Debug) Maximum number of bytes received without the PUSH flag set before the data 
is passed to the application. Default is 16384. 
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tcp_rexmit_interval_initial
(Debug) Initial retransmit timeout interval. Default is 500 ms. 

tcp_rexmit_interval_max
(Debug) Maximum retransmit timeout interval. Default is 60000 ms (60 seconds). 

tcp_rexmit_interval_min
(Debug) Minimum retransmit timeout interval. Default is 200 ms. 

tcp_rwin_credit_pct
(Debug) Percentage of receive window that must be buffered before flow control is 
checked on every received segment. Default is 50%. 

tcp_smallest_anon_port
Starting port number to allocate for TCP ephemeral ports. Default is 32768. 

tcp_smallest_nonpriv_port
A process requires superuser privilege to assign itself a port number less than this. 
Default is 1024. 

tcp_snd_lowat_fraction
(Debug) If nonzero, the send buffer low-water mark is the send buffer size divided by 
this value. Default is 0 (disabled). 

tcp_status
(Read only) Information on all TCP connections. 

tcp_sth_rcv_hiwat
(Debug) If nonzero, the value to set the stream head high-water mark to. Default is 0. 

tcp_sth_rcv_lowat
(Debug) If nonzero, the value to set the stream head low-water mark to. Default is 0. 

tcp_wroff_xtra
(Debug) Number of bytes of extra space to allocate in buffers for IP options and data-link 
headers. Default is 32. 

E.5 AIX 3.2.2

AIX 3.2.2 allows network options to be set at runtime using the no command. It can 
display the value of an option, set the value of an option, or set an option value back to its 
default. For example, to display an option we type: 

file:///D|/Documents%20and%20Settings/bigini/Doc...omenet2run/tcpip/tcp-ip-illustrated/append_e.htm (13 of 16) [12/09/2001 14.48.06]



Appendix E: Configurable Options

aix % no -o udp_ttl
udp_ttl = 30 

The following options can be modified. 

arpt_killc
The time (in minutes) before an inactive completed ARP entry is removed. Default is 20. 

ipforwarding
If 1 (default), IP datagrams are always forwarded. If 0, forwarding is disabled. 

ipfragttl
The time to live (in seconds) for IP fragments awaiting reassembly. Default is 60. 

ipsendredirects
If 1 (default), the host will send ICMP redirects when forwarding IP datagrams. If 0, 
ICMP redirects are not sent. 

loop_check_sum
If 1 (default), the IP checksum is calculated for datagrams sent through the loop-back 
interface. If 0, this checksum is not calculated. 

nonlocsrcroute
If 1 (default), received datagrams containing a source route option are forwarded. If 0, 
these datagrams are discarded. 

subnetsarelocal
If 1 (default), a destination IP address with the same network ID as the sending host but a 
different subnet ID is considered local. If 0, only destination IP addresses on an attached 
subnet are considered local. This is summarized in Figure E.1. When sending to local 
destinations, TCP chooses the MSS based on the MTU of the outgoing interface. When 
sending to nonlocal destinations, TCP uses the default (536) as the MSS. 

tcp_keepidle
Number of 500-ms clock ticks before sending a keepalive probe. Default value is 14400 
(2 hours). 

tcp_keepintvl
Number of 500-ms clock ticks between successive keepalive probes, when no response is 
received. Default value is 150 (75 seconds). 

tcp_recvspace
The default size of the TCP receive buffer. This affects the window size that is offered. 
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Default value is 16384. 

tcp_sendspace
The default size of the TCP send buffer. Default value is 16384. 

tcp_ttl
The default value for the TTL field for TCP segments. Default value is 60. 

udp_recvspace
The default size of the UDP receive buffer. The default is 41600, allowing for 40 1024-
byte datagrams. 

udp_sendspace
The default size of the UDP send buffer. Defines the maximum UDP datagram that can 
be sent. Default is 9216. 

udp_ttl
The default value for the TTL field in UDP datagrams. Default value is 30. 

E.6 4.4BSD

4.4BSD is the first of the Berkeley releases to provide dynamic configuration for 
numerous kernel parameters. The sysctl(8) command is used. The names for the 
parameters were chosen to look like MIB names from SNMP. To examine a parameter 
we type: 

vangogh % sysctl net.inet.ip.forwarding 
net.inet.ip.forwarding = 1 

To change a parameter we need superuser privilege and then type: 

vangogh # sysctl -w nat.inet.ip.ttl=128 

The following parameters can be changed. 

net.inet.ip.forwarding
If 0 (default), IP datagrams are not forwarded. If 1, forwarding is enabled. 

net.inet.ip.redirect
If 1 (default), the host will send ICMP redirects when forwarding IP datagrams. If 0, 
ICMP redirects are not sent. 
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net.inet.ip.tti
The default TTL for both TCP and UDP. The default is 64. 

net.inet.icmp.maskrepi
If 0 (default), the host does not respond to ICMP address mask requests. If 1, it does 
respond. 

net.inet.udp.checksum
If 1 (default), UDP checksums are calculated for outgoing UDP datagrams, and incoming 
UDP datagrams containing nonzero checksums have their checksum verified. If 0, 
outgoing UDP datagrams do not contain a checksum, and no checksum verification is 
performed on incoming UDP datagrams, even if the sender calculated a checksum. 

Additionally, numerous variables that we've described earlier in this appendix are 
scattered among various source files (tcp_keepidle, subnetsarelocal, etc.) and 
can be modified. 
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Source Code Availability
This book uses many publicly available software packages. This appendix provides 
additional details on how to obtain this software. 

The technique used to obtain this software is called anonymous FTP, where FTP is the 
standard Internet File Transfer Protocol (Chapter 27). Section 27.3 shows an example of 
anonymous FTP. For a background on Internet resources in general, and specifically 
anonymous FTP, refer to any of the recently available books on the Internet, such as 
[LaQuey 1993] or [Krol 1992]. 

The hosts listed here are believed to be the primary site where the package is available. 
There may be many other sites where the software is also available. The Internet Archie 
service can locate additional versions. Also, the versions listed below are the ones used 
for the examples in the text. 

Newer versions may have been released by the time you read this. 

You should use the FTP dir command to see if newer versions exist on that specified 
host. 

This appendix is ordered by the chapter or section number where the resource was used 
in this text. 

RFCs (Section 1.11)

Section 1.11 provides the electronic mail address to send a request to. The reply details 
numerous sites from which the RFCs can be obtained using either e-mail or anonymous 
FTP. 

Remember that the starting place is to obtain the current index and look up the RFC that 
you want in the index. This entry tells you if that RFC has been obsoleted or updated by a 
newer RFC. 

BSD Net/2 Source Code (Section 1.14)

The BSD Net/2 source code, which includes the kernel implementation of the TCP/IP 
protocols, along with the standard utilities (Telnet client and server, FTP client and 
server, etc.), is available from ftp.uu.net in the directory tree starting at 
systems/unix/bsd-sources. 
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SLIP (Section 2.4)

The version of SLIP used in this text is available from ftp.ee.lbl.gov. The 
filename begins with cslip, since it supports compressed SLIP (Section 2.5). 

icmpaddrmask Program (Section 6.3)

Refer to the final entry of this section. 

icmptime Program (Section 6.4)

Refer to the final entry of this section. 

ping Program (Chapter 7)

The BSD version of ping normally has more options and features than the version 
supplied by many vendors. The host ftp.uu.net contains the latest BSD version in 
the file systems/unix/bsd-sources/sbin/ping. 

traceroute Program (Chapter 8)

The traceroute program is available from ftp.ee.lbl.gov. Refer to the final entry of 
this section for the version used in Section 8.5 that allows loose and strict source routing. 

Router Discovery Daemon (Section 9.6)

A program is available that provides host support and router support for the router 
discovery messages. The host is gregorio.stanford.edu and the file is gw-
discovery/nordmark-rdisc.tar. The program was written by Sun 
Microsystems and made publicly available. 

gated Daemon (Section 10.3)

The gated routing daemon, mentioned in Section 10.3, is available from the host 
gated.cornell.edu. 

traceroute.pmtu Program (Section 11.7)

Refer to the final entry of this section. 
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IP Multicasting Software (Chapter 13)

The modifications required to support IP multicasting for SunOS 4.x and Ultrix are 
available from gregorio.stanford.edu in the directory vmtp-ip. This directory 
also contains the source code modifications required to implement IP multicasting in a 
Berkeley Unix system. 

BIND Name Server (Chapter 14)

The BIND name server, the named daemon, is available from the host ftp.uu.net in 
the file networking/ip/dns/bind/bind.4.8.3.tar.Z. 

A newer version, 4.9, is available from gatekeeper.dec.com in the directory 
pub/BSD/bind/4.9. 

host Program (Chapter 14)

The host program is available from the host nikhefh.nikhef.nl in the file 
host.tar.Z. 

dig and doc Programs (Chapter 14)

The dig and doc programs mentioned in Chapter 14 are available from the host 
isi.edu in the files dig.2.0.tar.Z and doc.2.0.tar.Z. 

BOOTP Server (Chapter 16)

Various versions of the commonly used Unix BOOTP server are available from the host 
lancaster.andrew.emu.edu, in the pub directory. 

TCP High-Speed Extensions (Chapter 24)

A publicly available source code implementation of the TCP window scale option, time-
stamp option, and PAWS algorithm is available as a set of patches to the BSD Net/2 
release from the host uxc.cso.uiuc.edu in the file pub/tcplw.shar.Z. 

ISODE SNMP Manager and Agent (Chapter 25)

The SNMP manager and agent described in Section 25.7 are part of the ISODE 8.0 
distribution. This is available from many FTP archive sites, such as ftp.uu.net in the 
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networking/osi/isode directory. 

MIME Software and Examples (Section 28.4)

A program named MetaMail that provides MIME capabilities for many different user 
agents is available on the host thumper.bellcore.com in the pub/nsb directory. 
Also in this directory is additional information on MIME. 

Sun RPC (Section 29.2)

A version of the RPC 4.0 sources (which use the sockets API) is available from the host 
ftp.uu.net in the systems/sun/sextape/rpc4.0 directory. A version of the 
TI-RPC sources (which use the TLI API) is available from the host ftp.uu.net in the 
networking/rpc directory. 

Sun NFS (Chapter 29)

A publicly available implementation of an NFS client and server is provided as part of 
the BSD Net/2 Source Code described earlier in this appendix. 

tcpdump Program (Appendix A)

The version of tcpdump used in this text is from the host ftp.ee.lbl.gov in the 
file tcpdump-2.2.1.tar.Z. 

BSD Packet Filter (Section A.1)

The BSD packet filter is part of the tcpdump distribution. 

sock Program (Appendix C)

Refer to the final entry of this section. 

ttcp Program

(This program was not used in the text, but is a useful tool of which readers should be 
aware.) ttcp is a benchmarking tool for measuring TCP and UDP performance between 
two systems. It was created at the U.S. Army Ballistics Research Lab (BRL) and is in the 
public domain. Copies are available from many anonymous FTP sites but an enhanced 
version is available from ftp.sgi.com in the directory sgi/src/ttcp. 
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Author-Written Software

The author-written software used in the book is available from the host ftp.uu.net in 
the file published/books/stevens.tcpipiv1.tar.Z. 
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List of Acronyms

ACRONYMS 

ACK acknowledgment flag, TCP header 

API application program interface 

ARP Address Resolution Protocol 

ARPANET Advanced Research Projects Agency network 

AS autonomous system

ASCII American Standard Code for Information Interchange 

ASN.1 Abstract Syntax Notation One 

BER Basic Encoding Rules 

BGP Border Gateway Protocol 

BIND Berkeley Internet Name Domain 

BOOTP Bootstrap Protocol 

BPF BSD Packet Filter

BSD Berkeley Software Distribution 

CIDR classless interdomain routing 

CIX Commercial Internet Exchange 

CLNP Connectionless Network Protocol 

CRC cyclic redundancy check 

CSLIP compressed SLIP

CSMA carrier sense multiple access 

DCE Distributed Computing Environment 

DDN Defense Data Network 

DF don't fragment flag, IP header 

DHCP Dynamic Host Configuration Protocol 

DLPI Data Link Provider Interface 

DNS Domain Name System

DSAP Destination Service Access Point 

DTS Distributed Time Service 

DVMRP Distance-Vector Multicast Routing Protocol 

EBONE European IP Backbone 

EGP Exterior Gateway Protocol 

EOL end of option list

FCS frame check sequence 

FDDI Fiber Distributed Data Interface 

FIFO first in, first out 
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FIN finish flag, TCP header 

FQDN fully qualified domain name 

FTP File Transfer Protocol 

HDLC high-level data link control 

HELLO routing protocol

IAB Internet Architecture Board 

IANA Internet Assigned Number Authority 

ICMP Internet Control Message Protocol 

IDRP Interdomain Routing Protocol 

IEEE Institute of Electrical and Electronics Engineers 

IEN Internet Experiment Notes 

IESG Internet Engineering Steering Group 

IETF Internet Engineering Task Force 

IGMP Internet Group Management Protocol 

IGP interior gateway protocol 

IP Internet Protocol

IRTF Internet Research Task Force 

IS-IS Intermediate System to Intermediate System Protocol 

ISN initial sequence number 

ISO International Organization for Standardization 

ISOC Internet Society

LAN local area network

LBX low bandwidth X

LCP link control protocol 

LFN long fat network

LIFO last in, first out

LLC logical link control 

LSRR loose source and record route 

MBONE multicast backbone 

MIB management information base 

MILNET Military Network

MIME multipurpose Internet mail extensions 

MSL maximum segment lifetime 

MSS maximum segment size 

MTA message transfer agent 

MTU maximum transmission unit 
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NCP Network Control Protocol 

NFS Network File System

NIC Network Information Center 

NIT network interface tap 

NNTP Network News Transfer Protocol 

NOAO National Optical Astronomy Observatories 

NOP no operation

NSFNET National Science Foundation network 

NSI NASA Science Internet 

NTP Network Time Protocol 

NVT network virtual terminal 

OSF Open Software Foundation 

OSI open systems interconnection 

OSPF open shortest path first 

PAWS protection against wrapped sequence numbers 

PDU protocol data unit

POSIX Portable Operating System Interface 

PPP Point-to-Point Protocol 

PSH push flag, TCP header 

RARP Reverse Address Resolution Protocol 

RFC Request for Comment

RIP Routing Information Protocol 

RPC remote procedure call 

RR resource record

RST reset flag, TCP header 

RTO retransmission time out 

RTT round-trip time

SACK selective acknowledgment 

SLIP Serial Line Internet Protocol 

SMI structure of management information 

SMTP Simple Mail Transfer Protocol 

SNMP Simple Network Management Protocol 

SSAP source service access point 

SSRR strict source and record route 

SWS silly window syndrome 

SYN synchronize sequence numbers flag, TCP header 
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List of Acronyms

TCP Transmission Control Protocol 

TFTP Trivial File Transfer Protocol 

TLI Transport Layer Interface 

TOS type-of-service

TTL time-to-live

TUBA TCP and UDP with bigger addresses 

Telnet remote terminal protocol 

UDP User Datagram Protocol 

URG urgent pointer flag, TCP header 

UTC Coordinated Universal Time 

UUCP Unix-to-Unix Copy

WAN wide area network

WWW World Wide Web

XDR external data representation 

XID transaction ID

XTI X/Open Transport Layer Interface 
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