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ABSTRACT
The design and engineering of networks requires the consid-
eration of many possible configurations (different network
topologies, bandwidths, traffic and policies). Network en-
gineers may use network simulation to evaluate changes in
network configuration, but detailed, packet-level simulation
of many alternatives would be extremely time consuming.
This paper introduces the concept of scenario pre-filtering—
rather than perform detailed simulation of each scenario, we
propose to quickly evaluate (pre-filter) all scenarios in order
to select only the relevant scenarios and discard those that
are clearly too over- or under-provisioned. To rapidly eval-
uate scenarios, we have developed several new analytical
techniques to quickly determine the steady-state behavior
of the network with both bulk and short term TCP flows.
These techniques apply to arbitrary topologies and routers
that use both drop-tail and RED queuing policies. Since we
are only interested in selecting the interesting scenarios for
detailed simulation, the answers need only be approximate.
However, we show that accuracy is typically within 10% of
detailed simulation. More importantly, these techniques are
10–300× faster than detailed simulation, and, hence, pre-
filtering is a promising technique to reduce the total simu-
lation time when many scenarios must be considered.

Keywords
network simulation, scenario pre-filtering, fixed-point ap-
proximation, TCP, RED

1. INTRODUCTION
The design and engineering of networks is a challenging task.
Interactions between traffic load, topologies, and protocols
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create a huge parameter space that must be explored and
understood. Network simulation can play an important role
in this understanding and in the design of better networks.
To explore the network behavior, the engineer might employ
a network simulator to evaluate a number of scenarios with
different traffic characteristics.

Packet level simulators, such as ns-2 [28], simulate the net-
work as a series of discrete events, requiring a number of
events proportional to the number of packets generated by
the network. Although simple simulations can be run quite
quickly, simulating scenarios with many nodes and at high
traffic rates can easily become quite time consuming. Un-
derstanding the behavior of the network may require many
scenarios with alternate traffic or configuration choices. Of-
ten many of these scenarios are not interesting, either they
are very overloaded (and so not a sensible operating point),
or they are very underloaded (and so not providing insight
into the network’s performance). Often only a few scenarios
are really relevant, providing a balance to define the oper-
ating limits of the network. Another fact about simulations
with protocols such as TCP [25] is that they often need to
be run for several seconds in order to reach a steady state.
Such restrictions further add to the simulation time for each
scenario.

This paper addresses the problem of how to evaluate a wide
range of simulation scenarios when only some are relevant.
Our work is based on the observation that there is no need to
simulate the uninteresting scenarios in detail. We propose
Approx-sim, a design tool that can very quickly evaluate
the steady-state behavior of scenarios using analytic means.
It employs a user-supplied criteria to pre-filter the scenar-
ios, allows uninteresting scenarios to be dismissed quickly
(with only analytic evaluation) and the interesting ones to
be evaluated in detail (with packet-level simulation).

1.1 Our Contribution
Our approach to building the core of a pre-filtering tool is
to solve the network analytically, using a framework based
on fixed point approximations. We have designed and im-
plemented a stand-alone framework to calculate the approx-
imate fixed-point of the network. Although others have de-
scribed this general approach [2, 15, 27, 7] (for more de-
tails, see the next sub-section), our contribution has been
to realize a stand-alone solver that can also been integrated



into a packet level simulator. In order to build our tool,
approx-sim, we have had to develop the following models
and techniques.

• In order for the fixed point solver to work in a uni-
fied way for different protocols, we need simple models
of routers that yield the drop probability as a func-
tion of the offered load. We provide such a model for
RED gateways; our model is simple and may well be of
independent interest. Though other models yield the
drop probability as a function of buffer size, they are
difficult to incorporate into a modular framework that
can solve for both drop-tail and RED routers. To our
knowledge, no one has validated their framework for
scenarios with both RED as well as drop-tail routers.

• We have developed a new algorithm to promote fast
convergence. To promote convergence we apply network-
specific knowledge about link scaling, damping oscil-
lations that occur in determining the operating points
for drop-tail routers.

We have integrated our tool, approx-sim, into a packet-level
simulator, ns-2 , and have applied it the problem of scenario
pre-filtering.

An important additional distinction between approx-sim and
previous fixed-point models is the expected level of accuracy.
Operating alone, fixed-point, steady-state computations of
network behavior may suffer from accuracy problems. When
applied to pre-filtering and integrated into a packet-level
simulator, perfect accuracy is no longer a goal: analysis is
used only to select which scenarios are relevant. These sce-
narios are then simulated with packet-level approaches to
get detailed results. Although scenario pre-filtering is our
primary goal, approx-sim can also run as a stand-alone sim-
ulator.

1.2 Related work
Our work is related to other approaches for fast simulation,
either through parallelism or approximation. It also builds
on analytical approaches to understanding network perfor-
mance.

Parallelism has been used for many years to improve simula-
tion performance [4, 18]. Several parallel network simulators
are currently available, such as Parsec [1], SSFNET [6], and
parallel versions of ns-2 [14, 26]. RPI [29] has proposed
the use of experimental factoring, that combines multiple
sequential simulations on a network of workstations with
search algorithms to choose the scenarios that should be
considered. Queuing theoretic approaches have long been
used to evaluate network performance (for example, [20]).
Although it is necessary to understand fundamental perfor-
mance limits, these approaches must be applied to the In-
ternet with care because of the complexity of the protocols
and the networks in use there. Recently, there has been ex-
tensive work in fluid-flow-based approaches to network sim-
ulation [21, 22, 23]. These approaches are promising, and,
some such as Misra et al.’s [22] approach can capture the
transient behavior.
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Figure 1: The structure of the pre-filtering tool

Accurate analytical models for the steady state of bulk TCP
[24] exist. Short lived TCP flows have been modeled by
Cardwell et al. [3] and Huang et al. [17]. Ben Fredj et al. [13]
describe short flows as inelastic traffic and demonstrate that
simple queuing models like M/G/1 are reasonably accurate
for modeling drop-tail routers. RED has been studied in
detail [11, 8, 10]. Hollot et al. presented a control theoretic
model of RED [16].

Several frameworks based on fixed point approximations
have been studied by several groups. In [2], Bu et. al. com-
pute the fixed point for a single congested RED router with
reasonable accuracy but they do not have complex scenarios
with both RED and drop-tail routers, and, with both long
and short lived TCP flows. Gibbens et. al. [15] define a the-
oretical framework for long term TCP flows. In Roughan
et. al. [27], the framework cannot handle short flows and
drop-tail routers. In [7], the authors present a similar ana-
lytical framework such as ours. Their approach works if the
scenario can be reduced to just one bottleneck link and their
results for multiple bottleneck link network is validated for
only long term TCP and UDP traffic. In general, other re-
searcher have suggested similar frameworks. However none
of them have validated their framework for complex scenar-
ios with both RED and drop-tail routers, and, with both
long and short lived TCP flows.

In the rest of this paper, we will first describe our itera-
tive process, and explain why it requires models of network
routers which give drop probability as a function of through-
put. We then present our simple model of RED, and our
iterative fixed point module, with special attention paid to
the damping step for convergence. Finally, we present sim-
ulation results that show that our tool is very fast, has rea-
sonable accuracy and it can be used within ns-2 to pre-filter
uninteresting scenarios based on user criteria.

2. STRUCTURE OF APPROX-SIM
This section first describes the user interface of approx-sim
and how it can be used to pre-filter scenarios. Then we
briefly describe the analytical engine of approx-sim along
with the analytical models, algorithms and techniques used.
This section describes our main contribution.



2.1 The User Interface
To rapidly calculate the steady state of the network, we use
a fixed point approximation technique. The structure of the
tool is shown in Figure 1. We begin with a topology and
the details of traffic agents in the topology from the user
in the form of a ns-2 script. Our module parses the ns-2
script and populates the internal data structures of approx-
sim. The user can invoke the approx-sim module by the
following simple Tcl command from his ns-2 script. If we
use the stand alone version of approx-sim, we need to run
ns-2 and instruct it to dump the internal data structure of
approx-sim corresponding to that scenario into a file that
can be read by approx-sim.

Let us look at the user interface in more detail. In this sub-
section we will describe how the user can use approx-sim
to pre-filter undesired scenarios. To demonstrate how the
embedded version works, consider the following script. This
script shows the ease with which a pre-filtering tool can be
constructed with our approx-sim tool. Note that we need to
add only a few lines to an existing ns-2 script to make the
tool. Also our tool is easily customizable.

$ns useasim_
# N=no of nodes
for {set i 0} {$i<$N} {incr i} {

set node_($i) [$ns node]
}
addlink $node_(2) $node_(0) 1Mbps 10ms
addlink $node_(3) $node_(1) 1Mbps 10ms
..........
# define other topological info and traffic
$ns asim-run # start analytic engine, find steady state
# determine whether scenario is interesting
set l [$ns link $node_(0) $node_(1)]
set bneck [$ns asim-getLinkTput $l] # get approx. results
set asimbw [expr $bneck * 8 / 1000]
puts "Asim bandwidth = [format "%.2f" $asimbw] Mbps "
# check whether prefilter criterion is met
if {$asimbw < 7} {

puts " *** UNINTERESTING scenario, exiting ..‘‘
exit 0

}
puts " *** Potentially INTERESTING scenario ... "
$ns run # do detailed packet level simulation

The above script invokes the analytic engine which yields
the steady state of the network which is then available to
the user, to be used for pre-filtering scenarios. Based on the
available information, we can choose to pre-filter the current
scenario (as shown above) or add new traffic agents before
running the detailed simulation.

2.2 The essential components of Approx-sim
In this section, we will describe the basic models and al-
gorithms of the analytic engine. Consider the flowchart of
the analytic engine of approx-sim as shown in Figure 2. In
step 1, the engine (approx-sim), in its simulate procedure,
first calculates the drop probability and the queuing delays
at each router from the previous iteration or from the ini-
tial conditions (Figure 2). In step 2, it uses these router
statistics to calculate the end-to-end drop probability and
delays encountered by each flow which are then used to ob-
tain the per-flow throughput. Step 3 calculates the total
throughput for each link by adding the per-flow through-
puts of each flow that pass through it. Then the algorithm
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Figure 2: The structure of the Approx-sim simulator

checks whether new network state has converged. If the
network state converges, we terminate. Otherwise we use
a scaling algorithm in step 4 to scale the flows to meet the
network constraints, and, we use the results to run another
iteration of the procedure, simulate.

In step 1, we use simple queuing theory (M/M/1/K model,
see [19]) for drop tail routers and we propose a very simple
analytical model for RED [11] gateways that yields the drop
probability and the delay in terms of the offered load. At
the end of this step, we know the drop probabilities, pi, and
the average queuing delay, dqi

at each router i. The state
of router i is defined by 〈λi, pi, dqi

〉. The calculations in
step 2 are dependent on whether the flows are short lived
or not. For bulk flows, we calculate the throughput of each
flow using the well known equations in [24]. For short lived
flows, we calculate their aggregate throughput. We discuss
this issue of convergence in Section 2.5.

2.3 Modeling RED
RED represents a common AQM policy implemented in
routers. Without loss of generality, if the service rate of
a RED router is unity, the throughput at the router, λ, will
be the same as the utilization of the router queuing system
ρ, i.e. λ = ρ. Let the queue length at the router be
lq and the drop probability at the router be p. The RED
characteristics can be expressed by

p =







0 if lq < minth
(lq −minth)×

pmax

maxth−minth

if minth ≤ lq ≤ maxth
1 otherwise

(1)
As long as the queue length is below minth, the drop prob-
ability is zero. If queue length is between minth and maxth,
drop probability increases linearly between 0 and pmax. Af-
ter this limit is crossed, drop probability becomes unity.

Lemma 1. The steady state average value of the queue-



length with utilization ρ and drop probability p is given by

lq ≈
ρ(1− p)

1− ρ(1− p)
(2)

Proof. The quantity ρ(1−p) < 1 since it is the goodput.
The result follows from M/M/1 model.

Note that we have not used the M/M/1/K model which
would have been more accurate. But in that case, the closed
loop solution would have been much more complex. Again
we stress on simplicity of our solution.

Lemma 2. In the steady state, the average queue length
will never be larger than maxth

Proof. If the queue length increases over maxth, the
packets are dropped. Hence the queue.

Theorem 1. If the drop probability seen at a RED router
is p and the steady state queue length is between the interval
minth and maxth, the drop probability p at this router is
given by

p =
( ρ(1−p)
1−ρ(1−p)

−minth)× pmax

maxth −minth
(3)

Using the above theorem we obtain a quadratic equation in
p. Hence, given a value of λ (or ρ), we find a drop probabil-
ity p. Then, using the value of p and Lemma 1, we calculate
the queue length and the queuing delay. Next, we define, for
every RED router, two parameters ρmin and ρmax. ρmin is
the solution to the equation 2 in Lemma 1 and corresponds
to the throughput that causes the buffer length of the RED
router to be minth and the drop probability to be 0. Simi-
larly, we can define ρmax to be the throughput that causes
the buffer length of the RED router to be maxth and the
drop probability to be pmax. By Theorem 1 and the above
definitions of ρmax and ρmin, we can easily calculate the
queue length and the drop probability in the following way:
If the link throughput is less than ρmin, the drop probability
is 0 and the queue length is given by the M/M/1/K model.
Similarly, when the throughput is greater than ρmax, the
queue length is exactly maxth and the drop probability can

be calculated by p = ρ−ρmax(1−pmax)
λ

. Note that we cannot
use Equation 1 to obtain the drop probability because we
are interested in the average drop probability and not the
instantaneous one. Thus, we are trying to find the average
state. If ρmin < ρ < ρmax, the drop probability can be com-
puted using Theorem 1. We should note that we can adapt
the above analysis to obtain an iterative method in order to
calculate the state of RED routers that use more complex
variations like Gentle RED [9].

2.4 Modeling mice
In this section, we present a simple model for the aggre-
gate of short lived TCP flows. Short lived TCP flows, or

mice, have been extensively studied in [3] and [17]. These
efforts have focused on finding very detailed models to ac-
curately depict the behavior of individual short term flows.
In contrast, we concentrated on a much simpler model for
aggregates of short term flows to help us find the approxi-
mate fixed point very quickly. We have refined Ben Fredj et
al. [13] model of mice to incorporate the drop probabilities
along the path. They validated their work on simple topolo-
gies while we validated their model (and our refinement) on
more general topologies.

We approximate aggregates of short flow between the same
source-destination pair as a smooth fluid. The rationale for
this kind of idea is that aggregates being inelastic traffic will
have less correlation to the complex feedback mechanism
and will be easier to model at a higher level. It is also much
faster to determine the behavior of the aggregate. From
[13], we have the following: If the average rate of arrival
of short lived flows between any source-destination pair is
λarrival and the data transferred by the flow is σ, then the
average rate of short flow traffic between the same source-
destination pair is given by

λmice = λarrival × σ (4)

For now, we assume a simple exponential arrival pattern for
the mice. Also, each connection transfers a constant amount
of data. Then, we have the following.

Lemma 3. Let the end-to-end drop probability between any
source-destination pair be p and the arrival rate for short
flows be λmice. The throughput of the mice is given by

Bmice =
λmice

1− p
, where p=drop probability (5)

Proof. The total short lived traffic that arrives at a
router is given by Equation 4. Now, if drop probability is p,
the traffic generated by short flow request in one second is
given by

Bmice = λmice × (1 + p+ p2 + p3 + ...) (6)

Hence the lemma.

Note that long lived bulk TCP traffic is said to be elas-
tic since the closed loop congestion control algorithms can
adjust the sending window and utilize the available band-
width. In contrast, short lived TCP flows can be considered
to be inelastic. The dynamics of the network will be heavily
influenced by these mice. This is also emphasized in [13].
The intuitive idea is to assume that the long lived flows in
presence of these short flows do not contribute much to in-
creasing the load on the network. Hence we can calculate
the short flows throughput first and use the remaining band-
width for the long lived flows. Note we can also calculate
the bandwidth of the CBR flows (over UDP) and add it to
the load.

2.5 Convergence



It is not clear whether a fixed point exists between the router
characteristics and the flow characteristics in all network
scenarios but Bu et al. [2] prove the existence for a single
congested link. Since we find the approximate fixed point,
we have been able to reach convergence by using an iterative
scheme that tolerates errors.

Our algorithm requires us to start with reasonable initial
values of λi for each link Li. But, we do not want to make
any assumptions apriori on the state of the network. With-
out such a restriction we can always solve the network in
the following fashion: Run ns-2 for a few seconds in virtual
time. The throughput of each link will give us the initial λs
for approx-sim. A more elegant solution is not to use any
prior knowledge of the intermediate ns-2 results. This is our
approach.

Initially we assume that that the load on the links are due
to the presence of the mice traffic alone. Also, we argue
that the load due to the elastic flows is such that they will
share all the available bandwidth. In this first iteration of
our fixed point algorithm, the throughput of the elephants
are according to the classic TCP equation in [24] with low
drop probabilities. That may result in window limited or
large throughput. Now we run the algorithm and compute
the new throughput of each connection and sum them up to
find the new λs of each of the links. This gives us the initial
throughput.

The throughput of a bulk connection (elephant) is very sen-
sitive to small changes in probability, which makes it hard
to achieve convergence using the iterative process described
earlier. Specifically, if the drop probability is very low, then
the computed throughput of the bulk connections on a link
can be much higher than the capacity of the link. To speed
up convergence, we scale down the computed throughput of
bulk connections so that link capacities are not exceeded. A
brief description of the scaling algorithm is given below.

The scaling algorithm: Let λ1, . . . , λn represent the com-
puted throughput of the n bulk flows after each iteration of
the fixed point algorithm. Initially, we mark each bulk flow
as being unscaled. For each link l define Cl, the unscaled ca-
pacity, as the capacity of the link minus the throughput of
all the short flows (mice) on this link. Also, for each link l,
define Xl to be the combined throughput of all the unscaled
bulk flows on the link. Define the congestion γl as Xl/Cl.
Now, we repeat the following process. While there exists a
link l with γl > 1: Let l denote the link with the largest
value of γl. Scale down the throughput of all the unscaled
bulk flows using this link by a factor γl, and mark all these
flows as being scaled. Now the total throughput of this link
exactly matches the capacity of the link and hence γl = 1.
For each newly scaled flow i, and each link k 6= l such that
flow i uses link k, we reduce the unscaled capacity Ck of
link k by the new throughput of flow i and the combined
throughput Xk of link k by the old unscaled throughput of
flow i. .

When the above algorithm terminates, the throughput on
any link does not exceed its capacity times an overload fac-
tor. In practice, we found the scaling step to be critical for
fast convergence. We call this step Link capping. This step

A B

Figure 3: The line topology

ensures that a particular link is put back into a stable state
before the averaging process in the convergence algorithm
discussed in the previous subsection.

The performance of the scaling algorithm is given by the
following theorem:

Theorem 2. The worst case running time, T , of the scal-
ing algorithm on a network of size N connections, M links
is given

T (M,N) = θ(M logM +N.H) (7)

where H is the average number of links traversed by each
connection

Proof. Finding the most congested link takes θ(logM)
time with suitable data structures. When we scale each
connection i, we need to change the unscaled capacity ofMi

links. This takes time Mi logM with suitable data struc-
tures. N logM +

∑N

i=1 Mi where Mi is the number of links
the connection i traverses. Now, the procedure can take up
to M steps. Hence the theorem.

3. EVALUATION AND RESULTS
We next evaluate how well approx-sim meets its three goals:
speed, accuracy, and generality. First, we consider its perfor-
mance relative to packet-level simulation. Second, we show
that it is reasonably accurate, typically within 10–15% of
packet-level simulation for the scenarios we consider. Only
some scenarios were 20% accurate but they were under very
heavy load. A very high level of accuracy is not required
for approx-sim because we expect final simulation results to
be done with packet-level simulation; approx-sim merely se-
lects those scenarios. Finally, we evaluate the generality of
approx-sim by showing that it is applicable to increasingly
complex scenarios in terms of traffic mix, topology and net-
work elements.

In this entire section, we use a particular terminology. Long
lived flows and elephants are used interchangeably. Similarly
we refer to short lived TCP flows as mice. For throughput,
units of packets/s and kB/s are used interchangeably since
all our simulations use a packet size of 1kB. We start with
simple topologies topologies (lines and symmetric trees) and
move to more complex topologies (asymmetric trees and cir-
cular topologies) to validate approx-sim progressively.

3.1 Elephant traf£c alone
First we consider results that we obtained for the experi-
ments with elephant-only traffic. We evaluated approx-sim
on the line topology (Figure 3) as well as symmetric (Fig-
ure 4) and asymmetric trees (Figure 7). This gradual in-
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crease in the complexity of the topologies will help us to
evaluate approx-sim with just bulk flows.

The line topology shows good accuracy between ns-2 and
approx-sim so we jump directly to symmetric trees. Sym-
metric trees were initially chosen because it allows us to
study the effect of many similar flows passing through a
bottleneck link. Figure 4 shows the symmetric tree topol-
ogy. We place the TCP sinks at the bottleneck link i.e. at
the root of the tree, and four bulk TCP sources at each of
the leaves of the tree. All the links are assumed to have a
capacity of 1Mb/s.

Figure 5 shows the run-time performance of the stand-alone
version of approx-sim compared to packet-level simulation
with ns-2 for symmetric trees as a function of tree height.
Comparing the embedded version of approx-sim is difficult,
as some time is spent in populating the internal structure
of ns-2 . Note that the input file for the stand-alone ver-
sion is generated from the approx-sim embedded in ns-2 .
Approx-sim is 10-300× faster than packet-level simulation.
Although the performance of both approx-sim and ns-2 is
linear with network size (and increases exponentially as a
function of tree height), the very large difference in con-
stant factor makes approx-sim one to two orders of magni-
tude faster than packet-level simulation.

Speed is not useful if the simulation is completely inaccu-
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Figure 6: Accuracy of approx-sim throughput com-
pared to ns-2 for the symmetric tree topology with
elephant traffic only
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rate. Figure 6 compares approx-sim and ns-2 accuracy by
evaluating mean flow bandwidth for the bottleneck link. (No
error bars are shown in this case because approx-sim is deter-
ministic and the standard deviation between the ns-2 flows
is less than 5%.) This graph shows that approx-sim is quite
accurate compared to ns-2 . The simulators are typically
with 10–20%; the worst case is with a hight of 8 when the
network is very heavily loaded where they are 40% apart.
approx-sim is more accurate when we look at aggregates of
many flows. The accuracy is much higher for the links close
to the root. At the root bottleneck link, the accuracy was
7.6%. We have also conducted experiments for high link
capacities and the results have been better with less utiliza-
tion.

Next we consider asymmetric trees (as shown in Figure 7)
to avoid biases in evaluation due to symmetry. We examine
asymmetric trees of varying heights. Figure 7 shows a tree
with height two. In general, we construct an asymmetric
tree of height h by expanding the leftmost node of a tree of
height h − 1 to have two children. All traffic terminates at
the lower-left-most node of the tree; traffic begins at all the
other leaves of the tree with 16 elephants.

Early comparisons of results for asymmetric trees show large
differences between approx-sim and ns-2 . In ns-2 all long
RTT flows (eg. between nodes 2, 3, Figure 7) had very low
throughput while short RTT flows (eg. between 4, 3 in Fig-
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ure 7) had high throughput. Although it is well known that
TCP is unfair to flows with different RTT and [24] pre-
dicts a throughput ratio of 2 : 3 between the short RTT and
long RTT flows respectively (assuming no queuing delay),
we observed a ratio of more than 40 : 1.

We believe that this disparity occurs due to synchronization
in ns-2 . Because packet-level simulators are purposefully
deterministic, packets from different senders can arrive at
queues at exactly the same virtual time, and the flows can
remain synchronized because there is no variation in the sim-
ulated environment. In real-world experiments, inevitable
timing variations prevent consistent, fine-grained synchro-
nization.1 This problem with packet-level simulation has
been recognized, both at small scale where the ns-2 TCP
model includes optional ”jitter”, and at larger scales where
researchers add a small amount of additional background
traffic to the simulation to de-synchronize flows [13].

1Although at coarse scales, some protocol synchronization
has been observed [12].

Since approx-sim predicts the steady-state behavior, it is
immune to such artificial synchronization. To avoid syn-
chronization in our ns-2 simulations, we introduced a small
amount of background traffic. For the asymmetric tree, we
filled 10% of the bottleneck link bandwidth with randomly
generated web-like traffic. For our elephant-only experi-
ments approx-sim does not have this traffic, therefore we
expect it to slightly overestimate performance. An interest-
ing fact is that flows in approx-sim can never get synchro-
nized unlike in ns-2 . Hence, engines like our approx-sim
could be useful to to get an alternate opinion of a large class
of scenarios.

Figure 8 compares approx-sim to ns-2 with this background
traffic as the height of the tree varies. We see that the
results of approx-sim are accurate within 20% of the ns-2
results. This is good accuracy given that the network is very
heavily loaded and approx-sim’s approximations are least
accurate under heavy load. We expect approx-sim to be
more accurate when the network is less loaded. We therefore
also considered the same scenario with 45Mb/s-bandwidth
links (See Figure 9). This graph shows that in less loaded
networks approx-sim is even closer to ns-2 , within 2-10%.
Again, approx-sim underestimates bandwidths compared to
ns-2 because it does not consider background traffic.

3.2 Mixed mice and elephants
In this section, we evaluate approx-sim with a mix of traffic
sources i.e. with both mice and elephant traffic. This is
crucial because Internet traffic consists of both short and
long lived flows. Like the previous subsection, we evaluate
approx-sim by gradually increase the complexity in topology.

3.2.1 Line topology
We start our experiments with the simple line topology be-
cause it is easy to hand-verify our results. Consider a line
topology with two nodes A and B as in Figure 3. We vary
the link bandwidth C, the mean arrival rate (exponential ar-
rivals) and length of short flows (λ per second and σ kB/s),
and the number of long flows E.

First, we observe that both approx-sim and ns-2 get very
similar values for aggregate throughput of mice (within 10%).
Both simulators predict similar values for elephants as well
(within 8.3%). From now, we will focus more on the accu-
racy of the elephant-flows since in the scenarios we consider,
the load of the mice is small compared to the elephants. Fi-
nally, these values also match hand calculations as well.

3.2.2 Symmetric Trees
We now move on to validate approx-sim on a more complex
topology. We choose symmetric trees as they ensure aggre-
gation in the network. Further, these topologies are very
simple for hand-verification too. Consider a line topology
with two nodes A and B as in Figure 4. We vary the link
bandwidth C, the mean arrival rate (exponential arrivals)
and length of short flows (λ per second and σ kB/s), and
the number of long flows E. The results for this experiment
are shown in Figure 11.

We observe that as we increase the the link bandwidth from
1MB/s to 2MB/s, the accuracy of approx-sim drops from



Capacity # of # of Mice Elephants Mice
(MB/s) elephants λ(/s), σ (kB/s) approx-sim ns-2 , (std.dev.) approx-sim ns-2

(kB/s) (kB/s), (kB/s) (kB/s) (kB/s)
1 4 2, 10 29 27 (< 1) 20 22
1 4 2, 20 24 22 (< 1) 40 37
10 4 2, 20 200 199 (< 1) 40 40
45 16 2, 20 200 197 (1.1) 40 40

Figure 10: Comparison of results with drop-tail routers on a Line topology as shown in Figure 3

Height Capacity # of elephants # of Mice Elephants
of tree (MB/s) per leaf λ(conn/s), σkB/s approx-sim (kB/s) ns-2 (kB/s), std.dev.(kB/s)

1 1 4 2, 10 11 11.653 (1.44)
2 1 4 2, 5 6.01 6.3 (< 1)
2 1 4 2, 10 3.25 4.25, (< 1)

Figure 11: Comparison of results with drop-tail routers on a symmetric tree topology as shown in Figure 4

5% to 27%. The main reason for this drop is that traffic at
the bottleneck link increases due to aggregation and approx-
sim bounds the maximum throughput to be (1 + p)CKB,
C is the link capacity and p, the drop probability on that
link. But the end-to-end drop probability may be greater
than p. But, when we decrease the amount of mice (or the
inelastic traffic), there is a higher correlation between the
values obtained from ns-2 and approx-sim. Hence approx-
sim is more accurate with light load.

3.2.3 Asymmetric Trees
Now we compare results for asymmetric trees to avoid sym-
metry. Figure 12 shows the bandwidth of bulk TCP flows
between nodes 2 and 3 (the longest path). We observe that
approx-sim’s predictions are close to what ns-2 outputs with
an accuracy that varied from 13 to 16%. Figure 13 shows
bulk TCP flows between nodes 3 and 4, the short RTT path.
Again, we see that approx-sim results are similar to those in
Fig 12. The accuracy of approx-sim varied from 13 to 17%
for Fig. 13 and from 6-20% in Fig. 14.

Comparing Figures 12, 13, 14, we observe that for long RTTs
approx-sim estimates larger throughput than ns-2 while for
shorter RTTs its estimate is lower. For aggregate through-
put of short flows, the ns-2 results are typically 7–10%
higher than the those predicted by approx-sim. We believe
that this difference is related to synchronization in ns-2 (as
described in Section 3.1). Mice provide some level of de-
synchronization, but some difference between approx-sim
and ns-2 remains. We plan to investigate this hypothesis
further.

To consider cases with lower load, we also examined scenar-
ios with link bandwidths of 10 and 100Mb/s. We do not
report detailed results here due to space constraints, but
we observed higher accuracies at lower utilizations as in the
all-elephant case (Section 3.1).

Since approx-sim and ns-2 results are quite similar, these
experiments suggest that approx-sim’s model is appropriate:
one can model short flows as inelastic and bulk flows as
”filling out” the rest of the traffic, at least for the traffic
loads we consider.

3.2.4 Circular topologies
We next considered the ring topology shown in Figure 15.
Between each alternate node (eg. between A, C), we vary
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Figure 12: Comparisons between approx-sim and ns-

2 : bandwidth achieved by the flows having longer
RTT i.e. around 300ms
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Figure 13: Comparisons between approx-sim and ns-

2 : bandwidth achieved by the flows having short
RTT i.e. around 200ms

the link bandwidth C, the mean arrival rate (exponential
arrivals) and length of short flows (λ per second and σ kB/s),
and the number of long flows E. Since there is overlapping
traffic, we believe that this scenario provides a more difficult
case for convergence in approx-sim.

Figure 16 presents the throughput of short and long flows



Capacity # of # of Mice Elephants
(MB/s) elephants λ(conn/s), σkB/s approx-sim (kB/s) ns-2 (kB/s), std.dev.(kB/s)

45 16 20, 10 100 98.13 (< 1)
45 16 20, 20 100 97.98 (< 1)
45 16 20, 40 100 97.57 (1.07)
45 32 20, 10 86.1 81.79 (6.06)
45 32 20, 20 79.86 78 (9.34)
45 32 20, 30 73.61 73.68 (12.87)

Figure 16: Comparison of results with drop-tail routers on a circular topology as shown in Figure 15
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Figure 14: Comparisons between approx-sim and ns-

2 : Aggregate short flow throughput
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Figure 15: The ring topology

between nodes A and C. Again, we observe a good match
between approx-sim and ns-2 , with the bulk flows within
6.1%. More importantly, even with this circular topology
approx-sim converges within 5 iterations.

3.3 Experiments with RED
Finally we evaluate routers with RED queuing policies. We
have examined some scenarios of each of the topologies (line,
symmetric and asymmetric tree, and the circle) with RED,
but here we summarize only the line and circle topologies. In
each topology we consider RED routers with the parameters
(minth,maxth, pmax) = (5, 15, 0.1) with the thresholds in
1KB packets. We make no claims about these parameters
being ideal (in fact, there is some evidence that it is quite
difficult to “tune” RED [5]), they are merely the defaults in

our simulator.

If we look at Figure 17, we see that with light load, approx-
sim is again very accurate while accuracy decreases with
load. This further justifies our claim of approx-sim being
suitable for approximate pre-filtering. Although our prelim-
inary evaluation of approx-sim with RED routers is promis-
ing, a more thorough examination is needed and in progress.

4. CONCLUSION
Our method solves for the approximate operating point of
many TCP flows using analytical techniques. To achieve
this, we use a combination of existing and new models for
network elements and TCP flows coupled with an approxi-
mate fixed point iteration algorithm.

Our work led us to some nice observations about modeling
and simulation of networks. S. Ben Fredj et al. [13] claim
that for a single congested link with a drop-tail router, short
flows (mice) add to the load and that the elephants adjust
according to the available bandwidth. Our results show that
these results are true even in complicated networks and also
in the presence of RED gateways.

A very important observation is that scenarios with TCP
flows in packet level simulators (such as ns-2 ) can easily be
dragged into synchronizations. Such phenomenon is very
misleading and can give us unrealistic results. One must
take adequate care and interpret these simulation results.
Tools such as approx-sim can used to identify scenarios that
are prone to such phenomenon. If the results of approx-sim
are fairly close to the ns-2 results, we can be confident that
such synchronizations were not seen in the ns-2 simulations.
Also, one can remove such synchronization by adding some
background random traffic. Another approach would be to
add short term TCP flows between each source destination
pair.

Since approx-sim is fast and scalable, we feel that it may be
used for a wide variety of applications other than filtering of
scenarios. One possible application is to help in converging
on a correct SLA between 2 network providers.

There is a lot of work that needs to done. One direct ex-
tension would be get a more accurate model of the network
elements and flows without compromising on the simplicity.
Another way is to use some algorithmic enhancements to re-
duce the complexity of the scaling algorithm. Then we also
need to ensure that our approx-sim results are accurate for
networks with thousands of nodes. Like any software, we
need to fine tune and improve the performance of both the
stand alone as well as the embedded version of approx-sim.



Topology, # of # of Mice Elephants
Capacity (MB/s) elephants λ(conn/s), σkB/s approx-sim (kB/s) ns-2 (kB/s), std.dev.(kB/s)

Line, 1 4 2, 10 23.56 22 (< 1)
Line, 45 4 2, 10 200 199.9 (< 1)
Line, 45 16 2, 10 200 199 (< 1)
Circle, 45 16 20, 10 100 97 (< 1)
Circle, 45 32 20, 10 81 68.3 (5.48)

Figure 17: Comparison of results with RED routers
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