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Abstract

We introducea routing medanism referred to asalgorith-

mic routing It is a viable routing alternativefor network
simulationswith minimal spacecompleity — O(N). In

theoryandfor simulationssizeof the Internet,algorithmic
routing hasthe potential of reducingmemoryrequirement
by several orders of magnitude In practiceandthroughns-

2 simulationson randomtopolagies, we find memorycon-

sumptionof algorithmic routing exhibits a similar scaling
property Howerer, routescomputedy algorithmicrouting

are notall theshortest.Althoughwefind therelativediffer-

enceis below10%for more than 80% of theroutes,we are

cautiousaboutits applicability to generl networksimula-
tions. With further discussioron impactsof the distortion,

wederivea setof guidelinesandrecommendisess to apply
this techniqueonly whensuitable

1 Intr oduction

One major bottleneckin large-scalenetwork simulation
is the memoryrequirementfor routing states. As of Jan-
uary2000,we obsene atleast284,805routersin the Inter-
net[1] andsome6,474of themsituatedn thebackbond?2].
Assumingeachrouting entry consumes4 bytes of mem-
ory, network simulationsof this size will requirea mini-
mum of 360GB memoryfor the Dijkstra all-pair shortest
pathrouting, with spacecomplexity O(N?) [3]. Hierarchi-
calroutingscalesn O(NlogN) for balancedetworkswith
logN levelsof hierarchy[4]. The Internethowever runsin
atwo-level hierarchywherethe backbonaunsonerouting
protocol, e.g, BGP [5], alsoof spacecompleity O(N?),
and eachlocal domainrunsanotherrouting protocol, e.g.,
OSPH6] or RIP[7]. In this case the memoryrequirement
to maintainrouting statesfor the backbonedominateshe
total consumptiorandit is approximately200MB.

To furtherminimizememoryrequiremenfor routing,we
proposeanO(N) routingmechanismThis mechanisnwas
inspired by work of Ramanet. al. [8], in which the au-
thorsevaluatedscalabilityandbehaior of areliable multi-
castmechanisnin large-scaldinarytrees.For theirsimula-
tions, they useda simplealgorithmto computenext hopfor
ary sourceanddestinatiorpair without maintaininga rout-
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ing table,thusthe name- algorithmic routing We extend
the algorithmto k-ary trees. Thento mapanarbitrarynet-
work topologyinto a k-ary tree,we adoptthe BreathFirst
Search(BFS) algorithm [4] and re-assignnode addresses
in an orderly fashion. This orderthenallows simple next
hop computationwithout maintaininga routing table. The
O(N) costin spaceactually comesfrom maintainingthe
addressnappingbetweertheoriginaltopologyandthecor-
respondingk-ary tree;thusreducingthe memoryconsump-
tion of a Internet-scalsimulationto 120KB. Despitebeing
effectivein reducingmemoryrequirementroutescomputed
by algorithmicroutingmaynotbeall theshortestConsider
ring componentsn the networks. In algorithmic routing,
certainlinks in thesering componentwill beignoredasif
they do notexist. This artifactresultsin sub-optimakoutes.

To evaluatealgorithmic routing in practice,we imple-
ment the mechanismon ns-2[9]. With a set of transit-
stubtopologies,randomlygeneratecdby GT-ITM [10], we
comparenemoryandrun-timeconsumptiorof algorithmic
routing to othermechanismsWe also quantify the degree
of sub-optimality To ensuresimulationresultsreflecttrue
behaior of Internet,we discusdimitations of algorithmic
routing for generalnetwork simulationsand derive guide-
lines to determinescenarioghat are suitable(or not suit-
able)to simulatewith algorithmicrouting.

In short, the contribution of this work is (a) a general-
ization of Ramanet als work to arbitrary topologies,(b)
anevaluationof thememoryandtime savingsandpotential
inaccuracie®f our approachand(c) recommendationto
simulationstudiesthatalgorithmicroutingis applicable.

2 Background and relatedwork

We provide in this sectionbackgroundon Internetrout-
ing, routing abstractionin network simulationandrelated
work in scalablesimulationtechniques.

2.1 Routing in the Inter net

The physicallnternetis a collectionof routersintercon-
nectedby links. A contiguouscollectionof routersunder
oneadministratve authorityis calledan administratve do-
main (or AutonomousSystefq OSPF[6] andRIP [7] are



two popularprotocolsto route paclketswithin an adminis-
trative domain.They aresimilar in thatboth protocolscon-
vergeto shortestroutesfor all sourceanddestinatiorpairs,
but also differentin that eachOSPFrouterfloods the do-
mainwith statesof its neighborindinks (referredto aslink
stateprotocol)whereagachRIP routerdistributesto neigh-
boring routersits vectorof distancego every otherrouters
in thedomain(referredto asdistancevectorprotocol).

The domain-wideflooding andthe O(N) routing table
perrouterdo notscaleto theentirelnternet. Thus,BGP[5]
is introducedo routepacletsacrossiomains.In anutshell,
BGP routersaggreyateroutinginformationperdomainand
exchangethis perdomaininformation with the neighbor
ing domainsjn afashionsimilar to distancevectorrouting.
This information aggreyation alleviates the scaling prob-
lemswith messagdéloodingandroutingtablesize.BGPin
principle corvergesto shortestroutesunlessspecificpaths
aregivenbasedon domainpolicy (thusalsoknown aspath
vectorrouting).

2.2 Routing in network simulation

Somerouting protocolsin simulatorsimplementdetails
of routeexchange Howevermary simulatorscanalsocom-
pute routesin a centralizedfashion[11] when details of
messagexchangeare not crucial and memoryor compu-
tation resourceis scarce. Flat and hierarchicalrouting in
ns-2[9] aretwo examplesof suchabstractiortechniquefor
light-weightnetwork simulations.

Flat routingin ns-2 performsthe Dijkstra shortestroute
computation. In that, eachnode maintainsone adjacenyg
stateto eachothernodein thetopology Hierarchicalrout-
ing in ns-2is similarto theflat routingin a sensehatit also
doesDijkstra-styleiteration by walking throughall nodes
and eventually settling on the shortestroutes. Thus, this
particularform of hierarchicalrouting alsoyields shortest
routesfor all sourceanddestinatiorpairs. The differences
that, if therearethreelevels of hierarchy eachnodemain-
tainsone adjacenyg stateto eachothernode(level-1)in a
local cluster to eachothercluster(level-2)in adomain,and
to eachotherdomain(level-3) in the topology This form
of hierarchicalrouting is differentfrom that of the Inter
netwherethebackbonendlocaldomainscomputeshortest
routesindependentlyThereis sometimesninter-operating
protocol,e.g.,IBGP [12], operatingamongborderrouters
within a domain. TheselBGP routersare both backbone-
level and local routersand have both backbone-leel and
local routing information. They correspondo this cluster
level (level-2)in thehierarchicakoutingin ns-2 Below we
analyzevariousforms of routing by their spaceand time
compleity.

Theflat routing generates routing tablethateachnode
hasthe next hop andcostinformationto every othernode.
Its spacecomplexity is O(N?2). Eachnodein ns-2hierarchi-

DijkstraFlat | O(N?)
DijkstraHierarchical| O(N+/N)
InternetHierarchical| O(N+/N)
Algorithmic Routing | O(N)

Table 1. Space complexity

cal routingmaintainsroutesto nodeswithin a local cluster
to other clusterswithin the domain,andto otherdomains
within the topology This resultsin averageO(kNlogyN)
spacecompleity, wherek is therank(i.e., numberof sub-
domainsperdomain)andlog, N is the heightof the hierar
chy. GiventhatInternetin this routing sensas 3-level high
(i.e., logpr N = 3), k equals¥/N. Thusthe averagespace
complexity for hierarchicalrouting in ns-2is O(NV/N).
As for Internethierarchicalrouting, whenignoring IBGP
specificstatesthe spacecompleity is O(kN), whereeach
nodein ak-nodegroup(% of thesegroups)maintainsonly
routing statesto otherk — 1 local nodes. O(kN) equals
O(N/N) with afixed 3-level hierarchy The O(N) space
compleity of algorithmicroutingcomesfrom maintaining
mappingbetweerthe originaltopologyandthe correspond-
ing k-arytree. Thiswill beclearin Section3 whenalgorith-
mic routingis explainedin detail. Table1 summarizeshe
spacecomplexity.

Computationabomplexity for flat routing, which adopts
the Dijkstra algorithm,is O(N?). In that, eachnode(N)
searchedor a bestroute to eachothernode (V) through
existing routesknown by theseother nodes(N). Com-
putational compleity for hierarchicalrouting in ns-2 is
O(N?V/N). Inthat,eachnode(IN) searchesor abestroute
to eachof the local nodes,clusters,and domains(y/N)
throughexisting routesin eachothernode (V) known to
theselocal nodes,clustersand domains. As for Internet
hierarchicalrouting, whenignoring IBGP specificcompu-
tation, the time complexity is O(k>N), whereeachgroup
of k nodes(% of them) doesa O(k?) Dijkstra computa-
tion. O(k?N) equalsO(N v/N2) with afixed3-level hier
archy Computationatompleity for algorithmicroutingis
O(N). Thisis becausehe BFS algorithmandaddresse-
assignmenarebothO (V) processesThecomputatiorcost
of O(logN) perroutelookupis shiftedto thetraffic gener
ation phaseandis not includedin the route establishment
phaseTable2 summarizeshetime compleity.

2.3 Scalablesimulation technique

Parallelismcanimprove simulationscalein ratio to the
numberof machinesaddedbut thislineargrowth is not suf-
ficient to add several ordersof magnitudescalingneeded.
Thereis increasingntereston taking a complimentaryso-
lution. Justasa customsimulatorincludesonly detailsnec-



PerSetup PerLookup
DijkstraFlat | O(N?) 0(1)
Dijkstra Hierarchical| O(N?+v/N) | O(1)
InternetHierarchical| O(NV/N2) | O(1)
Algorithmic Routing | O(N) O(logN)

Table 2. Time complexity

essanyfor thetaskat hand,a generalsimulatorcansupport
configurablelevels of detailsfor differentsimulationstud-
ies. Thisis alsoreferredto asthe selectiveabstraction ap-

proach. Although abstractsimulationsare often more ef-

ficient, they are not identicalto more detailedones. It is

critical thatwhenproposingabstractiortechnique®nealso
exploresthe potentialimpactor distortiontheseabstraction
techniquescanintroduce,so the userscan avoid applying

techniqueghatwould leadto invalid conclusions.

Most abstractiontechniqguesfocus on enablingsimula-
tionswith a largeamountof traffic, by aggreyatingindivid-
ual pacletsinto coarsergrainedpaclettrains[13, 14, 15] or
fluid flows [16]. We areinterestedn resolvingthe scaling
problemin therouting elementof network simulations.Ri-
ley et. al. [17] proposedo computerouteon demandvhen
a new paclet is generated.Routesare cachedper source
anddestinatiorpairto preventsameroutesfrom beingcom-
putedover and over again. This mechanisnreducegime
andmemoryconsumptiorsignificantlyat routesetupphase
becauseét doesnot computeroutingtableat all. However,
whentraffic starts,it involvesan O(N) time consumption
perroutecomputatiorandpotentiallyO(N?) memorycon-
sumptionif traffic needsto be generatedacrossall source
and destinationpairs. We show in the remainingpart of
the paperthat our abstractiontechnique algorithmic rout-
ing, effectively reducesnemoryconsumptiorto O(N) in-
dependenbf traffic pattern. Algorithmic routing also re-
ducestime consumptiorto O(N) for one-timeroute setup
andO(logN) perroutelookup. We discussaswell simula-
tion scenarioghat are suitableor not suitablefor applying
this particularabstractiortechnique.

3 Algorithmic routing

Therearethreecomponentsn algorithmicrouting. The
first componentinvolves a simple algorithm to compute
next hopin abinary treeandits extensionto a moregen-
eralk-ary tree. The secondcomponentooksto mapanar
bitrary network topologyinto ak-ary treewhichin turncan
beusedfor algorithmiclookup. Thelastcomponentefines
a three-stepprocedurdor generalroutelookup. We elab-
oratedetailsof the threecomponentsn the subsectionso
come.

3.1 Routelookup in k-ary tree

Thefirst components bestexplainedwith a binarytree.
Figurel givesanexampleof abinarytree(seeleft plot) and
theformulafor addressassignmengseeright plot). For ary
sourceA, adestinationB canfall in threepossibleregions.
SeeFigure2. Node2A4 +1,2A + 2, or (A —1)/2 would be
thenext hopdependingn which region B resides.

We canfind the next hopfrom A to B by walking B to
theroot, aprocesof O(loga N). If we passhy 24 + 1, the
next hopis 24 + 1. If we passby 24 + 2, thenext hopis
2A + 2. If wereachthe rootwithout passingoy ary of the
two, thenext hopis (A — 1) /2. Walking from B to theroot
is arecursive (B — 1)/2 computatiorin abinarytree.

This algorithmcanbe extendedo k-ary treeasfollows:

next _hop (A -> B):
while (B > 0)

B parent = (B-1)/k
if (B_parent == A) return B
B = B _parent

return (A-1)/k

With averagecomputationatompleity O(logi N), this
simplealgorithmlet uscomputenext hopfor any sourceand
destinationpair without maintaininga routing table, andit
works aslong asthe topologyis a k-ary tree with regular
addressassignment.This is not the casefor mostnetwork
topology of interest. Network topology is often arbitrary
We addresshis problemby applyingatreesearchalgorithm
on ary arbitrarytopologyto obtainthe correspondindg-ary
tree.

3.2 Treemapping

To enablealgorithmic lookup, we usea tree searchal-
gorithmto definethe k-ary tree equivalentfor an arbitrary
topology We chooseBreath First Search(BFS) for the
reasonthat it producesleast height trees, i.e., routesin
a least-heightiree are likely shorter This is crucial and
will becomeclearin Section3.4 and 4.4 whendiscussing
sub-optimalroutesas resultsof algorithmicrouting. The
tree mappingstartswith the lowestaddressedodeasthe
root of BFS. BFS algorithm traversesall the immediately
connectechodes,andthenrecursvely traversesconnected
nodesatthe next level until all the nodesarevisited. While
the original topologyis corvertedinto suchatree,its rank
(maximalnumberof leavespernode)canbe recordedand
usedasthe valueof k for the k-ary tree. Subsequentlythe
nodeaddressearere-assignetb beak-ary treewith possi-
bly someemptyleaves. SeeFigure3 for anexample.As a
resultof this treemappingprocesswe obtaina one-to-one
mappingof the nodeaddressebetweenthe original topol-
ogy andmappedk-ary tree. This mappingis in the orderof
O(N) andis in factthe dominantfactorin the entiremem-
ory consumptiorfor algorithmicrouting. The BFS andad-



Figure. 1. An example binary tree (left), and node address assignment (right)
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Figure. 2. B in the left-child domain (left), B in the right-child domain (middle), and B in the parent domain (right)

@

o ® 27

m TO®
ToO ©

7

Y
TOO @

Figure. 3. An example arbitrary topology (left), after BFS mapping (middle), and after re-assigning node addresses (right)

dressre-assignmeris O(N) in computationabtomplexity.

3.3 Routelookup in generaltopology

With the k-ary tree mappingand lookup algorithm in
hand, generalnext hop lookup from node A,,;, t0 B4
is a three-steprocedure.First, find the correspondingd-
dresse®f nodeA,,;; andB,,;, tothek-arytree,say Asree
and By,.... Secondgcomputethe next hopnodefrom Ay e
t0 Byree, SaY Cyree. Third, find the correspondingddress
of Cyree from thek-ary treeto theoriginal topology, Corig.
Throughthe process,we identify the next hop C;4 for
ary sourced,,;, anddestinationB,;, pairin anarbitrary

topology
Combiningthethreecomponentsye derive thealgorith-

mic routing mechanisnwhichis O(N) in spacecomplex-
ity, andin computationatomplexity, O(NN) persimulation
setupandO(logy N) perroutelookup. Algorithmic routing
alsoyieldssub-optimakroutes.Thatis, routesarenotall the
shortest. Next, we explain the sub-optimalroute problem
andits implicationto generahetwork simulation.

3.4 Sub-optimal route

In a tree topology, thereis exactly one route for ary
sourceanddestinationpair whereasn atopologycontain-
ing cycles (or is cyclic), thereexist multiple routes. Dur-
ing the tree mappingprocesscertainlinks in the original
topology are ignored. For example,link 4-5 in Figure 3.
Theselinks arethoseusedto be partof a cyclein theorigi-



naltopology Thus,in casethetreemappinghappendgo cut
thoselinks ontheshortestoutesfor certainsourceanddes-
tinationpairs,for thesesource-destinatiopairsalgorithmic
routingwill yield sub-optimalroutes.For example,in Fig-
ure 3 the shortestroute from node4 to 5 with algorithmic
routingis via nodel, notdirectly to node5 anymore.

In otherwords,algorithmicroutingmay not capturesim-
ulationrelevanceto someof thelinks. In particular for data
transferin betweersourceanddestinatiorpairsthatlinks on
the original shortestroutesare cut, the network delay may
be longer Thus, when studyingquality of serviceissues
thatdealwith strictend-to-endlelayguaranteesimulations
usingalgorithmicrouting could resultin overconserative
design. Over-consenrative designsmay leave the network
undetutilizedbut end-to-endielayguarante@vouldbemet.
In a sensealthoughsimulationsusing algorithmicrouting
do not yield preciseresults,they are reasonables worst-
caseanalysis.

In addition,in algorithmicroutingevery nodehasexactly
onerouteto every othernode.Onecanexpecta higherde-
greeof traffic concentratiorandsometimesinintendechet-
work congestiorat theroot of the mappedk-ary tree. Thus
whenstudyingcongestiorcontrolprotocols simulationsus-
ing algorithmic routing could resultin over-estimationof
congestiorievel andusersmayendup with back-of mech-
anismsthatareover-sensitve. Again, althoughsimulations
usingalgorithmicroutingmaynotbe precisethey giverea-
sonableworst-caseesults.

For specialcaseswherethereis only one senderin the
simulatedscenario,we can start BFS tree searchat the
senderasthe root of the k-ary tree. In this caseall routes
will be exactly the sameasthosein the shortesipathcom-
putation. For simulationswith few sendersmultiple k-ary
treescanbe maintainedpnepersenderIn this casemmem-
ory consumptiorwill be slightly higherdependingon the
numberof senderghereare,i.e, O(sN), wheres is the
numberof senderdn the simulations,but simulationsus-
ing algorithmicrouting areexactly the sameasthoseusing
shortespathrouting.

3.5 Summary

We have describedhe major component®f algorithmic
routing. Insteadof a routingtable. this routingmechanism
maintainsaddressmappingbetweenthe generaltopology
and correspondingk-ary tree and resultsin O(N) space
compleity. Although algorithmic routing introducesan
O(logr N) computationalkost per route lookup, for a se-
guential simulatorsuchas ns-2 it would be a reasonable
trade-of to beableto runthe simulationsatall with limited
memorypermachine.

Algorithmic routing also introducesdistortion where
routesfor certainsourceand destinationpairs canbe sub-
optimal. While this distortion may affect simulationstud-

Figure. 4. An example GT-ITM transit-stub topology with 100 nodes

ies on end-to-enddelay estimationand congestiorcontrol,

the fact that this sub-optimalroute problem consistently
over-estimateghe level of end-to-enddelay and conges-
tion makes simulationsusing algorithmic routing reason-
ableworse-casanalysis.For specialcasesvherethereare
one or few sources,algorithmic routing gives exactly the

sameresultsasthe shortespathrouting.

4 Evaluation

We implementalgorithmicrouting on ns-2which hasal-
readya setof implementatiorfor flat (or shortesipath)and
hierarchicaflouting. Usingrandomtopologiesgeneratedy
GT-ITM, we evaluatememoryandtime usageof thethree
routingmechanismsaswell asdegreeof distortion. Details
of thesimulationsetupandanalysisareprovidedbelow.

4.1 Methodology

In this subsection,we describeimplementationof the
threeroutingmechanismén ns-2 GT-ITM randomtopolo-
gies, measuremenmetrics,simulationscenariosand soft-
ware/hardvare platform of our experiments. In ns-2, the
flat routingis implementedn the C++ spacenvhereasa ma-
jor portion of hierarchicalrouting is implementedin the
Orcl [18] space. We chooseto implementalgorithmic
routingin OTcl spacedueto developmentime constraint.

To analyzehow eachof theseroutingmechanismscales
to thesizeof network topology, we generateéandontopolo-
gieswith increasingizesfrom 100nodego 500nodes.For
eachsize,we simulateonerandomtopology We arepartic-
ularly interestedn the transit-stubtype (Figure 4) in GT-
ITM becausdt attemptgo modelthe hierarchicalstructure
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Figure. 5. Comparison: memory (left), run-time (middle), and distortion (right)

of Internet. We changeparametergproportionallyto gen-
eratetransit-stultopologiesin differentsizeswhile holding
the averageconnectvity constantapproximatelyl.77.

At the endof the simulation,we measurehetotal mem-
ory and run-time consumption. To quantify the effect of
sub-optimalroutes,we measurepathlengthfor all source
anddestinatiorpairsandcomputethe relative differenceof
algorithmicroutingto the othertwo routingmechanisms.

All simulationsendafterroutecomputatioris completed,
i.e., no traffic is generated.To highlight the memoryand
run-time costin the routing componentof simulation,we
conductall simulationsin sessiormode[11], wherenode
and link structuresare reducedto consere memory All
memoryandtime consumptionrdataare collectedby sim-
ulating the scenarioson a PC with a Pentiumll 450MHz
CPU,1 GB RAM, andrunningFreeBSD3.0.

Characteristicof the GT-ITM topologyis critical in this
study giventhat differentgraphconstructscould resultin
different performanceand distortion measurementPrevi-
ous work [19] hasurveiled that topology of the Internet
backboneexhibits power-law decay Analysis from pre-
liminary measuremenrdbsened[20] similar power-law de-
cayin routerlevel Internettopology However, it is identi-
fied [21, 22] that GT-ITM randomtopologiesdo not shav
clearpower-law decay Althoughtheevidencessuggesthat
GT-ITM randomtopology model might be inadequatejt
is not clear yet if the measurementf routerlevel Inter-
nettopologydoescover areasonabldase(difficult to vali-
dateaswell). It is underinvestigationwhetherthe router
level Internettopology inherits the power-law properties
from its backbonecomponent.Evenif it is so, simulated
topology must containa large numberof nodesand links
(1000sof them)to bring out the power-law statisticalprop-
erties. Thus,for small-to median-sizedopology GT-ITM
is deemedbtill areasonabléool [23].

4.2 Memory usage

Left plot in Figure 5 shavs the memoryusagefor one
simulation. We find resultsof memory consumptionde-

terministicafter repeatingthe simulations.As we increase
number of nodesincluded in the topologies, the mem-
ory requiremenfor flat, hierarchicalandalgorithmicrout-
ing mechanismsncreaseaswell. Although the expected
growth of flat routing shouldbe proportionalto N2, it ex-
periencesa fasterthan N2 jump every 2F nodes,andthen
flattensout betweer2® and2F+!. Thisis dueto the mem-
ory allocationpolicy in FreeBSDs Clibrary whichinteracts
with ns-2s flat routing. The numberof entriespernodein
theroutingtableis always2*, wherek is aninteger. When
the numberof nodesincreaseso 2% + 1, ns-2will allocate
another® entries.In this case2* — 1 entriesarenot used.
Thismeanghememoryrequiremenincreasesy (2%)?, i.e,
4% atthesgump points. This powerof 2 artifactcontributes
to thejumping-4*-and-then-flattening-outehavior. We ex-
pectto seeanothefjump betweemode500and600 (jump-
ing from 512 entriesto 1024entries).Memoryrequirement
for hierarchicalrouting increasesn a significantly slower
rateroughlyin the orderof N+/N (Table1). For algorith-
mic routing, it is evenlowerin theorderof N.

4.3 Timeusage

Middle plot in Figure5 shaws surprisingresultsthatflat
routing, supposedlythe leastscalablerouting mechanism,
runsfastethanhierarchicaroutingandonly slightly slower
thanalgorithmicrouting. By investigatingthis unexpected
phenomenonwe discover that simulationspeedis closely
relatedto two importantfactors— analyticalcompleity and
programmindanguageefficiency. Sometimeslanguageef-
ficiengy canbe as crucial as analyticalcompleity to de-
terminesimulationspeed. From the analyticalresults,flat
routing shouldscalethe worstin the orderof O(N?), hi-
erarchicalrouting secondin O(N?2+/N), and algorithmic
routingthe bestin O(N) (Table2). Simulationresults(see
Figureb) for hierarchicalandalgorithmicroutingagreerea-
sonablywell with the analyticalresults.However, flat rout-
ing scalessurprisingly betterthan expected,much better
than hierarchicalrouting and only slight worsethan algo-
rithmic routing. This is becausehatflat routing’s Dijkstra



CDF of Relative Difference

gk gt —b—

o

Cumulative Probability

00 02 04 06 08 10

0'0 02 0'8 10

4 0]
Relative Difference

Figure. 6. Distribution of relative difference

algorithmis implementedin C++, a much more efficient
languagehanOTcl , in which hierarchicalandalgorithmic
routing mechanismsre implemented. In this case,effi-
cieng/ of programminglanguageovertalesand dominates
simulationperformance We planto investigatefurtherthe
effect of programminglanguageefficiency by porting the
currentOTcl implementatiorto C++.

4.4 Distortion

By mappingarbitrarytopologiednto treesweignorecer
tain links thatotherwisearepartof the cyclesin the original
topology This resultsin sub-optimalroutes(Section3.4).
For eachtransit-stuttopology we run the samesimulation
using flat, hierarchicaland algorithmic routing. For each
sourceanddestinatiorpair, we computethe pathlengthdif-
ferencein hop counts.Relative differenceindicatedin per
centageis the ratio of the differenceto the pathlengthin
flat routing (or shortestpathrouting). Due to the natureof
the hierarchicalrouting in ns-2 i.e., routesare alwaysthe
shortestwe do not obsene ary differencein route length
betweenthe flat and hierarchicalrouting. Thus, we com-
pareonly routesof algorithmicroutingto flat routing

Right plot in Figure 5 depicts the average absolute
(di f f) andrelative difference(di f f %. Eachdatapointis
obtainedby averagingover absoluteor relative differences
of all sourceanddestinatiorpairs. The averagerelative dif-
ferenceincreaseslowly within therangeof 8-14%. Table3
shaws that mostrouteshave the samelength (low median)
andthatfew routeshave very large differenceqlarge max-
imum, up to 700%). Although medianseemsto increase
whentopologysizeincreaseskigure6 shavs thatindepen-
dentof topologysizeincreasea high percentagé80-90%)
of routesstaywithin 10%difference.

We hypothesizehattherelative differencen pathlength
is relatedto the sizeandthe amountof ring componentgor
cycles)in atopology To bemoreprecisejf thesizesof the
ring componentsarelarge,themaximalandaveragerelative
differenceswill belarge;if theamountof ring components
increasesthe averagerelative differencewill alsoincrease.
Consideraring topologywith 5 nodes.SeeFigure7. The
shortespathfrom nodel to 5 is to go directly throughlink
1-5 (Figure 7, left). After being mappedto a string, the

Shortest Path Routing Algorithmic Routing
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Figure. 7. An example of route distortion by algorithmic routing

shortestpath from node 1 to 5 becomesghe path through
link 1-2,2-3,3-4,and4-5(Figure7, right). Theroutelength
differencds 3 hopsandtherelative differences 300%.0ne
canimaginethatthe maximalrelative differencewould be
determinedy thelargestring componentn thetopology
Additionally, if there are more ring componentsthere
will be morerouteshaving differentlengthswhich brings
up the averagedifferenceand possiblyalsothe medianof
differences.With preliminary analysis[24], we identify a
soundpropertyon the averagerelative differenceof algo-
rithmic to shortestoutesin ring topology Thatis, for aring
of N nodestheaveragerelative differenceis exactly 5*—,

wherek is theIargestintegersmallerthan%. Fromthe
formula,we obtainatheoreticalipperboundof averagerel-
ative differencefor rings—50%. Theformulaalsoindicates
thata smallring of threenodesintroduces33% of relative
differencedy itself. For the transit-stubtopologieswe ex-
perimentedthere must be a substantialamountof routes
remainingthe sameor not muchdifferentto take the aver-
agedown to 8-14%. This explainsin Figure6 that80-90%
of routesfall within 10%relative difference.

Ouranalysiconfirmsthatalgorithmicroutingyieldssub-
optimalroutes.However, the degreeof sub-optimality(i.e.,
relative difference)for mostroutesis small, which means
a goodportion of communicatiorover the topologyis mi-
norly affected.Thedifferencecouldbenegligible for worst-
caseanalysis. The averagerelative differencepotentially
allows usersto compensat¢he measurednd-to-endielay
resultsfrom simulationsusingalgorithmicrouting. Further
analysishasto bedoneto verify thatour hypothesiof larger
or morering componentsesultsin largerroutelengthdif-
ference. Experimentsneedto be conductedo understand
moreon the effect of algorithmicroutingto actualinternet
topology andto quantify aswell the relative differenceto
Internet-like hierarchicalrouting which may involve non-
trivial (sometimesomplicateddomainpolicy. We address
theseissuesn thefuturework in Section6.

4.5 Summary

We implementalgorithmicrouting on ns-2which hasal-
readya setof implementatiorfor flat (or shortestpath)and
hierarchicalrouting. Using randomtopologiesgenerated



Numberof Nodes| Mean% | StdDev % | Median% | Max %
100 7.954 29.817 0 400
200 9.236 28.395 0 600
300 10.314 25.888 0 700
400 13.368 24.323 12.5 600
500 13.539 21.610 12.5 700

Table 3. Statistics of relative difference

by GT-ITM, we evaluatememoryandtime usageof algo-
rithmic routing to flat andhierarchicalrouting. This setof
resultsconfirmthatthe threerouting mechanismscaleap-
proximatelyin theorderof O(N2), O(N /N), andO(NV) in
termsof memoryconsumptionwhich demonstrate¢hat al-
gorithmicroutinghelpsachievzing the objective of minimiz-
ing therouting statedfor light-weight network simulations.
Our time consumptiorresultsconfirm that the hierarchical
and algorithmic routing mechanismscalein the order of
O(N?+/N) andO(IV) respectiely. The O(V?3) flat routing
surprisinglyout-performshierarchicalrouting. This is due
to the factthatflat routingin ns-2is implementedn C++
whereaghe othertwo in OTcl , andin this case efficiency
of programmindanguagéecomeghe dominantfactor

To quantify degree of distortion, we again experiment
with GT-ITM generatedopologyandcomparepathlengths
for all sourceanddestinatiorpairsin algorithmicandshort-
estpathrouting. This setof resultsshow thatthereareocca-
sionallarge relative differencefor few sourceanddestina-
tion pairs, but massmajority of the relative differencesare
small. Dependingonthe problemin study thesedifferences
mightbenggligible (e.g.,worst-casanalysis)r simply not
have ary impactat all (e.g., single-or few-sourcesanaly-
sis). Given our preliminary analysison graphswith ten-
deng of higherdegreeof distortion,we recommendisers
to avoid especiallyapplying the algorithmic routing tech-
nigueon networksthatcontainlargering-like components.

5 Conclusion

We have describeda routing mechanismwherebylarge-
scalenetworkscanbesimulatedwvith only anO(N') amount
of states.Whenapplyingto networks sizeand structureof
the Internet,algorithmicrouting hasthe potentialof reduc-
ing memoryconsumptiorby threeordersof magnitudeto
hierarchicaroutingandsix ordersof magnitudeto flat rout-
ing. However, simulationsusingalgorithmicroutingarenot
identicalto thoseusinghierarchicalor flat routing. Justas
other abstractiontechniquedistort simulationresultsone
way or anotheywe identify a boundedamountof distortion
in route length by algorithmic routing. Throughanalysis
andsimulation,we cometo theseconclusions:

« Algorithmic routingdoesscalein O(N) in bothmem-

ory andtime consumption.

« Algorithmic routing hasan extra O(logN) computa-
tional costperroutelookup.

« Averagedegreeof distortionin route lengthis small
(8-14%).

« For masamajority of theroutes(80%+),relative differ-
encegemainsmall (10%).

Although thereis an O(logN) computationalcost per
route lookup, algorithmic routing is still desirablefor se-
guentialsimulatorswherelarge-scalesimulationsmay not
run at all with a limited amountof memory With elegant
tree addressingscheme[25], this lookup can be donein
O(1) time. The lasttwo bullets imply that the degree of
distortion scaleswell to topologysizeandit is likely that
most communicationis donethroughroutesthat are only
slightly different.

For simulationscenarioghathave singleor few senders,
multiple k-ary tree mappingscan be maintained,one per
sender so that routesare always the shortest. If the sim-
ulatedtopologiesare trees,algorithmic routing yields ex-
actly the sameresults. Simulationsusingalgorithmicrout-
ing consistentlyover-estimatemetrics suchas end-to-end
delayandcongestiorievel. Therefore simulationsusingal-
gorithmic routing qualify asworst-caseanalysis. With our
simulationandanalyticalresultsonthe degreeof distortion,
one can compensatehe overall simulationresultspropor
tionally for more preciseunderstandingf the problemin
study In fact,thereexist spanningreealgorithms[26] that
computein polynomialtime andgive boundsto the degree
of distortion(i.e., averagerelative difference).In short,al-
gorithmicroutingis suitablefor any of thefollowing cases.

« simulatedscenariogontainfew senders,

« simulatediopologiesaretrees,or

« simulationobjectiveis to assessheworst-casgerfor
mance.

We would recommendavoid usingalgorithmicrouting for
caseghatsatisfyary two of thefollowing conditions.

« simulatedscenariogontainmary senders,

« simulatedtopologiescontainlarge or mary ring-like
components.

« resultshaveto beprecise



6 Futurework

We proposeo improvealgorithmicroutingin threeways.
Thefirst proposalis inspiredby the factthat single-sender
simulationscanstarttree mappingfrom the sendemodeto
avoid distortionat all. Onecanmaintainonetreemapping
persendeffor few-sendesimulationsor pernodeonalarge
ring componentor alternatvely nodeson oppositesidesof
alargering). This resultsin O(sN) memoryconsumption
butis areasonablalternatveto tradeoff memoryfor higher
degreeof accurag, givens remainssmall. Thesecondoro-
posalaimsto reducehe maximalrelative difference Given
thatevery nodehasinformationof directly connectedinks
arnyway, we proposeo performa 2-passoutelookupwhere
we checkfirstif thedestinationis directly connectedo cur-
rentnode. In casenot, we thenlook up usingalgorithmic
routing. Thirdly, we expecta lower degree of distortion
with a slightly modified tree searchalgorithm. BFS algo-
rithm resultsin least-heightreewhichis alreadya desirable
propertyto avoid sub-optimalroutes,i.e., routestendto be
shorterin general.Currentimplementatiorof BFSis in its
mostnaive form. For nodesatthe samdevelin tree,includ-
ing the root at the highestlevel, we searchbasedon node
address. We proposeto give higher precedencéo nodes
with higherdegreeof connectvity and searchnodesat the
samelevel basedon the precedeng. This will bring nodes
connectingo high-connectiity nodeshigherin thetreeand
reduceaverageroutedifference.

We planto incorporatethesechangesn the nearfuture
when we port the currentOTcl implementationto C++.
For the long-termfuture, formal analysisneedto be done
to verify the hypothesif largeror morering components
resultsin largerroutedifference.The hierarchicalstructure
of Internetandits, sometimespolicy-basedoutingarecur-
rently subjectsunderinvestigation27] Oncethesebecome
clear experimentscanbe conductedo understandhe ef-
fect of algorithmicrouting to actuallnternettopology and
routes.
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