Security-Enriched Urban Computing and Smart Grid

First International Conference, SUComS 2010
Daejeon, Korea, September 2010
Proceedings
Table of Contents

Genetic-Annealing Algorithm in Grid Environment for Scheduling Problems .. 1

Marco Antonio Cruz-Chávez, Abelardo Rodríguez-León,
Erika Yesenia Ávila-Melgar, Fredy Juárez-Pérez,
Martín H. Cruz-Rosales, and Rafael Rivera-López

Dynamic Increasing the Capacity of Transmission Line Based on the Kylin Operating System 10

Wei Li, Zhiwei Feng, Jing Zhou, Kehe Wu, and Jing Teng

Projective Illumination Technique in Unprepared Environments for Augmented Reality Applications 17

Giovanni Cagalaban and Seoksoo Kim

The Design of Modular Web-Based Collaboration ... 24

Ploypatin Intapong, Sittapong Settapat,
Boonserm Kaewkammerdpong, and Tirane Achalakul

Design of a Forecasting Service System for Monitoring of Vulnerabilities of Sensor Networks 34

Jae-gu Song, Jong hyun Kim, Dong il Seo, and Seoksoo Kim

A Study on M2M-Based System for Hygienic Meteorology Service ... 39

Jae-gu Song, Jae Young Ahn, and Seoksoo Kim

Knowledge Integration and Use-Case Analysis for a Customized Drug-Drug Interaction CDS Service 46

Hye Jin Kam, Man Young Park, Woojae Kim, Duk Yong Yoon,
Eun Kyoung Ahn, and Rae Woong Park

A Study on Markerless AR-Based Infant Education System Using CBIR ... 52

Ji-hoon Lim and Seoksoo Kim

A Study on Home Network User Authentication Using Token-Based OTP ... 59

Jung-Oh Park, Moon-Seog Jun, and Sang-Geun Kim

Web-Based Media Contents Editor for UCC Websites ... 65

Seoksoo Kim

A Study on AR 3D Objects Shading Method Using Electronic Compass Sensor ... 72

Sungmo Jung and Seoksoo Kim
XII Table of Contents

A New Approach for Semantic Web Matching ... 77
 Kamran Zamanifar, Golsa Heidary, Naser Nematbakhsh, and
 Farkhad Mardukhi

Security Enhancement for Authentication of Nodes in MANET by
Checking the CRL Status of Servers .. 86
 Azeem Irshad, Wajahat Noshairwan, Muhammad Shafiq,
 Shahzada Khurram, Ehtsham Irshad, and Muhammad Usman

Performance Evaluation Analysis of Group Mobility in Mobile Ad Hoc
Networks ... 96
 Ehtsham Irshad, Wajahat Noshairwan, Muhammad Shafiq,
 Shahzada Khurram, Azeem Irshad, and Muhammad Usman

Procedure of Partitioning Data into Number of Data Sets or Data
Group – A Review ... 104
 Tai-hoon Kim

Processing of Handwritten Signature Image for Authentication 116
 Tai-hoon Kim

Access Requirement Analysis of E-Governance Systems 124
 Tai-hoon Kim

Cognitive Informatics in Medical Image Semantic Content
Understanding ... 131
 Marek R. Ogiela and Lidia Ogiela

An Attack on Wavelet Tree Shuffling Encryption Schemes 139
 Samuel Assegie, Paul Salama, and Brian King

Context Aware Systems, Methods and Trends in Smart Home
Technology .. 149
 Rosslin John Robles and Tai-hoon Kim

Data Hiding a Key Management for Interoperable Urban Services 159
 Maricel O. Balitana and Tanhoo Kim

Machine-Type-Communication (MTC) Device Grouping Algorithm for
Congestion Avoidance of MTC Oriented LTE Network 167
 Kwang-Ryul Jung, Aesoon Park, and Sungwon Lee

An Architecture for the Emotion-Based Ubiquitous Services in
Wearable Computing Environment .. 179
 Haesung Lee and Joonhee Kwon

Adaptive Data Dissemination Protocol for Wireless Sensor Networks ... 188
 Byoung-Dai Lee
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalable Multicast Protocols for Overlapped Groups in Broker-Based Sensor Networks</td>
<td>196</td>
</tr>
<tr>
<td>Chayoung Kim and Jinho Ahn</td>
<td></td>
</tr>
<tr>
<td>On Reducing the Impact of Exceptional Conditions on Museum Sightseeing Crowdedness Control Mechanisms</td>
<td>206</td>
</tr>
<tr>
<td>Yoondeuk Seo and Jinho Ahn</td>
<td></td>
</tr>
<tr>
<td>A Communication Architecture for Monitoring and Diagnosing Distribution Systems</td>
<td>213</td>
</tr>
<tr>
<td>Yujin Lim, Sanghyun Ahn, and Jaesung Park</td>
<td></td>
</tr>
<tr>
<td>Network Infrastructure for Electric Vehicle Charging</td>
<td>222</td>
</tr>
<tr>
<td>Yujin Lim, Jaesung Park, and Sanghyun Ahn</td>
<td></td>
</tr>
<tr>
<td>Prediction of Personal Power Consumption Using the Moving Average Technique</td>
<td>230</td>
</tr>
<tr>
<td>Jongwoo Kim, Sanggil Kang, and Hak-Man Kim</td>
<td></td>
</tr>
<tr>
<td>Personalized Energy Portal Service Using Consumers’ Profile Information</td>
<td>235</td>
</tr>
<tr>
<td>Jongwoo Kim, Juwan Kim, Sanggil Kang, Hak-Man Kim, and Young-Kuk Kim</td>
<td></td>
</tr>
<tr>
<td>Reliable Power Quality Data Delivery Mechanism Using Neural Network in Wireless Sensor Network</td>
<td>242</td>
</tr>
<tr>
<td>Yujin Lim, Hak-Man Kim, and Sanggil Kang</td>
<td></td>
</tr>
<tr>
<td>A New Challenge of Microgrid Operation</td>
<td>250</td>
</tr>
<tr>
<td>Hak-Man Kim and Tetsuo Kinoshita</td>
<td></td>
</tr>
<tr>
<td>Authentication System for Electrical Charging of Electrical Vehicles in the Housing Development</td>
<td>261</td>
</tr>
<tr>
<td>Wang-Cheol Song</td>
<td></td>
</tr>
<tr>
<td>Design of a Multi-agent System for Personalized Service in the Smart Grid</td>
<td>267</td>
</tr>
<tr>
<td>Jinhee Ko, In-Hye Shin, Gyeong-Leen Park, Ho-Yong Kwak, and Khi-Jung Ahn</td>
<td></td>
</tr>
<tr>
<td>An Efficient Scheduling Scheme on Charging Stations for Smart Transportation</td>
<td>274</td>
</tr>
<tr>
<td>Hye-Jin Kim, Junghoon Lee, Gyeong-Leen Park, Min-Jae Kang, and Mikiyung Kang</td>
<td></td>
</tr>
<tr>
<td>Design for Run-Time Monitor on Cloud Computing</td>
<td>279</td>
</tr>
<tr>
<td>Mikiyung Kang, Dong-In Kang, Mira Yun, Gyeong-Leen Park, and Junghoon Lee</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Design of an Advertisement Scenario for Electric Vehicles Using Digital Multimedia Broadcasting</td>
<td>288</td>
</tr>
<tr>
<td>Junghoon Lee, Hye-Jin Kim, In-Hye Shin, Jason Cho,</td>
<td></td>
</tr>
<tr>
<td>Sang Joon Lee, and Ho-Young Kwak</td>
<td></td>
</tr>
<tr>
<td>Development of Wireless RFID Glove for Various Applications</td>
<td>292</td>
</tr>
<tr>
<td>Changwon Lee, Minchul Kim, Jinwoo Park, Jeonghoon Oh, and</td>
<td></td>
</tr>
<tr>
<td>Kihwan Eom</td>
<td></td>
</tr>
<tr>
<td>Implementation of RFID Tag for Metal Surface Mount</td>
<td>299</td>
</tr>
<tr>
<td>Chong Ryol Park, Sang Won Yoon, Kyung Kwon Jung, and</td>
<td></td>
</tr>
<tr>
<td>Ki Hwan Eom</td>
<td></td>
</tr>
<tr>
<td>U-Bus System Design Based on WSN for the Blind People</td>
<td>307</td>
</tr>
<tr>
<td>Trung Pham Quoc, Minchul Kim, Hyunkwan Lee, and Kihwan Eom</td>
<td></td>
</tr>
<tr>
<td>Measurements and Modeling of Noise on 22.9-kV Medium-Voltage Underground Power Line for Broadband Power Line Communication</td>
<td>316</td>
</tr>
<tr>
<td>Seungjoon Lee, Donghwan Shin, Yonghua Kim, Jaejo Lee, and</td>
<td></td>
</tr>
<tr>
<td>Kihwan Eom</td>
<td></td>
</tr>
<tr>
<td>Optimal Control Method of Electric Power Generation in Multi Level Water Dams</td>
<td>325</td>
</tr>
<tr>
<td>Yeosun Kyung, Joowoong Kim, Sungbooo Jung, and Kihwan Eom</td>
<td></td>
</tr>
<tr>
<td>Real-Time Hand Gesture SEMG Using Spectral Estimation and LVQ for Two-Wheel Control</td>
<td>335</td>
</tr>
<tr>
<td>Mohammad ‘Afif B Kasmo, Jihoon Ahn, Kyungkwan Jung,</td>
<td></td>
</tr>
<tr>
<td>Yonggu Lee, and Kihwan Eom</td>
<td></td>
</tr>
<tr>
<td>A Self-deployment Scheme for Mobile Sensor Network with Obstacle Avoidance</td>
<td>345</td>
</tr>
<tr>
<td>Chan-Myung Kim, Yong-hwan Kim, Hee-Sung Lim, and</td>
<td></td>
</tr>
<tr>
<td>Youn-Hee Han</td>
<td></td>
</tr>
<tr>
<td>ICSW²AN : An Inter-vehicle Communication System Using Mobile Access Point over Wireless Wide Area Networks</td>
<td>355</td>
</tr>
<tr>
<td>Tae-Young Byun</td>
<td></td>
</tr>
<tr>
<td>MAMODE: A Routing Scheme Using Mixed Address Mode for Wireless Sensor Networks</td>
<td>367</td>
</tr>
<tr>
<td>Jeongho Son and Tae-Young Byun</td>
<td></td>
</tr>
<tr>
<td>Processing of Large-Scale Nano-ink Data by Supercomputer</td>
<td>376</td>
</tr>
<tr>
<td>Sunguk Kim and Joon-Min Gil</td>
<td></td>
</tr>
<tr>
<td>Efficient Resource Management and Task Migration in Mobile Grid Environments</td>
<td>384</td>
</tr>
<tr>
<td>DaeWon Lee, SungHo Chin, and Joon-Min Gil</td>
<td></td>
</tr>
</tbody>
</table>
Group-Based Scheduling Algorithm for Fault Tolerance in Mobile Grid ... 394
 JongHyuk Lee, SungJin Choi, Taeweon Suh, HeonChang Yu, and Joonmin Gil

Context-Aware Hierarchy k-Depth Estimation and Energy-Efficient Clustering in Ad-hoc Network 404
 Chang-min Mun, Young-hwan Kim, and Kang-whan Lee

Two Scheduling Schemes for Extending the Lifetime of Directional Sensor Networks ... 411
 Joon-Min Gil, Chan-Myung Kim, and Youn-Hee Han

Data Aggregation Using Mobile Agent Mechanism on Distributed Sensor Networks .. 421
 Youn-Gyou Kook, Joon Lee, Ki-Seock Choi, Jae-Soo Kim, and R. Young-Chul Kim

Issues on Selecting National R&D Project ... 427
 Joon Lee, Youn-Gyou Kook, Jae-Soo Kim, and Ki-Seock Choi

A Study on S-band Short-range Surveillance Radar Optimum Deployment Considering Frequency Interference 434
 Bong-Ki Jang, Young-soon Lee, Byung-sam Kim, and Ui-jung Kim

Proposal of Secure VoIP System Using Attribute Certificate .. 440
 Jin-Mook Kim, Young-Ae Jeong, and Seong-sik Hong

Cooperation System Design for the XMDR-Based Business Process ... 448
 SeokJae Moon, GyeDong Jung, ChiGon Hwang, and YoungKeun Choi

Architecture of the SDP in the Cloud Environment .. 454
 Jae-Hyoung Cho and Jae-Oh Lee

P-CSCF’s Algorithm for Solving NAT Traversal .. 460
 Jung-Ho Kim, Jae-Hyoung Cho, and Jae-Oh Lee

Model Based User’s Access Requirement Analysis of E-Governance Systems .. 466
 Shilpi Saha, Seung-Hwan Jeon, Rosslin John Robles, Tai-hoon Kim, and Samir Kumar Bandyopadhyay

Energy Efficient, Chain Based Clustering Routing Protocol for Wireless Sensor Networks ... 472
 Subhajit Pal, Debnath Bhattacharyya, and Tai-hoon Kim

Chain Based Hierarchical Routing Protocol for Wireless Sensor Networks ... 482
 Subhajit Pal, Debnath Bhattacharyya, and Tai-hoon Kim
Table of Contents

Extraction of Features from Signature Image and Signature Verification Using Clustering Techniques .. 493
Samit Biswas, Debnath Bhattacharyya, Tai-hoon Kim, and Samir Kumar Bandyopadhyay

Medical Imaging: A Review .. 504
Debashis Ganguly, Srabonti Chakraborty, Maricel Balitanas, and Tai-hoon Kim

Hybridization of GA and ANN to Solve Graph Coloring 517
Timir Maitra, Anindya J. Pal, Minkyu Choi, and Taihoon Kim

Alerting of Laboratory Critical Values 524
Sang Hoon Song, Kyoung Un Park, Junghan Song, Hyeon Young Paik, Chi Woo Lee, Su mi Bang, Joon Seok Hong, Hyun Joo Lee, In-Sook Cho, Jeong Ah Kim, Hyun-Young Kim, and Yoon Kim

Accuracy and Performance Evaluation of a Laboratory Results Alerting .. 532
InSook Cho, Jeongah Kim, Ji-Hyeun Kim, Kyu Seob Ha, and Yoon Kim

National Medical Terminology Server in Korea 541
Sungin Lee, Seung-Jae Song, SoonJeong Koh, Soo Kyoung Lee, and Hong-gee Kim

A Typology for Modeling Processes in Clinical Guidelines and Protocols ... 545
Samson W. Tu and Mark A. Musen

How Process Helps You in Developing a High Quality Medical Information System .. 554
Yoshiihiro Akiyama

An Implementation Strategy of Evidence-Based Application Lifecycle Management .. 560
Jeong Ah Kim and SeungYong Choi

Architecture and Workflow of Medical Knowledge Repository 567
HyunSook Choi, Jeong Ah Kim, and InSook Cho

SW Architecture for Access to Medical Information for Knowledge Execution .. 574
Suntae Kim, Bingu Shim, Jeong Ah Kim, and InSook Cho

Implementation of Wireless Sensor Networks Based Pig Farm Integrated Management System in Ubiquitous Agricultural Environments .. 581
Jeong-hwan Hwang, Jiwoong Lee, Hochul Lee, and Hyun Yoe
 Ho-chul Lee, Ji-woong Lee, Jeong-hwan Hwang, and Hyun Yoe

An u-Service Model Based on a Smart Phone for Urban Computing Environments ... 600
 Yongyun Cho and Hyun Yoe

An Incremental Join Algorithm in Sensor Network ... 606
 Hyun Chang Lee, Young Jae Lee, and Dong Hwa Kim

Interface of Augmented Reality Game Using Face Tracking and Its Application to Advertising .. 614
 Young Jae Lee and Yong Jae Lee

Bankruptcy Problem Approach to Load-Shedding in Agent-Based Microgrid Operation ... 621
 Hak-Man Kim, Tetsuo Kinoshita, Yujin Lim, and Tai-hoon Kim

State of the Art of Network Security Perspectives in Cloud Computing ... 629
 Tae Hwan Oh, Shinyoung Lim, Young B. Choi, Kwang-Roh Park, Heejo Lee, and Hyunsang Choi

Design and Implementation of Wireless Sensor Networks Based Paprika Green House System ... 638
 Ji-woong Lee, Hochul Lee, Jeonghwan Hwang, Yongyun Cho, Changsun Shin, and Hyun Yoe

An Implementation of the Salt-Farm Monitoring System Using Wireless Sensor Network ... 647
 JongGil Ju, InGon Park, YongWoong Lee, JongSik Cho, HyunWook Cho, Hyun Yoe, and ChangSun Shin

Author Index ... 657
An Efficient Scheduling Scheme on Charging Stations for Smart Transportation*

Hye-Jin Kim¹, Junghoon Lee¹, Gyung-Leen Park¹, Min-Jae Kang², and Mikyung Kang³, **

¹ Dept. of Computer Science and Statistics
² Dept. of Electronic Engineering
Jeju National University, 690-756, Jeju Do, Republic of Korea
³ University of Southern California - Information Sciences Institute, VA22203, USA
{hjkim82,jhlee,glpark,minjk}@jejunu.ac.kr, mkkang@isi.edu

Abstract. This paper proposes a reservation-based scheduling scheme for the charging station to decide the service order of multiple requests, aiming at improving the satisfiability of electric vehicles. The proposed scheme makes it possible for a customer to reduce the charge cost and waiting time, while a station can extend the number of clients it can serve. A linear rank function is defined based on estimated arrival time, waiting time bound, and the amount of needed power, reducing the scheduling complexity. Receiving the requests from the clients, the power station decides the charge order by the rank function and then replies to the requesters with the waiting time and cost it can guarantee. Each requester can decide whether to charge at that station or try another station. This scheduler can evolve to integrate a new pricing policy and services, enriching the electric vehicle transport system.

1 Introduction

The Republic of Korea was nominated as world’s leading nation in the smart grid technology [1]. The smart grid is the next generation power network which combines information technology with the legacy power network to optimize the energy efficiency [2]. It can also make it possible to exchange information on power generation and consumption between those parties, bringing the era of prosumer, which means any individual can be both consumer and producer of energy at the same time. The Korean national government opened the smart grid complex in Jeju area, pursuing 5 goals of smart power grid, smart place, smart transportation, smart renewable energy, and smart electricity service [1]. Among these, the smart transportation part installs electric charging stations along the road network and at homes to accelerate the deployment of electric vehicles [3]. More specifically, the charge station will be installed in the existing gas

* This research was supported by the MKE, Korea, under the ITRC support program supervised by the NIPA. (NIPA-2010-(C1090-1011-0009)).

** Corresponding author.
stations and LPG filling stations, public institution buildings, shopping malls, and airports.

Electric vehicles are charged on any charging stations, but it takes quite a long time in stations. Moreover, the requirement on the charge is usually different vehicle by vehicle. For example, a vehicle arrives at the station at 2 PM, needs 5 kW with the unit price less than 1 USD, and can afford to wait until 3 PM. Thus, the charging station must schedule the service order for multiple vehicles to meet the requirement of as many vehicles as possible. In this regard, this paper is to parameterize the vehicle-side requirement on battery charging and propose a scheduling scheme which decides the charge order to improve the satisfiability of vehicles. The station charges the vehicles according to this order and informs a vehicle of the estimated service time. The vehicle can confirm its reservation, renegotiate with a modified requirement, or choose another station. This paper is organized as follows: After issuing the problem in Section 1, Section 2 describes the background of this paper. Section 3 explains the service scenario and proposes the rank function. Section 4 summarizes and concludes this paper with a brief introduction of future work.

2 Background

Smart transportation is one of the most important areas in the smart grid. Electric vehicles need nation-wide power charge infrastructure, possibly creating a new business model embracing diverse vehicles, charging stations, and corresponding services [4]. Based on the provided information such as price plan of each station and a personal schedule, a user can decide when to charge his car, while reselling the surplus back to the power company during the peak hours. In addition, the battery-charged power can be used as back-up power source [5], so we can expect the improvement in the power network efficiency and reliability as well as the reduction of greenhouse gas emissions. The charging station can be installed in diverse places as shown in Figure 1. Drivers can charge their vehicles at their homes, offices, public institutes, shopping malls, charging stations, and the like. Noticeably, while the car is being charged, the driver can work at his office or take shopping at the mall. In those places, many vehicles will be concentrated and they must be served according to a well-defined reservation strategy.

3 Scheduling Scheme

3.1 Service Scenario

To simplify the problem, this section first assumes that the station charges one vehicle at a time, however, this restriction can be easily eliminated. In our scenario, a driver tries to make a reservation at a charge station before it arrives at the station via the vehicular network, specifying its requirement details as shown in Figure 2. Each requirement consists of expected price, estimated arrival time,
tolerance bound on waiting time, minimum and maximum charge amount, and so on. Receiving the request, the scheduler calculates the rank function for the new request, reorders the request along with the existing ones, and checks whether the station can meet the requirement of the new request without violating the constraints of already admitted requests. The result is delivered back to the vehicle, and the driver can confirm the request, attempt a renegotiation, or choose another station. Here, it must be mentioned that there are several commercially available vehicular networks, for example, DSRC (Dedicated Short Range Communication) and IEEE 802.11 WLAN [6].

3.2 Rank Function

Each vehicle sends a reservation request message consist of the fields shown in Figure 3(a) via its in-vehicle telematics device and the corresponding vehicle network [7]. The scheduler processes requests one by one, namely, reorders the requests based on the rank function, estimates the service completion time, checks whether the completion time lies within the tolerance bound for all requests, and finally sends back to the requester whether the station can accept the request or not. The scheduler defines the rank function, T_v, as shown in Eq. (1):

$$T_v = ETA_v + WT_v + \frac{C_v}{r},$$ (1)
where ETA_v denotes the estimated arrival time of vehicle v and WT_v denotes the tolerance bound on the waiting time, that is, how long v can wait until it is served. In addition, C_v is the charge amount of v, and r is the charge speed in the station, hence, CT_v, or C_v/r means the charging time. The rank function can be executed in $O(n)$ time complexity, where n is the number of requests. It can avoid the time-consuming search space traversal that takes $O(n!)$ complexity, possibly giving the prompt reply to the vehicle so that it can renegotiate or try another station.

<table>
<thead>
<tr>
<th>(a) Request specification</th>
<th>(b) Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req</td>
<td>ETA</td>
</tr>
<tr>
<td>A</td>
<td>12:00</td>
</tr>
<tr>
<td>B</td>
<td>12:00</td>
</tr>
<tr>
<td>C</td>
<td>12:00</td>
</tr>
<tr>
<td>D</td>
<td>12:00</td>
</tr>
<tr>
<td>E</td>
<td>13:00</td>
</tr>
<tr>
<td>F</td>
<td>13:00</td>
</tr>
</tbody>
</table>

Figure 3 shows the sample scenario to describe how the proposed scheme works. The requests from A to F arrive at the scheduler sequentially, and each of them invokes the scheduler, respectively. Until request C, the service order decided by T_v can charge all vehicles within their tolerance bound. However, for D, the service order (C, A, D, B) cannot meet the tolerance bound requirement.
for B and D. As a result, the scheduler rejects D. For requests E and F, which have the later arrival time, can be served and accepted.

The proposed rank function is highly likely to admit the request having a long tolerance bound, as it can wait a relatively long time and give flexibility to the scheduler. The station prefers those requests and can possibly give a discount. In addition, the estimated arrival time can be decided by the in-vehicle navigation module by the locations of the current vehicle and the charging station. We can assume that the estimation is quite accurate. Generally, the in-vehicle computer system has sufficient computing power especially in electric vehicles, as it handles a lot of stream data to monitor and sometimes control vehicles [8]. However, if the vehicle arrives ahead of schedule, it must wait. On the contrary, if the vehicle arrives after the reserved time, its reservation is adjusted or sometimes cancelled.

4 Concluding Remarks

This paper has designed a reservation-based scheduling scheme for the charging station to decide the service order of multiple vehicles to improve the number of charging requests the station can serve. The proposed rank function takes into account the estimated arrival time, delay tolerance bound, and charging speed. The rank function decides whether a new request can be served in a linear execution time. It can also integrate additional criteria such as pricing policy, for example, which gives a discount to the request having a long tolerance bound. As future work, we are first planning to verify the efficiency of our scheme in terms of schedulability, comparing with the brute force scheme which can find the optimal solution even in unacceptable time. Next, a charging station selection algorithm is to be designed for the convenient driving of electric vehicles.

References