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ABSTRACT

With businesses, governments, and individuals increasingly

dependent on the Internet, understanding its reliability is more

important than ever. Network outages vary in scope and

cause, from the intentional shutdown of the Egyptian Inter-

net in February 2011, to outages caused by the effects of

March 2011 earthquakes on undersea cables entering Japan,

to the thousands of small, daily outages caused by localized

accidents or human error. In this paper we present a new

method to detect network outages by probing entire blocks.

Using 24 datasets, each a 2-week study of 22,000 /24 address

blocks randomly sampled from the Internet, we develop new

algorithms to identify and visualize outages and to cluster

those outages into network-level events. We validate our ap-

proach by comparing our data-plane results against control-

plane observations from BGP routing and news reports, ex-

amining both major and randomly selected events. We con-

firm our results are stable from two different locations and

over more than one and half years of observations. We show

that our approach of probing all addresses in a /24 block is

significantly more accurate than prior approaches that use a

single representative for all routed blocks, cutting the num-

ber of mistake outage observations from 44% to under 1%.

We use our approach to study several large outages such as

those mentioned above. We also develop a general estimate

for how much of the Internet is regularly down, finding about

0.3% of the Internet is likely to be unreachable at any time.

By providing a baseline estimate of Internet outages, our

work lays the groundwork to evaluate ISP reliability.

1. INTRODUCTION

End-to-end reachability is a fundamental service of
the Internet. Network outages—lack of data reachability—
break protocols based on point-to-point communication
and often harm the user’s experience of Internet ap-
plications. Replication and content delivery networks
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strive to cover up outages, but routing changes still
can cause user-visible problems as the network recon-
figures [18,19,28].

In spite of decades of research on network reliabil-
ity, in routing and other layers, Internet outages are
still pervasive, ranging from minutes to hours and days.
Outages have various causes, including system, link and
router outages [22, 30], stemming from natural disas-
ters [22, 27], human error [21], or political causes [5–
7, 29]. The goal of our research is to systematically
find outages in blocks of adjacent network addresses, to
identify correlated outage events in the network, and to
understand their statistical characteristics and, where
possible root causes.

Our approach uses data from Internet surveys, where
ICMP echo response requests are sent to each address in
about 22,000 address blocks, every 11 minutes for two
weeks [12]. These blocks comprise about 2% of respon-
sive blocks of the Internet. This survey methodology
and its limitations have been discussed previously [12]
(as we review in Section 3.1); but its analysis to study
outages is new.

Our analysis begins by distilling responses from ad-
dresses into block-level outage reports (Section 3.2). An
outage is defined as a sharp drop followed by a sharp
increase of block responsiveness, compared to typical
responsiveness of the that block. Unlike control-plane
studies [18, 23], we detect outages that are not seen in
the routing system (Section 4.3), expanding the result
observed by Bush et al. [2]. Unlike previous data-plane
studies using active probing [13,16,17,20,25], our block-
level measurements are more data intensive, but con-
siderably more accurate. In Section 4.8 we show that
block-wide probing reduces the number of false conclu-
sions (declaring an outage when some of the block still
responded) by 44%; Section 2 covers related work more
generally.

The second aspect of our new analysis is to discover
network-wide events by correlating block-level outages.
We use a simple clustering algorithm to visualize out-
ages in two dimensions, time and space (Section 3.3).
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This visualization is useful to get a general understand-
ing of network behavior and correlate outages to coun-
tries. We then develop a more general clustering algo-
rithm to find network-wide events from the start- and
end-times of block-level outages (Section 3.4). Prior
studies of routing employ similar clustering [4, 10] (de-
tails in Section 2.4); we further use such clustering with
data-plane probing.

We validate our methodology by comparing both se-
lected and randomly chosen events to public BGP archives
and news sources (Section 4). We find full or partial
control-plane evidence for 38% of our events, but many
smaller events seem visible only in the data plane, as
suggested by Bush et al. [2]. We report the network
impact of major event such as the Jan. 2011 Egyp-
tian outage, and the effects of the March 2011 Japanese
earthquake, as well as equally large but less newsworthy
events. We also confirm the stability of our results over
time and with multiple probe locations, and compare
our use of full block probing to use of single-address
probing.

Finally, in Section 5, we examine the data we have
collected to begin to characterize Internet stability as a
whole, and outage duration and size.

This paper makes several new contributions. First,
we develop new clustering algorithms to visualize out-
ages and find correlated network events from individual
outage observations. Second, we validate our ability to
find network network events, and discuss the relative
sizes of outages corresponding to several newsworthy
events. Finally, we define measures of Internet stability,
providing data about stability of typical address blocks,
and about the size and duration of outages.

2. RELATEDWORK

Previous works have studied network stability with
control- and data-plane observations, and with stud-
ies of user data and event originators. We review each
group next.

2.1 Control-plane Studies

Several prior efforts use control-plane data to study
Internet outages, mining data such as routing update
messages and syslogs to locate failures.

Markopoulou et al. use IS-IS update messages to clas-
sify failures in Sprint’s IP backbone. They classify out-
ages into maintenance-, router-, optical layer-related
problems, and report the percentages of each category [23].
Like them, we use control-plane data (BGP archives,
news reports), but we use it only to verify outage events,
and use data-plane probes to discover outages.

Teixeira et al. show the inherent limitations of BGP
data and proposed the addition of an omni server for
each Autonomous System (AS), which maintains an
AS-level forwarding table [26]. They also analyze how

to correlate omni servers to diagnose routing changes.
Omni server has its own costs and non-trivial change
to current Internet architecture, so it’s not practically
used. Our measurements employ well studied and sup-
ported ping probe techniques, and draw conclusions
based on a series of large datasets.

Labovitz et al. use injected artificial routing failures
to understand the impact of failures on end-to-end rout-
ing performance [18]. We choose to collect and analyze
everyday outages and measure their statistical charac-
teristics.

Control-plane studies of reachability only predict or
reflect the real Internet, thus they have inherent limi-
tations as discussed by Bush et al. [2]. These results
prompt our use of data-plane measurements to identify
outages, and use control-plane data only for the purpose
of validation.

2.2 Data-plane Studies

By directly measuring reachability, data-plane stud-
ies can be more accurate than control-plane measure-
ments.

An MIT study measures Internet path failures by
probing between 31 locations, and correlate these fail-
ures with BGP messages [9]. They find that most fail-
ures are short (less than 15 minutes) and discuss the
relationship between path failures and BGP messages.
Our work extends theirs in several ways: we use a much
larger target population (about 2% of the responsive In-
ternet), and probe much more intensively (each address
in each block every 11 minutes, rather than a few ad-
dresses for each block), but from only two sites. As with
their work, we validate our work using control plane
data.

The PlanetSeer system uses active probing between
all the 350 PlanetLab nodes, to discover potential net-
work path anomalies, which are originally reported by
passive monitors at 120 nodes [33]. Their work can
only find outages between the PlanetLab nodes. In the
contrary, while we probe only from two U.S. cities, our
targets are a random 2% of the responsive Internet ad-
dress blocks, so we find outages anywhere in the world.

Kompella et al. develop spatial correlation algorithms
to localize faults within a tier-1 ISP [16] and use ac-
tive probing to detect black holes or failures [17]. They
detect failures by O(n2) probes from every node to ev-
ery other node. We probe from 2 sites to thousands
of blocks in the Internet address space, so we are not
limited to a single ISP.

Very close to our work, the Hubble system uses con-
tinuous probes to individual addresses to identify Inter-
net outages [13]. We replace their method using probes
to single targets in each address block, with probes to
all addresses in each block. While our approach is much
more network-intensive, we show in Section 4.8 that we
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greatly reduce the number of false conclusions about
network outages. We also describe new algorithms for
clustering outages for visualization and into network-
wide events.

Researchers from IIJ have studied the reachability of
Internet address spaces through traceroutes to and from
test and anchor prefixes (in- and out-probes), to find
bogus bogon filters. They also further analyze common
biases and limitations of reachability experiments [1,
2]. Although providing useful insights, their focus is
not primarily on outages. We focus on the outages, or
instability in reachability, of end-to-end paths to the
Internet edge, and what we can learn from correlated
reachability issues.

2.3 Log-based Analysis

Above the network layer, other systems have looked
at system- and user-level logs to determine outages. For
example, UCSD researchers have done careful studies
of “low-quality” data sources (including router configu-
rations, e-mail and syslog messages), to discover char-
acteristics and reasons of failures in the CENIC net-
work [30]. Such log analysis requires collaboration with
the monitored networks, and so they study only their
regional network; we instead use active probing that can
be done independent of the target and study a random
sample of Internet /24 blocks.

BGP misconfiguration can also be a source of outages.
Mahajan et al. study routing table messages and email
network operators for evidences of BGP misconfigura-
tion. They also use active probing to determine the
impact of misconfiguration on connectivity [21]. They
report that 0.2% to 1% of prefixes suffer from miscon-
figuration each day. We confirm their results on the
overall Internet reachability, finding about 0.3% of the
Internet blocks are expected to suffer from outages on
a daily basis. Our approach with active probing allows
detection of all types of outages (not just BGP-triggered
ones), and finds outages not visible to the control plane
(as suggested by Bush [2]).

2.4 Origins of Routing Instability

Routing information distributed as part of BGP is
an attractive source of data for outage estimation since
BGP naturally centralizes otherwise distributed infor-
mation. Since outages can occur anywhere on the AS
path provided by BGP, reaching an accurate determina-
tion of the originator of an outage has been the subject
of several previous studies.

Chang et al. cluster BGP path changes into events,
both temporally and topologically [4]. They also pro-
vide useful insights on how to infer where network events
happen. We observe that many large Internet outages
happen across different edge ASes. We develop concep-
tually similar clustering methods, but based on data-

plane observations rather than BGP control-plane in-
formation.

Feldmann et al. present a method to identify ASes re-
sponsible for Internet routing instabilities, using time,
views and prefixes [10]. They report that most rout-
ing instabilities are caused by a single AS or a session
between two ASes. (Chang et al. make similar con-
clusions [4]). They also propose useful insights on cau-
tions of identifying instability originators. Our work
uses similar ideas to validate outages with BGP rout-
ing data.

3. METHODOLOGY

This section describes our process for outage detec-
tion with active probing: raw data collection by Inter-
net surveys, outage identification at individual blocks,
visualizing outages, and correlation of outages across
different blocks into routing events.

3.1 Input: Active Probing of Address Blocks

Our work begins with Internet surveys that actively
probe the Internet address space [12]. We briefly review
this existing methodology, then discuss how we regular-
ize it for analysis here.

Reviewing Address-Space Surveys: Existing In-
ternet surveys use ICMP pings to probe about 2% of the
allocated and responsive Internet address space (about
22,000 /24 blocks), at 11 minute intervals for about two
weeks [12]. Responses are classified into three broad
categories: positive (echo reply), negative (for example,
destination unreachable), and non-response; we discuss
how these are treated in the next section.

The choice of an 11-minute probing interval limits
the precision of our estimates of outage times. Our
choice of this probing interval is primarily to reduce
the burden on the target networks to one probe every
2.5 s, In addition, prior studies of dynamic addresses
showed typical use durations are 75 or 81 minutes [3,
12, 15], so 11 minutes can capture the median user of
a dynamically-assigned address. Finally, 11 minute is
relatively prime to most periodic human events.

Three-quarters of survey blocks are chosen randomly
from responsive blocks, while one quarter are selected
based on block-level statistics as described previously [12].
In this paper we consider all blocks in each survey.
Since selection is not strictly random, it may intro-
duce some bias to our results, but prior work has not
shown significant skew, and we are the process of eval-
uating this question for our new results. In addi-
tion, our methodology applies only to blocks where 10%
of addresses respond (Section 3.2). Typically 45–50%
of probed blocks pass this test (Table 2). Our results
therefore do not consider sparely populated blocks, but
do reflect the a diverse set of Internet users of public
addresses where firewalls admit ICMP, including home
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users, server farms, universities, and some businesses.
Normalizing survey data: Since probes are spread

out in time and responses return with varying delays, in
this paper we simplify survey input by mapping probes
into rounds, where each round is 11 minutes long. We
impose rounds on the raw probe results by taking time
since each survey’s beginning divided into 11-minute
bins. We identify rounds with an index i, and there are
Nr total rounds in a survey (thus (i ∈ [1 . . Nr]).

We correct for two kinds of errors in mapping ob-
servations to rounds: sometimes a round is missing an
observation, and sometimes we see duplicate responses
in that round. Our collection software is not perfectly
synchronized to 11 minute rounds, but takes on aver-
age 11 minutes and 3 seconds. (We intentionally chose
to correct for minor drift rather than guarantee perfect
synchronization over days of continuous operation.) Be-
cause this interval is not exactly 11 minutes, about one
round in 220 has no observation. We detect such holes
and fill them with interpolation from the previous ob-
servation.

In addition, we sometimes get multiple observations
per round for a single target IP address. About 3%
of our observations have duplicate responses, usually a
timeout (non-response) followed by a negative response
(an error code). These duplicates are rare, and some-
what non-uniformly distributed (for example, about 6%
of blocks have over 100 addresses with at least one du-
plicate response during the whole survey time). When
we get duplicate responses, we keep the most recent ob-
servation, thus the negative response usually overrides
the timeout.

Finally, we observe that the process of associating
the IP address of an ICMP reply with its request is not
perfect. Multi-homed machines sometimes reply with
an address of an interface other than the one which
was targeted, the phenomena of IP address aliasing in
topology discovery (as described in early work [11] and
recent surveys [14]). Since we know all the addresses of
each probe we send, we filter replies and discard unin-
terpretable responses.

3.2 Probes to Outages

Given two weeks of responses from all IP addresses
in a block now organized into rounds, we can identify
potential outages when we see sharp drops and increases
of the overall responsiveness of the block.

Our probing of entire blocks distinguishes our method-
ology from prior work which typically uses only a single
representative per block. Although it sends 256 times
more traffic, we show in Section 4.8 that use of a single
representative per block results in significant numbers
of observation errors. Probing can suffer errors due to
lost probes or replies, or a transient failure of computer
behind address (perhaps due to a machine reboot), or

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  500  1000  1500  2000c
o

v
e

ra
g

e
 (

C
(i
))

round (i, 11 minutes)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  500  1000  1500  2000c
o

v
e

ra
g

e
 (

C
(i
))

round (i, 11 minutes)

Figure 1: Probe responses (top) and outage evaluation
(bottom) for one /24 block with an outage at round
1640. For probes, green shows positive response; black,
no response; blue , not probed (rounds beyond 1825).
The evaluation (bottom) shows coverage C(i) as the top
black line, and the outage threshold (1− ρ)C̄(i) on the
bottom. Dataset: Survey S30w .

small power or hardware failures. Single probing can be
vulnerable to some of these errors and interpret a small
error as an outage for the whole block. Our approach of
considering the entire block, with 256 addresses over 11
minutes, is naturally robust to individual or very brief
errors and potential false conclusions.

Before defining coverage, we first define what we ob-
serve about individual addresses. Let rj(i) be 1 if there
is a reply for the address j (the last octet of the address)
in the block at time i, and 0 if there is no reply, or the
error replies network or host unreachable.

rj(i) =

{

1, responsive
0, otherwise

Figure 1 shows a graphical representation of rj(i),
where each green dot indicates a positive response, while
black dots are non-responsive (the blue area on the right
is after the survey ends). For this block, many addresses
are responsive or non-responsive for long periods, as
shown by long, horizontal green or black lines. How-
ever, there is a certain amount of churn as machines
come and go.

The coverage of this block, at round i, is defined as:

C(i) =
1

Ns

Ns
∑

j=1

rj(i)

(Where Ns = 256 is the number of IP addresses in
the block.) C(i) is a timeseries (i ∈ [1 . . Nr]), which
represents the overall responsiveness of a block across
the whole survey period.

A severe drop and later increase in C(i) indicates an
outage for the block. As an example, the black band in
Figure 1 shows an outage from round 1640 to 1654. We
plot C(i) of this block in Figure 1, when C(i) (black
line) drops severely we know an outage starts.

Algorithm 1 formalizes our definition of “a severe
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Algorithm 1 Outage detection for a block

Input: C(i): timeseries of coverage, Nr: number of
rounds
Output: L: list of outage (start, end) time tuples
Ω(i): binary timeseries of block down/up information.
Parameters: w: number of rounds to look back, ρ:
drop/increase percent to decide outage start/end

L = φ
Ω(i) = 0, i ∈ [1..Nr]
for all i ∈ [w + 1..Nr] do

Ĉ = 1

w

∑i−1

j=i−w C(j) // running average

if C(i) < (1− ρ)Ĉ then

// severe drop ⇒ outage start
last outage start← i

else if Ĉ < (1− ρ)C(i) then

// severe increase ⇒ outage end
L = L ∪ {(last outage start, i)}
for all j ∈ [last outage start..i] do

Ω(i) = 1
end for

end if

end for

return L, Ω(i)

drop”: we keep a running average of coverage over win-
dow w (by default, 2 rounds or 22 minutes) and watch
for changes more than a threshold value ρ (by default,
0.9).

The result of this algorithm is a list of outages and a
binary-valued timeseries Ω(·). This timeseries Ω(i), i ∈
[1..Nr], indicats when (i) the block is down (Ω(i) = 1)
or up (0):

Ω(i) =

{

1, blockdown
0, otherwise

A typical two-week dataset is 70GB (compressed),
with about ten billion records. We do most processing
using Hadoop on a 120-core compute cluster, using a
three-step map/reduce job. While we have not tried to
optimize our code, we can turn observations into clus-
tered events in about 80 minutes.

Because this algorithm detects changes in C(·), it
only works for blocks where a moderate number of ad-
dresses respond. We typically require 10% of addresses
in a block to respond, on average, over the entire survey
(C̄ = (1/Nr)

∑

i C(i) ≥ 0.1). Our selection of 10% is
somewhat arbitrary; if we define α = 0.1 as this thresh-
old, it is limited by the precision of only Ns = 256
addresses in a /24 combined with the need to detect
changes in ⌊α(1 − ρ)Ns⌋, requiring α > 0.05 in prac-
tice. In Section 4.4 we review the α parameter of our
approach, showing that α = 0.1 is reasonable choice.
Table 1 shows how many blocks are analyzable for Sur-
vey S30w .

category blocks percentage

all IPv4 addresses 16,777,216

non-allocated 1,709,312
special (multicast, private, etc.) 2,293,760
allocated, public, unicast 12,774,144 100%

non-responsive 11,644,391 91%
responsive 1,129,753 9% 100%

probed 22,381 2%
too sparse, C̄ < α 11,752 1%
analyzable, C̄ ≥ α 10,629 1%

Table 1: Subsetting for blocks that are probed and
analyzable (C̄ ≥ 0.1), for Survey S30w . Measurements
are in numbers of /24 blocks.

3.3 Visualizing Outages

With the above algorithm to find block-level outages,
we next develop a simple clustering algorithm to group
block-level outages in two dimensions: time and space.
We use this algorithm for visualization only; in the next
section we show a second clustering algorithm that re-
laxes the two dimensional constraint.

Our 2-D clustering algorithm (Algorithm 2) orders
blocks based on a simple exclusive-or-based distance
metric. For blocks m and n, with binary-valued out-
age timeseries Ωm(i) and Ωn(i), we define distance:

dv(m,n) =

Nr
∑

i=1

Ωm(i)⊕ Ωn(i)

Outages for blocks m and n are identical if dv(m,n)
is zero.

Figure 2 shows the result of visualization clustering
for Survey S38c . The x-axis is time (from 2011-01-27
to 2011-02-10), each row shows the Ωj uptime for a
different /24 block j. We do two steps of filtering (as
shown in Table 1): first we exclude the 11,572 sparse
blocks where C̄(i) < α; then for the reamining 10,629
blocks, we plot only the 500 blocks with most outages.
Color is keyed to the country to whom each block is
allocated.

We discuss the details of this survey in Section 4, but
there are two clusters of blocks that have near-identical
outage end times. The cluster labeled (a) covers 19 /24s
that are down for the first third of the survey; it cor-
responds to the Feb. 2011 Egyptian Internet shutdown.
The cluster labeled (b) covers 21 /24 blocks for a slightly
longer duration; it is an outage in Australia concurrent
with a cyclone.

3.4 Outages to Correlated Events

We next wish to associate outages for specific blocks
into network events; we use these events later in Sec-
tion 4 to relate the outages we see to ground truth out-
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Figure 2: The 500 largest outages of S38c , x axis: time, y axis: address space (blocks). Colors represent countries.

Algorithm 2 Two-dimensional clustering of blocks for
visualization.
Input: A: the set of all blocks in a survey, with outage
information
Output: B: list of survey blocks, ordered by distance

start with block m ∈ A with smallest
∑Nr

i=1
Ωm(i)

(rounds down)
A = A \ {m}
B.append(m)
while A 6= φ do

for all n, s.t. dv(m,n) = 0 do

A = A \ {n}
B.append(n)

end for

// pick the next most similar block:
find m′ s.t. dv(m,m′) ≤ dv(m,n)∀n ∈ A
A = A \ {m′}
B.append(m′)
m = m′

end while

return B

ages based on routing and news. While visualization is
helpful, the two-dimensional constraint of Algorithm 2
over-constrains clustering since each block can only be
adjacent to only two others.

We therefore develop a second clustering algorithm
that relaxes this constraint to group block-level outages
into network-wide events. We identify events based on
similar start- and end-times of outages. This approach
may fail if there are two unrelated events with similar
timing, but we believe that timing alone is often suffi-
cient to correlate larger events in today’s Internet.

Given two outages o and p, each having a start round
s(o) and end round e(o) (or s(p) and s(p) for p), we
measure their distances by the metric de:

Algorithm 3 Finding correlated events

Input: O: the set of all outages in a survey
Output: E: the set of network outage events, each
containing one or more outages
Parameters: θ: the threshold to decide if two outages
belong to same event

while O 6= φ do

find first occurring outage o ∈ O
e = {p : ∀p ∈ O, s.t. de(o, p) ≤ θ }
O = O \ e
E = E ∪ {e}

end while

return E

de(o, p) = |s(o)− s(p)|+ |e(o)− e(p)|

Outages that occur at exactly the same time have
de(o, p) = 0. Since routing events often require some
time to propagate [18], and outages may occur right on
a round edge, we consider outages with small distance
(less than θ) to be part of the same event. Currently
we set θ = 2 rounds (22 minutes). We have also stud-
ied much larger θ = 10 (110 minutes), showing similar
results, although less strict matching aggregates many
more small events as shown in Section 5.1.

Given this distance measure, event clustering follows
by grouping all outages that occur at similar times (de(o, p) ≤
θ) as shown in Algorithm 3.

3.5 Outages to Internet Availability

Outages and network events are what happens in the
network, but they are too raw to characterize network
stability as a whole. We therefore define several statis-
tical measures of Internet availability.

As shown in Figure 3, some network events like event
(a) affect many blocks for a short period (here, about
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Figure 3: The 900 largest outages of S30w , x axis: time, y axis: address space (blocks). Colors represent countries.

20 minutes), while others like (b) and (c) affect fewer
blocks but for longer periods of time (here 2 to 3 hours).
We discuss these events in detail in Section 4.2), but
they suggest that marginal distributions of outages would
be useful to characterize this variation.

Given Nb blocks and Nr rounds in a survey, we can
compute the time- and space-specific sums:

Ω̄I(i) =

Nb
∑

b=1

Ωb(i), Ω̄B(b) =

Nr
∑

i=1

Ωb(i)

And we can define the overall outage “area” for a
survey as the fraction of time and space that was out
over all observations:

Ω̄ =
1

NbNr

Nr
∑

i=1

Nb
∑

b=1

Ωb(i)

We use these metrics to evaluate network performance
over time in Section 4 and 5.

4. VALIDATING OUR APPROACH

We next validate our approach. We first use sev-
eral sources to confirm our observations, including BGP
announcements, operator discussions, and public news
sources; we evaluate both large outages (Section 4.2)
and a random sample of all outages (Section 4.3) to
avoid any bias due to outage size. We also consider
how much of the Internet we cover (Section 4.4).

We discuss the stability of our results as a function of
observation location (Section 4.5) and date (Section 4.6).
And finally we compare our approach to current ap-
proaches in Section 4.8.

4.1 Validation Data Sources andMethodology

In Section 3, we described in detail how we correlate
Internet outages across many different blocks into dif-
ferent events. However, we must understand how these
observations correspond to real-world events. Confirm-
ing our observations are valid is not straightforward,
since events are months in the past, and network prob-
lems are ephemeral and can occur anywhere in the In-
ternet. We primarily use public archives of BGP routing
information to verify our data-plane observations with
control-plane data. For large events, we also use public
news sources to find the root cause.

We next review the datasets we use, how we relate
an event to BGP updates in time, and how we relate an
event to different Autonomous Systems (ASes) in space.

Datasets: Similar to the datasets of our previous
work [3, 12], we consider 24 separate 2-week surveys
in this paper, taken from two locations over almost 18
months, as shown in Table 2. Of these datasets, most
validation uses S30w , with additional case studies drawn
from S38w , S38c , S39w and S39c . We use all datasets
to evaluate the stability of our approach in Sections 4.5
and 4.6.

We validate our work with BGP data from Route-
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Start Duration Blocks
Survey Date (days) (Analyzable)

S29w 2009-11-02 14 22371 (46%)
S29c 2009-11-17 14 22371 (45%)
S30w 2009-12-23 14 22381 (47%)
S30c 2010-01-06 14 22381 (48%)
S31w 2010-02-08 14 22376 (48%)
S31c 2010-02-26 14 22376 (49%)
S32w 2010-03-29 14 22377 (48%)
S32c 2010-04-13 14 22377 (48%)
S33w 2010-05-14 14 22377 (48%)
S33c 2010-06-01 14 22377 (48%)
S34w 2010-07-07 14 22376 (47%)
S34c 2010-07-28 14 22376 (47%)
S35w 2010-08-18 14 22376 (47%)
S35c 2010-09-02 14 22375 (47%)
S36w 2010-10-05 14 22375 (48%)
S36c 2010-10-19 14 22375 (48%)
S37w 2010-11-24 14 22374 (48%)
S37c 2010-12-09 14 22373 (48%)
S38w 2011-01-12 14 22375 (47%)
S38c 2011-01-27 14 22373 (47%)
S39w 2011-02-20 16 22375 (52%)
S39c 2011-03-08 14 22375 (49%)

S39w2 2011-03-22 14 22374 (49%)
S40w 2011-04-06 14 22374 (48%)

Table 2: Internet surveys used in this paper, with dates
and durations. Survey numbers are sequential with a
letter indicating collection location (w: ISI-west in Ma-
rina del Rey, CA; c: Colorado State U. in Ft. Collins,
CO). Blocks are analyzable if C̄ ≥ 0.1.

Views [24] and our local BGP taken near our probing
sites with BGPmon [32].

Relating events and routing updates in time:

To find BGP routing updates relevant to a network
event, we search BGP update archives near the start
and end of that event. We narrow our search to des-
tination prefixes that become unreachable, and search
within 120 minutes of our identified outage time. Our
window is fairly broad because our event timing is pre-
cise to only ±11 minutes, and we know that routing
changes can take minutes to converge.

We then check BGP archives to see if there are rel-
evant matching withdraw and announce messages. We
expect to see relevant withdraw messages before event e
as the prefix becomes unreachable, and announce mes-
sages after e. With both, we claim that e is fully vali-
dated, with just one we claim partial validation.

Relating events and routing updates in space:

Although the above approach validates routing outages
that happen at the destination, we find many outages
occur in the middle of the Internet. Narrowing our
search to just destination prefixes therefore overly con-
strains our search.

When our temporal search fails to identify a routing
problem, we broaden our search to all ASes on the path,
as done by Chang et al. [4] and Fedlmann et al. [10].

We generate an AS-path for the destination prefix by
searching in RouteViews BGP snapshots. Finally, we
then search for BGP withdraw and announce messages
in time windows around the start and end of our net-
work event. Often the first desintation search found an
announce message; in that case we look here for with-
draw messages for an intermediate AS.

Searching intermediate ASes has two disadvantages.
First, the search space is much larger than just con-
sidering the destination prefixes. Second, RouteViews
BGP snapshots are taken every two hours, so we must
widen our window to two hours.

4.2 Network Event Case Studies

We begin by considering three cases where the root
cause made global news, then outages near our collec-
tion points, and finally three smaller events. These
events are medium or larger than typical events we de-
tect. We make no claims that these events are represen-
tative of the Internet in general, only that they demon-
strate how events found by our tools relate to external
observations. In the next section we validate a random
sample of events to complement these anecdotes.

Jan. 2011 Internet Outage: Beginning 2011-01-
25 the Egyptian people began a series of protests that
resulted in the resignation of the Mubarak government
by 2011-02-11. In the middle of this period, the govern-
ment shut down Egypt’s external Internet connections.

Our S38c began 2011-01-27 T23:07 +0000, just miss-
ing the beginning of the Egyptian network shutdown,
and observed the restoration of network service around
2011-02-02 T09:28 +0000. Our survey covered 19 /24
blocks in the Egyptian Internet; they can be seen marked
(a) in Figure 2.

We can confirm our observations with widespread
news coverage in the popular press [29]. We also con-
firm the details that we observe with more technical dis-
cussions [5,6], and with analysis of BGP data by seeing
both withdraws before event and announces after event.
We observe outages in a number of Egyptian ASes, in-
cluding AS8452, AS24835, and AS24863. We see that
all Egyptian blocks in our survey go down, and the tim-
ing is consistent with BGP messages. We conclude that
our approach correctly observed the Egyptian outage.

Feb. 2011 Libyan Outage We also examined the
Libyan outages 2011-02-18 to -22 [7]. This period was
covered by S38c , but this survey contains only one Libyan
block, and coverage for that block was too low (0.014)
for us to track outages. Our requirement for blocks
with moderate coverage, combined with measuring only
a sample of the Internet and Libya’s small Internet foot-
print (1168 /24 address blocks as of March 2011 [31])
shows that we can easily miss smaller outages.

Feb. 2011 Australian Outage: We also observe
a significant Australian outage in S38c . Marked (b)
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in Figure 2, by our observations this outage involved
about as many blocks as the Egyptian outage. We can
partially validate our outage with BPG, but its root
cause is somewhat unclear. Tropical Cyclone Yasi made
landfall in the Cairns area of Queensland on 2011-02-
03. There were news reports about network and power
outages around this time, with service outages for Tel-
stra and Optus, two of the largest Australian ISPs [27].
The recovery of the network seems consistent with news
reports about telecommunications repairs. However,
the start of the outage in our observations is before
our survey begins on 2011-01-27, at least five days be-
fore the cyclone makes landfall. We observe BGP an-
nounce messages for the target blocks around 2011-01-
27 T09:00 +0000, before our survey begins, but we can-
not locate relevant withdraw messages.

Our observations suggest that this Australian outage
was about as large and long-lasting as the Egyptian out-
age, yet the Egyptian Internet outage made global news
while the Australian outage was little discussed outside
Australia. The Egyptian outage was more newsworthy
both because of the political significance, and because
it represented nearly all Egyptian traffic. Australia, by
comparison, has eight times more allocated IPv4 ad-
dresses than Egypt, so though the Australian outage
may be as large as the Egyptian one, it does not have
the same country-wide impact. We believe this example
shows the importance of tools such as ours to quantify
the size and duration of network outages.

March 2011 Japanese Earthquake: In survey
S39c , we observe a Japanese Internet outage, as shown
in Figure 4 marked (a). This event is confirmed as an
undersea cable outage caused by the Tōhoku Japanese
earthquake 2011-03-11 [22].

Unlike most other outages we observe, both the start
and the recovery from this outage vary in time. For
most blocks, the outage begins at the exact time of
the earthquake, but for some it occurs two hours later.
Recovery for most blocks occurs within ten hours, but
a few remain down for several days.

Local Outages: In addition to outages in the Inter-
net, they also happen near our monitors. (We watch for
outages in our data, and by talking with network op-
erations.) Survey S39w shows two such events. In Fig-
ure 5, event (b) was planned maintenance in our server
room; the blue color indicates absence of data. Event
(c) was a second planned power outage that took down
a router near our survey machines although probes con-
tinued running. Both of these events span all probed
blocks, although Figure 5 shows only 500 of the blocks.
Finally, event (a) is due to temporary firewalling of our
probes by our university due to a miscommunication.

These examples show that our methods have some
ability to distinguish local from distant outages. They
also revealed an interaction of our probing with Linux

valid. with. ann. count outage sizes
no — — 31 (62%) 1 to 57, median 4
partial Yes — 1 (2%) 24
partial — Yes 10 (20%) 1 to 27, median 15
yes Yes Yes 8 (16%) 1 to 697, median 21

50 (100%)

Table 3: Validation of algorithm with counts of missing
(—) or found (Yes) withdraw and announce messages,
for randomly selected events from Survey S40w . Counts
in events; sizes in blocks.

iptables. In outage (c), the number of active connec-
tions in iptables overflowed. Connection table over-
flow produces random ICMP network unreachable error
replies at the probing host. We were able to confirm
and filter these from our data, and have since disabled
ICMP connection tracking.

Three Small Events: Finally, we explore three
small events in survey S30w as examples of “typical”
network outages. These events are shown on Figure 3.

Verizon outage 2010-01-05 T11:03 +0000: In Fig-
ure 3, event (a) is a short outage (about 22 minutes)
affecting many blocks (about 331 blocks). Many of
these destinations belong to AS19262, a Verizon AS.
Examination of RouteViews BGP archives confirms this
event. Examination of the AS-paths of affected blocks
suggests that the outage occurred because of a prob-
lem at AS701, another Verizon AS, present in the path
of all but 0.6% of destinations. It also confirms the
duration, with the BGP withdraw-to-announce time of
about 20 minutes.

AT&T/Comcast 2010-01-05 T07:34 +0000: In Fig-
ure 3, event (c) is an 165 minute outage affecting 12
blocks. Again, we confirmed this outage in RouteViews
BGP archives. The affected destinations were AS7132
(AT&T) and AS7922 (Comcast). Routing archives con-
firm withdraws and returns of these routes, and AS-
paths suggest the root cause was in AS7018 (AT&T
WorldNet), likely upstream of the destinations.

Mexico outage 2010-12-29 T18:36 +0000: The event
labeled (b) in Figure 3 corresponds to a large number of
destinations in AS8151, a Mexican ISP (Uninet S.A. de
C.V.). The event is fairly large and long: 105 blocks for
120 minutes. We were unsuccessful in identifying the
root cause of this outage in RouteViews data. This sur-
vey pre-dates our local BGP feed, and all RouteViews
BGP archives are several ASes from our probing site,
suggesting the outage may have been visible to us but
not seen at the RouteViews monitors, or that some of
these blocks may be using default routing as described
by Bush et al. [2].

4.3 Validation of Randomly Selected Events

Our outage case studies in the prior section were se-
lected because of their importance and so are biased
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Figure 4: The 500 largest outages in S39c , x axis: time, y axis: address space (blocks). Colors represent countries.

Figure 5: The 500 largest outages in S39w , x axis: time, y axis: address space (blocks). Colors represent countries.
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Figure 6: CDF distribution of block mean coverage (C̄
or density) in S30w , S38c and S38w .

towards larger events. To provide a more careful study
of the validity of our approach, we randomly pick 50
events from a total of 1295 events in Survey S40w . We
then attempt to confirm each using BGP information
as described in Section 4.1.

Table 3 summarizes our results. We are able to fully
or partially confirm 38% of the cases by finding either
corresponding BGP withdrawal or announcement mes-
sages. Randomly selected events are often small (as
confirmed in Section 5.1), and we are more able to ver-
ify large events. One possible reason smaller events do
not appear in the control plane is that smaller networks
more often use default routing. Bush et al. describe
how default routing can result in “reachability without
visibility”, as addresses may be reachable without vis-
ibility to the BGP control plane [2]. Our results are
consistent with a corollary: “invisible unreachability”,
as these default-routed addresses can go down without
corresponding BGP messages. We are currently work-
ing to verify this hypothesis with additional validation.

4.4 Coverage

While the prior case studies establish that we observe
real outages and can confirm them in routing and news,
our approach only applies to blocks where several ad-
dresses respond to our probes. We currently require
that, on average, 10% of addresses in a blocks to re-
spond (α = 0.1 in Section 3.2).

To understand how this requirement affects the cov-
erage of our approach, Figure 6 shows the CDF of mean
coverage per block, for all blocks in Surveys S30w , S38c

and S38w . (Distributions for each are nearly identical.)
This graph shows that we do not have sufficient re-

sponsiveness in about half of the blocks to draw any con-
clusions about them using our algorithms. This analy-
sis actually overestimates our coverage compared to a
random sample of Internet blocks, because the survey

population is drawn from blocks that have had some
response from a prior Internet census [12].

While our coverage is limited, no strategy dependent
on active probing will be successful when probing non-
responsive blocks. The approximately 11,000 blocks for
which we have sufficient information to track do rep-
resent about 1% of the responsive blocks in the Inter-
net, a large enough sample to provide stable results as
shown in the next two sections. In addition, we know
which blocks are unsuitable for analysis, and so make
no claims about their status.

To put our coverage into perspective, we compare
it to the coverage of the Hubble system [13]. Hubble
probes only one address in each /24 block (the address
ending in .1). While this address is the most likely to
respond [8] among all 256 last octets, it only responds
about 0.86% of the times. Thus our coverage should
be better than Hubble’s. Another alternative would be
to track and probe the address most likely to respond,
using a hitlist [8]. However that work suggests that
hitlist predictions is at best about 50–60% accurate,
suggesting that hitlist-based probing should have cov-
erage about equal to ours. Bush et al. use a number of
representatives for each target prefix [2], although such
a list is likely challenging to maintain. Best coverage
might be obtained by combining hitlists and our full
probing, to track both sparse but stable blocks and less
sparse but dynamic blocks; such a combination is future
work.

4.5 Evaluation from Different Locations

Probing location can affect evaluations of network
outage. If the first hop ISP supporting the probing site
were unreliable, we would underestimate overall net-
work reliability. In Section 4.2 we discussed how we can
detect and correct for local outages that would skew our
results; here we address this question more generally by
comparing results from two different probing sites.

Our probing takes place regularly from two different
sites, ISI and CSU, each with several upstream network
providers. Probing site is indicated in survey names,
with “w” for ISI (ISI-west), and “c” for Colorado State.
Network service at ISI is through Los Nettos, a L.A.-
based regional network with peerings with Level3 and
Verio; and with connections to Internet2 via USC and
CalIT2. CSU has connections to Level3, Qwest, Com-
cast, Internet2 and NLR through Front Range GigaPop,
a non-profit Colorado-based regional network.

To evaluate if ISI and CSU differ, Figure 7 indicates
ISI surveys with open symbols and CSU with filled
symbols, and it calls out survey location at the top of
the graph. Surveys generally alternate with CSU fol-
lowing immediately after ISI completes, although Sur-
vey S39w2 was an extra survey, and Survey S40c was
unavailable at time of analysis. Visually, this graph
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Figure 7: Statistics of Internet events, outages and out-
age percentage over time. Outages for S29c are 40,627,
omitted from the graph for scale. Dotted lines show
statistics with local outages removed.

suggests that ISI and CSU provide similar results.
To strengthen this comparison we carried out Stu-

dent’s t-test to evaluate the hypothesis that our esti-
mates of events, outages, and Ω̄ for the two sites are
equal. The test was unable to reject the hypothesis at
95% confidence, suggesting the sites make statistically
similar observations.

4.6 Evaluation at Different Dates

In addition to location, we wish to know how consis-
tent the results are across time. Again, the trends in
Figure 7 suggest fairly stable results over time, with two
exceptions. Surveys S29c and S39w each had extended
local outages, for about 41 and 4 hours, respectively.
These local outages show up as peaks in on the outage
count and Ω̄ estimates; they do not change the event
estimate because each outage is mapped to a single net-
work event.

We can detect local outages (Section 4.2). When we
remove them from the datasets, as shown in the dotted
lines, our estimates of network stability in these surveys
are the same as others.

We conclude that the network is fairly stable, with a
mean outage level (Ω̄) around 0.34% (standard devia-
tion 0.1%) after local outages are removed (or 0.50% if
not removed).

4.7 Evaluation By Quarter Components

Each of our survey dataset uses four components (quar-
ters) as probing target blocks: stable and fixed blocks;
stable but randomly selected blocks; randomly chosen
blocks, with an odd third octet; and randomly chosen
blocks, with an even third octet.

To validate if our results are skewed by selection of
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Figure 8: Downtime percentage over time, for 4 differ-
ent quarters of our dataset.

blocks, we plot the outage percentage of the four quar-
ters over time (Figure 8). We also plot the outage
percentage quartiles of all four quarters in the right
part of Figure 8 (raw data in Table 4), showing we
are slightly under-estimating the Internet’s outages, as
Quarter 1 (stable fixed blocks) has less overall outage
rates (2.5%), while other three quarters’ outage rates
are around 3.3%. Our explanation is Quarter 1 are the
most stable blocks in our datasets, which are typically
broadband or server blocks. The final reported results
are not skewed much since the other three quarters dom-
inate.

4.8 Comparison with Other Approaches

Our approach probes all addresses in a block to eval-
uate outages. The alternative for active probing is to
probe a single address, possibly multiple times, as is
done in Hubble [13]. Probing an entire block is much
more network intensive, but by avoiding the require-
ment to select a representative address in each block it
covers different blocks as discussed in Section 4.4.

In this section we quantify the accuracy of three strate-
gies for active probing: all, our approach, probing all
addresses; single, an approximation of Hubble’s approach,
probing only the .1 address of each block; hitlist, the
approach using the best representative address of each
block [8]; and any, an extreme strategy where we probe
all addresses, but consider the block up if any single
address responds. We simulate all three methods by re-
playing a Survey S30w in the results shown here. (We
get very similar results when we also evaluate Surveys S38w

and S38c .)
The single case only approximates Hubble; single is

slightly pessimistic since it tries one probe per round,
while to account for packet loss, Hubble probes up to
seven times per round if it gets no reply. Our single-
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Quarter Mean Min Max q1 q2 q3

1 0.0025523 0.000866867077143 0.011800197257 0.00161058742452 0.00193414267938 0.00293013873361
2 0.0032409 0.00107654505386 0.0128316850899 0.00232495925303 0.00270794634197 0.00332295497696
3 0.003587 0.00176366728465 0.0129180618287 0.00278342657238 0.00294431314472 0.0035681346342
4 0.0033624 0.00202058108227 0.0136045782656 0.00237974571976 0.00269681834101 0.00343634416036

Table 4: Outage percentage statistics of four quarters.

all single single hitlist
vs. any vs. any vs. all vs. all

true positives (A ∧ B) 99% 56% 56% 79%
true negatives (Ā ∧ B̄) 0.30% 0.31% 0.31% 0.02%
false positives (A ∧ B̄) 0.01% 0% 0.01% 0.18%
false negatives (Ā ∧ B) 0.03% 44% 44% 20.8%

Table 5: Comparing amount of data considered when
estimating outage.

probe estimates are therefore too high by the degree to
which packet loss occurs; loss is typically estimated at
a few percent. (Note that all and any are robust to
packet loss since they consider multiple probes to make
an estimate.)

To compare alternatives, we evaluate methods A and
B in pairs, treating A as a trial and B as truth, then
count true and false positives (up) and negatives (down)
by comparing A against B.

Table 5 compares several combinations of the three
amounts of input. We see that our approach (all) is both
correct and complete—it misrepresents outages far less
than 1% of the time, because it considers all addresses
in the block. The penalty of all is that its coverage is
lower as it refuses to classify some blocks as discussed
in Section 4.4.

Picking a single address, instead, has a fairly high
false negative rate (44%). This result means that sys-
tems that estimate network outages by tracking a sin-
gle address are likely to over-estimate instability of the
network. Using the best representative address (hitlist)
compensates but cannot eliminate this error. We be-
lieve the source of this error is because for blocks with
dynamic address assignment, there is no good single
address, as discussed previously [8].

5. EVALUATING INTERNET OUTAGES

Using our new approach to actively measure outages,
we next look at the characteristics of outages and events
for the Internet as a whole. We look at this data in
two ways, first exploring event and outage durations
(Section 5.1), then examining network wide stability by
exploring marginal distributions (Ω̄B and Ω̄I) across In-
ternet space and time in Section 5.2.

Our observations are fairly stable across both survey
location (Section 4.5) and survey time (Section 4.6),
at least after detecting and correcting for local outages

(such as shown in Figure 7). Here we use five surveys
(S30w , S38w , S38c , S39w , S39c) to confirm the consis-
tency of results. We believe our overall results reflect
Internet-wide stability within the limits of measurement
error, at least as observed from the United States.

5.1 Durations and Sizes of Internet Outages
and Events

We first consider the durations and sizes of block-level
outages and network-wide events (Figure 9).

Beginning with outages (Figure 9a), we see that half
to three-quarters of outages last only a single round.
Our current analysis limits precision to one round (11
minutes), but possible future work could examine indi-
vidual probes to provide more precise timing. All sur-
veys but Survey S39w have the same trend; Survey S39w

diverges due to its local outages, but joins the crowd
when they are removed (dotted line S39w’ ).

We also see that 80% of outages last less than two
hours. While there is no sharp knee in this distribution,
we believe this time period is consistent with human
timescales where operators detect and resolve problems.

Network events group individual blocks into time-
correlated causes, and in Figure 9b event durations,
computed as the mean duration of each event’s com-
ponent outages. This figure shows that about one-third
of single-round outages cluster into single-round events,
since about 40% of events last one round instead of 50–
75% of outages. With less strict clustering (θ = 10
instead of θ = 2) this trend grows, with only 20% of
events being one round long.

About 60% of events are less than hour long, but
there is a fairly long tail of outages to the limits of our
observation (2 weeks or 20,000 minutes).

Because local outages correspond to a single event,
Survey S39w resembles the other surveys both with and
without removal of local outages, and Survey S39w is
indistinguishable from S39w’

Finally, Figure 9c shows event sizes. Almost all events
are very small: about 62% of events effect only a single
block, and 95% are 4 blocks or smaller. Nevertheless, a
few large outage events do occur, as discussed in Sec-
tion 4.2.

5.2 Towards an Internet-wide View of Outages

We next shift our attention to the Internet as a whole.
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Figure 9: Cumulative distributions of outage and event durations, from Surveys S30w , S38c , S38w , S39c , S39w . The
dotted line is Survey S39w with local outages removed. The CDFs of (a) and (c) focus only on portions of the graph.
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Figure 10: Marginal distributions of outage, by round and block, from Surveys S30w , S38c , S38w , S39c , S39w . The
dotted line is Survey S39w with local outages removed. The CDF for (a) starts at 80%.
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How often is a typical block down, and how much of
the Internet is inaccessible at any given time? To un-
derstand these questions, Figure 10 shows the marginal
distributions of outages by round and block.

First we consider distribution by rounds in Figure 10a.
As expected, we see the vast majority of the blocks in
our survey are always up: from 92 to 95% of blocks have
no outages over each two week observation. The excep-
tion is Survey S39w , where two local outages partitioned
the monitors from the Internet for about two hours.
When we remove local outages, this survey (as the dot-
ted line) becomes consistent with the others. About 2%
of blocks are out once (the step at 11 for one round) and
the remaining tail follows the distribution of Figure 9a.

Turning to space, Figure 10b shows marginal distri-
butions of Ω̄B . Survey S39w is again an outlier due to
large local outages, but it resembles the others when
local outages are removed.

Considering Figure 10b as a whole, we see that almost
always, some part of the Internet is inaccessible. Typ-
ically 20 to 40 blocks of our survey are unreachable at
all times. This result is consistent with our observations
from Figure 7 that show 0.2% to 0.4% of the Internet
is out, averaged over entire surveys. In addition, we see
a set of unusually large outages in Survey S38c , where
the 50%ile outage is around 38 blocks, but 80%ile is at
63 blocks. We discuss the root causes for these outages
Section 4.2 and Figure 2.

Our analysis of Internet-wide outages is preliminary,
but it illustrates the utility of automated methods for
detecting and quantifying outages in the data plane.

6. CONCLUSIONS

Researchers have studied Internet outages with control-
and data-plane observations for many years. We show
that active probing of a random sample of /24 blocks
provides a powerful new method to more accurately
characterize network outages, and we described algo-
rithms to visualize those outages and cluster them by
time into network-wide events. We validate this ap-
proach through several case studies, and more rigor-
ously through a random sample of network events. We
also show that our approach is stable across time and lo-
cation, provided one corrects for outages at or very near
the observation site. While probing of entire /24 blocks
is more network intensive, we find it is quite accurate,
particularly compared to use of single representative ad-
dresses. Finally, we use our new approach to begin to
study Internet-wide reliability and typical outage size
and duration.
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