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ABSTRACT
Network-wide activity is when one computer (the origina-
tor) touches many others (the targets). Motives for activity
may be benign (mailing lists, CDNs, and research scanning),
malicious (spammers and scanners for security vulnerabili-
ties), or perhaps indeterminate (ad trackers). Knowledge
of malicious activity may help anticipate attacks, and un-
derstanding benign activity may set a baseline or charac-
terize growth. This paper identifies DNS backscatter as
a new source of information about network-wide activity.
Backscatter is the reverse DNS queries caused when tar-
gets or middleboxes automatically look up the domain name
of the originator. Queries are visible to the authoritative
DNS servers that handle reverse DNS. While the fraction of
backscatter they see depends on the server’s location in the
DNS hierarchy, we show that activity that touches many tar-
gets appear even in sampled observations. We use informa-
tion about the queriers to classify originator activity using
machine-learning. Our algorithm has reasonable precision
(70–80%) as shown by data from three different organiza-
tions operating DNS servers at the root or country-level.
Using this technique we examine nine months of activity
from one authority to identify trends in scanning, identify-
ing bursts corresponding to Heartbleed and broad and con-
tinuous scanning of ssh.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring

General Terms
Measurement
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1. INTRODUCTION
Network-wide activity is when one computer (the origina-

tor) touches many others (the targets). Malicious activity
is a growing problem in the Internet. Spammers exploit
compromised computers to send mail, one part of the gray-
market ecosystem [30]. Scanners walk the IP address space,
for research [25, 19], in academic [18] or commercial [35]
vulnerability scanning, as cyber criminals searching for vul-
nerabilities [17] (or joyriding [6]), or as nation-states espi-
onage [24, 28]. Knowledge of malicious activity may help
anticipate attacks [12]. Non-malicious activity is of concern
as well: ad trackers and content-delivery networks (CDNs)
also interact with many computers. Studies of benign ac-
tivity help set a baseline [55] or characterize growth (results
like Calder et al. [10], but without active probing).

Unfortunately, it is difficult to understand the scope of
these potential threats because of the Internet’s decentral-
ization. While firewalls observe activity directed at one net-
work, and a few security providers aggregate data from a
few hundreds [3], by design the Internet has no central van-
tage point to detect widespread activity. Prior work has
used Domain Name System (DNS) traffic to assess misbe-
havior seen in specific networks or resolvers [57, 26, 40, 56,
2], but this work does not generalize to network-wide ac-
tivity. Darknets [37, 34, 55, 13, 14, 17] and honeypots (for
example, [41]) are effective at understanding network-wide
activity, but they miss targeted scans (scanning only Alexa
top websites [17]), and new large darknets are unlikely given
IPv4 full allocation and the huge IPv6 space. Search engines
gather information about activity that appears in the public
web, but information is unstructured and may be delayed by
indexing [49]. (§ 6 has detailed related work.)

This paper identifies a new source of information on network-
wide activity: DNS backscatter, the reverse DNS queries
triggered by such activity (Figure 1 as explained in § 2).
Activities of interest are those that touch many Internet
devices, including malicious or potentially malicious activ-
ity such as spamming and scanning, as well as widespread
services such as CDNs, software updates, and web crawl-
ing. These activities trigger reverse DNS queries as fire-
walls, middleboxes, and servers (queriers) resolve map the
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Figure 1: The process behind a DNS backscatter sensor:
an originator sends mail to targets, causing queries that are
observed at the authority.

IP address of the originator to DNS name in the process
of logging or host-based authentication. Authoritative DNS
servers provide a point of concentration of these queries that
allows detection of large activities. Since backscatter oc-
curs mostly as automated processes, and we consider only
originators with many queriers, our approach avoids traffic
from individuals and so has minimal privacy concerns. Since
backscatter is generated by the targets of network activity,
not the originator, an adversarial originator cannot prevent
its generation.

The contribution of this paper is to identify DNS backscat-
ter as a new concentrator of information about network-wide
activity (§ 2). We show that this source is noisy and at-
tenuated by caching, but careful interpretation of aggregate
queriers allows construction of a new type of sensor (§ 3) that
detects large, automated activities that touch many targets.
We use machine learning to classify the originators of each
activity into broad groups (spammers, scanners, and several
types of commercial activity) with reasonable precision (70–
80%) and robustness (§ 4). Finally, we use backscatter and
classification to examine world-wide scanning activity from
three sources and up to nine months (§ 5). We characterize
the “natural footprint” of different activities for two days at
two sensors at the DNS root and one national-level server.
We also examine nine months of data, showing that there
is a continuous background of scanning, and identifying in-
creased scanning following announcements of vulnerabilities
such as Heartbleed [38]. Through this study, our work helps
characterize scanning and other network-wide activity; our
approach may also serve to support detection and response.

2. DNS BACKSCATTER’S POTENTIAL
DNS backscatter is the set of reverse DNS queries ob-

served by a DNS authority as the result of a network-wide
activity. In such activity, an originator interacts with many
targets. Targets usually do not directly interact with the
authority, but do so through a querier that acts on their be-
half. Figure 1 shows these players. We use DNS backscatter
observations to identify and classify the originators.

Origination of Network Activity: We look for net-
work activity that affects many targets. An originator in-

teracts with many target hosts, for purposes that are le-
gitimate (large mailing lists and web crawlers), malicious
(spam), or perhaps in between (scanning and peer-to-peer
sharing). Our goal is to infer and classify the originator
(§ 3) and to understand the size of its footprint (from [48])—
how many targets it touches. In Figure 1, the originator
is spam.bad.jp from IP address 1.2.3.4, and it sends spam
emails to (a.example.com and its neighbors; our goal is to
identify an otherwise unknown originator.

An originator is a single IP address that touches many
targets. In the application classes we study, originators in-
teract with their targets. In principle the originator could
be the victim of spoofed traffic (such as a DNS server as part
of an amplification attack); we have not identified such orig-
inators in our data. (For a few application classes, such as
software update service, ad-trackers, and CDNs, the activity
is initiated by the target and some other service co-located
with the target does a reverse-DNS query.)

At the Target: The activity prompts the target’s inter-
est in discovering the originator’s domain name from its IP
address: a reverse DNS mapping that causes a querier to
make a reverse query if the result is not already cached.
This query may be for logging (as by firewalls), to per-
form domain-name based access control, or to characterize
the originator (for example, mail servers that consider the
sender’s hostname as part of anti-spam measures). The
querier is defined as the computer that does resolution of
the reverse name. That the target and the querier may be
the same computer, or the querier may be a dedicated re-
cursive resolver shared by several targets.

A reverse DNS query will have the query name (QNAME
4.3.2.1.in-addr.arpa in Figure 1) with the reversed IP
address of the originator, and will ask for a reverse Internet
name (QTYPE PTR, QCLASS IN). In this example, this
query returns spam.bad.jp, but we do not use this response
or even depend on the existence of a reverse name for the
originator.

At the Authority: An authoritative DNS nameserver
(the authority) will reply to this query. We analyze DNS
traffic at the authority to infer information about the origi-
nator.

DNS is a hierarchical, distributed database with many
authoritative servers that cover different levels and parts of
the namespace. In addition, DNS uses aggressive caching at
nearly all levels of the system. These factors mean that there
are multiple authorities that will see different reverse-DNS
traffic with different amounts of sampling due to caching
and coverage.

The ideal place to observe reverse queries is the final au-
thority directly responsible for the originator. In typically
the originator’s company or ISP (serving 3.2.1.in-addr.

arpa in our example), the final authority will see all queriers.
However, authorities higher in the DNS hierarchy will see
some attenuated fraction of queriers and can discover un-
known originators. We consider several authorities: a national-
level, top-level server (we examine Japan), and root name-
servers (we consider B and M, two of the 14), as well as
a final authority. Our national-level view sees traffic only
for originators in address space delegated to that country
(perhaps 2.1.in-addr.arpa in our example). Roots poten-
tially see all originators, but caching of the top of the tree
(in-addr.arpa and 1.in-addr.arpa) filters many queries,
and visibility is affected by selection algorithms that favor
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spam.bad.jp
3.2.1.in-addr.arpa
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nearby DNS servers. Some recursive servers, such as those
run by large ISPs or large open DNS providers, will also
have broad visibility.

Backscatter Evaluation: We observe reverse queries at
the authority and use this backscatter to identify the origi-
nator’s application. Queries directly provide the IP address
of the originator, but we use that only to group queriers (we
ignore the originator reverse DNS record, if any). Instead
we use information about queriers to suggest the origina-
tor’s application. Each individual query has little informa-
tion, but the collective behavior of all queriers generating
backscatter indicates the nature of an originator’s activity.
For example, spammers send mail to many mail servers, gen-
erating backscatter from these servers and anti-spam mid-
dleboxes. Similarly, large-scale network scanning causes fire-
walls at targets log the originator’s domain name.

The number of reverse queriers also provides a rough idea
of the size of the originator’s activity. Unfortunately, the
DNS’s caching policies make it extremely difficult to quan-
tify originator traffic rates—we caution that querier counts
only approximate activity sizes.

An adversarial originator may seek to hide its activity.
Spreading activity over many originators will reduce detec-
tion, but other aspects of our approach depend on targets
and thus are outside the control of the originator.

Privacy: Analysis of DNS traffic raises potential pri-
vacy issues, since much DNS traffic originates from activ-
ity by individuals. Our approach minimizes these concerns
for several reasons. First, the data sources we use intrinsi-
cally mask the visibility and identity of individuals. Caching
heavily attenuates all queries seen by the authority, and a
shared cache obscures the identity of any individual. We
see network-wide activity only because of its many targets,
while activity of any given individual is extremely unlikely to
appear. Second, authorities have little or no direct contact
with individuals due to indirection from recursive resolvers.
Finally, while raw data at an authority is a mix of individ-
ual and automated traffic, the reverse queries we consider
is nearly all automated. Humans typically use DNS to map
names to addresses; almost all reverse queries are from au-
tomated sources. (As evidence, we examined ten minutes
of B-Root queries in B-post-ditl. Using not-found replies
[NXDomain] as evidence of typos, only 8 of 126,820 reverse
queries against in-addr.arpa are not-found, while about
half of the forward queries for IP addresses are not-found.)

Our analysis and its output also raise minimal concern.
Our automated analysis effectively anonymizes its input through
abstraction and aggregation, as input becomes feature vec-
tors about collective queriers. It identifies and classifies
originators in bulk, and we consider only originators in the
top fraction of network-wide activity—a set that is neces-
sarily automated to reach that scope. Finally, when exam-
ining specific originators to validate our results, we would
anonymize any that present personally-identifiable informa-
tion (PII). None so far show any PII.

Our work has been institutionally reviewed and approved
as non-human-subjects research (USC IIR00001718). We
see minimal privacy risk in this work, and substantial benefit
in better understanding the scope of network-wide activity
such as scanning.

3. METHODOLOGY: BACKSCATTER TO
ACTIVITY SENSOR

We next summarize our approach to make DNS backscat-
ter a sensor for network-wide activity: collecting DNS data
at the authority, classifying data for each originator with fea-
tures based on the queries and queriers, and then clustering
originators into activities.

3.1 Data Collection: Queries at the Authority
We begin with data collection at the authority. We ob-

serve all DNS queries at arrival and retain only reverse DNS
queries (PTR queries made against in-addr.arpa). Each
query results in an (originator, querier, authority) tuple; we
identify the originator from the QNAME, and the querier
and authority are the source and destination of the DNS
packet.

Queries may be obtained through packet capture on the
network or through logging in DNS server itself. DNS packet
capture techniques are widely used [52, 20]. DNS logging is
supported in most servers, and tools such as dnstap define
standard logging formats [51]. Centralized DNS information
is available today through services such as SIE [46]. We
describe the datasets used in this paper in § 3.6.

3.2 Interesting and Analyzable Originators
We want to focus our classification on only those origina-

tors that are interesting, carrying out activities that affect
large parts of the network, and that are analyzable, provid-
ing enough information from queriers that we can reasonably
classify them.

We identify these originators by analyzing data over time
intervals that are long enough to include a significant num-
ber of analyzable originators, and then identifying the most
interesting among them based on how many targets they
touch.

We generate a feature vector vo for each originator o over
some time interval lasting d days. The time interval un-
der consideration must be long enough that the originator
touches enough targets to allow inference of the originator’s
application class. We consider 20 or more unique queriers
per originator to be sufficient for analysis. We select the
time interval for each dataset to meet this goal (details of
the datasets are shown in § 3.6). DITL datasets [16] last
1–2 days, and for each we generate one feature vector for
each originator across the whole dataset (d is the dataset
duration, 36 or 50 hours). For the M-sampled dataset we
use d = 7 days, thus generating an array of feature vectors
voi where i ∈ [0, 35].

Originators that touch many targets have larger, more in-
teresting activities. To identify the most prolific originators
we record the number of unique (originator, querier) combi-
nations in each time interval. We rank originators by num-
ber of unique queriers in the time interval and retain only
the N originators with the most unique queriers. When we
count originators (§ 5.3) we take all originators with more
than 20 unique queriers.

3.3 Queries to Originator Features
We define static and dynamic features for each originator.

Static features are derived from the domain names of the
queriers, using differences in which targets different origi-
nators touchto infer the originator’s intentions. Dynamic
features use spatial and temporal patterns in queries.

in-addr.arpa
in-addr.arpa


Querier domain names provide these static features, often
determined by specific keywords:

home computers with automatically assigned names like
home1-2-3-4.example.com. The name includes dig-
its of the IP address and a keyword: ap, cable, cpe,
customer, dsl, dynamic, fiber, flets, home, host, ip,
net, pool, pop, retail, user.

mail mail servers like mail.example.com. Keywords: mail,
mx, smtp, post, correo, poczta, send*, lists, newsletter,
zimbra, mta, pop, imap.

ns nameservers like ns.example.com. Keywords: cns, dns,
ns, cache, resolv, name.

fw firewalls like firewall.example.com. Keywords: fire-
wall, wall, fw.

antispam anti-spam services, like spam.example.com. Key-
words: ironport, spam.

www web servers like www.example.com

ntp NTP servers like ntp.example.com

cdn CDN infrastructure, including suffix of Akamai, Edge-
cast, CDNetworks , LLNW.

aws Amazon AWS, including suffix of amazonaws.

ms Microsft Azure, checked with web page.

google IP addresses assigned to Google, as confirmed by
SPF record in DNS.

other-unclassified a name not matching the categories above.

unreach cannot reach the authority servers.

nxdomain no reverse name exists.

Domain names may match multiple static features (for
example, mail.google.com is both google and mail). We
match by component, favoring matches by the left-most
component, and taking first rule for components with multi-
ple keywords. (Thus both mail.ns.example.com and mail-ns.

example.com are mail).
The static portion of the feature vector for an originator

is the fraction of queriers that match each of the features.
For example, an originator where all queriers have “mail” in
their domain names would have the mail feature as 1 and all
others as zero. Another where a quarter have “mail” and the
rest have “firewall” would have feature vector with (mail=
0.25, firewall= 0.75). We use the fraction of queriers rather
than absolute counts so static features are independent of
query rate.

We use these dynamic features to capture temporal and
spatial aspects of the queries:

queries per querier (temporal) As a rough query rate we
compute the mean number of queries per querier.Differences
in caching and TTLs prevent generate an exact rate,
but this metric is roughly proportional to query rate.

query persistence (temporal) To show how often an orig-
inator is active we count the number of 10-minute-long
periods that include the originator.

local entropy (spatial) To see if an activity affects many
people we compute the Shannon entropy of /24 prefixes
of all queriers.

global entropy (spatial) We compute the Shannon entropy
of the /8 prefix of all querier IP addresses. Since /8
prefix are assigned geographically, wide variation here
shows global activity.

unique ASes (spatial) the number of ASes across all queriers
normalized by the total number of ASes that appear

in the time interval. (ASes are from IP addresses via
whois.)

unique countries (spatial) the number of countries across
all queriers, normalized by the total number of coun-
tries that appear in the time interval. We deter-
mine country from the IP using MaxMind GeoLiteCity
database [32].

queriers per country (spatial) unique queriers per coun-
try.

queriers per AS (spatial) unique queriers per AS.

To avoid excessive skew of querier rate estimates due to
queriers that do not follow DNS timeout rules [53, 11] we
eliminate duplicate queries from the the same querier in
a 30 s window. Some variation remains due to different
caching times (TTLs) for different portions of the names-
pace. In some cases, such as fast flux domains, low TTLs
will assist detection.

We selected the features and classes (in this section and
the next) after iteration with our several datasets. Different
features and classes will produce different results (for exam-
ple, although we omit details due to space, we see higher ac-
curacy with fewer application classes), but our results show
the general approach is sound.

3.4 Originator Features to Application Classes
Finally we classify each originator based on its feature

vector using machine learning. We use several standard
machine-learning algorithms: a decision tree (Classification
And Regression Tree; CART) [8], random forest (RF) [7],
and kernel support vector machines (SVM) [44]. For non-
deterministic algorithms (both RF and SVM use random-
ization), we run each 10 times and take the majority classi-
fication. These algorithms classify each originator into one
of the following classes:

ad-tracker Servers implementing web-bugs (objects in em-
bedded in web pages) to track user for advertising.

cdn Computers that are part of public content delivery net-
works (Akamai, CDNetworks, etc.)

cloud Front-end hosts of cloud service such as Google map,
Goggle drive, and Dropbox.

crawler Web crawlers by Google, Bing, Baidu, etc.

dns Large DNS servers

mail Mail servers that send mail to large mailing lists and
webmail service

ntp Large Network Time Protocol (NTP) servers

p2p End-user computers that participate in peer-to-peer
file sharing. (We added this late in our work; our anal-
ysis of root servers does not include it.)

push Push-based messaging services for mobile phones (An-
droid and iPhone); typically TCP port 5223.

scan Internet scanners using ICMP, TCP, or UDP.

spam Computers (end-user or mail servers) that send spam
to many destinations.

update Servers for software update distribution run by OS,
computer, and printer vendors

Data over time: For short datasets, each originator has
one feature vector and one class. For longer datasets we see
an array of feature vectors (voi ) and a time-specific class coi .
Because our observations are incomplete and classification is
imperfect, an originator may change class over time, so our
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final step is to identify the originator as the most common
class seen over all time (the statistical mode of coi ). We di-
vide the M-sampled data into 35 week-long periods; all other
datasets are analyzed as one period of 1–2 days. Longer ob-
servations for the M-sampled data partially compensate for
attenuation in the data due to its 1:10 downsample (see also
§ 3.6).

Training: Classification requires training. We label a
subset of each dataset as ground truth, manually identifying
the application class of 200–300 originators in each dataset.
Traffic seen by each authority is different for many reasons:
placement in the DNS hierarchy, size, physical location, use
of anycast, and possible use of sampling (for M-sampled).
For this reason, we currently train for each dataset sepa-
rately, although in some cases originators appear in multiple
datasets and so we can reuse labeled ground-truth. (Study-
ing of training portability and its effects on accuracy is on-
going.)

We do training by generating feature vectors as described
above, then feed this input and known output into each ML
algorithm.

3.5 Constraints in Backscatter as a Data Source
While DNS backscatter provides a new tool to identify

network-wide activity, it is an incomplete source about orig-
inators and their activity.

First, querier domain-names only provide limited informa-
tion about targets. Domain names may be overly general,
unavailable, or never assigned. Currently we see 14–19% of
queriers without reverse names, and the fraction serves as a
classification feature, but if all queriers lacked reverse names
our approach would not work. Other network services
use reverse names, such as anti-spam and network reputa-
tion services, finding as we do that they are imperfect but
still useful. Our results use only backscatter, but we show
that applications will benefit from combining it with other
sources of information (such as small darknets) to overcome
the limitations of querier names alone.

Second, the signal provided in DNS backscatter is spread
over many authorities by DNS anycast, attenuated by caching
in recursive DNS resolvers, and complicated by caching du-
rations (TTLs) that differ across the DNS hierarchy.These
challenges prevent us from getting strong estimates on the
rates of originator activity, but we show that they do not
prevent their identification or classification.

Finally, an adversarial originator may try to defeat our
analysis. As with spam, spreading traffic from an activity
across many separate originating IP addresses or longer du-
rations disperses the signal. We cannot prevent this coun-
termeasure, but it greatly increases the effort required by
an adversarial originator. Fortunately our classification de-
pends on queriers (not originators), and they cannot be ma-
nipulated by the originator.

In this paper we show that querier provides reasonable
classification accuracy and backscatter’s signal identifies hun-
dreds of originators. We are working to refine our esti-
mates of accuracy and sensitivity, and of course additional
data sources, larger labeled ground-truth, and more refined
classes may improve on our work.

3.6 Datasets
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Figure 2: Static features for case studies, derived from
querier domain names. (Dataset: JP-ditl.)

This paper uses DNS datasets from three authorities: one
national-level top-level domain, operators of two root servers
as shown in Table 1.

JP-DNS operates the .jp country code domain for Japan;
we have data from all seven of their anycast sites. We ob-
tained data from two root server operators: B is a single site
in the US west coast, and M operates 7 anycast sites in Asia,
North America, and Europe. We use root datasets from
the short-term, complete (unsampled) observations taken as
part of the 2014 DITL collection [16] (for B-Root, shortly
after 2014 DITL). We also use data for M-Root’s 2015 DITL
collection (§ 4.4). These root datasets are available to re-
searchers through DNS-OARC.

For longitudinal analysis we draw on 9 months of data
taken at the M-Root server. This dataset (M-sampled) is
sampled with only 1 out of every 10 queries in deterministic
manner; this sampling decreases our sensitivity but is part
of their policy for long-term collection. We also use an 5-
month unsampled dataset (B-long) taken from B-Root to
evaluate for controlled experiments (§ 4.4).

4. VALIDATION
Classification with machine learning requires appropriate

features and accurate training data. Here we illustrate our
features with several different type of originators, then iden-
tify external sources we use to label the ground truth for
training and validation. Finally, we validate our approach
by training on a random portion of the ground truth and
testing the remainder.

4.1 Distinguishing Different Classes of Origi-
nators

We first illustrate how the DNS backscatter allows us to
differentiate the activity of six different originators: scan-
icmp, scan-ssh, ad-tracker, cdn, mail, and spam. Figure 2
and Table 2 show their static and dynamic features.

Static features: Static features (Figure 2) distinguish
several cases. We examine two scanners: scan-icmp is the
Japanese site for a research scanner doing outage detec-
tion [42], while scan-ssh is an unknown party probing ssh
(TCP port 22) on all computers. Scanners trigger many
queries from shared nameservers (NS), as well as nxdomain,
home, and static addresses. We believe this mix results from
scanners walking all IP addresses and triggering firewall and
logging reverse queries; the large number of NS queriers sug-

.jp


queries (×109) qps (×103)
type dataset operator start (UTC) duration sampling (all) (reverse) (all) (reverse)
ccTLD JP-ditl JP-DNS 2014-04-15 11:00 50 hours no 4.0 0.3 22 1.8
root B-post-ditl B-Root 2014-04-28 19:56 36 hours no 2.9 0.04 22 0.2
root B-long B-Root 2015-01-01 5 months no 290* 5.14 22* 0.39
root M-ditl M-Root 2014-04-15 11:00 50 hours no 8.3 0.06 46 0.3
root M-ditl-2015 M-Root 2015-04-13 11:00 50 hours no 9.9 0.07 55 0.4
root M-sampled M-Root 2014-02-16 9 months 1:10 36.2 1.5 1.6 0.07

Table 1: DNS datasets used in this paper.

queries/ global local queriers/
case querier entropy entropy country

scan-icmp 3.3 0.83 0.92 0.006
scan-ssh 4.7 0.84 0.96 0.006
ad-track 2.3 0.85 0.94 0.017

cdn 4.4 0.48 0.97 0.018
mail 1.7 0.71 0.94 0.009
spam 3.4 0.85 0.95 0.005

Table 2: Dynamic features for case studies.

gest these services often use an ISP’s shared resolver, but not
always.

Ad-trackers are servers triggered by user’s web behavior.
While similar to scanners, this classes see more shared name-
servers, perhaps because it is queried by end-users’s web
browsers.

Our cdn case is an Akamai server based in Japan. It
shows a much higher fraction of home queriers than others.
We believe this shift results from heavy CDN use at homes.

Finally, mail and spam both show a much higher fraction
of the mail feature, consistent with application. Although
hard to see on the graph, spam shows more than twice the
fraction of spam-related queriers (0.1% compared to 0.03%),
indicating heavier involvement of spam-filtering and logging
systems.

Dynamic features: Table 2 lists the distribution of some
dynamic features for the six originators. As described in
§ 3.3, query counts only approximate true rates because of
caching, but we believe relative comparisons are appropriate
for classification.

We see that the queries:querier ratio helps distinguish mail
from spam. Global entropy demonstrates geographic dis-
persion of the queriers. Low global entropy for cdn reflects
CDN selection algorithms that associate our Japan-based
CDN server with Asian clients. Similarly, the global en-
tropy mail is lower because the language of this specific list
is Japanese. Queries per country also reflects geographic
coverage, with high values of ad-tracker, cdn, and mail sug-
gesting geographically constrained targets.

The examples in § 3.3 illustrate how these features help
identify our application classes, and their overlap suggests
the potential for machine learning as a framework to inter-
pret them optimally. We quantify our approach in § 4.3.

4.2 Confirming Labeled Ground-Truth
We require ground truth with originators labeled into our

twelve application classes (§ 3.4) both to train our classifier
and to evaluate its accuracy (§ 4.3).

In labeling ground truth we strive for accuracy over quan-
tity because a mix of inaccurate originators will mis-train
our classifier. We draw on multiple sources of external data
(blacklists, darknets, and manual investigation) to get rea-

sonable coverage of most application classes, with 180 to 700
samples depending on the dataset (Table 3).

We generate moderate to large lists of potential IP ad-
dresses in each application class from external sources (de-
scribed below), then intersect it with the top-10000 origina-
tors in dataset by the number of queriers. We then verify
the intersection manually. We determine the verifying appli-
cation class of each originator manually using the methods
described below. We added two categories (push and up-
date) after examining all of the top 100 and 1000 largest
originators, respectively.

Validation for each class is as follows:

ad-tracker We identify servers associated with advertising
affiliation and tracking systems (such as doubleclick.
net and kauli.net) by crawling around 20 blog pages.
We also registered with ad affiliation programs for four
services and added the servers they recommended.

cdn We identified content-distribution networks for several
large providers (Akamai, Edgecast, CDNetworks, Chi-
naCache, and, CloudFlare) based on their reverse do-
main names and WHOIS on their IP addresses.

cloud We crawled IP addresses of front-end hosts for Google
services such (map, drive, and news) and Dropbox
from Japan and the US.

crawler We confirm web crawler IP addresses from UserA-
gent strings in web server logs of NII, originator reverse
domain names, and http://botvsbrowsers.com.

dns We started with all root DNS servers, country-code
TLD servers, then we added servers for large Japanese
ISPs that had large originator footprints.

mail We confirm mail originators by examining over 100
Japanese mailing lists operated by mail ASPs and com-
panies themselves. We see about 300 IP addresses over
about three months in 2014. We also identify mail
originators for cloud-based mail including Google, Mi-
crosoft, Apple, Facebook, Linkedin, and Amazon, as
confirmed by domain names in e-mail message head-
ers.

ntp We consider well-known Stratum 1 servers and crawled
IP addresses of NTP servers in Open NTP project (at
*.pool.ntp.org).

push We list IP addresses that send packets with TCP port
5223 (Lync mobile client push), as observed in sampled
netflow traffic from the University of Tokyo.

p2p We identify IP addresses running DHT-based BitTor-
rent from htindex.com in fall 2014 (As of 2015, this
service no longer operates).

scan We confirm scanners by looking at traffic in two dark-
nets (one a /17 and the other a /18 prefix) located in
Japan. A confirmed scanner sends TCP (SYN only,
not SYN-ACK), UDP, or ICMP packets to more than

doubleclick.net
doubleclick.net
kauli.net
http://botvsbrowsers.com
*.pool.ntp.org
htindex.com


dataset ad-track cdn cloud crawler dns mail ntp p2p push scan spam update total
JP-ditl 15 8 - - 26 44 10 37 - 25 64 6 235
B-post-ditl 13 29 16 17 16 46 5 - 12 29 35 - 214
M-ditl 13 36 16 16 17 50 8 - 12 33 43 - 240
M-sampled 54 81 82 35 52 111 - - 73 124 136 - 746

Table 3: Number of examples of each application class in labeled ground-truth, per dataset.

dataset algorithm accuracy precision recall F1-score
CART 0.66 (0.05) 0.63 (0.08) 0.60 (0.06) 0.61 (0.06)

JP RF 0.78 (0.03) 0.82 (0.05) 0.76 (0.06) 0.79 (0.05)

ditl SVM 0.73 (0.04) 0.74 (0.05) 0.71 (0.06) 0.73 (0.05)

B CART 0.48 (0.05) 0.48 (0.07) 0.45 (0.05) 0.46 (0.05)

post- RF 0.62 (0.05) 0.66 (0.07) 0.60 (0.07) 0.63 (0.07)

ditl SVM 0.38 (0.11) 0.50 (0.14) 0.32 (0.13) 0.39 (0.13)

CART 0.53 (0.06) 0.52 (0.07) 0.49 (0.06) 0.51 (0.06)

M RF 0.68 (0.04) 0.74 (0.06) 0.63 (0.05) 0.68 (0.05)

ditl SVM 0.60 (0.08) 0.68 (0.10) 0.52 (0.08) 0.59 (0.09)

CART 0.61 (0.03) 0.65 (0.04) 0.58 (0.04) 0.61 (0.04)

M RF 0.79 (0.02) 0.82 (0.02) 0.77 (0.03) 0.79 (0.02)

sampled SVM 0.72 (0.02) 0.76 (0.03) 0.70 (0.03) 0.73 (0.02)

Table 4: Validating classification against labeled ground-
truth.

1024 addresses in at least one darknet, or is a known
research scanner (such as Trinocular [42] and shad-
owserver [47]).

spam We confirm spammer IP addresses with data from
DNS blacklists (DNSBL) run by 9 organization (badips,
barracuda, dnsbl.sorbs, inps.de, junkemail, openbl, spam-
haus, spamrats, spam.dnsbl.sorbs); we consider only
the spam portion of blacklists that distinguish spam
from others such as ssh-brute force.

update We identified 5 large software update services hosted
in Japan corresponding to computer and printer ven-
dors such as Sony, Ricoh, and Epson.

We identified these classes after iteration and manual ex-
amination of data, traces, and applications. They share in
common that a single originator touches many targets that
make reverse DNS queries, but activity is sometimes ini-
tiated by the originator (spam, mail, and scan) and other
times likely a side effect of activity at the target (such as
update, ad-tracker, and cdn).

4.3 Classification Accuracy and Algorithm Choice
We next carry out cross-validation, using random subsets

of labeled ground-truth to test the classification accuracy
and to compare three classification algorithms: Classifica-
tion And Regression Tree (CART), Random Forest (RF),
and Kernel Support-Vector Machines (SVM).

Classification accuracy: To evaluate a particular machine-
learning algorithm, for each dataset we pick a random 60%
of the labeled ground-truth for training, then test on the
remaining 40% of data. We repeat this process 50 times,
testing each subset with all three algorithms. For each run
we compute accuracy ((tp + tn)/all), precision (tp/(tp + fp),
recall (tp/(tp +fn), and F1-score (2tp/(2tp +fp +fn)), where
tp: true positive, tn: true negative, fp: false positive, fn:
false negative. Table 4 shows the mean of each metric over
the 50 iterations, with standard deviations in smaller type.

JP-ditl M-ditl
rank feature Gini feature Gini

1 mail(S) 8.4 mail(S) 12.5
2 home(S) 7.9 ns(S) 8.3
3 spam(S) 6.3 unreach(S) 7.0
4 nxdomain(S) 6.2 query rate(D) 6.2
5 unreach(S) 5.2 home(S) 6.0
6 global entropy(D) 5.0 nxdomain(S) 5.8

Table 5: Top discriminative features. Classifier: RF.

Overall, we find that RF outperforms SVM and CART in
most metrics.The accuracy of the best algorithm over each
dataset is 0.7 to 0.8, suggesting classification from our lim-
ited data is not easy, but fairly strong given 12 categories
(thus an expected 0.08 accuracy for guessing). We see mis-
labeling of application classes where the training data is
sparse: ntp, update, ad-tracker, and cdn for JP-ditl. In par-
ticular, the classification ratio of update events is very low.
Reducing the number of classes would improve accuracy, at
the cost of less useful results. Improving the accuracy of
classification across multiple classes with unbalanced train-
ing data is an active area of research in machine learning.
Our current results show promise and will improve as the
field progresses.

Similarly, for JP-ditl, p2p is sometimes misclassified as
scan. Manual inspection shows that misclassified p2p actu-
ally sent traffic to dynamically-assigned ports in our dark-
nets as well. We conclude that they are mis-behaving P2P-
clients [31, 9] and these random probes are triggered by
software bugs or by injection of random IP addresses by
anti-P2P services.

Choice of authority: While accuracy is good, accuracy
for B post-ditl and M-ditl are slightly poorer (60–75%) be-
cause roots are attenuated and these datasets are short. M-
sampled does better because it uses longer observations (7
days, not 2). JP accuracy is highest because it is unsampled
and lower in hierarchy. We conclude that approach can be
strong, but one must be careful to match the quality of the
signal and training data.

Feature choice: In evaluating classification, we natu-
rally would like to know what features are most discrimi-
native. Random Forest provides this information, and Ta-
ble 5 lists the top discriminative features for two datasets,
as determined by Gini coefficient [54]. Larger Gini values
indicate features with greater discriminative power. We
see that mail, home, nxdomain, and unreach are important
static features in both datasets. Query rate and global en-
tropy are important in different datasets, perhaps reflecting
M-ditl’s weaker global signal and JP-ditl’s more regional sig-
nal. These results are consistent with intuitive case studies
(§ 4.1).

Algorithm choice: Since Random Forest provides the
best accuracy and is consistent (small standard deviations),
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Figure 3: Size of footprint of random network scans at the
final authority. (Datasets: B-long and M-ditl.)

we use that algorithm to characterize originators in the next
section, after retraining with the full labeled ground-truth
data.

4.4 Controlled Experiments to Evaluate DNS
Caching

Attenuation from DNS caching makes interpreting backscat-
ter challenging. Such caching is difficult to model: first, the
DNS resolver infrastructure can be quite complex [45]. Sec-
ond, DNS caches are kept for varying durations and caching
of the resolution tree (in-addr.apra) will be caused by
many competing users.

Attenuation: To estimate the number of queriers that
respond to a large network event we conducted a controlled
experiment where we probe a fraction of the IPv4 Internet
from a host where we can monitor queries sent to the fi-
nal reverse DNS server for the prober. We set the TTL of
the reverse DNS record (PTR) to zero to disable or mini-
mize caching (some resolvers force a short minimum caching
period), thus we should observe all queriers triggered in re-
sponse to our scan. We scan several protocols (ICMP, TCP
port 22, 23, 80, and UDP port 53, 123) using ZMap [19],
varying the fraction of the address space we scan from 0.0001%
(4k addresses) to 0.1% (4M addresses) of the whole IPv4
space. The time required for the biggest scan (0.1%) was 13
hours. We run each scan up to 5 times. We also examine
8 full-internet scans (nearly 100% of unicast IP) taken with
Trinocular [42], starting at two different months (January
and April 2015) from four different sites [50].

Figure 3 shows the number of queries we see as we grow
the size of the scan. Circles represent experimental trials
measured at the final authority (slightly jittered). The di-
agonal line represents a best fit: roughly 1 querier per 1000
targets, but actually a power-law fit with power of 0.71. We
also examine M-sampled and B-long, reporting what they
see for 0.1% and 1% ZMap scans and the 100% Trinocular
scans. This large reduction in responses at root servers is
due to both DNS caching and because not all targets are
actually interested in the scanner.

False negatives: Our controlled experiments can evalu-
ate false negatives (missed network-wide events). The hor-
izontal line at 20 queriers is our detection threshold, so we
see that the final authority will detect all events scanning
0.001% of the Internet or more.
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Figure 4: CDF of r, the fraction of the most common
class over all weeks with q or more queriers per originator.
(Dataset: M-sampled.)

We expect greater caching at higher levels of the DNS
hierarchy. To measure this, we examined M-ditl-2015 data
for evidence of these trials. Only two trials overlap with
this datasets: one for 0.01% and the other for 0.1%. Of
these, we find two queriers for the 0.1% trial (the blue X)
in Figure 3. Greater attenuation at higher levels of DNS
means that it will detect only much larger (space) or longer
(in time) activity. (We are currently extending this study to
trials at larger percentages.)

This experiment shows that backscatter is highly atten-
uated due to disinterested targets and DNS caching, but
responses follow the number of targets.

4.5 Sensitivity of Results
Finally, we use M-sampled to evaluate the sensitivity of

our conclusions by looking at when or if classifications change
over time. We current vote on classifications of each origi-
nator over all weeks. To estimate degree of consensus in a
vote, we define r as the fraction of weeks when the preferred
class (the most common response) occurred of all weeks that
originator appeared. When r is near one, we see consistent
activity, but when r < 0.5 it seems likely that either the orig-
inator is changing activity over time (perhaps different ma-
chines behind a NAT, or a botnet node being repurposed),
or doing two things concurrently, or we classify variations in
behavior differently, suggesting an incomplete training set
or indistinguishable classes.

Figure 4 shows the cumulative distribution of the ratio
r, looking at subsets of data with at least q queriers per
originator. To avoid overly quantized distributions we show
only originators that appear in four or more samples (weeks).
Requiring more queriers per originator (larger q) reduces the
number of eligible originators, but the number of samples
(shown in parenthesis in the legend) are all large enough to
be robust.

We see that more queriers (thus more data for classifica-
tion) provide more consistent results, since with q = 100,
about 60% of originators are strongly consistent. Even with
a threshold of 20 querier per originator, 30% of origina-
tors are consistent. In addition, almost all originators (85–
90%, depending on q) have a class that has strict majority
(r > 0.5). Thus our approach almost always (85–90%) pro-
vides a consistent result.

in-addr.apra
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Figure 5: Distribution of originator footprint size.

For the few where the strongest class is only a plurality
(r ≤ 0.5), we wanted to see if there are two nearly equally
strong classes. We examined the entropy for originators in
this case: we find that usually there is a single dominant
class and multiple others, not two nearly equally common
classes.

These initial results suggest our approach is consistent for
observers with at least 20 queriers, although noise grows as
queriers approach that threshold.

5. RESULTS
We next study network-wide activities with our method,

identifying large network events and trends in different ap-
plications and over time. Since our approach is based on
feedback from targets, our results complement prior studies
(such as darknets) and will observe targeted events will not
appear in darknets.

5.1 Sizes of Originator Footprints
We estimate the footprint of each originator as the number

of unique queriers per originator. Figure 5 shows the fraction
of originators with each footprint size a log-log scale for each
of our three datasets.

Our data suggests there are hundreds of originators that
touch large parts of the Internet. Our controlled trials (§ 4.4)
show high attenuation at root servers, yet hundreds of orig-
inators have footprints suggesting they scan most or all of
the Internet (590 in M-ditl and 298 in B-post-ditl have foot-
prints larger than 102).

The distributions of footprints is consistent across our
datasets. (We cannot directly compare footprint sizes due
to variation in duration and sampling.) As one would ex-
pect, they are a heavy-tailed, with some originators trigger-
ing queries from 10k queriers. We focus the remainder of
our analysis of the originators with the largest footprints,
typically the top-10000 (about 0.5% of each dataset), or the
top-1000 or -100. Considering only large originators will
miss those that are intentionally trying to be stealthy, but
many scanners make no such attempt [17], and we expect
commercial large services to also be open.

The largest footprints here are larger than those we ob-
serve in controlled trials at M-Root (Figure 3). Those scans
were quite short (a few to a dozen hours), while here we
aggregate data over one or two days. In addition, our trials

used random targets, most of which are unoccupied (only
6–8% respond, as seen before [25]); many real-world scans
are targeted, resulting in higher responses rates and thus
greater backscatter.

5.2 Observability and Size of Application Classes
We next classify the top originators. Our goal is to un-

derstand what activity is taking place and approximately
how aggressive they are. Our key observations are: there
are thousands of originators causing network-wide activity,
different authorities see different applications, and we see ev-
idence of team of coordinated scanners even with no direct
information from originators.

Size of application classes: There are thousands of
unique originators that touch large parts of the Internet.
Table 6 shows how many originators we see in each originator
class for each dataset, with classes with counts within 10%
of the largest count in bold. We use our preferred classifier
(RF) with per-dataset training over the entire ground-truth.
Classes that lack ground truth for some dataset have no
matches (a “-”).

Applications vary by authority: The classes of appli-
cations seen at different authorities vary considerably. For
JP-ditl, spam is the most common class of originator. Al-
though Japan hosts computers for most major CDNs, the
size of the cdn class seen from backscatter is small because
CDNs often use address space assigned by other registrars
(we verify this statement for Akamai and Google with geolo-
cation, whois and prior work [21]). The update class is ex-
actly those in labeled ground-truth. We identified this class
in examining the data (not from an external source), and
lack of additional examples suggests either class has insuf-
ficient training data to avoid over-fitting, or update servers
are rare.

Both unsampled root servers (B-post-ditl and M-ditl) show
similar distributions of activity, with mail the most common
and spam and cdn both close. The larger number of CDNs
in at M-Root is due to 300 cdn originators located in two
Chinese ISPs and interacting with queriers in China. Classi-
fication appears correct (they do not send traffic to darknets,
nor appear in spam blacklists), but the originators lack do-
main names and we cannot identify them. Such originators
appear only in M-ditl, suggesting that their queriers may be
using DNS resolvers that prefer nearby authorities, since M-
Root is well provisioned in Asia while B-Root is only based
in North America.

Long-term, sampled root data (M-sampled) has some im-
portant differences from short term (M-ditl). Consider rela-
tive sizes of classes (since absolute counts vary due to dataset
duration), we see many more scanner and spammers in long-
term data. We believe the size of these categories reflect
churn in the population carrying out the activity. We expect
churn in spamming where computers known for spamming
are less effective. We measure churn directly for scanners in
§ 5.3.

Big footprints can be unsavory: The mix of appli-
cations varies as we examine originators with smaller foot-
prints, but we see that big footprints are often unsavory ac-
tivity. Figure 6 shows how originator classes change as we
look at more originators with smaller footprints (from Fig-
ure 6a to Figure 6c).

The largest footprints are often spammers (in JP-ditl) or
scanners (for B and M). By contrast, we see that mail ap-



data ad-track cdn cloud crawl dns mail ntp p2p push scan spam update
JP-ditl 210 49 - - 414 1412 237 2235 - 355 5083 6
B-post-ditl 72 1782 168 361 76 3137 8 - 318 1228 2849 -
M-ditl 76 2692 135 557 258 2750 67 - 119 983 2353 -
M-sampled 1329 17,708 2035 885 1202 14,752 - - 3652 47,201 34,110 -

Table 6: Number of originators in each class for all datasets. (Classifier: RF.)
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Figure 6: Fraction of originator classes of top-N originators. (Dataset: JP-ditl, B-post-ditl, M-ditl; classifier: RF.)

pears only in the top-1000 and top-10000, suggesting that le-
gitimate mail servers may service large mailing lists (to many
targets), but spammers touch many more targets. For B and
M, more spammers rise in Figure 6c, suggesting spreading
of traffic over many smaller originators to evade filtering.

By contrast, large but not top originators are often infras-
tructure: cloud, mail, ad-tracker, and crawler. In general,
we find that application classes have a “natural” size, with
some favoring origins with large footprints (prominent in
Figure 6a), while others favor smaller footprints and so are
more common in Figure 6c.

The ad-tracker class is most common in the prominent
in top-most originators (a larger red ad-tracker fraction in
Figure 6a compared to to Figure 6c). There are relatively a
few originators (we see 5 companies as 22 unique originat-
ing addresses for top-100/JP-ditl). Unlike spam, they need
not hide, and are likely prominent because tracking needs
little traffic (a few originators can support a network-wide
service), and because they use DNS records with short cache
lifetimes (small TTLs). Cloud follows this pattern as well;
1 company across 21 distinct originating IPs for top-100 in
M-ditl.

The crawler class shows the opposite behavior: most crawlers
appear only in the top-10000, with few in top-1000 (554
vs. 3). This shift is consistent with web crawlers being data
intensive, operating across many distributed IP addresses in
parallel.

We also see that the physical location of the authority in-
fluences what they see. We earlier observed how differences
in cdn for M-Root and B-Root are explained by their physi-
cal location to CDNs in China. B-Root’s U.S.-only location
may place it closer to more services in cloud (see Figure 6a)
compared to M-Root’s locations mainly in Asia and Europe.

New and old observations: A new observation in our
data is potential teams of scanners. We have manually iden-
tified several /24 address blocks where many addresses are
engaged in scanning, suggesting possible parallelized scan-
ning. Without direct scan traffic, we cannot confirm coordi-

nation, but backscatter suggests networks for closer exami-
nation. To understand with scope of potential collaborative
teams, we start with a a very simple model where a team is
multiple originators in the same /24 IP address block. In M-
sampled we see 5606 unique scan originators (by IP address),
across 2227 unique originating /24 address blocks. Of these,
167 blocks have 4 or more originators, suggesting a potential
team of collaborators. While 128 of these blocks have multi-
ple application classes, suggesting against collaboration (or
possibly mis-classification), we see 39 blocks with 4 or more
originators all with the same application class. Such blocks
warrant closer examination.

We also confirmed prior observations that clients linger
on retired services. Originators we find include four retired
root DNS servers (B, D, J, L), two prior cloud-based mail
servers, and one prior NTP server. These cases show our
methods can be used to systematically identify overly-sticky,
outdated clients across many services, automating prior re-
ports of clients that stick to retired servers in DNS [29] and
NTP [39].

Classification on originator actions: An important
benefit of our approach is that we classify on indirect ac-
tions caused by the originator, with no direct information
from the originator. In fact, about a quarter of the origina-
tors in JP-ditl and half of those in the root datasets have
no reverse domain names, but originator omissions have no
affect on our approach because we do not observe any traf-
fic or reverse names of originators. This separation makes
it more difficult for adversarial originators to conceal their
activities.

5.3 Trends in Network-Wide Activity
We next look for long-term trends in our data. We believe

this is the first longitudinal study of network-wide activities
such as scanning (prior work focused on specific events [17]).
Our goal is to understand the ebb and flow of network-wide
activity, so rather than examine the N largest originators,
we count all originators with footprints of at least 20 queriers
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Figure 7: Number of originators over time. (Dataset: M-
sampled; classifier: RF.)
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ner) over time; whiskers: 10%ile/90%ile. (Dataset: M-
sampled.)

(see also Figure 5). While we see no growth in network-wide
events, we see peaks that respond to security events and a
core of slow-and-steady scanners.

Peaks in numbers of originators: The top all line
in Figure 7 shows the absolute number of originators over
time, each class (the lower, colored lines) and total (the top,
black line). There are fairly large week-by-week changes,
showing churn in the number of active originator activities,
and peaks that can be explained by reactions to network
security events.

To understand how network activity results from real-
world events we next look the scanner application class.
Our observation period includes public announcement of the
Heartbleed vulnerability on 2014-04-07 [38], and we know
that there were multiple research [1, 18], commercial, and
presumably government scanning activities triggered by that
announcement. The green scanner line in Figure 7 shows
more than a 25% increase in scanning by mid-April, from
1400 originator IPs per week to 1800 at its peak. While
this change is noticeable, it is smaller than we might expect.
Instead, it shows that reaction to Heartbleed is small com-
pared to the large amount of scanning that happens at all
times—the 1200–1400 scanners we saw in March, and the
1000–1200 scanners that are present from June to October.
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Figure 9: Three example originators with application class
scan. (Dataset: M-sampled with darknet.)
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Figure 10: Five example blocks originating scanning activ-
ity. (Dataset: M-sampled.)

Churn: To understand long-term scanning, Figure 8 shows
the distribution of footprint sizes over time for class scan.
While the median and quartiles are both stable over these
36 weeks, but the 90th percentile varies considerably. This
variation suggests a few very large scanners that come and
go, while a core of slower scanners are always present.

We illustrate this observation with three different scan-
ners that appear in both M-sampled and our darknet data
(Figure 9). Two are long-lived (the top“tcp22” line scanning
ssh, and the middle line scanning multiple ports), while the
tcp80 scanner occurs in April and May. Furthermore, two
tcp443 scans only appear in one week in April (shown as
dark squares), suggesting they are Heartbleed-related. We
also see that tcp22 has a bigger footprint than the others,
and it looks a part of a big campaign whose 140 IP addresses
belong to the same /24 block. Using our darknets, we con-
firm 164 scanners for TCP ports 22, 80, or 443, and while
there is no “typical” scanner, these variations are common.

Our approach also identifies networks supporting scan-
ners. For each /24 block, we count the number of IP ad-
dresses in class scan over time; Figure 10 shows five of these
blocks. The top dotted line is a block with large scanning
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Figure 11: Week-by-week churn for originators of class scan.
(Dataset: M-sampled.)

peaks corresponding with Heartbleed and Shellshock, end-
ing in September. The solid line shows a block that scans
continuously, while the three dotted lines are blocks that
start scanning during our observation.

To understand if who scans changes over time, Figure 11
measures week-by-week change in scanner IP addresses. The
bar above the origin shows the number of scanners each
week, showing both new originators (top, dark) and con-
tinuing originators (middle, light) The red bar below the
origin shows scanners that were lost from the prior week.
While there are always scanners coming and going (about
20% turnover per week), this data confirms that there is a
stable core of scanners that are consistently probing, week-
after-week.

6. RELATED WORK
We next review prior work in both DNS- and non-DNS-

based sensors and analysis. Overall, our contribution is to
show that reverse DNS queries can identify network-wide
behavior. Prior work instead considers forward DNS traffic
and typically applies it to specific problems, or uses non-
DNS sensors such as darknets and search engines.

DNS-specific sensors: Several groups use forward DNS
queries to identify spam [57, 27], fast-flux [57, 26], auto-
matically generated domain names [56], and cache poison-
ing [2]. Like our work, several of these approaches use ma-
chine learning to classify activity. However, this prior work
focuses on forward DNS queries, while we consider reverse
queries. Moreover, many use algorithms optimized to de-
tect specific malicious activities, while we detect a range of
network-wide behavior.

Recent work has used DNS to infer the structure of CDN
networks [4] or internal to DNS resolvers [45]. They infer
specific services from DNS traffic, we search for network-
wide events from reverse queries.

An earlier work uses targeted scan and DNS backscat-
ter for detecting Tor exit routers peeking POP3 authenti-
cation information [33], an earlier use of DNS backscatter
de-anonymization; we generalize this use to detect scanners.

Plonka and Barford use custom clustering1 and visualiza-
tion to identify undesirable activity from local DNS traf-

1 The original camera-ready vesion of this paper incorrectly
labeled this clustering as machine-learning based.

fic [40]. They use DNS traffic from an organization’s recur-
sive resolver to infer activity about that organization. Over-
all, our approach provides larger coverage, both by using
data from authoritative DNS servers that aggregate queries
from many organizations, unlike their single organization,
and by examining trends in ten months of data, unlike their
week-long analysis.

Antispam software has long used reverse DNS lookups to
directly classify sources of mail. We use the domain names
of queriers to indirectly classify originators.

Non-DNS Passive sensors: Darknets (or network tele-
scopes) are a commonly used passive technique to character-
ize large-scale network activity [37, 34, 55, 13, 14, 17]. By
monitoring a large, unoccupied blocks of addresses, dark-
nets see active probes from viruses and scanners, queries
from misconfiguration, and backscatter from spoofed traffic;
traffic that can predict global malware, and its absence, net-
work outages. Our analysis of DNS backscatter shares the
goal of understanding network-wide activity from a simple,
passive observer, but we observe at DNS authorities rather
than large ranges of addresses. Like Durumeric et al. [17], we
seek to enumerate scanners, but our use of DNS backscat-
ter will see targeted scans that miss their darknet, and our
study considers eight months of activity, not just one.

Some security services use middleboxes with deep-packet
inspection to passively monitor large ISPs [3]. They ob-
serve all traffic from multiple points, while we monitor DNS
backscatter from a single provider only.

Staniford monitored network traffic for scanners [48], and
Gates emphasized rapid detection with scanner modeling [23].
Rather than protecting a single network, we look for network-
wide activity with a simple observer.

Honeypots (for example, [41]) are a form of application-
level darknet. By interacting with originators they see at-
tacks darknets miss, but they miss attacks that probe spe-
cific targets (such as Alexa top sites). Interactivity also
makes them fewer because of deployment expense. DNS
backscatter uses information from existing servers.

Unconstrained endpoint profiling [49] uses search engines
to gather information on addresses that leak into the pub-
lic web, possibly complementing network flow data. We
both seek to understand network-wide activity, but we use
different data sources and methods. They use largely un-
structured information from the web, while we infer fea-
tures from semi-structured domain names and also traffic
patterns. Their work depends on the speed of search engine
indexing, while our work can provide rapid feedback given
data from a DNS authority.

General DNS traffic analysis and privacy: Finally,
a wide body of work has explored DNS traffic in general
(examples include [15, 53, 11, 22]). Their work seeks to
understand DNS, while we instead study what reverse DNS
tells us about network-wide activities.

Work in DNS privacy focuses on client-to-recursive re-
solvers for end-users (examples include [36, 58], and pro-
posals in the IETF DPRIVE working group). Our use of
reverse queries from automated systems triggered by origina-
tors should see almost no human-triggered, end-user queries
(§ 2). Use of query minimization [5] at the queriers will
constrain the signal to only the local authority (that imme-
diately serving the originator’s reverse address).

7. CONCLUSION



We identified DNS backscatter as a new source of infor-
mation about benign and malicious network-wide activity,
including originators of mailings list traffic, CDN infrastruc-
ture, spammers and scanners. Their activity triggers reverse
DNS queries by or near their targets, and we show that clas-
sification of these queriers allows us to identify classes of
activity with reasonable precision. We use our approach to
identify trends in scanning across nine months of data from
one data source, and we characterize several kinds of activ-
ity for two days over three data sources. Our work provides
a new approach to evaluate classes of network-wide activity.
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APPENDIX
A. UNDERSTANDING ORIGINATORS WITH

LARGE FOOTPRINTS
We next look at several originators with large footprints

(many queriers) to characterize the kinds of activity we find.

A.1 Important originators in a country-code
authority

First we validate originators that rank highly by number
of queriers and compare them against external sources. Ta-
ble 7 lists the top 30 high rank originators in JP-ditl, sorted
by the number of unique querier IPs per originator.

We correlate these orginators found by our approach against
several external sources of information. The DarkIP col-
umn shows the number of darknet IP addresses receiving
more than one packet whose source IP address is matched
to originator IP. This column shows external evidence that
the originator is a network scanner. Column BLS (Blacklist
Spam) and BLO (Blacklist Other) show DNS-based black-
list information: many blacklists include this originator as
either malicious or other. Maliciousness here includes activ-
ities such as scanning, ssh attack, phishing, spammer and so
on. Finally, the class shows how we classify that originator
using random-forest classification.

From this table, we understand that four out of 30 origina-
tors are “clean”, not showing up on external sources. Many
of the rest are scanners (showing up on the darknet column)
or spammers (appearing in blacklists). Ranks 5-9 send TCP
port 80 probes and are all located in the same /24 subnet
in a commercial cloud provider, although most of them are
judged as clean in existing black lists. Rank 2 is the ad
network host and Rank 3 is a known sacanner labeled as
scan-ssh in the case study (a host running Trinocular, oper-
ated by USC/ISI). It is omitted there because Trinocular is
adaptive, avoiding probing non-responsive darknet space. In
addition, rank 12, located in a small university, looks benign
but we found a web page about a large scale mail account
hacking incident occurred in a mail server during the mea-
surement period. Finally, our manual investigation revealed
that originator ranked 14 is used for software update in a
Japanese computer vendor, and end-hosts query the FQDN
of the originator IP.

A.2 Important Originators from a Root Au-
thority

Table 8 shows similar top originators, but based on what
appears in the M-ditl dataset taken from the M-root DNS
server. At first, the many CDNs appear as top origina-
tors. CDNs are more common here because they use names
with short TTLs (to support DNS-based CDN selection),
and there are few CDN hosts covered by address space for
which JPRS is an authority that would appear in JP-ditl.
This difference highlights the global scope of a root authority
compared to the regional focus on JP-dtil.

We also find some originators that are maintained by se-
curity vendors. We verified these manually and thes indicate
many clients checking back these services for updates. Orig-
inators relating to spamming and mailing lists do not appear
in this M-dtil list. One possible reason for their omission is
that the spatial distribution of spammers and mailing list is
limited in country level, and less opportunity to identify as
top talkers.

Scanner related originators are more common on the list.
Most of them are scanning port 22 (ssh) over wide range of
networks. An interesting point is that some of them are not
reported in our darknet data, likely because it is relatiely
small. However, DNS backscatter confirms similar kind of
activities as scanners.

In addition, Google IP addresses appear in the list. The
first is the Google Public DNS service and the other ap-
pears to be related to cloud hosting and Google drive (it is
not related to mail). Google’s IP addresses in the list are
categorized into three patterns: (1) public DNS, (2) cloud
service, (3) mail service, and (4) web crawling. IP addresses
showing Google web crawling are not appeared on the whole
top 10000 list. This suggests that Google’s crawling is highly
distributed, so no individual crawling IP address is promi-
nent. We do find web crawlers operated by other compoanies
in the M-ditl top 10000 list, although the total number of
IPs for such crawlers is relatively small.

In summary, our analysis of JP-ditl and M-ditl demon-
strates that most top originators that appear on from DNS
backscatter correspond to understable, large-scale activities
in the Internet, and often malicious activity. Also, we em-
phasize that our classification algorithm labels reasonable
originator class to originators.

B. DYNAMIC FEATURES OF CASE STUD-
IES

This section provides some additional data showing how
dynamic features vary across different classes of originator
in our labeled, ground-truth data..

When we look at numbers of queriers over the day (Fig-
ure 12), diurnal trends are strongly visible in several of cases:
scan-icmp, ad-net, cdn, and mail. These activities are in-
fluenced by user behavior. CDN and ad-net track human
activity. Mail-list is a run by a Japanese newspaper, show-
ing strong, very regular mass-mailing early in the day and
during local business hours.

Scan-ssh and spam show little correspondence to time-of-
day. We suspect both are automated, although lulls in spam
are perhaps due to initiation of different spam activity.

Finally, scan-icmp is somewhat unusually—it is fully au-
tomated but shows a diurnal pattern, unlike scan-ssh. This
outage detection algorithm is adaptive, probing more per-
sistently when networks are less active [42]. Recent work
shows that in many countries the IP address space is less
used at night [43], explaining why this robot shows diurnal
traffic.



Table 7: Frequently appeared originators in JP-ditl. IP addresses with astrisks (*) use prefix-preserving anonymization (non-
astrisks are not anonymized). A dagger (†) in TTL field indicates negative cache value and F means failure (servfail or not
reached).

rank originator No.queriers TTL DarkIP BLS BLO class note
1 209.11.251.22* 37136 1h 0 3 3 spam home
2 199.199.253.166* 34082 †15m 0 0 0 ad ad
3 198.245.9.213* 31481 1d 0 0 0 scan scan-icmp
4 217.244.159.155* 30468 8h 0 1 0 spam home
5 217.235.158.247* 30240 1h 1002 0 0 scan tcp80
6 217.235.158.176* 29036 1h 963 0 0 scan tcp80
7 217.235.158.71* 28954 1h 956 1 0 scan tcp80
8 217.235.158.203* 28598 1h 881 0 0 scan tcp80
9 217.235.158.140* 28236 1h 543 1 0 scan tcp80

10 217.235.158.169* 27992 1h 1001 0 0 scan tcp80
11 199.106.226.197* 25086 8h 0 3 2 spam home
12 199.244.128.240* 23862 †10m 0 0 0 spam nxdom (incident)
13 217.231.31.107* 23750 1d 0 4 3 spam home
14 199.196.81.153* 23267 F 0 0 0 update sony
15 59.70.195.55* 23232 1d 0 3 3 spam home
16 217.165.32.172* 22526 1d 0 2 0 spam ns
17 216.104.82.227* 22287 1d 0 3 1 spam home
18 209.10.165.232* 20949 1d 0 2 2 spam home
19 59.239.61.50* 20672 1d 0 2 1 spam other
20 217.247.217.113* 20482 10m 0 3 2 spam other
21 208.230.234.88* 20267 1d 0 1 1 spam other
22 209.0.5.148* 20006 12h 0 3 0 spam mail
23 59.65.97.12* 19945 1d 0 3 1 spam home
24 217.240.44.7* 19886 1d 0 2 0 spam home
25 214.204.213.92* 19754 10m 0 2 1 spam home
26 217.252.134.219* 18869 8h 0 1 1 spam home
27 199.106.209.97* 18467 8h 0 2 1 spam home
28 199.204.159.229* 18145 †1d 0 4 3 spam nxdom
29 199.105.172.122* 17666 †20m 0 1 0 spam nxdom
30 217.231.17.155* 16707 500 0 1 0 spam other

Table 8: Frequently appeared originators in M-ditl. IP addresses with astrisks (*) use prefix-preserving anonymization (non-
astrisks are not anonymized). A dagger (†) in TTL field indicates negative cache value and F means failure (servfail or not
reached).

rank originator No.queriers TTL DarkIP BLS BLO class note
1 94.27.210.131* 1201 †1m 0 0 0 cdn barracuda
2 100.86.180.136* 1172 †10m 0 0 1 cdn edgecast
3 119.106.67.236* 1096 †2d 49K 0 1 scan tcp22 nxdom (CN)
4 34.186.138.129* 1046 F 0 0 3 scan unreach (CN)
5 12.174.108.117* 986 †5m 0 0 0 cdn cdnetworks
6 210.152.126.146* 918 F 0 0 0 cdn akamai
7 8.8.8.8 866 1d 0 0 1 dns google
8 210.152.126.143* 838 F 0 0 0 cdn akamai
9 210.152.126.142* 824 F 0 0 0 cdn akamai

10 175.45.161.87* 816 †1h 0 1 1 cdn gmocloud
11 90.21.41.201* 814 †43m 0 0 0 ad integral ad
12 219.171.37.153* 763 †2h 0 0 0 cdn akamai
13 219.171.37.154* 741 †2h 0 0 0 cdn akamai
14 175.45.239.19* 719 5m 0 0 0 cdn myvps
15 90.21.41.175* 696 †43m 0 0 0 ad integral ad
16 109.179.191.58* 689 F 0 1 0 scan netguard
17 201.225.208.68* 643 F 0 0 0 scan samsung-de
18 145.1.114.160* 621 †1h 0 0 0 cdn cdnetworks
19 114.108.104.142* 587 F 0 1 2 scan unreach (CN)
20 73.105.58.230* 586 †1d 0 0 0 cdn other
21 100.214.209.120* 578 1d 0 2 2 scan home (US)
22 201.138.164.158* 558 F 34 0 3 scan unreach (CR)
23 117.248.235.158* 554 1d 0 2 2 spam home (TW)
24 59.246.74.97* 516 †5m 0 0 0 cdn cdnetworks
25 114.108.104.197* 501 F 0 0 2 scan unreach (CN)
26 114.108.104.201* 490 F 0 0 2 scan unreach (CN)
27 129.187.116.145* 483 †11h 0 2 2 spam nxdom (ID)
28 114.108.104.161* 469 F 0 0 2 scan unreach (CN)
29 221.128.188.73* 466 F 0 0 0 scan skype
30 54.84.6.244* 463 5m 0 0 0 cdn amazonaws
47 86.96.136.57* 405 †3h 0 0 0 cloud google
53 215.152.209.167* 395 F 49K 0 2 scan tcp22 nxdom (PK)
74 119.106.67.235* 363 †2d 49K 0 1 scan tcp21 unreach (CN)



Table 9: Frequently appeared originators in B-data. IP addresses with astrisks (*) use prefix-preserving anonymization (non-
astrisks are not anonymized). A dagger (†) in TTL field indicates negative cache value and F means failure (servfail or not
reached).

rank originator No.queriers TTL DarkIP BLS BLO class note
1 34.186.138.129* 762 F 21K 0 3 scan tcp22 unreach (CN)
2 100.86.180.136* 718 †10m 0 0 1 cdn edgecast
3 8.8.8.8 518 1d 1 0 0 cdn google
4 117.248.232.49* 448 1d 0 2 1 spam home (TW)
5 114.108.104.141* 445 F 33K 1 2 scan tcp22 unreach (CN)
6 219.171.37.154* 421 †2h 0 0 0 cdn akamai
7 114.108.104.178* 420 F 0 0 2 cdn unreach (CN)
8 114.108.104.200* 416 F 0 1 2 scan unreach (CN)
9 114.108.104.206* 415 F 33K 0 2 scan tcp22 unreach (CN)

10 219.171.37.153* 412 †2h 0 0 0 cdn akamai
11 114.108.104.133* 411 F 0 0 2 scan unreach (CN)
12 210.152.126.146* 395 †1d 0 0 0 cdn akamai
13 210.152.126.142* 386 †1d 0 0 0 cdn akamai
14 210.152.126.143* 382 †1d 0 0 0 cdn akamai
15 114.108.104.210* 382 F 0 0 2 scan unreach (CN)
16 114.108.104.211* 378 F 0 0 2 scan unreach (CN)
17 114.108.104.214* 375 F 0 0 2 scan unreach (CN)
18 90.21.41.201* 355 †1h 0 0 0 ad integral ad (US)
19 90.21.41.175* 349 †1h 0 0 0 ad integral ad (US)
20 94.27.210.131* 347 †1m 0 0 0 dns barracuda (US)
22 124.212.77.233* 327 F 0 0 2 scan unreach (CN)
23 8.8.4.4 306 1d 1 0 0 dns google
26 114.108.104.201* 299 F 33K 0 2 scan tcp22 unreach (CN)
28 201.225.208.68* 294 F 1 0 0 cdn unreach (DE)
29 129.187.116.145* 281 †12h 0 2 1 spam nxdom (ID)
31 54.84.6.244* 261 5m 0 0 0 scan amazon (US)
32 217.111.208.71* 256 F 0 3 2 spam unreach (PK)
39 201.138.164.158* 244 F 9 0 2 scan unreach (CR)
40 109.179.191.58* 239 F 0 1 0 scan unreach (US)
45 221.128.188.73* 230 F 0 0 0 dns skype
49 86.96.136.222* 224 †3h 0 0 0 cloud google
54 175.45.161.87* 214 †1h 0 1 0 mail gmocloud (JP)
60 90.21.41.194* 209 1h 0 0 0 ad integral ad (US)
79 105.220.184.48* 197 †1d 0 0 2 scan nxdom (CN)
80 221.57.140.69* 196 F 0 3 1 spam unreach (RU)
81 211.154.166.10* 195 †12h 0 0 0 cdn nxdom (RU)
83 111.99.163.89* 194 1d 0 0 2 spam other (US)
84 97.137.216.73* 194 †1d 0 3 1 spam nxdom (US)
90 103.229.11.199* 192 F 0 0 0 spam unreach (CN)

138 75.77.142.43* 169 1d 42K 0 2 scan tcp21 static (IO)
461 67.10.10.151* 77 1h 50K 1 1 scan tcp80 static (NL)

2067 203.178.148.19 33 1d 0 0 0 scan pinger-j2
2193 137.252.218.175* 32 1d 3K 0 0 scan udp137 static (US)

66666 141.212.121.53 5 F 0.8K - - - zmap tcp443
335942 203.178.148.18 2 F 1.3K - - - pinger-j1 icmp

data method ad cdn crawl dns cloud mail push ntp scan spam update p2p
CART 401 46 - 411 - 2537 - 344 217 2077 401 2077

JP RF 210 49 - 414 - 1412 - 237 355 5083 6 2235
ditl SVM 243 45 - 320 - 1607 - 168 82 5041 0 2494

CART 117 1013 1227 460 298 2147 652 0 1067 3017 - -
B RF 72 1782 361 76 168 3137 318 8 1228 2849 - -
post-ditl SVM 87 1503 182 42 90 2816 396 3 1140 2816 - -

CART 268 945 474 586 0 2267 0 0 3037 2415 - -
M RF 76 2692 557 258 135 2750 119 67 983 2353 - -
ditl SVM 63 3717 261 70 64 2871 115 12 682 2136 - -

CART 4406 6130 0 18259 1966 15439 10607 - 39326 26742 - -
M RF 1315 15210 1159 1233 2059 13778 5125 - 48296 34700 - -
sampled SVM 2082 15063 1129 1060 1913 15449 9733 - 43781 32560 - -

Table 10: Size of each originator class
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Figure 12: Counts of queries per minute over 50 hours for Daily variation in number of queriers for our case studies. (Dataset:
JP-ditl.)
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