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ABSTRACT

Parts of the Internet are down every day, from the intentional

shutdown of the Egyptian Internet in Jan. 2011 and natural

disasters such as the Mar. 2011 Japanese earthquake, to the

thousands of small outages caused by localized accidents,

and human error, maintenance, or choices. Understanding

these events requires efficient and accurate detection meth-

ods, motivating our new system to detect network outages by

active probing. We show that a single computer can track

outages across the entire analyzable IPv4 Internet, probing

a sample of 20 addresses in all 2.5M responsive /24 address

blocks. We show that our approach is significantly more
accurate than the best current methods, with 31% fewer

false conclusions, while providing 14% greater coverage and

requiring about the same probing traffic. We develop new al-

gorithms to identify outages and cluster them to events, pro-

viding the first visualization of outages. We carefully vali-

date our approach, showing consistent results over two years

and from three different sites. Using public BGP archives

and news sources we confirm 83% of large events. For a

random sample of 50 observed events, we find 38% in partial

control-plane information, reaffirming prior work that small

outages are often not caused by BGP. Through controlled

emulation we show that our approach detects 100% of full-

block outages that last at least twice our probing interval.

Finally, we report on Internet stability as a whole, and the

size and duration of typical outages, using core-to-edge ob-

servations with much larger coverage than prior mesh-based

studies. We find that about 0.3% of the Internet is likely to

be unreachable at any time, suggesting the Internet provides

only 2.5 “nines” of availability.

1. INTRODUCTION

∗This technical report updates ISI-TR-678 with substantial
editorial changes and new experiments in Section 5.6.2.
The authors are partially supported by the US DHS, con-
tract number NBCHC080035, and Heidemann by the NSF,
grant number CNS-0626696. The conclusions of this work
are those of the authors and do not necessarily reflect the
views of DHS or NSF.

End-to-end reachability is a fundamental service of
the Internet. Network outages break protocols based
on point-to-point communication and often harm the
user’s experience of Internet applications. Replication
and content delivery networks strive to cover up out-
ages, but in spite of decades of research on network
reliability, Internet outages are still pervasive, ranging
from minutes to hours and days. Outages are triggered
by system, link or router breakdowns [32,42]. Causes of
these failures include natural disasters [32, 39], human
error [31], and political upheavals [9–11, 41]. On occa-
sion, routing changes can cause user-visible problems as
the network reconfigures [27,28,40].

The contributions of our work are to provide a new
method that can systematically find outages, unreach-
able blocks of adjacent network addresses, for all of
the analyzable IPv4 Internet—a method that provides
better accuracy and coverage than existing approaches,
particularly for small events. Second, we carefully val-
idate our approach comparing onset and duration of
outages to root causes both for widely publicized events
such as the Jan. 2011 Egypt outage, and for randomly
sampled small outages. And finally, to provide a sta-
tistical characterization of Internet outages as a whole
and for specific blocks, extending prior evaluation using
meshes to cover the entire network edge.

Our first contribution is our new approach to active
probing, showing that a single computer can track out-
ages over the entire, analyzable IPv4 Internet (the 2.5M
/24 blocks that are suitable for our analysis, see §4.4).
Like prior work [20], we send active ICMP probes to
addresses of each /24 block every 11 minutes. Unlike
it, we develop a new approach of precise probing that
carefully selects a subset of blocks and addresses per
block to reduce probing traffic by a factor of 75, while
retaining more than 90% accuracy for outage detection
(§4). We develop a new method to distill this data into
block-level outage reports (§3.2), defining an outage as
a sharp change in block responsiveness relative to recent
behavior. We interpret the observations of our system
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by correlating block-level outages to discover network-
wide events with two new clustering algorithms. The
first groups outages in two dimensions, time and space,
to provide a general understanding of network behavior,
associate outages to countries, and provide the first vi-
sualization of outages (§3.3). The second, more general
algorithm, finds network-wide events from the start-
and end-times of block-level outages (§3.4).

Several prior systems study network outages—the new
contribution of our approach is significantly greater ac-
curacy than the best current active methods, and op-
eration from a single computer with about the same
probing traffic. Unlike control-plane studies [27, 33],
we detect outages that are not seen in the routing sys-
tem (§5.3), expanding the result observed by Bush et
al. [5]. Unlike previous data-plane studies using active
probing, including DIMES [37], iPlane [30], Hubble [23],
and SCORE [25, 26], our block-level measurements are
considerably more accurate at detecting core-to-edge
outages. Comparisons to Hubble show that our ap-
proach reduces the number of false conclusions by 31%
compared to approaches probing a single representative
per /24 block, with about the same traffic (§5.6). Un-
like network tomography that focused localizing out-
ages [12, 15, 22, 25, 26], we instead focus on tracking
core-to-edge reachability; our work could serve as a trig-
ger for such localization methods. We remove outages
near our vantage points to correct for correlated error
(§6.3). Of course, our approach shares the limitation
of all those based on active probing: it can only report
on the visible Internet, those willing-to-respond blocks;
currently we can monitor about 2.5M /24 blocks, about
one-seventh more coverage than Hubble. Recent work
has combined backscatter with routing information to
characterize large outages [13, 14]; we show that active
probing complements this work and is critical to detect
small outages and provide Internet-wide statistics. We
cover related work more generally in §2.

The second contribution of our work is to validate
the accuracy of active probing for outage detection (§5).
Even though we probe from a single location, we draw
on data sources taken from three vantage points in Cal-
ifornia, Colorado, and Japan, to show our results are
largely insensitive to location (§5.5). We study more
than 30 observations taken over more than two years,
using 2 week surveys of all addresses in a 1% sam-
ple of Internet blocks [20], and a 24-hour measurement
taken across all suitable /24 blocks in the Internet in
Sep. 2011 to show that our results are stable over time.
We validate our approach with BGP archives and news
sources, for selected large events and a random sample
of 50 observed events. We confirm 5 of 6 large events
(83%, §5.2), including the Jan. 2011 Egyptian outage,
the Mar. 2011 Japanese earthquake, and equally large
but less newsworthy events. Our random sample of all

events confirm prior work by Bush et al. [5] showing
that small outages often do not appear in control-plane
messages, since partial control-plane information shows
only 38% of small outages we observe (§5.3). We em-
ulate outages of controlled length to investigate false
availabilities. We miss very short outages, and detect
100% of full-block outages that last at least twice our
probing interval (§5.4).

Our final contribution is to evaluate Internet stability
as a whole (§6). We show that, on average, about 0.3%
of the Internet is inaccessible at any given time. The In-
ternet blocks have around 99.7–99.8% availability, only
about 2.5 “nines”, as compared to the “five nines” tele-
phone industry. While prior work has studied paths
between meshes of hundreds of computers and thou-
sands of links, and anecdotes about the Internet as a
whole abound, we provide much broader coverage with
quantitative data about all responsive 2.5M edge /24
blocks. We believe these statistics can establish a base-
line of Internet reliability, allowing future comparisons
of Internet reliability across ISPs or geography.

Data from this paper is available at no charge [43].

2. RELATEDWORK

We next review prior studies of network stability based
on control-plane, data-plane, and other observations.

2.1 Control-plane Studies

Several prior efforts use control-plane data to study
Internet outages. Markopoulou et al. use IS-IS up-
date messages to classify failures in Sprint’s network.
They report percentages of outages categorized by layer
(maintenance, router, and optical) [33]. Like them, we
use control-plane data (BGP archives) and out-of-band
information (news reports logs), but we use it only to
validate our results; our outage discovery uses data-
plane probes exclusively.

Omni employs a server in each Autonomous System
(AS) that maintains an AS-level forwarding table to
diagnose routing changes, and overcoming the limita-
tions of public routing information [38]. Omni deploy-
ment therefore requires wide adoption to get good cov-
erage. Our work uses centrally-collected measurement
and analysis, easing deployment.

Labovitz et al. induce controlled routing failures and
study their impact on end-to-end network performance [27].
We find outages directly, including many not due to
routing and invisible to the control plane.

BGP misconfiguration can also be a cause of outages.
Mahajan et al. study routing messages and contact net-
work operators about BGP misconfiguration [31]. They
also use active probing to determine the impact of mis-
configuration on connectivity. They report that 0.2%
to 1% of prefixes suffer from misconfiguration each day.
We confirm their results on Internet reachability, find-
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ing about 0.3% of the Internet blocks are out at any
instant. Our methodology allows detection of all types
of outages (not just BGP-triggered ones), and finds out-
ages not visible to the control plane [5, 23].

Control-plane studies of reachability are necessarily
indirect and thus inherently limited, as discussed by
Bush et al. [5]. There exist ways to alleviate such lim-
its, for example, Huang et al. [21] use a multivariate
method with many BGP sources to detect network dis-
ruptions. However, we show that data-plane measure-
ments are necessary to detect non-control outages, and
so use control-plane information only for validation.

2.2 Data-plane Studies

Direct data-plane measurements can be more accu-
rate than those of control-plane. Choffnes et al. col-
lect information from end systems to detect service-level
network events [8]. Our work is different in that we
probe to the network edge and don’t require extra soft-
ware to run on the end systems. Our system is indepen-
dent of operating systems in the sense that information
from all kinds of end systems can be utilized, as long as
they respond to pings.

Very close to our work, the Hubble system uses con-
tinuous probes to the .1 of each routed /24 block, to
find potential Internet outages [23]. We instead probe
multiple or all addresses in each /24 block. We study
the tradeoff between sampling and accuracy (§5.6.1)
and show our use of multiple representatives per block
greatly reduces the number of false conclusions about
outages (§5.6.2). We also describe new algorithms for
clustering outages for visualization and into network-
wide events.

Cunha et al. run multiple probes to confirm a link fail-
ure and location. They analyze the benefits of numbers
of probes, and improve accuracy with minimal probing
overhead [12]. We also study the tradeoff in probe vol-
ume against accuracy (§5.6.1), but focus on end-system
outage detection rather than specific link failures.

Bush et al. study the reachability of Internet address
space using traceroute to detect incorrect filtering [4],
and find biases in reachability experiments [5]. We pro-
vide additional evidence supporting their observation
that default routes are widely used and that control-
plane measurements underestimate outages.

2.3 Client-supported Analysis

Unlike the above, centrally-run methods, one can also
use client-side measurement support. Several prior groups
have used meshes of measurement computers [1, 17, 26,
35]. Such experiments can provide strong results for
the behavior of the networks between their n vantage
points (typically less than 50), and link coverage grows
as O(n2) for small n, but edge coverage is only O(n).
Without probing outside the mesh, however, these ap-

proaches ultimately study only a small fraction of the
entire Internet. Other methods of active probing, and
our work, aim to provide complete coverage.

In early work, Paxson reports routing failures in about
1.5%–3.3% of trials [35]. A more recent work, the RON
system reports 21 “path-hours” of complete or partial
outages out of a total of 6825 path-hours, a 0.31% out-
age rate [1]. Feamster et al. measure Internet path
failures with n = 31, and correlate with BGP messages
for causes [17]. They find that most failures are short
(under 15 minutes) and discuss the relationship between
path failures and BGP messages. As with their work,
we validate our findings using control plane data.

The instrumentation in these systems can often iso-
late locations of problems, such as SCORE (Kompella
et al. [26]); work that complements ours.

Rather than a mesh, PlanetSeer studies traffic from
7–12k end-users to a network of 120 nodes to track path
outages [47]. They report that their larger population
identifies more anomalies than prior work; we expect
our edge coverage of 2.5M blocks will be broader still.
In addition, their measurements occur only on clients;
they miss outages from already disconnected clients.

Client support in these studies allows better fault di-
agnosis than our work. Our work complements theirs
by providing much larger coverage (2.5M /24 blocks, a
large fraction of the Internet edge), rather than “only”
hundreds or thousands; and supporting regular, cen-
trally driven measurement, rather than client-driven mea-
surements that undercount outages.

2.4 Passive Data Analysis

Recent works by Dainotti et al. do an in-depth analy-
sis of Internet outages caused by political censorship [13,
14]. Their main focus is the Egypt and Libya outages
in 2011, using a novel approach that combines obser-
vations from both control-plane (BGP logs) and data-
plane sources (backscatter traffic at UCSD network tele-
scope and active probing data from Ark). They focus
on the use of multiple passive data sources; they find
their source of active probes is of limited use because
it probes each /24 every three days. We instead show
that a single PC can actively probe all visible and re-
sponsive /24 blocks every 11 minutes (§4), suggesting
active probing can provide complement to them.

Above the network layer, other systems have looked
at system- and user-level logs to determine outages. For
example, UCSD researchers have done careful studies
of “low-quality” data sources (including router configu-
rations, e-mail and syslog messages), to discover char-
acteristics and reasons of failures in the CENIC net-
work [42]. Such log analysis requires collaboration with
the monitored networks, and so their study focuses on
a single ISP. In contrast, we use active probing that can
be done independent of the target.
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2.5 Origins of Routing Instability

BGP centralization of otherwise distributed routing
information makes it an attractive source of data for
outage analysis. Prior work has used the AS path to
study where outages originate. Chang et al. cluster
BGP path changes into events, both temporally and
topologically [7]. They also provide insights on how
to infer where network events happen. Feldmann et
al. identify ASes responsible for Internet routing insta-
bilities using time, views and prefixes [18]. They report
that most routing instabilities are caused by a single AS
or a session between two ASes. (Chang et al. make sim-
ilar conclusions [7]). They also propose useful insights
on hazards in identifying instability originators. We
develop conceptually similar clustering methods, but
based on data-plane observations. Our active probing
approach finds many large Internet outages that cut
across multiple ASes, and also detects outages in edge
networks that use default routing.

Network tomography uses coordinated end-to-end probes
to detect the specific location of network failures [12,15,
22]. We also identify outages near our vantage points to
correct for errors (§6.3). However, our work is in a dif-
ferent domain, as our focus is to analyze the end-to-end
reachability of the whole Internet.

3. METHODOLOGY

Our method for outage detection begins with active
probing, followed by outage identification in individual
blocks, visualization, and correlation into events.

3.1 Active Probing of Address Blocks

We collect data with active probing, building on our
approach developed to study the Internet address space [20].
A brief review of this collection method and data nor-
malization follows. In §4 we extend raw collection into
a system optimized for outage detection.

Reviewing Address-Space Probing: Our approach
begins with active probing of some or all addresses in
some or all analyzable /24 address blocks in the IPv4
address space. We probe each block with ICMP pings
(echo requests) at 11 minute intervals for one to 14 days.
Responses are classified into four broad categories: pos-
itive (echo reply), negative indicating network is un-
reachable (for example, destination unreachable), other
negative replies (we interpret these as a reachable net-
work), and non-response. We have two probing config-
urations: Internet address surveys probe all addresses
in about 22,000 /24 blocks (data available [20] and re-
viewed in §5.1), while the operational outage observa-
tion system probes 20 addresses in 2.5M /24 blocks (§4).

Our probing rate is high compared to some prior
probing systems. When we probe all addresses in a
/24, incoming probe traffic to each /24 arrives at a rate
of one packet every 2.5 s. In operation, we get about

three inquiries about probing per month, either directly
to the ISP or through information on a web server on
the probers. Many requests are satisfied when they un-
derstand our research, but can be added to a do-not-
probe blacklist on request. Our operational system (§4)
probes many more blocks, but at a rate of one packet
every 32 s, actually drawing fewer complaints.

Our outage detection applies only to blocks where
10% of addresses respond (§3.2). Based on Internet-
wide censuses, about 17% of /24 blocks meet this cri-
teria [20]. Our results therefore exclude sparsely pop-
ulated blocks, but do reflect on a diverse set of Inter-
net users whose firewalls admit ICMP, including home
users, server farms, universities, and some businesses.
Although we provide no information about the non-
responsive Internet, this limitation is shared by other
forms of active probing, and our coverage is actually
14% better than Hubble in §5.6.2.

Normalizing survey data: Probes are spread out
in time and responses return with varying delays in the
raw data. In this paper we simplify the survey data by
mapping probe records into rounds, where each round
is 11 minutes long. We identify rounds by index i, with
Nr total rounds in a dataset (thus i ∈ [1 . . Nr]).

We correct two errors that occur in mapping obser-
vations to rounds: sometimes a round is missing an ob-
servation, and occasionally we see duplicate responses
in that round. Our collection software is not perfectly
synchronized to 11 minute rounds, but takes on aver-
age 11 minutes and 3 seconds. (We intentionally chose
to correct for minor drift rather than guarantee perfect
synchronization over days of continuous operation.) Be-
cause this interval is not exactly 11 minutes, for each
individual IP address, about one round in 220 has no
observation. We detect such holes and fill them by ex-
trapolating from the previous observation. In addition,
we sometimes get multiple observations per round for a
single target. About 3% of our observations have dupli-
cate results, usually a timeout (non-response) followed
by a negative response (an error code). These duplicates
are rare, and somewhat non-uniformly distributed (for
example, about 6% of blocks have over 100 addresses
each reporting duplicates, but most blocks have no du-
plicates). When we get duplicate responses, we keep
the most recent observation, thus the negative response
usually overrides the timeout.

Finally, we observe that the process of associating
the IP address of an ICMP reply with its request is not
perfect. Multi-homed machines sometimes reply with
an address of an interface other than the one which
was targeted, this is known as IP address aliasing in
topology discovery (as described in early work [19] and
recent surveys [24]). Since we know all the addresses
we probe, we discard responses from unprobed targets
(about 1.4% of replies).
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Figure 1: Top: probe responses for one /24 block.
Green: positive response; black: no response; blue: not
probed (after round 1825). Bottom: block coverage and
outage thresholds per round. Dataset: Survey S30w .

3.2 Probes to Outages

From a series of probe records organized into rounds,
we next identify potential outages when we see a sharp
drop and increase in overall responsiveness of the block.

Our system begins with observations of individual ad-
dresses. Let rj(i) be 1 if there is a reply for the address
j in the block at round i, and 0 if there is no reply, or
the negative response is network or host unreachable.

rj(i) =

{

1, responsive
0, otherwise

Figure 1 shows a graphical representation of rj(i):
each green dot indicates a positive response, while black
dots are non-responsive (the blue area on the right is
after the survey ends). In this block many addresses are
responsive or non-responsive for long periods, as shown
by long, horizontal green or black lines, but there is
some churn as machines come and go.

The coverage of a block, at round i, is defined as:

C(i) = 1

Ns

∑Ns

j=1
rj(i).

(Where Ns is the number of IP addresses that are
probed in the block, either 256, or 20 with sampling
§4.2.) C(i) is a timeseries (i ∈ [1 . . Nr]), for block re-
sponsiveness across the entire observation period.

A severe drop and later increase in C(i) indicates an
outage for the block. The bottom of Figure 1 shows
C(i) drops to zero for rounds 1640 to 1654, an outage
that shows as a black, vertical band in the top panel.

Algorithm 1 formalizes our definition of “a severe
drop”: we keep a running average of coverage over win-
dow w (default: 2 rounds or 22 minutes) and watch for
changes of C(i) by more than a threshold ρ (default:
0.9). In a few cases C(i) changes gradually rather than
suddenly, or a sudden change is blurred because our
observations are spread over 11 minutes. Therefore, for
robustness of algorithm, we compare C(i) against both
the current running average, and the previous round’s
running average. The result of this algorithm is a list
of outages and a binary-valued timeseries Ω(·), indicat-
ing when the block is down (Ω(i) = 1) or up (0). For
succinctness, we don’t show other special cases in Al-
gorithm 1 (such as consecutive downs/ups, where we
mark earliest as down and latest as up), but we handle

Algorithm 1 Outage detection for a block

Input: C(i): timeseries of coverage, Nr: number of
rounds
Output: L: list of outage (start, end) time tuples
Ω(i): binary timeseries of block down/up information.
Parameters: w: number of rounds to look back, ρ:
drop/increase percent to trigger outage start/end

L = ∅, Ĉ = 0
Ω(i) = 0, i ∈ [1..Nr]
for all i ∈ [w + 1..Nr] do

Ĉ ′ = Ĉ // previous running average

Ĉ = 1

w

∑i−1

j=i−w C(j) // current running average

if C(i) < (1− ρ)Ĉ or C(i) < (1− ρ)Ĉ ′ then
// severe drop ⇒ outage start
last outage start← i

else if Ĉ < (1− ρ)C(i) or Ĉ ′ < (1− ρ)C(i) then
// severe increase ⇒ outage end
L = L ∪ {(last outage start, i)}
for all j ∈ [last outage start..i] do

Ω(j) = 1
end for

end if
end for
return L, Ω

such cases properly in our implementation. Also, we re-
port outage as long as C(i) is 90% lower than previous
rounds, even if C(i) > 0 in some cases.

Because this algorithm detects changes in C(·), it
only works for blocks where a moderate number of ad-
dresses respond. We typically require around α = 0.1 of
all addresses (10% or 25 address per /24), in a block to
respond, averaged over the entire survey (C̄ = (1/Nr)

∑

i C(i) ≥
0.1), otherwise we ignore the block as being too sparse.
In §3.6 we review values of α and conclude that α = 0.1
is reasonable. Table 1 shows how many blocks are ana-
lyzable for Survey S30w (the 30th survey taken, in the
U.S. west coast). In our operational system (§4), we
pre-screen blocks, discard sparse blocks (less than 25
responders), probe only the 20 addresses most likely to
respond; we therefore omit the α-check in this case.

3.3 Visualizing Outages

With the above algorithm to find block-level outages,
we next develop a simple clustering algorithm to group
block-level outages in two dimensions: time and space.
We use this algorithm for visualization only; in the next
section we show a second clustering algorithm that cor-
relates outages to network events.

Our clustering algorithm (Algorithm 2) orders blocks
based on Hamming distance. For blocks m and n, with
binary-valued outage timeseries Ωm(i) and Ωn(i), we
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category blocks percentage

all IPv4 addresses 16,777,216

non-allocated 1,709,312
special (multicast, private, etc.) 2,293,760
allocated, public, unicast 12,774,144 100%

non-responsive 10,490,902 82%
responsive 2,283,242 18% 100%

probed 22,381 1%
too sparse, C̄ < α 11,752 0.5%
analyzable, C̄ ≥ α 10,629 0.5%

Table 1: Subsetting for blocks that are probed and analyzable (C̄ ≥ 0.1), for Survey S30w . Measurements are
in numbers of /24 blocks. The percentages are shown on a per-column basis (e.g., responsive blocks are 18% of
allocated,public and unicast blocks).

Algorithm 2 Clustering of blocks for visualization

Input: A: the set of all blocks in a survey, with outage
information
Output: B: list of survey blocks, ordered by distance

start with block m ∈ A with smallest
∑Nr

i=1
Ωm(i)

(number of rounds down)
A = A \ {m}
B.append(m)
while A 6= ∅ do

for all n, s.t. dh(m,n) = 0 do
A = A \ {n}
B.append(n)

end for
// pick the next most similar block:
find m′ s.t. dh(m,m′) ≤ dh(m,n)∀n ∈ A
A = A \ {m′}
B.append(m′)
m = m′

end while
return B

define distance:

dh(m,n) =
∑Nr

i=1
Ωm(i)⊕ Ωn(i).

Perfect temporal correlation occurs if dh(m,n) = 0.
Figure 2 shows the result of visualization clustering

for Survey S38c . The x-axis is time, each row shows the
Ωj downtime for a different /24 block j. Due to space,
we plot only the 500 blocks with most outages. Color is
keyed to the country to whom each block is allocated.

We discuss the details of this survey in §5, but there
are two clusters of blocks that have near-identical out-
age end times. The cluster labeled (a) covers 19 /24s
that are down for the first third of the survey; it cor-
responds to the Feb. 2011 Egyptian Internet shutdown.
The cluster labeled (b) covers 21 /24 blocks for a slightly
longer duration; it is an outage in Australia concurrent
with flooding in the eastern coast.

3.4 Outages to Correlated Events

Next we use block outage information to discover net-
work events; we use these events later in §5 to relate the
outages we see to ground truth based on routing and
news. While visualization is helpful, Algorithm 2 over-
constrains clustering since each block can be adjacent
to only two others.

We therefore develop a second clustering algorithm
that relaxes this constraint, instead of grouping blocks,
we group individual block-level outages into network-
wide events. We identify events from similar start-
and end-times of outages. Given two outages o and p,
each having a start round s(·) and end round e(·), we
measure their distances de:

de(o, p) = |s(o)− s(p)|+ |e(o)− e(p)|

Outages that occur at exactly the same time have
de(o, p) = 0. Clusters can be formed by grouping all
outages that occur at similar times. Since routing events
often require some time to propagate [27], and outages
may occur right on a round edge, we consider outages
with small distance (less than a parameter θ) to be part
of the same event. This approach may fail if there are
two unrelated events with similar timing, but we believe
that timing alone is often sufficient to correlate larger
events in today’s Internet, provided we use a conserva-
tive θ. Currently we set θ = 2 rounds (22 minutes). We
have also studied much larger θ = 10 (110 minutes),
showing similar results, although less strict matching
aggregates many more small events, see §6.2. This is
formalized in Algorithm 3.

Discussion: For simplicity and efficiency, we use
greedy O(n2) clustering algorithms. (Algorithms 2 and 3).
We considered other standard clustering algorithms, in-
cluding k-means and hierarchical agglomerative cluster-
ing. The k-means algorithm is not suited for our prob-
lem, because k needs to be pre-selected as the num-
ber of clusters, which is not known beforehand. We
don’t choose hierarchical agglomerative clustering for

6



Figure 2: The 500 largest outages of S38c , x axis: time, y axis: address space (blocks). Colors represent countries.
Subgraphs on X and Y axis show marginal distributions (green line) and overall block responsiveness (red dots).

Algorithm 3 Finding correlated events

Input: O: the set of all outages in a survey
Output: E: the set of network outage events, each
containing one or more outages
Parameters: θ: the threshold to decide if two outages
belong to same event

while O 6= ∅ do
find first occurring outage o ∈ O
e = {p : ∀p ∈ O, s.t. de(o, p) ≤ θ }
O = O \ e
E = E ∪ {e}

end while
return E

efficiency reasons, because it has a time complexity of
O(n3) and is not suitable for a large n (especially for
the operational system in §4).

3.5 Outages to Internet Availability

To evaluate outages over the Internet as a whole, we
next define statistical measures of Internet availability,
how many and how long blocks are unreachable.

As shown in Figure 3, some network events like event
(c) affect many blocks for a short period (here, about
20 minutes), while others like (d) and (e) affect fewer
blocks but for longer periods of time (here 2 to 3 hours).
We discuss these events in detail in §5.2, but they sug-
gest that marginal distributions of outages would be
useful to capture this space-time behavior.

Given Nb blocks and Nr rounds in a survey, we can
compute the time- and space-specific sums:

Ω̄I(i) =
∑Nb

b=1
Ωb(i) Ω̄B(b) =

∑Nr

i=1
Ωb(i)

We normalize Ω̄I(i) by Nb and Ω̄B(b) by Nr in the sub-
graphs of our outage plots (such as Figure 2), and report
absolute values in §6.3.

Finally, we define the overall outage level as the frac-
tion of time and space that was out over all observa-

tions: Ω̄ = (NbNr)
−1

∑Nr

i=1

∑Nb

b=1
Ωb(i)

3.6 Parameter Discussion

We next discuss the parameters of our approach to
evaluate how sensitive the results are to their values.

We use a window w (default: 2 rounds) to determine
edges of outages. A large w is not feasible because most
outages are short (§6.2). We studied different w val-
ues from 1 to 5 rounds, and found that the numbers
of up/down decisions (Ω(·)) differed by only 0.3%, con-
firming our choice of w = 2 is reasonable.

The parameter ρ (default: 0.9) is the fraction of ad-
dresses must go dark to indicate an outage. To evaluate
the effect of ρ, we consider an extreme strategy any as
ground truth, where we probe all addresses, but con-
sider the block up if any single address responds. We
choose ρ < 1.0 because requiring a “perfect” outage al-
lows a single router to indicate a block is up even if
all hosts are down. However, the difference in accu-
racy is less than 0.1% (details in [36]). For ρ values of
0.5 to 0.9, outage estimates are all accurate (more than
99.8%), differing by less than 0.1%. We select ρ = 0.9 as
a balance between accuracy and conservativeness, when
declaring an outage.

We define outage Ω(·) as a property of an entire /24
block, implying the entire /24 is used and routed con-
sistently. About 76% of addresses are in consistently
used /24s [6]; study of sub-/24 outages is future work.

We use α to identify blocks as too sparse to classify
because of few responding addresses. A very small α is
not possible because ⌊α(1 − ρ)Ns⌋ must be more than
1 (§3.2), and large enough to be robust to packet loss.
A large α would disqualify many blocks (§4.3). An α of
0.1, meaning that on average 25 hosts in a fully probed
block are responsive, is a good balance between probing
rate (§4) and accuracy (§5.6.1).

The choice of an 11-minute probing interval limits
the precision of our estimates of outage times. We se-
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Figure 3: The 900 largest outages of S30w , x axis: time, y axis: address space (blocks). Colors represent countries.
Subgraphs on X and Y axis show marginal distributions (green line) and overall block responsiveness (red dots).

lected this probe frequency to match that used in public
datasets [20], as it provides a reasonable tradeoff be-
tween precision and traffic, and because our analysis
is greatly simplified by a fixed probing interval. Our
choice limits the probing rate of the target networks to
no more than one probe every 2.5 s, when all addresses
are probed.

4. BUILDINGANOPERATIONAL SYSTEM

Much of our analysis uses complete probing: survey
data probes all addresses in each /24 block every 11
minutes. This traffic is modest at the targets (each /24
receives one probe every 2.5s), and for 22k blocks the
prober sends around 6k probes/s. However, covering
the entire public IPv4 space would be expensive: 4.8M
probes/s at the source, requiring more than 250 cores
and 2.5Gb/s traffic. We next describe our operational
probing system. We identify plausible probing rates for
targets and prober, and develop optimizations to reduce
the traffic at the target and the load on the prober.

4.1 Bounding Probing Traffic

Probing rates trade traffic against accuracy, so we
first identify reasonable rates for the prober and target.

At the target, probing all addresses in each /24 block
every 11 minutes implies 0.39 probes/s per block. To
put this traffic in perspective, a typical /24 block re-
ceives 0.56 to 0.91 probes/s as “background radiation”
(22 to 35 billion probes per week per /8 block [45], ig-

noring unusual targets like 1.2.3.4). Full block probing
therefore imposes a noticeable burden on the target:
about 50% more background traffic. We therefore probe
only 8% of the addresses in each block, cutting per-block
incoming traffic to a only 4–7% of background.

At the prober, outgoing probes are constrained by
bandwidth, CPU, and memory, as we track probes await-
ing responses. Of these, CPU is the largest constraint,
since we require 75k probes/s, about 40Mb/s outgoing
traffic, and each open request requires only 104 bytes of
memory. We show below that we can reduce the num-
ber of target blocks to allow a single, modest 4-core
server to probe all of the analyzable IPv4 Internet.

4.2 Sampling Addresses in Blocks

While probing all addresses gives a perfect view of
the block, much of that traffic is redundant if one as-
sumes outages affect all or none of the block. (Prior
work suggests that about 76% of addresses are man-
aged as /24-size blocks or larger [6], so this assumption
usually holds.) Some redundancy is important to avoid
interpreting individual failure as outage for the entire
block, therefore next we evaluate sampling k of these
addresses (k ≪ 256).

Sampling reduces the probing rate, but also accu-
racy. To maximize the benefit of probing we wish to
probe the addresses in each block that are most likely
to respond, since only they can indicate when the block
is out. This problem is a generalization of hitlist detec-
tion, which selects a single representative address for
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each block [16]. Instead we want the k-most likely to
respond. We use public datasets derived for hitlist gen-
eration, consuming two years of full IPv4 census data
to find the k-sample addresses customized for each /24
block. We evaluate the effects of sampling in §5.6.1,
showing that k = 20 provides good accuracy.

4.3 Reducing the Number of Target Blocks

To detect outages successfully, several addresses in a
block must reply to probes. Many blocks in the IPv4
address space do not respond to pings at all [20]; they
are firewalled, not routed on the public Internet, or not
occupied. Many more blocks have a few addresses that
respond, but not enough for our threshold (α = 0.1 in
§3.2). Therefore we discard such non-analyzable blocks.

To evaluate how many /24 blocks respond and meet
our criteria of analyzable, we looked at a census of all
IPv4 addresses [20] taken at the same time as S40w .
There were 14.4M /24 blocks allocated, but only 4.0M
(28%) had any responses, and only 2.5M (17%) are an-
alyzable, meeting our threshold of 25 (⌊256α⌋) or more
responders. In summary, we can cut our aggregate
probe rate by a factor of about 75 by avoiding non-
analyzable blocks and downsampling in each block.

4.4 Our Prototype System

Our prototype probing system employs both of these
optimizations, probing 20 samples in each of about 2.5M
/24 blocks (75k probes/s) to observe the entire ana-
lyzable IPv4 Internet. This target population requires
about 40 Mb/s outgoing network traffic and sees about
27 Mb/s return traffic. Our core prober is prior work
(from [20]), but preparation, analysis, and optimiza-
tions so one host can cover the Internet are new.

Probe Preparation: Before beginning a probing
run, we must generate the list of target blocks and sam-
pled addresses. (In regular use, we would redo this list
for each new census.) The input for this process is the
most recent IPv4 Response History dataset, contain-
ing the estimates of how likely each and every IPv4
address is to respond [16] based on approximately two
years of rolling IPv4 censuses [20]. We extract the k-
sample addresses for each /24 block using a Hadoop-
based Map/Reduce job. The output of this step is a list
of IP addresses for each viable block. The address list
is written in a pseudo-random order, so probes to each
block are spread out over each round (to avoid ICMP
rate limiting at target blocks), and probe order is differ-
ent for each block. (We use probing order described pre-
viously [20], similar to that of Leonard&Loguinov [29].)

Active Probing: We use a custom high-performance
prober, to pace probes across the 11-minute round dura-
tion, send many probes without waiting, and track their
progress until they reply or timeout in 3s. It associates
replies with requests based on the reply address (80.6%

of the time), the contents of the reflected header (0.5%),
or it logs the apparently erroneous reply (18.9%). We
run four instances of the prober in parallel on a single
computer, each processing one quarter of the targets.

Response Analysis: We analyze the responses when
collection completes, or periodically for on-going collec-
tion. We process the data with three Map/Reduce jobs:
first we convert raw responses from each address into
discrete records by 11-minute rounds; then we group
these records by common prefix for each /24 block; fi-
nally we compute outages for each block (Algorithm 1).
We also cluster and plot outages for further analysis.

From 2011-09-28 T22:36 +0000, we have taken a 24-
hour probe of sampled addresses for entire analyzable
IPv4 Internet. That observation of 2.5M blocks includes
about 6.5 billion records and 56GB of compressed data.
By comparison, a two-week survey of 22,000 blocks con-
sists of about ten billion records and 70GB of com-
pressed data. While we have not tried to optimize our
analysis code, we can turn observations into clustered
events in about 80 minutes for a survey on our cluster.

Performance: In operation we run four parallel probers
(4-way parallelism), each a separate process on a CPU
core, probing a separate part of address space. We find
each core can sustain 19k probes/s and conclude that
a single, modest 4-core server can probe all of the ana-
lyzable IPv4 Internet (see Appendix C for details).

Data Availability: Our input data and results are
available on request at http://www.isi.edu/ant/traces/
index.html.

5. VALIDATING OUR APPROACH

We next validate our approach, starting with case
studies, then consider unbiased random cases and sta-
bility over time and location. Finally, we compare our
accuracy to prior approaches.

5.1 Validating Data Sources andMethodology

While our current operational system probes the an-
alyzable Internet, to validate our approach we turn to
survey data collected over the last two years. We use
survey data here to provide an upper bound on what
full probing can determine, and because our optimized
system was only completed in Sep. 2011; we show in §6.1
that our optimized system is consistent with complete
probing. Our goal is to confirm our observations by
verifying against real-world events: public archives of
BGP routing information and, for large events, public
news sources. We next summarize our datasets, how
we use BGP, and how we associate an event to specific
Autonomous Systems.

Datasets: We use 35 public Internet survey datasets
collected from Nov. 2009 to Dec. 2011 [43] (S29w through
S40w , see Appendix A for full list). Each dataset rep-
resents two weeks of probing; data is taken from three
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locations (Marina del Rey, California; Ft. Collins, Col-
orado; and Keio University, Tokyo, Japan). Each dataset
probes all addresses in about 22,370 /24 blocks where
three-quarters of blocks are chosen randomly from re-
sponsive blocks, while one quarter selected based on
block-level statistics [20]. Since some blocks are selected
non-randomly, §5.5 evaluates bias, finding we slightly
underestimate outage rates.

We find that 45–52% of blocks in these datasets pro-
vide enough coverage to support analysis (C̄ ≥ 0.1).
Of these datasets, most validation uses S30w (started
2009-12-23), with additional case studies drawn from
S38w (2011-01-12), S38c (2011-01-27), S39w (2011-02-
20) and S39c (2011-03-08).

We gather BGP route updates from RouteViews [34],
and BGP feeds at our probing sites using BGPmon [46].

Relating events and routing updates in time:
To find routing updates relevant to a network event,
we search BGP archives near the event’s start and end
times for messages concerning destination prefixes that
become unreachable. We search within 120 minutes of
these times, a loose bound as our outage detection preci-
sion is only ±11 minutes, and routing changes can take
minutes to converge. We expect to see relevant with-
draw messages before event e and announce messages
after e. Finding both, we claim that e is fully validated,
while with just one we claim partial validation.

Relating events and routing updates in space:
Although the above approach detects outages that hap-
pen at the destination, we find many outages occur in
the middle of the Internet. Narrowing our search to
just destination prefixes therefore overly constrains our
search. When our temporal search fails to identify a
routing problem, we broaden our search to all ASes on
the path, as done by Chang et al. [7] and Feldmann et
al. [18]. We generate an AS path for the destination
prefix by searching in RouteViews BGP snapshots. We
then search for BGP withdraw and announce messages
around the same time as the start and end of our net-
work event. Often the destination search found an an-
nounce message; in that case we look here for withdraw
messages for an intermediate AS.

Searching intermediate ASes has two disadvantages.
First, the search space is much larger than just con-
sidering the destination prefixes. Second, RouteViews
BGP snapshots are taken every two hours, so we must
widen our search to two hours.

5.2 Network Event Case Studies

We begin by considering three cases where the root
cause made global news, then outages near our collec-
tion points, and finally three smaller events. These
events are larger than the median size outages we de-
tect. We make no claims that these events are represen-
tative of the Internet in general, only that they demon-

strate how events found by our tools relate to external
observations. In the next section we validate a random
sample of events to complement these anecdotes.

Jan. 2011 Internet Outage: Beginning 2011-01-
25 the Egyptian people began a series of protests that
resulted in the resignation of the Mubarak government
by 2011-02-11. In the middle of this period, the govern-
ment shut down Egypt’s external Internet connections.

Our S38c began 2011-01-27 T23:07 +0000, just miss-
ing the beginning of the Egyptian network shutdown,
and observed the restoration of network service around
2011-02-02 T09:28 +0000. Our survey covered 19 re-
sponsive /24 blocks in the Egyptian Internet, marked
(a) in Figure 2. We can confirm our observations with
widespread news coverage in the popular press [41], and
network details in more technical discussions [9, 10].
Analysis of BGP data shows withdraws before and an-
nounces after the event, consistent with our timing. All
Egyptian ASes we probed were out, including AS8452,
AS24835, and AS24863. We conclude that our approach
correctly observed the Egyptian outage.

Feb. 2011 Libyan Outage We also examined the
Libyan outages 2011-02-18 to -22 [11]. This period
was covered by S38c , but our survey contains only one
Libyan block, and coverage for that block was too low
(about 4 addresses) for us to track outages. Our require-
ment for blocks with moderate coverage, combined with
measuring only a sample of the Internet and Libya’s
small Internet footprint (only 1168 /24 blocks as of
Mar. 2011 [44]) shows that we sometimes miss outages.

Feb. 2011 Australian Outage: We also observe
a significant Australian outage in S38c . Marked (b) in
Figure 2, by our observations this outage involved about
as many blocks as the Egyptian outage. We can par-
tially validate our outage with BGP, but its root cause is
somewhat unclear. We are able to locate these blocks in
the east coast of Australia, including Sydney and Bris-
bane. Private communications [2] and the AusNOG
mailing list [3] suggest this outage may be related to
mid-January flooding in eastern Australia. However,
our survey begins on 2011-01-27, so we only know the
outage’s end date. The recovery of the network seems
consistent with news reports about telecommunications
repairs [39]. Our observations suggest that this Aus-
tralian outage was about as large and long-lasting as
the Egyptian outage, yet the Egyptian Internet outage
made global news while the Australian outage got little
discussion. The Egyptian outage was more newsworthy
both because of the political significance, and because
it represented nearly all Egyptian traffic. Australia, by
comparison, has eight times more allocated IPv4 ad-
dresses than Egypt, so though the Australian outage
may be as large as the Egyptian one, it does not have
the same country-wide impact. We believe this example
shows the importance of our methodology to quantify
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the size and duration of network outages.
March 2011 Japanese Earthquake: In survey

S39c , we observe a Japanese Internet outage, as shown
in Figure 4 marked (f). This event is confirmed as an
undersea cable outage caused by the Tōhoku Japanese
earthquake 2011-03-11 [32]. Unlike most other outages
we observe, both the start and recovery from this out-
age vary in time. For most blocks, the outage begins at
the exact time of the earthquake, but for some it occurs
two hours later. Recovery for most blocks occurs within
ten hours, but a few remain down for several days.

Local Outages: In addition to outages in the Inter-
net, they also happen near our monitors. (We watch for
such outages in our data, and confirm with local net-
work operations.) Survey S39w shows two such events.
In Figure 5, event (h) was planned maintenance in our
server room; the blue color indicates absence of data.
Event (i) was a second planned power outage that took
down a router near our survey machines although probes
continued running. Both of these events span all probed
blocks, although Figure 5 shows only 500 of the blocks.
Finally, event (g) is due to temporary firewalling of our
probes by our university due to a mis-communication.

These examples show that our methods have some
ability to distinguish local from distant outages. They
also revealed an interaction of our probing with Linux
iptables. In event (i), the number of active connections
in iptables overflowed. Such overflow produces random
ICMP network unreachable error replies at the probing
host. We filter these errors from our prior data, and
have now disabled ICMP connection tracking.

Smaller Events: Finally, we explore three small
events in survey S30w as examples of “typical” network
outages. These events are shown in Figure 3. Although
we don’t find evidence in the NANOG mailing list, BGP
messages do confirm two of them.

Verizon outage 2010-01-05 T11:03 +0000: In Fig-
ure 3, event (c) is a short outage (about 22 minutes)
affecting about 331 /24 blocks. Many of these destina-
tions belong to AS19262, a Verizon AS. Examination of
RouteViews BGP archives confirms this event. Exami-
nation of the AS-paths of affected blocks suggests that
the outage occurred because of a problem at AS701, an-
other Verizon AS, present in the path of all but 0.6%
of destinations. It also confirms the duration, with the
BGP withdraw-to-announce time of about 20 minutes.

AT&T/Comcast 2010-01-05 T07:34 +0000: In Fig-
ure 3, event (e) is a 165 minute outage affecting 12
blocks. Again, we confirmed this outage in RouteViews
BGP archives. The affected destinations were AS7132
(AT&T) and AS7922 (Comcast). Routing archives con-
firm withdraws and returns of these routes, and AS-
paths suggest the root cause was in AS7018 (AT&T
WorldNet), likely upstream of the destinations.

Mexico outage 2010-12-29 T18:36 +0000: The event

valid. with. ann. count outage sizes

no — — 31 (62%) 1 to 57, median 4
partial Yes — 1 (2%) 24
partial — Yes 10 (20%) 1 to 27, median 15
yes Yes Yes 8 (16%) 1 to 697, median 21

50 (100%)

Table 2: Validation of algorithm with counts of missing
(—) or found (Yes) withdraw and announce messages,
for randomly selected events from Survey S40w . Counts
in events; sizes in blocks.

labeled (d) in Figure 3 corresponds to a large number of
destinations in AS8151, a Mexican ISP (Uninet S.A. de
C.V.). The event is fairly large and long: 105 blocks for
120 minutes. We were unsuccessful in identifying the
root cause of this outage in RouteViews data. This sur-
vey pre-dates our local BGP feed, and all RouteViews
BGP archives are several ASes from our probing site,
suggesting the outage may have been visible to us but
not seen at the RouteViews monitors, or that some of
these blocks may be using default routing as described
by Bush et al. [5].

5.3 Validation of Randomly Selected Events

Our outage case studies in the prior section were se-
lected because of their importance and so are biased
towards larger events. To provide a more careful study
of the validity of our approach, we randomly pick 50
events from a total of 1295 events in Survey S40w and
attempt to confirm each using BGP information (§5.1).

Table 2 summarizes our results. We are able to fully
or partially confirm 38% of the cases by finding either
corresponding BGP withdrawal or announcement mes-
sages. Randomly selected events are often small (as con-
firmed in §6.2), and it is easier to verify large events.
One possible reason smaller events do not appear in
the control plane is that smaller networks more often
use default routing. Bush et al. describe how default
routing can result in “reachability without visibility”,
as addresses may be reachable without visibility to the
BGP control plane [5]. Our results are consistent with a
corollary, “outages without visibility”, since outages in
default-routed blocks do not appear in BGP. We there-
fore claim that 38% represents incompleteness of BGP
and not our detection algorithm; we next use controlled
outages to support this hypothesis.

5.4 Validation of Controlled Outages

Evaluation of random events show what we detect is
true, but it is silent about what we miss. We next show
our system can detect all outages of sufficient duration.

To provide a controlled experiment, we extract probes
sent from California to five known /24 blocks in Col-
orado from our analyzable Internet experiment (§6.1).
Network operators confirm these blocks had no outages
on that day. We use real probing data to capture the
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Figure 4: The 500 largest outages in S39c , x axis: time, y axis: address space (blocks). Colors represent countries.
Subgraphs on X and Y axis show marginal distributions (green line) and overall block responsiveness (red dots).

Figure 5: The 500 largest outages in S39w , x axis: time, y axis: address space (blocks). Colors represent countries.
Subgraphs on X and Y axis show marginal distributions (green line) and overall block responsiveness (red dots).
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Figure 6: Evaluation of controlled outages on detection
(bar height) and estimated duration (color).

noise of packet loss and machine reboots; about 2.1%
of our individual probes are negative.

We emulate an outage in each target block by re-
placing positive responses with negative for one known
period. Our emulated outage starts at a random time
between 1 hour after collection start and 2 hours before
end; start time is thus independent of outage rounds.
We vary outage duration, from 1 to 40 minutes in steps
of 1 minute, with 100 random times for each step.

Figure 6 shows the percentage of outages we detect
for one block as a function of outage duration. All de-
tections for the other blocks (shown in Appendix D)
are within 5%. We see that we miss nearly all outages
shorter than our probing interval; we space probing out
over 11 minutes to be gentle on the target network, cre-
ating a low-pass filter over outage observations. As a
result, a 5.5 minute outage affecting all addresses ap-
pears identical to an 11-minute outage affecting half.
We detect all outages longer than 21 minutes, and the
majority of outages of 15 minutes or longer. Different
parameters (§3.6) could adjust sensitivity, but for full-
block outages longer than about twice the probe inter-
val, our approach does not falsely declare as available.

Colors in Figure 6 show how long we estimate out-
ages. Due to filtering, we consistently underestimate
the duration of each outage by half the probe interval.

5.5 Stability over Locations, Dates and Blocks

We next consider the stability of our results, showing
they are independent of prober location and date, and
only slightly affected by the survey block select method.

Probing location can affect evaluation results. Should
the probing site’s first hop ISP be unreliable, we would
underestimate overall network reliability. Our probing
takes place regularly from three different sites, ISI west
(marked “w”), CSU (marked “c”) and Keio University
(marked “j”), each with several upstream networks.

Figure 7 indicates ISI surveys with open symbols,
CSU with filled symbols, Keio University with aster-
isks, and the analyzable Internet run (§6.1) with in-
verse open triangle, and it calls out survey location at
the top. Visually, it suggests the results are similar
regardless of probing site and for many different ran-
dom samples of targets. Numerically, variation is low:
mean outage level (Ω̄) is 0.33% with standard devia-
tion of only 0.1% after local outages are removed. To
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Figure 7: Evaluation over 35 different 2-week surveys,
plus our analyzable Internet run. Top shows availabil-
ity, bottom shows Internet events, outages and outage
percentage over time. Outages for S29c , S39w , S43w ,

S43j , S44c , S44j are 40627, 20362, 35720, 60777, 18189, 10444,

omitted from the graph for scale. Dotted lines show
statistics without removing local outages.

strengthen this comparison we carried out Student’s t-
test to evaluate the hypothesis that our estimates of
events, outages, and Ω̄ for our sites are equal. The test
was unable to reject the hypothesis at 95% confidence,
suggesting the sites are statistically similar.

In addition to location, Figure 7 suggests fairly stable
results over time, with several exceptions. For example,
surveys S29c and S39w each had extended local outages,
for about 41 and 4 hours, respectively, shown as dashed
lines affecting outage count and Ω̄ (they do not change
the event estimate because each outage is mapped to
a single network event). After removing local outages,
the corrected versions are roughly the same as others.

Only three quarters of blocks in surveys are selected
randomly, one quarter are selected to cover a range of
network conditions. To evaluate block selection effects,
we separate each survey’s data into quarters and com-
pared the selected quarter against each of the three ran-
domly chosen quarters. We find that the mean outage
rate of the selected quarter is 0.2% (standard devia-
tion 0.078%), while the other three are 0.29% (stan-
dard deviation 0.09%). Overall outage estimates from
surveys appear slightly more stable (about 0.06% less
downtime) than would analysis of a completely random
sample. See Appendix B for details.

5.6 Comparing Accuracy with Other Approaches

We probe multiple or all addresses in a block to eval-
uate outages. Prior work such as Hubble has probed a
single address in each block, possibly multiple times [23].
Probing more addresses requires more traffic, but is
more robust to probe loss and single-address outages.
We next evaluate the effect of sampling k addresses per
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samples per target block. (Neither y-axis starts at 0.)

block, and choice of address for k = 1.
To compare alternatives, we evaluate methods A and

B in pairs, treating A as a trial and B as truth. Anal-
ogous to Type-I and Type-II errors, we define a false
availability (fa) as the estimate predicting a reachable
block when it should be out, while for a false outage
(fo), the estimate predicts out and the truth is reach-
able. Similarly, we can define true availability (ta) and
true outage (to). We then compute standard infor-
mation retrieval terms: precision (ta/(ta + fa)), recall
(ta/(ta+fo)), and accuracy ((ta+to)/(ta+to+fa+fo)).

5.6.1 General Sampling

To evaluate the accuracy of a k-sample, we consider
the full probing (k = 256) observation of block avail-
ability as ground truth (B), then compare our k-sample
approximation as an estimate (A).

We evaluate k-samples by downsampling our full data;
Figure 8 shows the precision, recall and accuracy for
this experiment. Precision is always quite good (over
99.6%), showing it is rare to falsely predict the block
as reachable, even when sampling only a few addresses.
However, we show below that sampling a single address
is less robust than even a few. The best tradeoff of recall
and accuracy is for k from 20 to 40, where accuracy off
by only 7% (or 4%), but traffic is cut by 92% (or 84%).
The errors are mostly due to false outages, claiming
the target is down when a more complete measurement
would show it as reachable.

5.6.2 Single Address Per Block and Hubble

Hubble, iPlane and most other prior works in outage
detection have used a single target to represent an en-
tire /24 block. We next compare our system to these
prior systems, quantifying differences in accuracy and
coverage. This comparison is difficult because there are
several differences in methodology: how many targets
to probe per block; probing which address or addresses;
and use of retries or not. We examine bounds on each
of these factors in Table 3, and compare specifically on
Hubble’s approach (single, .1 address, with-retries) with
our approach (top 20 addresses, no-retries). Note that

strategy single hitlist us Hubble

samples per /24 1 1 20 1
which addresses .1 top top .1

retries no no no yes
precision 99.97% 99.97% 99.71% 99.98%

recall 56.3% 79.1% 91.3% 61.0%
accuracy 56.4% 79.1% 92.3% 61.1%

Table 3: Comparing accuracy of different strategies
used to estimate outage. Dataset: S30w and S46c .

we use a strategy all as ground truth, which probes
all addresses without retries. We have shown all is
both complete and accurate in a previous technical re-
port [36].

We discussed the effect of number of targets in §5.6.1,
providing a best tradeoff of sampling and accuracy (Fig-
ure 8). Prior work on IP hitlists examined the effects
of which addresses should be probed [16]. Here we add
a comparison of fixed (single) vs. top (hitlist) and we
show that top is 22.7% more accurate than only prob-
ing a fixed .1 address (79.1% vs. 56.4% in accuracy,
Table 3). This shows that probing only the .1 address
is not accurate enough for outage detection, and careful
selection of which address to probe can improve accu-
racy significantly.

Using retries should help singleton packet loss, there-
fore single (.1, no retries) values are underestimates of
Hubble. However, considering retries doesn’t help with
medium-term host failure, such as if the single target
is taken down for maintenance. To more accurately
evaluate the effect of retries, we run a specific experi-
ment to reproduce Hubble (probing .1 with retries at
2 minute intervals [23]), side-by-side with a recent sur-
vey S46c , which we can sample to generate our opera-
tional system, and use complete data as ground truth.
We find that retries to the same address multiple times
is slightly better than no-retries (Hubble vs. single, 4.7%
better).

Our side-by-side experiment pulls these factors to-
gether, comparing exactly Hubble’s configuration (sin-
gle, .1, with retries) with ours.

We see a 31% improvement in accuracy (us vs. Hub-
ble), consistent with our above bounds.

Probing Rate and Coverage: We have shown that
we improve accuracy; in addition, we provide better
coverage at about the same aggregate probe rate. Hub-
ble coordinates probes to each block from 30 vantage
points, sending 0.5–3 probes/minute on average [23] (ig-
noring retries). We probe more addresses, but from only
one site, thus only 1.8 probes/minute (20 addresses, 1
site, 11 minute cycles).

Finally, our requirement of 20 responsive addresses
per block is much stricter than Hubble’s one, however,
our hitlist-selection is much more flexible. We evalu-
ated coverage using a full census from Jan. 2012 (C 45w ,
scaled for outages), finding that Hubble’s .1 covers 2.2M
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/24s, while our top-20 covers 2.5M, 14% more blocks.
(We see similar results in observations from another site,
and two months earlier, with C 45c and C 44w .)

6. EVALUATING INTERNET OUTAGES

We next apply our approach to measure Internet out-
ages. We look at this data in two ways, first explor-
ing event and outage durations then examining network
wide stability by exploring marginal distributions (Ω̄B

and Ω̄I) across Internet space and time.
After correcting for local outages, we believe the ob-

servations in this section reflect Internet-wide stabil-
ity, within the limits of measurement error. Since our
vantage points are well connected and we remove lo-
cal outages, our estimates approximate the Internet-
core-to-edge reliability. We make this claim because we
know our observations are stable across location and
time (§5.5) and across all surveys in this section.

6.1 Evaluation over the Analyzable Internet

On 2011-09-28 we probed the entire analyzable Inter-
net, targeting 20 samples in 2.5M blocks as described
in §4.4. Somewhat surprisingly, this experiment drew
no complaints, perhaps because it was shorter than our
2-week surveys. Data processing took 4 hours, both
to visualize the results (as an image 2.5M × 134 pix-
els, broken into 20 tiles), and to detect the 946 routing
events we observe. The overall outage rate is consistent
with our survey data (§6.3): 0.3% outage area, or 99.7%
availability. The absolute number of outages differ from
Figure 7 roughly in proportion to different duration and
scale. See Appendix E for a portion of the image for
this dataset.

6.2 Durations and Sizes of Internet Outages
and Events

We first consider the durations and sizes of block-
level outages and network-wide events (Figure 9 left 2
plots).

Beginning with outages (Figure 9a), we see that half
to three-quarters of outages last only a single round.
Our current analysis limits precision to one round (11
minutes), but possible future work could examine indi-
vidual probes to provide more precise timing. All sur-
veys but Survey S39w have the same trend; Survey S39w

diverges due to its local outages (dotted line S39w ), but
joins the crowd when they are removed. We also see
that 80% of outages last less than two hours. While
there is no sharp knee in this distribution, we believe
this time period is consistent with human timescales
where operators detect and resolve problems.

Network events group individual outages by time,
presumably due to a common cause. Figure 9b shows
event durations, computed as the mean duration of each
event’s component outages. This figure shows that many

single-round outages cluster into single-round events,
since about 40% of events last one round instead of 50–
75% of outages. With less strict clustering (θ = 10
rounds instead of θ = 2) this trend grows, with only
20% of events lasting one round.

About 60% of events are less than hour long, but
there is a fairly long tail out to the limits of our ob-
servation (2 weeks or 20,000 minutes). This long tail is
similar to distributions of event durations of Feamster
et al. [17] and Hubble [23]. Feamster et al.’s very fre-
quent probes (1–2 seconds between probes) in a mesh of
computers, allow them to find 100% of events more than
10 s long, but the very high probing rate is only accept-
able between a mesh of friendly computers. We cannot
detect such short events, but we see the same long tail
and our approach can scale to the whole Internet. Hub-
ble favors large events, claiming to find 85% of events
longer than 20 minutes and 95% of events longer than 1
hour. Our system captures all events longer than about
20 minutes (twice our probing interval), and about half
of events from 10–20 minutes (Figure 6); more accurate
than Hubble, particularly for shorter events.

Because local outages correspond to a single event,
Survey S39w resembles the other surveys both with and
without removal of local outages, and Survey S39w is
indistinguishable from S39w’ .

Finally, we examined event sizes (figure in Appendix F).
Almost all events are very small: 62% of events affect
only a single block, and 95% are 4 blocks or smaller.
Nevertheless, a few large outage events do occur, as
discussed in §5.2.

6.3 Internet-wide View of Outages

We next shift our attention to the Internet as a whole.
How often is a typical block down, and how much of the
Internet is inaccessible at any given time? To under-
stand these questions, Figure 9 (right 2 plots) shows the
marginal distributions of outages by round and block.

First we consider distribution by rounds in Figure 9c.
As expected, we see the vast majority of the blocks in
our survey are always up: from 92 to 95% of blocks
have no outages over each two week observation. The
exception is Survey S39w , where two local outages par-
titioned the probers from the Internet for about two
hours. When we remove local outages, this survey be-
comes consistent with the others. About 2% of blocks
are out once (the step at 11 for one round) and the
remaining tail follows the distribution of Figure 9c.

Turning to space, Figure 9d shows marginal distri-
butions of Ω̄B . Survey S39w is again an outlier due to
large local outages, but it resembles the others when
local outages are removed.

Considering Figure 9d as a whole, we see that almost
always, some part of the Internet is inaccessible. At any
time, typically 20 to 40 blocks are unreachable in our
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Figure 9: Cumulative distributions of outage and event durations (left two). Marginal distributions of outage, by
round and block (right two). CDFs of (a) focus only on portions of the graph, CDFs of (c) starts at 80%. Datasets:
surveys S30w , S38c , S38w , S39c , S39w . The dotted lines are Survey S39w without removing local outages.

survey. This result is consistent with our observations
from Figure 7 that show 0.33% of the Internet is out, av-
eraged over entire surveys, with a standard deviation of
0.1%. Our outage estimate is much lower than Paxson
(up to 3.3% outages), suggesting much greater stability
than 1995. It confirms the mesh study in RON [1] with
a much larger number of edge networks. Finally, we see
a set of unusually large outages in Survey S38c , where
the 50%ile outage is around 38 blocks, but 80%ile is at
63 blocks. We discuss the root causes for these outages
in §5.2 and Figure 2.

Highly reliable networks are often evaluated in terms
of availability, and compared to the “five nines” goal
of telephone networks. We plot availability in the top
panel of Figure 7, seeing that overall, the Internet is up
about 99.7% of the time for about 2.5 nines of availabil-
ity, suggesting some room for improvement.

The above analysis is based on surveys of 1% of the
responsive Internet. We can confirm this result with
our operational system scanning the entire analyzable
Internet (§6.1), where we observed 0.3% of analyzable
IPv4 space was out on average.

Our analysis of Internet-wide outages is preliminary,
but it illustrates the utility of automated methods for
detecting and quantifying outages in the data plane.

7. FUTUREWORK

Based on this work, a useful future direction is to
study where in the network are outages located. Differ-
entiating end-system outages (e.g., a company turning
off its network) and close-to-core outages is important
as the latter clearly has more impact.

Another interesting future direction is to look into
diurnal and weekly patterns, in order to know how much
of the Internet is “turned off” on a daily or weekly basis.
Currently we regard such behaviors as “outages” by our
definition. In the future, we can calculate the auto-
correlations of the outage timeseries and decide if we
see diurnal/weekly patterns.

8. CONCLUSIONS

Researchers have studied Internet outages with control-
and data-plane observations for many years. We show
that active probing of a sample of addresses in respon-
sive /24 blocks provides a powerful new method to char-
acterize network outages. We describe algorithms to
visualize outages and cluster them into network-wide
events. We validate this approach by both case stud-
ies and random samples, verify our results are stable
and more accurate than prior work. With our system,
a single PC can observe outages to destinations across
the entire analyzable IPv4 Internet, providing a new
approach to study Internet-wide reliability and typical
outage size and duration.
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APPENDIX

These appendices contain secondary material support-
ing the main paper.

A. FULL LIST OF DATASETS

Table 4 lists all the datasets we study, and what frac-
tion of each dataset is analyzable.

All datasets are available at no cost from the au-
thors and through the PREDICT program, http://

www.predict.org. In PREDICT, each dataset has PRE-
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Figure 10: Downtime percentage over time, for
4 different quarters of our dataset, from S29w

to S40w .

DICT id: PREDICT/USC-LANDER/internet_address_

survey_reprobing_it29w-20091102, or equivalent for
different survey numbers and dates.

B. EFFECTOFBLOCKSELECTIONMETHOD

In §3.1 we discuss the selection methodology for sur-
veys. A full description was presented in 2006 [20].
While three-quarters of blocks are randomly selected,
one quarter are chosen to represent a range of condi-
tions. In §5.1 we state that selection of this quarter
results in a slight underestimate of outages. We next
present the analysis to quantify that statement.

Target blocks in each survey can be grouped into four
quarters: stable and selected to represent different char-
acteristics; stable but randomly selected; randomly cho-
sen each survey, with an odd third octet; and randomly
chosen each survey, with an even third octet. To val-
idate if our results are skewed by selection of blocks,
we plot the outage percentage of the four quarters over
time (Figure 10). We also plot the outage percentage
quartiles of all four quarters in the right part of Fig-
ure 10 (for raw data, please see Table 5), showing we
are slightly under-estimating the Internet’s outages, as
Quarter 1 (stable fixed blocks) has less overall outage
rates (0.2%, with standard deviation 0.078%), while
other three quarters’ outage rates are around 0.29%
(standard deviation 0.08%).

While this comparison shows a slight bias for the
stable-selected blocks, this bias is slight and affects only
one quarter of all observed blocks, so our overall conclu-
sions are only slightly more stable than a random sam-
ple would be. Overall outage estimates from surveys ap-
pear slightly more stable (about 0.06% less downtime)
than would analysis of a completely random sample.

C. PROBING SYSTEM PERFORMANCE

To show our system can probe the entire analyzable
Internet, we evaluated raw prober performance. For
this experiment we use a 4-core Opteron with 8GB
memory system to probe a set of IP addresses rang-
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Start Duration Blocks
Survey Date (days) (Analyzable)

S29w 2009-11-02 14 22371 (46%)
S29c 2009-11-17 14 22371 (45%)
S30w 2009-12-23 14 22381 (47%)
S30c 2010-01-06 14 22381 (48%)
S31w 2010-02-08 14 22376 (48%)
S31c 2010-02-26 14 22376 (49%)
S32w 2010-03-29 14 22377 (48%)
S32c 2010-04-13 14 22377 (48%)
S33w 2010-05-14 14 22377 (48%)
S33c 2010-06-01 14 22377 (48%)
S34w 2010-07-07 14 22376 (47%)
S34c 2010-07-28 14 22376 (47%)
S35w 2010-08-18 14 22376 (47%)
S35c 2010-09-02 14 22375 (47%)
S36w 2010-10-05 14 22375 (48%)
S36c 2010-10-19 14 22375 (48%)
S37w 2010-11-24 14 22374 (48%)
S37c 2010-12-09 14 22373 (48%)
S38w 2011-01-12 14 22375 (47%)
S38c 2011-01-27 14 22373 (47%)
S39w 2011-02-20 16 22375 (52%)
S39c 2011-03-08 14 22375 (49%)
S39w2 2011-03-22 14 22374 (49%)
S40w 2011-04-06 14 22922 (47%)
S40c 2011-04-20 14 22921 (47%)
S41w 2011-05-20 14 40645 (57%)
S41c 2011-06-06 14 40639 (57%)
S42w 2011-07-26 14 40565 (52%)
S42c 2011-08-09 14 40566 (56%)
S43w 2011-09-13 14 40598 (53%)
S43c 2011-09-27 14 40597 (56%)

SAnalyzableInternet 2011-09-28 1 2.5M (100%)
S43j 2011-10-12 14 40594 (54%)
S44w 2011-11-02 14 40634 (57%)
S44c 2011-11-16 14 40632 (57%)
S44j 2011-12-05 14 40631 (56%)

Table 4: Internet surveys used in this paper, with dates and durations. Survey numbers are sequential with a
letter indicating collection location (w: ISI-west in Marina del Rey, CA; c: Colorado State U. in Ft. Collins,
CO; j: Keio University, Tokyo, Japan). Blocks are analyzable if C̄ ≥ 0.1.

Quarter Mean Min Max q1 q2 q3

1 (stable) 0.21 0.09 0.34 0.14 0.18 0.28
2 (stable but random) 0.28 0.11 0.53 0.22 0.27 0.31

3 (random, odd third octet) 0.31 0.18 0.61 0.27 0.29 0.36
4 (random, even third octet) 0.29 0.20 0.43 0.24 0.26 0.33

Table 5: Outage percentage statistics of four quarters, from S29w to S40w .
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Figure 11: Performance of one prober instance as
number of targets grows: 1-core CPU (left scale)
and bandwidth (right).

ing in number from 1M to about 50M, taken from our
optimized set of sampled addresses and target blocks.

Assuming a good Internet connection, we are primar-
ily CPU constrained, as the prober manages data struc-
tures to match responses with requests to confirm the
probed addresses.

Figure 11 shows single-core CPU load and network
traffic for one instance of our prober as we increase the
number of target addresses per round. Each observation
shows the mean and a very small standard deviation
from 18 measurements taken every minute, starting 13
minutes into a probing run to avoid startup transients.
Memory is fixed at roughly 333MB/core, growing lin-
early from 325MB to 346MB over this range of probe
rates.

Fortunately, probing parallelizes easily; in operation
we run four parallel probers: each a separate process
(on a different CPU core), probing a separate part of
address space. There is minimal interference between
concurrent jobs, and in fact the data from Figure 11
reflects 4-way parallelism. Our 4-way probing therefore
meets our target of 75k probes/s to cover the sampled
Internet at k = 20 per block.

D. CONTROLLEDOUTAGES FOROTHER

BLOCKS

In §5.4 we verified outage detection through controlled
experiments. To confirm that the block we report there
is representative, we selected four additional block at
CSU, and with ten randomly chosen blocks from around
the Internet. As before, in our datasets each of these
blocks is evaluated as always available across our ob-
servation period, although each has a different number
of responsive hosts and random packet loss. We then
repeat our experiment, artificially injecting outages and
evaluating what our algorithms observe.

Figure 12a shows the result of controlled outages in all
five CSU blocks. To make it easier to compare different
blocks, we connect the percentage of estimates for each
block with a line rather than plotting 5 separate bars.
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(a) Comparing results of emulated outages for 5 CSU blocks.
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(b) Comparing results of emulated outages for 10 random blocks.

Figure 12: Comparing results of emulated outages for 5
CSU blocks (top) and 10 random blocks (bottom).

We see that the trends in outage detection are within a
few percent across all blocks, suggesting that the results
shown in Figure 6 are representative.

To further validate if our results are stable, we ran-
domly picked 10 /24 blocks that were judged always up,
and we do the same controlled outage experiment. Fig-
ure 12b shows this experiment. Here almost all blocks
show similar results as Figure 12a. One block, 186.102.171/24,
has lower outage estimates than the others. Based on
examination of a 2-week survey, we believe this block
uses dynamically assigned addresses, only about 15%
of which are occupied. Therefore we see few responses
in our sample (typically only 3 of 20), and variation
as addresses are reassigned affect our conclusions. Im-
proving our results for dynamically assigned blocks is
ongoing work. We conclude that for responsive blocks
are results are quite consistent, while variation in our
estimates is greater in sparse and dynamic blocks.

E. SELECTEDPORTIONSOFOUTAGES IN

THEENTIREANALYZABLE INTERNET

On 2011-09-28, we probed the entire analyzable In-
ternet for 24 hours, targeting 20 samples in 2.5M blocks
(described in §4.4 and §6.1). Figure 13 shows selected
portions of outages in this survey, as they are well cor-
related and affect many blocks. (We omit most of the
plot; a complete plot at 600 dots-per-inch would be
more than 375 pages long.)

Figure 13a shows an outage in a Brazilian AS (AS26615)
from 2011-09-02 T03:34 +0000 for 25 rounds (about 4.5
hours), affecting more than 350 /24 blocks. We are able
to partially verify this outage with BGP control plane
messages.

The other three parts of this figure show outages af-
fecting more than 800 /24 blocks in southern China
(Figures 13b and 13c), including 35 /24 blocks in a
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Figure 14: Network event sizes, cumulative distri-
butions of outage and event durations, from Sur-
veys S30w , S38c , S38w , S39c , S39w .

mass-transit Internet (as part of Figure 13d). We did
not observe evidence for these outages in BGP, but did
correlate their timing and location with news reports
confirmed in international media.

F. NETWORK EVENT SIZES

Extending Figure 9, discussed in Section 6.2, Fig-
ure 14 shows the distribution of network event sizes.
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(a) Portion 1 (b) Portion 2 (c) Portion 3 (d) Portion 4

Figure 13: Selected slices of outages in the analyzable Internet study. Colored regions show 4.5–7.3 hours
(25–45 rounds) of the 24 hours measurement (133 rounds). Each of the X axis is 24 hours in time. Subgraphs
on the Y axis show marginal distribution (green line) and overall block responsiveness (red dots).
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