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Abstract

Ficus is a distributed file system designed to scale up
to very large networks of UNIX systems, ranging from
portable units and workstations to large file servers.
It provides very high availability for read and up-
date, utilizing an optimistic one copy avatlability pol-
icy with conflict detection and automatic reconcilia-
tion of the name space. Ficus is packaged as a pair
of layers which can be configured on top of the UNix
file system, coexisting with other extended file system
features using an stackable file system switch.

This paper presents the architecture of Ficus and
the rationale behind the design decisions. Measure-
ments of the current implementation are reported
which indicate that performance is reasonable both
within local clusters of cooperating machines and be-
tween geographically distributed clusters.

*This work is sponscred by DARPA under contract number
F29601-87-C-0072.
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1 Introduction

Network file systems for UNIX have been quite suc-
cessful at providing a nearly single machine view of
the collection of files on a small number of machines
connected by a local area network. The extension to
wide area networks with very large numbers of ma-
chines substantially changes the nature of the prob-
lem. Whereas in a small network, node or commu-
nications link failure is a relatively rare event, in a
system the size of the Internet, the system is al-
ways in a state of partial failure (or partial opera-
tion). Large scale networks typically span many ad-
ministrative and organizational boundaries, render-
ing central coordination virtually impossible. The
scale also prohibits use of algorithms which reqtlire
consistent global state information. Nevertheless, a
distributed filing environment providing a very high
degree of network transparency would greatly facili-
tate geographically distributed cooperative work.

Selective file replication is a key component of any
highly reliable, large scale distributed filing solution.
Replication is important for performance in that a
copy of data may be located “near” to where it is
needed. Replication is critical to reliability in an en-
vironment where node failures and communications
interruptions are common. We wish an approach
to replication that is suitable both to small work



groups, but at the same time scales to very large envi-
ronments. Users should retain considerable selective
control over the replication parameters {what, where,
how many, and so on) and availability of data should
strictly increase with the number of copies. Overhead
should be low, not only for actual execution time,
but also in terms of introducing and administering
the service, and explicating any new user interfaces.
Finally, decentralized operation is essential in order
to scale. It is this environment to which the Ficus
distributed file system is targeted.

This paper describes the architecture and design
rationale of Ficus. The architecture is unique in at
least three important ways. First, Ficus supports
very high availability for write, allowing uncoordi-
nate d updates when at least one replica is accessible.
No lost updates semantics are guaranteed; conflicts
are reliably detected and directory updates are au-
tomatically reconciled. Asynchronous update prop-
agation is provided to accessible copies on a “best
effort” basis, but is not relied upon for correct op-
eration. Rather, periodic reconciliation insures that,
over time, all replicas converge to a common state.
We argue that serializability is not provided in sin-
gle machine file systems and is not required in dis-
tributed file systems. This kind of policy seems nec-
essary and appropriate for the scale and failure modes
in a nation-wide file system. This paper describes the
architecture of a facility providing optimistic replica
management; details of the reconciliation algorithms
may be found in 3, 10].

Second, the replication service is packaged so that
it may be inserted above the base UnIX file system
on any machine running a stackable file system inter-
face. ‘The modular architecture permits replication
to co-exist with other independently implemented ex-
tended filing features. Modules packaged in this way
may be distributed independently of the kernel and
other portions of the file system. Further, Ficus im-
plements replication in such a way that it is largely
independent of the underlying file system implemen-
tation, permitting a high degree of configuration flex-
ibility and portability. We report in this paper our
experiences gained from building replication in this
manner. One hopes that the insights gained will be
useful as other pluggable layers are built, to provide
additional extended filing environment features. The
reader interested in further details about the exten-

sible interface used in Ficus is referred to (5, 4].

Third, the optimistic consistency policy and recon-
ciliation mechanism used for incorporating uncoordi-
nated updates to replicated directories is exploited to
manage the super-tree of replicated volumes (anal-
ogous to the AFS volume location database (17]).
Thus no new replication and consistency policy or
mechanism is needed for this fairly general name ser-
vice. Not only does this design reduce implementa-
tion and simplify the architecture, it provides the ap-
propriate semantics and availability for naming data,

1.1 Relation to Other Work

Ficus is related to, or draws from, a number of ex-
isting systems. It is the intellectual descendant of
the earlier versions of Locus [21], in that both have
the goal of providing a network transparent file sys-
tem supporting partitioned update with automatic
recovery. Ficus uses the version vector scheme (10]
that originated in university Locus. Ficus, however,
avoids the design choices which fundamentally pre-
vent the Locus approach from scaling beyond a rel-
atively small number of sites. Further, Ficus is a
modular extension to the UNIX file system, not a full
distributed operating system.

Ficus derives its notion of a volume as a granularity
of sub-tree management from the Andrew File Sys-
tem [17]. It shares many of the same goals as AFS
for scale, and Coda [18] for reliability and availability
via optimistic replica management. Coda makes sim-
ilar use of version vectors for update-update conflict
detection. Ficus differs from AFS and Coda in its ba-
sic model of a distributed file system; where AFS and
Coda employ a backbone of servers with workstations
which check out whole files, Ficus permits full status
replicas on any machine in the system. While Ficus
addresses file system modularity through stackable
layers, Coda emphasizes security.

The ISIS environment’s Deceit file system [19], like
Ficus, utilizes NFS. Deceit does not support further
extensibility, and while it has a mode which permits
partitioned update, it does not support automatic di-
rectory reconciliation.



The stackable layers architecture in Ficus is related
to several other pieces of work. It is in many ways the
file system analog of Ritchie’s System V streams {14],
and of the z-Kernel’s notion of protocol stacks (7, 11].
It is compatible with and motivated by the open sys-
tem and micro-kernel philosophy growing out of the
Mach work [1]. Rosenthal at Sun Microsystems is in-
dependently exploring similar approaches to layered
filing [15]. The Ficus work integrates and substan-
tially extends the referenced concepts. Designing and
building an operational system has led to consider-
able refinement as well.

1.2 Organization of the Paper

The next section presents design rationale underlying
the Ficus architecture. Section three then details that
architecture. In section four we report on the status
of the Ficus implementation and measurements of its
performance. Conclusions follow in the final section.

2 Design Philosophies

Qur design philosophies are driven by several aspects
of the definition of the problem and the target envi-
ronment which we take as given. Foremost, we intend
Ficus to be a real, usable facility and not merely a
demonstration of potential. This means that we must
base all of our assumptions and constraints on what
really is, and not on what is convenient. Further it
means that performance must be a primary concern;
a solution which does not perform well cannot be con-
sidered a solution. This section details the charae-
teristics of what we believe is the real environment
in which this system will be used, and presents the
philosophies which we derive from these characteris-
tics. We also endeavor to point out important open
problems.

2.1 Large Scale Distributed File Sys-
tems

Why does one want a scalable distributed file system?
The primary answer to this question is that with-
out It, access to remote files is inconvenient. The
user shoulders the entire burden of locating remote
data and issuing a correct name, dealing with the
more complicated and cumbersome syntax and se-
mantics of remote file access tools (such as ftp), find-
ing files that have moved, manually coordinating mul-
tiple copies of files for which high availability is re-
quired, to name but a few of the inconveniences. This
leads us to conclude that scalable file systems must be
considerably easier to use than the remote file access
tools they supplant.

To be easy to use, a large scale distributed file sys-
tem should present a familiar interface. The syntax
of access to remote files should be the same as that
for access to local files. The semantics of file op-
erations should closely match that with which users
are familiar from single machine and local area dis-
tributed file systems. The failure modes should not
be radically different from those with which users
and, more importantly, existing programs are accus-
tomed to encountering. Further, no significant per-
formance penalty should be incurred in using the file
system.

These requirements are all dimensions of frans-
parency. To the degree that physical boundaries are
hidden, users have a vastly simplified model of the
resource. Name, location, failure, performance, and
replica transparency are all major goals of Ficus .

2.2 The Impact of Scale

The scale of a system has tremendous impact on the
nature of the solutions that may be considered, on
the expected usage and sharing patterns which must
be optimized for, and on the failure characteristics.
Ficus is designed to scale to a very large number of
sites, from a few to thousands or millions. While it
places no limit on the numbet of nodes in the net-
work which may access replicated files, nor on the
number of replicated volumes in the universe, it as-



sumes that there is seldom call for more than a small
number (up to a few dozen) of fully updatable repli-
cas of any given volume. Fortunately, as the number
of required replicas of a file increases, the need for and
desired frequency of file update generally decreases.!
Thus, with little loss of availability for update, we
may employ a large number of read-only replicas with
a smaller backbone of updatable copies in cases where
very large replication factors are called for. Thus
while Ficus places no hard limits on the number of
first-class replicas, we consider the limited case to be
the most important design point.

The notion of second class readwrite replicas which
are used primarily in support of disconnected opera-
tion of laptops may also be considered. The overhead
of creating and supporting a first class replica for ev-
ery laptop computer that wants to replicate a subset
of a volume temporarily (say for a weekend or a trip)
may be prohibitive. Work is now underway to con-
struct a layer which provides second class replicas in
Ficus. A second class replica would not have a corre-
sponding version vector component and hence could
not participate in reconciliation. However, when a
second class replica is checked in, the new layer would
automatically propagate any updates that occurred
in the checked out replica so long as no conflicting
update had occurred to the first-class replicas, sig-
naling a conflict otherwise. This new layer appears
to address the disconnected operation of laptops ad-
equately.

Network partitions are a frequent occurrence in
a large internetworked environment. It is typically
not possible for a site to determine what sites are in
its partition for several reasons: the number of sites
may be very large, it may be changing faster than
any algorithm which determines partition member-
ship can complete, and partitions are not necessartly
clean (the “can talk to” relation is not transitive). It
cannot even be assumed that any two sites will ever
be able to talk directly to each other.

As a consequence of these characteristics of the
network topology, no algorithms which require global
agreement may be employed. For example, the mech-

I This is a sociological phenomenon unrelated to the repli-
cation mechanism in place. A file which is viewed as jndis-
pensable by many clients is also likely to have an assocjated
assumnption of stability, which discourages frequent updates.

anism used by Locus [12] to obtain location trans-
parency by maintaining a globally replicated and con-
sistent mount table is infeasible beyond very modest
scale networks. The algorithm which recalculates the
mount table each time the topology changes could
never complete before the topology changed again.
A scheme such as that used in NFS, which requires
coordination among the system administrators to en-
sure that each machine mounts each filesystem in the
same place, also cannot scale across the many ad-
ministrative domains. Similarly many of the replica
consistency solutions from read-one, write-all to the
various flavors of voting cannot be employed in gen-
eral, as updates would all too frequently be blocked?.

The distributed file system must be easy to install
and administer, particularly since it will span many
administrative domains. It must be easy to add new
sites, replicas, whole subnets, etc. Local autonomy
over access to resources must be maintained. Such
seemingly mundane issues as how backup dumps are
to be done in a widely distributed, selectively repli-
cated system require careful consideration.

2.3 Availability

Availability along with performance are the primary
motivations for building replication for the large scale
filing environment. While increasing the degree of
replication raises the probability that a copy of a file
will be accessible when it is needed, many consistency
schemes trade off availability for update in order to
achieve high availability and consistency for read ac-
cess.

We take it as a given that in many cases if a copy of
a file is accessible, it should be available for update.
Consider the alternative: a user with work to do is
informed that an otherwise accessible file may not be
updated because a consistency policy might be vio-
lated. What does she do? She makes a copy of the
file and updates it, taking upon herself the burden of
merging and propagating those updates. Given this

2That is only to say that the file system at its base level
should not enforce one of these consistency control algorithms.
Ficus supports implementation of more restrictive policies
{with stronger semantic guarantees) for individual files or file
systems at a higher layer.



alternative, it is far preferable to permit the update,
with the burden on the system to propagate changes
as feasible, to reconstruct the directories and main-
tain the namespace, and to detect any conflicts that
may result.

2.4 Optimism, Laziness, Hints, and
Caches

The above assumptions about the necessity of high
availability dictate an optimistic replica consistency
policy. The argument is that shared access is actually
relatively rare in practice. Concurrent shared access
is even more rare, while conflicting concurrent shared
access 15 rarer still. Yet when concurrent shared ac-
cess is required, it is important. Hence, it makes more
sense to detect and recover from conflicts than to add
overhead to the normal case to prevent rarely occur-
ring problems. Further, the overhead is often more
than just synchronization costs; since some portion
of the network is always inaccessible, assured mutual
exclusion will sometimes be unattainable. Optimism
appears not only justified, but required as scale in-
creases.

Once we accept optimism as a philosophy and then
engineer the system to tolerate situations in which
multiple versions of data are simultaneously accessi-
ble, even more options become possible. For exam-
ple, updates to any replicated data structure may be
propagated lazily since access to an object which has
not yet received an update is equivalent to the update
having been made at an inaccessible node. Update
propagation may be done on a “best effort” basis as
the reconciliation algorithms can restore consistency
later. Batched propagation of bursty updates is then
a natural consequence that matches well with typical
update behavior. Further, it avoids propagation alto-
gether for files which are created and deleted a very
short time later, a common scenario in many filing
environments.

The optimistic philosophy may be extended to
other replicated data objects in the system. For ex-
ample, when a volume replica is added, dropped,
or moved, the replicated volume location tables
might become temporarily inconsistent pending up-
date propagation or reconciliation. These tables may

be managed lazily if the information therein is viewed
as a hint which is self-validating on use. When a hint
is right, it is very fast; when it is WIONg, one can soon
tell it is wrong. The related philosophies and tech-
niques of optimism, laziness, and hints are essential
to achieving good performance and high availability
in the very large scale environment.

It has been observed that locality is a key reason
why computers work at all. As the access time for
remote data is often unavoidably slower than for lo-
cal data, we must make extensive use of locality via
caching to come close to achieving performance trans-
parency in the nationwide filing arena. Caching must
be employed at many levels throughout the architec-
ture, and information clustered so as to exploit local-
ity. While these observations may sound like moth-
erhood, still their role in achieving acceptable perfor-
mance is essential, and their influence in the design
is pervasive.

2.5 Filing Environment Modularity
via Stackable Layers

There is movement to modularize the process and
memory pottions of the UNIX operating system via
micro kernels as exemplified by Mach [1, 13] and Cho-
rus [16]. However, the filing service, a key compo-
nent of most operating systems, has heretofore re-
tained a largely monolithic implementation. Adding
any new features to the filing environment is usually a
daunting task, frequently requiring reimplementation
of much of the file system. This situation generally
prohibits all but the major operating system vendors
from providing and distributing new filing services.

While replication is an important component of the
solution to very large scale distributed filing, it is
certainly not the only such component. Therefore
replication services should be added in such a way
that does not preclude adding other extended set-
vices, and does not require that it be reimplemented
in the context of the other new features. This philos-
ophy frees us from having to “do it all.” If one’s files
require replication, use the Ficus layers; if one needs
more sophisticated multiuser synchronization, config-
ure in another layer to provide it: if one of the replicas
resides on an untrusted machine, configure in an en-



cryption layer. Clearly the ability to snap together in-
dependently developed components to configure cus-
tom filing services on a site by site basis provides
unprecedented flexibility. What results is a mech-
anism whereby independent researchers or vendors
can deliver shrink-wrapped software modules which
contribute file system functionality without rewrit-
ing, replacing or retesting large portions of the basic
implementation. The Ficus project is a case study in
providing a key piece of extended filing services using
the stackable layers architecture.

2.6 Problems
dressed

Not Explicitly Ad-

In the work on Ficus thus far, security and authen-
tication facilities have not yet been implemented. It
is our intention to integrate Kerberos [20] and other
certificate mechanisms into Ficus to manage scaling
the space of user identifiers and the associated au-
thentication. An encryption layer is also under de-
velopment to facilitate storing replicas on untrusted
hosts.

While we advocate the one copy availability pol-
icy provided by the basic replication system, there
are certainly applications which require and are will-
ing to pay (in terms of synchronization overhead) for
stronger consistency guarantees. It is our philosophy
that these guarantees may be provided via the layered
architecture as additional modules which layer above
the present logical layer. A prototype consistency
layer is now under construction to provide a single
system image for a file system via a token mecha-
nisimn.

3 Ficus Architecture

Ficus implements the replicated filing service in the
context of a stackable layered file system architecture.
Replication is provided by a pair of layers stacked
upon a persistent storage service. Figure 1 shows the
layers in a Ficus replicated file system architecture.

The logical layer provides to layers above it the

0S8 Kernel
Logical
Layer
Transport
Physical Physical
Layer Layer
) )
Storage Storage

{UFS) @ (UFS) @

Figure 1: Ficus Stack of Layers

abstraction of a single-copy, highly available file. The
physical layer implements the concept of a file replica.
Underneath the physical layer is a persisient sforage
layer such as the UNix File System {UFS) in Sun0S
4.1.

Ficus layers use an ertensible vnode interface [5)
suitable for constructing a variety of layered services.
Of particular importance to Ficus is a vnode trans-
port layer which invisibly extends the vnode inter-
face across address space boundaries. This layer is
essential in Ficus for constructing a stack which in-
volves more than one site. For example, access to a
remote replica is provided by inserting a vnode trans-
port layer between a local logical layer instance and
a remote physical layer instance, as in the right hand
branch in Figure 1.

The Ficus replication layers also support a file sys-
tem name service intended for use in a very large scale
(nationwide) distributed system. Ficus builds upen
an AFS-style volume abstraction for file management,
NFS-style pathname resoclution, on-disk grafting to
glue volumes together in a hierarchy, and optimistic
replication techniques to maintain consistency in the
overall name space.

Ficus uses several asynchronous daemons to pro-



mote consistency among replicas. The most impor-
tant of these are update notification and update prop-
agation which enable replicas to learn rapidly of and
incorporate new updates. Replicas which missed or
unsuccessfully processed an update notification even-
tually learn about those updates from a reconcilia-
tion daemon that periodically performs a systematic
sweep of its replicas’ siblings.

Finally, the stackable layers paradigm and exten-
sible vnode interface are a foundation upon which a
number of interesting services can be constructed by
varying the stack configuration. For example, an NFS
layer can be inserted above the logical layer to al-
low access to replicated services by non-Ficus clients.
New “value-added” layers such as transactions and
encryption, as well as “invisible” layers (e.g., caching
and measurement), can be added.

3.1 The Layers

Each of the Ficus layers adds a particular service,
building upon the abstraction provided by lower lay-
ers. lHere we outline the services provided by each
of the key layers and briefly describe the extensible
vnode interface.

Logical Layer

The primary function of the Ficus logical layer is to
provide the illusion that each file is highly available
with single-copy semantics, when in reality a file may
be physically represented by multiple replicas whose
individual availability is not optimal. The illusion is
the product of several mechanisms, including replica
selection and the consistency-promoting daemons de-
scribed in a subsequent section.

Replica selection is guided first by consistency poli-
cies and second by performance considerations. Opti-
mistic replication, like most other approaches to rep-
lication, must often choose which version of a file to
use to servicing a file access request. Once a version
decision has been made, file access performance dif-
ferences may guide the final replica selection?.

3One can imagine circumstances in which performance dif-

Unlike conventional replication mechanisms, op-
timistic replication has a greater range of version
choices. Optimistic concurrency control and lazy up-
date propagation yield a richer set of versions, includ-
ing the possibility of conflicting versions. The volatil-
ity and scale of a large geographically distributed en-
vironment can make it infeasible even to determine
the range of accessible versions. A further problem
is that the appropriate version selection policy may
weill be client, application, instance, or data specific.

The Ficus approach is to provide a very general
base level policy which can serve as the foundation
for policies with different requirements. We antici-
pate the creation of a transaction layer, for example,
which can be stacked above the Ficus logical layer
to provide full transaction semantics. The current
logical layer implementation gives priority by default
to a local replica, falling back to a randomly chosen
replica otherwise.

A number of open questions remain: How should
consistency requirements be specified? What state
should the file service (as opposed to the operating
system) maintain about clients and their past re-
quests? Should version and replica selection be done
only at file open, or perhaps for each individual data
access request? What versions may be substituted
on failure to reach a previously accessible replica?
Should a client always see a monotonically increas-
ing sequence of versions with respect to time? What
synchronization granularity (client, host, node clus-
ter) should be used? Answers to these questions are
the subject of ongoing research.

Physical and Persistent Storage Layers

The physical layer performs two main functions: it
supports the concept of a file replica and it imple-
ments the basic naming hierarchy adopted by Ficus.
The persistent storage layer underneath it provides
basic file storage services.

The structure of the current Ficus physical layer re-

ferences are so great as {o make version issues a secondary
issue. “Nearer before newer" may reasonably apply to utili-
ties, for example, if the choice is between access to a local djsk
and access via voice-grade serial connection to a remote host.



flects an early design decision to use a standard UFS
as the initial persistent storage layer, and beginner’s
inexperience with respect to the power, ease, and low
cost of layering. From a strictly functional perspec-
tive, the “ideal” physical and persistent storage layer
design 1s quite different, as we describe below.

The decision to use an unmodified UFS was driven
primarily by the desire that Ficus replication layers
be easy to “bolt on” to existing kernels, without caus-
ing significant distuption to system operation. A sec-
ondary factor was simple expediency: the UFS could
clearly provide the minimal level of required storage
service.

The physical layer’s two main tasks, supporting
replica-ness and the Ficus name space, proved to
be rather poorly served by UFS services: support
for replica-ness requires additional attribute storage
(mostly for version vectors) beyond that provided by
default, and the Ficus name space must allow for a
limited directed acyclic graph topology (¢f. Unix
tree} in some circumstances. The name space con-
sistency mechanisms also required a small amount of
additional storage per file name.

The additional richness inherent in the Ficus model
led us to implement a full name resolution mechanism
tn the physical layer with the slight additional capa-
bilities that were needed, as well as a file attribute
service simtlar in spirit to the Macintosh operating
system “resource fork.” The UFS layer was relegated
to providing a file service with an almost flat name
space.

A third critical function of the current physical
layer implementation is to map between Ficus low-
level file identifiers and identifiers native to the per-
sistent storage layer. Although Ficus file identifiers
form a large flat name space which has a trivial UFS-
compatible translation, the standard UFS name ser-
vice is not well-suited for efficient flat name service.
To overcome this efficiency problem, Ficus identifiers
are mapped into a two-level UFS hierarchy which
is carefully constructed to minimize linear searching
and exploit expected file access locality patterns.

The current physical layer is somewhat monolithic
and largely duplicates (while enhancing) services pro-
vided by the UFS persistent storage layer. In hind-

sight, a cleaner design would separate the UFS and
physical layers into several additional layers, each
providing a narrower set of services. Replication sup-
port can then take several forms: existing UFS stor-
age services can be used as at present, when compat-
ibility is a premium; or, a (new) persistent storage
service with a richer file model but flat name space
could be used when efficiency is very important. One
might also construct a UFS-style layer for placement
on top of the new persistent storage layer to provide
a migration path away from the old monclithic UFS.

Extensible Vnode Interface

The symmetric layer interface used in Ficus is based
on an encapsulated object called a vnode. A vnode
represents a layer’s concept of a file. It exports a set
of operations which can be performed on the file, and
contains a modest amount of private internal data
which normally includes a pointer to another vnode.
Multiple vnode types may be present in the system;
vnode types differ in the structure of their private
data, and how they support the set of operations on
vnodes. There is a degree of “operator overloading”
since the code that actually executes is dependent on
the type of vnode to which the operation is applied
and is bound dynamically at runtime.

Adding a new file system type primarily involves
implementing each of the vnode operations for that
type. That is, a vnode may have pointers to one or
more lower level vnodes on which it is layered. The
implementation of an operation on a vnode may sim-
ply forward the operation to one of its descendants
(analogous to inheritance), perform some actions and
then forward it to its descendants, call some other op-
erations on its descendants, or even handle the oper-
ation entirely internally. Layers know nothing about
the type of vnode below it; they simply hold a pointer
to it. At the base of the stack is a layer which has no
further descendants. For us, this is generally a Unix
filesystem.

In a layered file system, vnodes may be linked to-
gether. A stack for a given file is represented by a
singly linked list of vnodes, of which only the first is
known to the service above. There may be both fan-
in and fan out in a stack. Fan in occurs when mul-



tiple vnodes point to a common lower level vnode.
An example of this occurs in Ficus when several log-
ical layers concurrently access the same replica. The
physical level vnode for that replica resides in several
stacks simultaneously. Fan out occurs when a single
file at a higher level is represented by multiple files
at the next layer down, such as in the Ficus logical
layer which constructs multiple vnode stacks beneath
it, one per replica. A base UNIX file system is an ex-
ample of fan-in when it is NFS-mounted on several
different sites.

The original vnode interface [8] incorporated a
static set of exported operations. A recent explosion
in the number of services and layers proposed and
implemented has exposed the inability of the original
operations set to satisfy the ever growing variety of
desired functionality.

To address the shortcomings of static interfaces,
we have developed an extensible vnode interface [5].
The extensible interface allows new operations to be
exported with ease, which in turn has greatly sim-
plified the task of creating and installing new layers.
The new interface is also designed to support stacking
to a greater degree than its predecessor.

A key component of this strategy is a new bypass
operation which allows a layer to “pass on” an op-
eration invocation which the layer does not support.
In addition to the benefits of simple inheritance, the
bypass operation allows new layers to he wrapped
around existing layers which have no knowledge of
new operations: when a layer does not recognize an
operation invoked on a vnode, it redirects the invo-
cation to the bypass operation, which passes the call
down the stack, presumably to a layer which does
support it. The bypass operation is of particular im-
portance to the transport layer.

Transport Layer

The transport layer is essentially a remote vnode op-
eration service which maps calls from the layer above
to operations on a vnode at a layer below, normally
crossing an address space boundary {and often a ma-
chine boundary) in the process. The ideal transport
layer consists solely of a bypass operation, with no se-

mantic interpretation beyond that necessary to mar-
shal arguments. A transport layer can then be in-
serted between any two layers without regard for their
semantics,

Ficus currently uses NFS as an approximation to
an ideal transport layer for the same reasons given
above for using UFS as a storage layer: a desire not
to introduce an additional protocol when a widely
used similar one existed, and to avoid re-inventions
when possible. Here again, we learned that a power-
ful, “almost right” service is helpful in the beginning,
but unsatisfactory later.

NFS achieves a certain quality of performance by
interpreting, modifying, or intercepting some vnode
operation invocations. A layer attempting to lever-
age NFS as a generic transport service must be
constructed with substantial NFS internal details in
mind. In our experience, it is certainly possible to
use NFS as a transport service, but at the expense
of building extensive mechanisms to defeat numerous
internal NFS mechanisms.

The extensible vnode interface and bypass opera-
tion were developed in large part due to our unhappi-
ness with the never ending set of counter-mechanisms
we were employing to outsmart NFS. We have now
mstalled the extensible interface, and used it to add a
bypass routine to our NFS layer so that the counter-
mechanisms could be discarded.

It is clear that in our model, NFS is best con-
structed as a pair of layers surrounding an ideal vnode
transport service, not vice versa. Nevertheless, re-
taining NFS compatibility with non-Ficus hosts is
important.

Examples of the power of layering, and the im-
portance of standard NFS compatibility, are evident
when considering the utility of an NFS layer placed
above the logical layer or between the physical and
UFS layers. Figure 2 displays several interesting pos-
sibilities. When an NFS layer is above the logical
layer, an IBM PC running DOS and PC-NFS can ac-
cess Ficus replicated files without being aware that
replication is occurring. Similarly, configuring NFS
below the physical layer allows sites on which Ficus-
does not run to act as replica storage sites. This ar-
rangement would permit a Ficus site to store replicas
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Figure 2: Using NFS to Interact with non-Ficus Hosts

on a mainframe running MVS and NFS.4

3.2 Consistency Mechanisms

The optimistic consistency philosophy allows consid-
erable flexibility in many aspects of replicated file
management. In addition to the richer choices en-
countered in replica selection, more options are pos-
sible when promoting consistency among replicas, Fi-
cus uses three asynchronous daemons in an optimistic
manner to notify replicas of updates, to propagate
updates, and to ensure that eventual mutual consis-
tency is attained.

The flow of control for file update notification and
propagation is displayed in Figure 3 with further ex-
planation below.

4This has been demonstrated using a non-Ficus SunOS$
host; logistics hinder an MVS demonstration of the concept.

Update Notification and Propagation

In Ficus, a file update is applied immediately to only
one replica. When a write operation is received by
the logical layer, it is forwarded to the physical layer
vnode for the replica selected. After having been suc-
cessfully applied to one replica, the logical layer may
then notify other replicas of the update. The logical
layer instance that handled the update places a sum-
mary of the update on an outgoing update notification
queune, and then returns control to the client.

An update notification daemon periodically wakes
up and services the queue, sending out notification
to all accessible replicas that a new file version ex-
ists. Notification is a best-effort, one-shot attempt;
inaccessible replicas are not guaranteed to receive an
update notification later.

Ficus’ reliance upon optimism releases it from the
burden of ensuring that an update notification mes-
sage is successfully delivered and processed by the

10
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Figure 3: File Update Notification and Propagation

receiver. If the receiver fails to update its replica
for whatever reason, it is assured that it will eventu-
ally learn of the update via the reconciliation daemon
running on its behalf. {See discussion below.)

An update notification is not necessarily placed on
the queue as part of every update. If the logical layer
has received a “file open” operation, it will delay plac-
ing a notification in the queue until a “file close” op-
eration is recelved. If for some reason a close op-
eration never arrives, no update notification will be
sent, which is analogous to a lost update notifica-
tion message—perfectly acceptable by the optimistic
philosophy, since reconciliation will find out about it
later.®

The notification message contains the version vec-
tor of the new file version, and a hint about the site
which stores that version. It is then the responsibil-
ity of the individual replicas to pull over the update
from a more up-to-date site.

When a replica receives an update notification, it
places that notification on a queue. An update prop-

5 A logical layer that is servicing a remote client via NFS will
never receive an open or close operatjon, so it may choose to
issue an update notification for every write operation. Again,
with optimism, this is all merely an optimization.
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agation daemon wakes up occasionally to service the
queue. The notification message sometimes contains
complete information about the update (as is the case
for directory updates), and if so it directly applies
the update to its replica. If the notification only con-
tains a summary of the update (typical for file up-
dates), the replica which sent the notification must
be queried for the new data.

Update propagation is performed atomically. Fi-
cus contains an atomic commit mechanism used pri-
marily by propagation to ensure that a replica’s ver-
sion vector properly reflects the replica’s data. A
shadow replica is constructed containing the new ver-
sion, which is then substituted for the original replica.

No locking occurs during the construction of the
shadow replica. The commit mechanism verifies that
the shadow replica does not conflict with the original
replica as part of the commit. It also verifies that
the remote replica from which the shadow has been
constructed has not changed during that time. If
any changes have occurred, optimism allows update
propagation to start over or abort the propagation.



Reconciliation

The reconcilition daemon shoulders the responsibil-
ity of ensuring eventual mutual consistency between
replicas. For each replica housed by a node, the rec-
onciliation daemon directly or indirectly checks ev-
ery other replica to see if a new (possibly conflicting)
version of the file exists. When a new version is dis-
covered, update propagation is initiated and follows
the sequence of steps outlined above.

When reconciliation discovers a remote replica in
conflict with its local replica, a conflict mark 1s placed
on the local replica. A conflict mark blocks normal
access until the conflict 1s resolved, at which point the
mark is removed. Access to marked files is permitted
via a special syntax.

Imperfect communication affects how the reconcil-
iation daemon undertakes its tasks at two levels: the
order in which local replicas are inspected, and the or-
der and timing of contact with other replicas’ nodes.

Is there a preferred ordering of local replicas which
the daemon should follow when performing reconcili-
ation? If communications between two nodes is likely
to be interrupted at intervals less than the length of
time required by the reconciliation daemon to scan
through its local replicas and query the remote node,
a fixed starting point must be avoided so that files at
the far end of the order are not victimized by starva-
tion.

The overall cost of reconciliation among a set of
replicas is determined in part by the inter-node pat-
tern in which reconciliation occurs. If each node di-
rectly contacts every other node, a quadratic (in the
number of nodes) message complexity results, but
if indirect contact (through intermediate nodes) is
used in an optimal fashion, a small-coefficient linear
complexity can be achieved. The interesting prob-
lem here i1s to exploit indirect reconciliation when
inter-node communication is in excellent condition
(to avoid quadratic complexity costs), but gracefully
handle degraded comrmnunications when the degrada-
tion follows no predictable pattern and may be quite
volatile. The Ficus solution uses a two-node protocol
that tends to structure indirect communications in
a ring topology when communications links permit,
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and dynamically adjusts to a non-fixed tree topology
in response to changes in the communications service

[2].

3.3 Name Space

The Ficus name space is a replicated hierarchy de-
rived from UNIX with extensions motivated by large
scale distnibution and optimism. The optimistic
consistency philosophy requires extending the name
space topology to provide limited support for a di-
rected acyclic graph, and the scale promoted new
mechanisms for connecting portions of the name
space.

Topology

The optimistic consistency philosophy in Ficus ex-
tends not only to updates to existing files, but also
to the name space. Because name space consistency
is essential to useful operation, and the semantics
of name operations are well-understood, Ficus con-
tains extensive support for automatic reconciliation
of name space (directory) replicas. The algorithms
used in name space reconciliation are described in a
companion paper [3]; here we describe relevant issues
from the client perspective.

Like UNIX, the Ficus name space hierarchy is con-
structed from a disjoint set of sub-hierarchies. Ficus
sub-hierarchies (AFS-style volumes) are the primary
management basis for replication. A logical volume
is represented by one or more physical volume repli-
cas. Each volume replica contains a replica of the
volume’s root directory; a volume replica may store
any or all of the remaining files and directories of the
logical volume.

In keeping with the optimistic consistency philos-
ophy, any name space operation that leaves a vol-
ume replica internally consistent may be applied to
a volume replica; the system (via automatic name
space reconciliation) is responsible for propagating
the change to other volume replicas and handling any
difficulties that may arise out of concurrent activity.



Connection Mechanisms

The Ficus volume hierarchy topology is embedded
within the volumes themselves using an on-disk
mounting mechanism we call a grafi point. A graft
point is an internal volume object which contains
the identity of the logical volume to be “grafted”
(mounted) at that point, and the specific identity and
location (internet host name or address) of volume
replicas. Each host maintains a private table which
maps locally stored volume replicas to particular lo-
cal storage devices.

A graft point that is part of a replicated volume
may be replicated just as any normal file or directory
can be replicated., The replication factor (how many
replicas and where located) of a graft peint is inde-
pendent of the replication factor of the volume to be
grafted at that point.

The graft point mechanism serves to fragment and
distribute the volume location database [6} or global
mount table [12] found in other distributed file sys-
tems. This is critical to successful operation of a very
large scale distributed file system in which less than
perfect communication is routine and large numbers
of administrative entities are invelved,

We further note that the layering methodology al-
lowed graft points to be implemented such that the
Ficus physical layer believes a graft point to be a
directory while the logical layer recognizes it as a
graft point, and therefore the name space reconcilia-
tion mechanism already in place manages graft point
updates®,

Globally Unique Identifiers

A Ficus file is identified by a multi-part globally
unique identifier. Its structure is designed in keep-
ing with the optimistic philosophy: any Ficus host
may create new logical volumes irrespective of current
communications abilities; additional volume replicas
may be spawned from any accessible volume replica,

SWhen a volume replica is added, removed, or changes
hosts, a graft point update {to one graft point replica) is re-
quired. Name space reconciliation handles propagation, etc.

and any volume replica can create new files.

The identifier contains fields to specify which net-
work, host, volume, and volume replica gave birth to
the file. A further field is required when a particular
file replica is specified. The 32-bit fields used in the
Ficus prototype appear adequate to support a sizable
distributed system.

Since each file must have a globally unique identi-
fier, Ficus name resolution entails an additional level
of indirection over that of UNIX. A Ficus directory
entry refers to a unique file identifier, which in turn
is mapped into a low-level name understood by the
persistent storage layer.

Logical and Physical Layer Services

As indicated earlier, one of the logical layer’s primary
roles is file replica selection. This is turn requires the
logical layer to identify and locate volume replicas—
exactly the information that is stored in the graft
point for the volume in question. Graft point in-
terpretation and management is thus a logical layer
function.

The physical layer is responsible for intra-volume
name resolution and name space management. The
Ficus directory structure is implemented entirely
within the physical layer, so that only a simple flat-
file model need be supported by the persistent storage
layer.

3.4 Configuring Stacks

The SunOS§ file system mount mechanism has been
overloaded in Ficus to serve as a stack construction
service, Ficus stacks are static, in contrast to Rosen-
thal’s dynamic stacks [15], and are established at a
per-volume {or SunOS filesystem) granularity.

Overloading the existing mount service to config-
ure stacks was a natural outgrowth of our use of the
UFS and NFS modules. It produced many immmedi-
ate benefits and met an initial design goal to leverage
NFS and UFS as much as possible. We have used it
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to configure stacks with “invisible” measurement lay-
ers at various points, and have speculated about the
value of other “invisible” layers to perform caching,
to simulate network delays, or to produce Byzantine
behavior.

While it has been very useful, it is also clear that a
per-volume granularity unduly restricts the power of
layering. For example, layers that provide data com-
pression, encryption, or transaction services may be
more appropriately applied at a per-file granularity.
Indeed, one could conceivably construct a typed-file
service primarily out of layers: store the order of de-
sired layers as a file attribute, and configure the stack
at file open time. We are now investigating a per-file
stack construction methodology.

4 Implementation Status

The system as described in this paper, including rec-
onciliation, is operational and in daily use. The sys-
tem has been tested with up to eight replicas. Ficus
replication has been run with geographically remote
clusters; specifically volumes have been replicated at
USC/ISI, SRI, and UCLAT™.

The user interface to resolving conflicting file up-
dates and name conflicts detected and reported by
the reconciliation mechanism is currently quite prim-
itive. In practice, we have rarely observed conflicts
that were not intentionally generated or could not be
autornatically repaired. This is due in part to the
relative rarity of conflicting update in general. Nev-
ertheless, this interface requires improvement to sup-
port non-expert users.

Operational layers include the transport layer, the
logical and physical replication layers, a null layer,
and a measurement layer. Prototype implementa-
tions of encryption, file versions, cache consistency,
and second class replication layers will be completed
shortly.

TUSC/ISI is located in Marina Del Rey and connected to
UCLA (after several gateways) via Los Nettos. SRI is located
in Palo Alto, California and connected to UCLA via Los Netos
to the San Diego Supercomputer Center followed by NSFnet,
Thanks to Bob Balzer of ISI and Alan Downing of SRI for
arranging for Ficus nodes at their respective institutes.

Ficus is based on Sun UNIX version 4.0.3, though
ports to other versions of Unix already support-
ing a VFS interface should be quite straightfor-
ward. The initial implementation (completed Sum-
mer 1989) used an unmodified vnode interface with
extended operations supported by overloading exist-
ing operations. The current implementation uses the
new extensible vnode interface described in [5]. Ficus
kernels are about 20% larger than a similar non-Ficus
kernel.

4.1 Performance Measurements

This section reports performance measurements for
various configurations of replicated and unreplicated
volumes. All measurements utilize Sun 3/60s, each
with a SCSI disk and 10Mb ethernet connection. All
nodes are part of the same ethernet segment, with
the exception of the machines at IST and SRI.

We report two benchmarks. The first is the mod-
ified Andrew benchmark [9, 6], designed to reflect a
typical mix of file operations. However, since this
benchmark is not particularly illustrative of repli-
cated file system performance (it is dominated by
the compilation phase which is largely cpu bound),
we also report a second benchmark which is much
more of a worst case measure of Ficus. The bench-
mark used is a recursive copy (“cp -r Jusr/include .”)
of an NFS mounted file system (housed on a Sun-
3/480 connected to the same ethernet segment)) to
the local disk of a Sun-3/60s. In our environment,
Jusr/include is an unbalanced tree of depth four, with
47 directories and 1465 files totaling 4.7 Mbytes.

Figure 4 shows the overhead {compared to Sun QS
without Ficus) for the modified Andrew benchmark
as the number of replicas vary from 1 to 8 It also
displays the the overhead in terms of system time and
elapsed time required to perform the recursive copy
benchmark. These are the costs incurred by the site
generating the activity, which also stores a replica of
the data.
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Discussion

These measurements are very encouraging. For the
modified Andrew benchmark, even with eight repli-
cas, the overhead is only 14 percent. For the common
case of three replicas, overhead is less than 10 percent.
There is considerably more impact due to replication
in the recursive copy case (between 30 and 50 per-
cent). For each file copied, the system must place an
entry in the directory (updating both the directory
and its auxiliary information), create the file itself,
placing its Ficus-specific attributes in the auxiliary
file, notify all replicas of the directory operation to
create the name for the new file, notify the replicas
of the availability of the file’s contents, and serve all
of the asynchronous propagation requests as the repli-
cas pull over the file contents. Copy is a worst case
operation in terms of overhead for Ficus.

In interpreting these numbers, it is important to re-
member that Ficus applies an update synchronously
to one replica and queues an “update notification” for
asynchronous delivery to other “secondary” replicas.
Each replica queues incoming update notifications
and asynchronously processes the notifications. Di-
rectory update notifications completely describe the
update, so no interrogation of the primary is needed

to process a notification. File update notifications
carry no data (only a version vector), so a “pull” is
initiated by a secondary to bring its replica up to
date. Data for updates is generally served out of the
cache on the originating site.

The “system” times for all Ficus measurements are
similar because the cost of asynchronous update no-
tifications is in the background (there is some impact
of increased replication factors reflected in the mea-
surements as the interrupt handling for pull requests
is included in system time).

The increased “elapsed” or “wall clock” time ob-
served when more replicas are employed is attributed
primarily to the cost of servicing requests from the
the secondary in response to update notifications. It
should further be noted that the recursive copy com-
pletes and the elapsed time is reported when it fin-
ishes synchronously updating the single chosen rep-
lica. It is generally the case that many of the remote
replicas have not finished their asynchronous pull of
the data. Thus the greater the delay in the network,
or the slower the remote disks, the slower the requests
arrive at the originating replica and hence the sooner
the synchronous part completes. Hence, some of the
numbers actually look better when the replicas are
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further apart.

4.1.1 Long Distance Operation

In the performance graphs shown, all replicas resided
on machines on the same physical ethernet cable. We
repeated several of these measurements, this time lo-
cating replicas on sites connected by the Internet®.
For the case of the recursive copy, locating one rep-
lica at SRI and one at UCLA yielded measurements
for both system and elapsed time that were identi-
cal to the case where both replicas were on the same
local network. Measurements of a three replica con-
figuration (UCLA, ISI, and SRI) resulted in a 36%
overhead over UNix for elapsed time (vs. 35% for the
local net case) and 48% overhead for system time (vs.
56% for the local net case). For the modified Andrew
benchmark the long distance three replica configura-
tion resulted in an overhead of 19.9% compared to
9.5% when the three replicas were local.

Not surprisingly given the asynchronous update
strategy, locating the background replicas at more
remote sites has minimal impact on the performance
of these benchmarks. Of course, access to the remote
replicas is correspondingly slower, equivalent to that
achieved by accessing them with NFS.

Only very preliminary efforts have yet been made
to optimize the performance of the implementation
as work thus far has focused on functionality. There
is reason to believe that the numbers reported here
will improve substantially with careful analysis and
optimization of the system’s behavior (especially the
effectiveness of its several caching mechanisms).

5 Conclusions

We draw several conclusions from the work reported
here. First, all of our experience supports the view
that optimistic replication is very attractive, whether
it is merely between one’s home computer and the

8To avoid excessive retransmissions, the mounts across the
Internet use 1K message block sizes where 8K messages are
used over the ethernet.
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office network, or in a very large corporate infor-
mation system. High performance, high availability,
scalable distributed computing service is feasible; we
hope that the facilities described in this paper will
make that high quality service commonplace, as they
require no special hardware and can easily be added
to many existing systems. Many applications should
benefit from the ease with which the basic optimistic
replication reconciliation service can be retargeted
beyond its initial use for directory management, as
is shown by our success in using i1t to manage Ficus’
replicated volume locaticn tables.

Next, the use of stackable layers as the framework
for the Ficus architecture has been an unqualified
boon. The ability to leverage a common filing ser-
vice directly permitted us to focus on development of
new functionality inherent in the replication service,
and avoid much of the traditional cost of building
an ideal substrate at the outset. The modularity af-
forded by the architecture, along with the ability of
the transport layer to map operations across address
space boundaries, allowed us to develop and debug
new layers in user space, and move them into the ker-
nel only after they were working, which substantially
simplified testing and debugging.

Finally, and perhaps most significant, this work
opens up a number of relevant research directions
where one can expect to make rapid progress, and
provides the tools to investigate them. For example,
individual researchers can explore a variety of syn-
chronization and consistency policies in a replicated
filing environment, easily adding their own implemen-
tations to experiment with functionality.
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