Chapter 9

Machine-Independent Optimizations

High-level language constructs can introduce substantial run-time overhead if we naively translate each construct independently into machine code. This chapter discusses how to eliminate many of these inefficiencies. Elimination of unnecessary instructions in object code, or the replacement of one sequence of instructions by a faster sequence of instructions that does the same thing is usually called "code improvement" or "code optimization."

Local code optimization (code improvement within a basic block) was introduced in Section 8.5. This chapter deals with global code optimization, where improvements take into account what happens across basic blocks. We begin in Section 9.1 with a discussion of the principal opportunities for code improvement.

Most global optimizations are based on data-flow analyses, which are algorithms to gather information about a program. The results of data-flow analyses all have the same form: for each instruction in the program, they specify some property that must hold every time that instruction is executed. The analyses differ in the properties they compute. For example, a constant-propagation analysis computes, for each point in the program, and for each variable used by the program, whether that variable has a unique constant value at that point. This information may be used to replace variable references by constant values, for instance. As another example, a liveness analysis determines, for each point in the program, whether the value held by a particular variable at that point is sure to be overwritten before it is read. If so, we do not need to preserve that value, either in a register or in a memory location.

We introduce data-flow analysis in Section 9.2, including several important examples of the kind of information we gather globally and then use to improve the code. Section 9.3 introduces the general idea of a data-flow framework, of which the data-flow analyses in Section 9.2 are special cases. We can use essentially the same algorithms for all these instances of data-flow analysis, and
we can measure the performance of these algorithms and show their correctness on all instances, as well. Section 9.4 is an example of the general framework that does more powerful analysis than the earlier examples. Then, in Section 9.5 we consider a powerful technique, called “partial redundancy elimination,” for optimizing the placement of each expression evaluation in the program. The solution to this problem requires the solution of a variety of different data-flow problems.

In Section 9.6 we take up the discovery and analysis of loops in programs. The identification of loops leads to another family of algorithms for solving data-flow problems that is based on the hierarchical structure of the loops of a well-formed (“reducible”) program. This approach to data-flow analysis is covered in Section 9.7. Finally, Section 9.8 uses hierarchical analysis to eliminate induction variables (essentially, variables that count the number of iterations around a loop). This code improvement is one of the most important we can make for programs written in commonly used programming languages.

9.1 The Principal Sources of Optimization

A compiler optimization must preserve the semantics of the original program. Except in very special circumstances, once a programmer chooses and implements a particular algorithm, the compiler cannot understand enough about the program to replace it with a substantially different and more efficient algorithm. A compiler knows only how to apply relatively low-level semantic transformations, using general facts such as algebraic identities like $i + 0 = i$ or program semantics such as the fact that performing the same operation on the same values yields the same result.

9.1.1 Causes of Redundancy

There are many redundant operations in a typical program. Sometimes the redundancy is available at the source level. For instance, a programmer may find it more direct and convenient to recalculate some result, leaving it to the compiler to recognize that only one such calculation is necessary. But more often, the redundancy is a side effect of having written the program in a high-level language. In most languages (other than C or C++, where pointer arithmetic is allowed), programmers have no choice but to refer to elements of an array or fields in a structure through accesses like $A[i][j]$ or $X.f$.

As a program is compiled, each of these high-level data-structure accesses expands into a number of low-level arithmetic operations, such as the computation of the location of the (i, j)th element of a matrix A. Accesses to the same data structure often share many common low-level operations. Programmers are not aware of these low-level operations and cannot eliminate the redundancies themselves. It is, in fact, preferable from a software-engineering perspective that programmers only access data elements by their high-level names; the
programs are easier to write and, more importantly, easier to understand and evolve. By having a compiler eliminate the redundancies, we get the best of both worlds: the programs are both efficient and easy to maintain.

9.1.2 A Running Example: Quicksort

In the following, we shall use a fragment of a sorting program called *quicksort* to illustrate several important code-improving transformations. The C program in Fig. 9.1 is derived from Sedgewick, who discussed the hand-optimization of such a program. We shall not discuss all the subtle algorithmic aspects of this program here, for example, the fact that *a[0]* must contain the smallest of the sorted elements, and *a[max]* the largest.

```c
void quicksort(int m, int n)
    /* recursively sorts *a*[m] through *a*[n] */
{
    int i, j;
    int v, x;
    if (n <= m) return;
    /* fragment begins here */
    i = m-1; j = n; v = a[n];
    while (1) {
        do i = i+1; while (a[i] < v);
        do j = j-1; while (a[j] > v);
        if (i >= j) break;
        x = a[i]; a[i] = a[j]; a[j] = x; /* swap a[i], a[j] */
    }
    x = a[i]; a[i] = a[n]; a[n] = x; /* swap a[i], a[n] */
    /* fragment ends here */
    quicksort(m,j); quicksort(i+1,n);
}
```

Figure 9.1: C code for quicksort

Before we can optimize away the redundancies in address calculations, the address operations in a program first must be broken down into low-level arithmetic operations to expose the redundancies. In the rest of this chapter, we assume that the intermediate representation consists of three-address statements, where temporary variables are used to hold all the results of intermediate expressions. Intermediate code for the marked fragment of the program in Fig. 9.1 is shown in Fig. 9.2.

In this example we assume that integers occupy four bytes. The assignment *x = a[i]* is translated as in Section 6.4.4 into the two three-address statements

(1) \(i = m-1 \)
(2) \(j = n \)
(3) \(t1 = 4*n \)
(4) \(v = a[t1] \)
(5) \(i = i+1 \)
(6) \(t2 = 4*i \)
(7) \(t3 = a[t2] \)
(8) If \(t3 < v \) goto (5)
(9) \(j = j-1 \)
(10) \(t4 = 4*j \)
(11) \(t5 = a[t4] \)
(12) If \(t5 > v \) goto (9)
(13) If \(i > j \) goto (23)
(14) \(t6 = 4*i \)
(15) \(x = a[t6] \)
(16) \(t7 = 4*i \)
(17) \(t8 = 4*j \)
(18) \(t9 = a[t8] \)
(19) \(a[t7] = t9 \)
(20) \(t10 = 4*j \)
(21) \(a[t10] = x \)
(22) goto (5)
(23) \(t11 = 4*i \)
(24) \(x = a[t11] \)
(25) \(t12 = 4*i \)
(26) \(t13 = 4*n \)
(27) \(t14 = a[t13] \)
(28) \(a[t12] = t14 \)
(29) \(t15 = 4*n \)
(30) \(a[t15] = x \)

Figure 9.2: Three-address code for fragment in Fig. 9.1

\[
t6 = 4*i
\]
\[
x = a[t6]
\]

as shown in steps (14) and (15) of Fig. 9.2. Similarly, \(a[j] = x \) becomes

\[
t10 = 4*j
\]
\[
a[t10] = x
\]
in steps (20) and (21). Notice that every array access in the original program translates into a pair of steps, consisting of a multiplication and an array-subscripting operation. As a result, this short program fragment translates into a rather long sequence of three-address operations.

Figure 9.3 is the flow graph for the program in Fig. 9.2. Block \(B_1 \) is the entry node. All conditional and unconditional jumps to statements in Fig. 9.2 have been replaced in Fig. 9.3 by jumps to the block of which the statements are leaders, as in Section 8.4. In Fig. 9.3, there are three loops. Blocks \(B_2 \) and \(B_3 \) are loops by themselves. Blocks \(B_2, B_3, B_4, \) and \(B_5 \) together form a loop, with \(B_2 \) the only entry point.

9.1.3 Semantics-Preserving Transformations

There are a number of ways in which a compiler can improve a program without changing the function it computes. Common-subexpression elimination, copy propagation, dead-code elimination, and constant folding are common examples of such function-preserving (or semantics-preserving) transformations; we shall consider each in turn.
9.1. THE PRINCIPAL SOURCES OF OPTIMIZATION

Figure 9.3: Flow graph for the quicksort fragment
Frequently, a program will include several calculations of the same value, such as an offset in an array. As mentioned in Section 9.1.2, some of these duplicate calculations cannot be avoided by the programmer because they lie below the level of detail accessible within the source language. For example, block B_5 shown in Fig. 9.4(a) recalculates $4*i$ and $4*j$, although none of these calculations were requested explicitly by the programmer.

![Figure 9.4: Local common-subexpression elimination](image)

9.1.4 Global Common Subexpressions

An occurrence of an expression E is called a common subexpression if E was previously computed and the values of the variables in E have not changed since the previous computation. We avoid recomputing E if we can use its previously computed value; that is, the variable x to which the previous computation of E was assigned has not changed in the interim.\(^2\)

Example 9.1: The assignments to $t7$ and $t10$ in Fig. 9.4(a) compute the common subexpressions $4*i$ and $4*j$, respectively. These steps have been eliminated in Fig. 9.4(b), which uses $t6$ instead of $t7$ and $t8$ instead of $t10$.

Example 9.2: Figure 9.5 shows the result of eliminating both global and local common subexpressions from blocks B_5 and B_6 in the flow graph of Fig. 9.3. We first discuss the transformation of B_5 and then mention some subtleties involving arrays.

After local common subexpressions are eliminated, B_5 still evaluates $4*i$ and $4*j$, as shown in Fig. 9.4(b). Both are common subexpressions; in particular, the three statements

\(^2\)If x has changed, it may still be possible to reuse the computation of E if we assign its value to a new variable y, as well as to x, and use the value of y in place of a recomputation of E.

<table>
<thead>
<tr>
<th>$t6 = 4*i$</th>
<th>B_5</th>
<th>$t6 = 4*i$</th>
<th>B_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = a[t6]$</td>
<td></td>
<td>$x = a[t6]$</td>
<td></td>
</tr>
<tr>
<td>$t7 = 4*i$</td>
<td></td>
<td>$t8 = 4*j$</td>
<td></td>
</tr>
<tr>
<td>$t8 = 4*j$</td>
<td></td>
<td>$t9 = a[t8]$</td>
<td></td>
</tr>
<tr>
<td>$t9 = a[t8]$</td>
<td></td>
<td>$a[t6] = t9$</td>
<td></td>
</tr>
<tr>
<td>$a[t7] = t9$</td>
<td></td>
<td>$a[t8] = x$</td>
<td></td>
</tr>
<tr>
<td>$t10 = 4*j$</td>
<td></td>
<td>goto B_2</td>
<td></td>
</tr>
<tr>
<td>$a[t10] = x$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>goto B_2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.1. THE PRINCIPAL SOURCES OF OPTIMIZATION

Figure 9.5: B_5 and B_6 after common-subexpression elimination.

$t8 = 4*j$
$t9 = a[t8]$
$a[t8] = x$

in B_5 can be replaced by

$t9 = a[t4]$
$a[t4] = x$

using $t4$ computed in block B_3. In Fig. 9.5, observe that as control passes from the evaluation of $4*j$ in B_3 to B_5, there is no change to j and no change to $t4$, so $t4$ can be used if $4*j$ is needed.

Another common subexpression comes to light in B_5 after $t4$ replaces $t8$. The new expression $a[t4]$ corresponds to the value of $a[j]$ at the source level. Not only does j retain its value as control leaves B_3 and then enters B_5, but
$a[j]$, a value computed into a temporary $t5$, does too, because there are no assignments to elements of the array a in the interim. The statements
\[
\begin{align*}
t9 = a[t4] \\
an[t6] = t9
\end{align*}
\]
in $B5$ therefore can be replaced by
\[
an[t6] = t5
\]

Analogously, the value assigned to x in block $B5$ of Fig. 9.4(b) is seen to be the same as the value assigned to $t3$ in block $B2$. Block $B5$ in Fig. 9.5 is the result of eliminating common subexpressions corresponding to the values of the source level expressions $a[i]$ and $a[j]$ from $B5$ in Fig. 9.4(b). A similar series of transformations has been done to $B6$ in Fig. 9.5.

The expression $a[t1]$ in blocks $B1$ and $B6$ of Fig. 9.5 is not considered a common subexpression, although $t1$ can be used in both places. After control leaves $B1$ and before it reaches $B6$, it can go through $B5$, where there are assignments to a. Hence, $a[t1]$ may not have the same value on reaching $B6$ as it did on leaving $B1$, and it is not safe to treat $a[t1]$ as a common subexpression. □

9.1.5 Copy Propagation

Block $B5$ in Fig. 9.5 can be further improved by eliminating x, using two new transformations. One concerns assignments of the form $u = v$ called *copy statements*, or copies for short. Had we gone into more detail in Example 9.2, copies would have arisen much sooner, because the normal algorithm for eliminating common subexpressions introduces them, as do several other algorithms.

![Figure 9.6: Copies introduced during common subexpression elimination](image)

Example 9.3: In order to eliminate the common subexpression from the statement $c = d+e$ in Fig. 9.6(a), we must use a new variable t to hold the value of $d+e$. The value of variable t, instead of that of the expression $d+e$, is assigned to c in Fig. 9.6(b). Since control may reach $c = d+e$ either after the assignment to a or after the assignment to b, it would be incorrect to replace $c = d+e$ by either $c = a$ or by $c = b$. □
The idea behind the copy-propagation transformation is to use \(v \) for \(u \), wherever possible after the copy statement \(u = v \). For example, the assignment \(x = t3 \) in block \(B_5 \) of Fig. 9.5 is a copy. Copy propagation applied to \(B_5 \) yields the code in Fig. 9.7. This change may not appear to be an improvement, but, as we shall see in Section 9.1.6, it gives us the opportunity to eliminate the assignment to \(x \).

\[
\begin{align*}
 x &= t3 \\
 a[t2] &= t5 \\
 a[t4] &= t3 \\
 \text{goto } B_2
\end{align*}
\]

Figure 9.7: Basic block \(B_5 \) after copy propagation

9.1.6 Dead-Code Elimination

A variable is *live* at a point in a program if its value can be used subsequently; otherwise, it is *dead* at that point. A related idea is *dead* (or *useless*) *code* — statements that compute values that never get used. While the programmer is unlikely to introduce any dead code intentionally, it may appear as the result of previous transformations.

Example 9.4: Suppose \(\text{debug} \) is set to TRUE or FALSE at various points in the program, and used in statements like

\[
\text{if (debug) print ...}
\]

It may be possible for the compiler to deduce that each time the program reaches this statement, the value of \(\text{debug} \) is FALSE. Usually, it is because there is one particular statement

\[
\text{debug} = \text{FALSE}
\]

that must be the last assignment to \(\text{debug} \) prior to any tests of the value of \(\text{debug} \), no matter what sequence of branches the program actually takes. If copy propagation replaces \(\text{debug} \) by FALSE, then the print statement is dead because it cannot be reached. We can eliminate both the test and the print operation from the object code. More generally, deducing at compile time that the value of an expression is a constant and using the constant instead is known as *constant folding*. □

One advantage of copy propagation is that it often turns the copy statement into dead code. For example, copy propagation followed by dead-code elimination removes the assignment to \(x \) and transforms the code in Fig 9.7 into
This code is a further improvement of block \(B_5\) in Fig. 9.5.

9.1.7 Code Motion

Loops are a very important place for optimizations, especially the inner loops where programs tend to spend the bulk of their time. The running time of a program may be improved if we decrease the number of instructions in an inner loop, even if we increase the amount of code outside that loop.

An important modification that decreases the amount of code in a loop is **code motion**. This transformation takes an expression that yields the same result independent of the number of times a loop is executed (a *loop-invariant computation*) and evaluates the expression before the loop. Note that the notion "before the loop" assumes the existence of an entry for the loop, that is, one basic block to which all jumps from outside the loop go (see Section 8.4.5).

Example 9.5: Evaluation of \(\text{limit} - 2\) is a loop-invariant computation in the following while-statement:

```plaintext
while (i <= limit-2) /* statement does not change limit */
```

Code motion will result in the equivalent code

```plaintext
t = limit-2
while (i <= t) /* statement does not change limit or t */
```

Now, the computation of \(\text{limit} - 2\) is performed once, before we enter the loop. Previously, there would be \(n + 1\) calculations of \(\text{limit} - 2\) if we iterated the body of the loop \(n\) times.

9.1.8 Induction Variables and Reduction in Strength

Another important optimization is to find induction variables in loops and optimize their computation. A variable \(x\) is said to be an "induction variable" if there is a positive or negative constant \(c\) such that each time \(x\) is assigned, its value increases by \(c\). For instance, \(i\) and \(t2\) are induction variables in the loop containing \(B_2\) of Fig. 9.5. Induction variables can be computed with a single increment (addition or subtraction) per loop iteration. The transformation of replacing an expensive operation, such as multiplication, by a cheaper one, such as addition, is known as **strength reduction**. But induction variables not only allow us sometimes to perform a strength reduction; often it is possible to eliminate all but one of a group of induction variables whose values remain in lock step as we go around the loop.
When processing loops, it is useful to work "inside-out"; that is, we shall start with the inner loops and proceed to progressively larger, surrounding loops. Thus, we shall see how this optimization applies to our quicksort example by beginning with one of the innermost loops: \(B_3 \) by itself. Note that the values of \(j \) and \(t4 \) remain in lock step; every time the value of \(j \) decreases by 1, the value of \(t4 \) decreases by 4, because \(4 \times j \) is assigned to \(t4 \). These variables, \(j \) and \(t4 \), thus form a good example of a pair of induction variables.

When there are two or more induction variables in a loop, it may be possible to get rid of all but one. For the inner loop of \(B_3 \) in Fig. 9.5, we cannot get rid of either \(j \) or \(t4 \) completely; \(t4 \) is used in \(B_3 \) and \(j \) is used in \(B_4 \). However, we can illustrate reduction in strength and a part of the process of induction-variable elimination. Eventually, \(j \) will be eliminated when the outer loop consisting of blocks \(B_2, B_3, B_4 \) and \(B_5 \) is considered.
Example 9.6: As the relationship \(t4 = 4 \times j \) surely holds after assignment to \(t4 \) in Fig. 9.5, and \(t4 \) is not changed elsewhere in the inner loop around \(B_3 \), it follows that just after the statement \(j = j-1 \) the relationship \(t4 = 4 \times j + 4 \) must hold. We may therefore replace the assignment \(t4 = 4 \times j \) by \(t4 = t4 - 4 \). The only problem is that \(t4 \) does not have a value when we enter block \(B_3 \) for the first time.

Since we must maintain the relationship \(t4 = 4 \times j \) on entry to the block \(B_3 \), we place an initialization of \(t4 \) at the end of the block where \(j \) itself is initialized, shown by the dashed addition to block \(B_1 \) in Fig. 9.8. Although we have added one more instruction, which is executed once in block \(B_1 \), the replacement of a multiplication by a subtraction will speed up the object code if multiplication takes more time than addition or subtraction, as is the case on many machines.

\[
\begin{align*}
i & = m - 1 \\
j & = n \\
t1 & = 4 \times n \\
v & = a[t1] \\
t2 & = 4 \times i \\
t4 & = 4 \times j
\end{align*}
\]

Figure 9.9: Flow graph after induction-variable elimination

We conclude this section with one more instance of induction-variable elimi-
9.1. THE PRINCIPAL SOURCES OF OPTIMIZATION

This example treats \(i \) and \(j \) in the context of the outer loop containing \(B_2, B_3, B_4, \) and \(B_5 \).

Example 9.7: After reduction in strength is applied to the inner loops around \(B_2 \) and \(B_3 \), the only use of \(i \) and \(j \) is to determine the outcome of the test in block \(B_4 \). We know that the values of \(i \) and \(t_2 \) satisfy the relationship \(t_2 = 4i \), while those of \(j \) and \(t_4 \) satisfy the relationship \(t_4 = 4j \). Thus, the test \(t_2 \geq t_4 \) can substitute for \(i \geq j \). Once this replacement is made, \(i \) in block \(B_2 \) and \(j \) in block \(B_3 \) become dead variables, and the assignments to them in these blocks become dead code that can be eliminated. The resulting flow graph is shown in Fig. 9.9.

The code-improving transformations we have discussed have been effective. In Fig. 9.9, the numbers of instructions in blocks \(B_2 \) and \(B_3 \) have been reduced from 4 to 3, compared with the original flow graph in Fig. 9.3. In \(B_5 \), the number

![Figure 9.10: Flow graph for Exercise 9.1.1](image-url)
has been reduced from 9 to 3, and in B_6 from 8 to 3. True, B_1 has grown from four instructions to six, but B_1 is executed only once in the fragment, so the total running time is barely affected by the size of B_1.

9.1.9 Exercises for Section 9.1

Exercise 9.1.1: For the flow graph in Fig. 9.10:

a) Identify the loops of the flow graph.

b) Statements (1) and (2) in B_1 are both copy statements, in which a and b are given constant values. For which uses of a and b can we perform copy propagation and replace these uses of variables by uses of a constant? Do so, wherever possible.

c) Identify any global common subexpressions for each loop.

d) Identify any induction variables for each loop. Be sure to take into account any constants introduced in (b).

e) Identify any loop-invariant computations for each loop.

Exercise 9.1.2: Apply the transformations of this section to the flow graph of Fig. 8.9.

Exercise 9.1.3: Apply the transformations of this section to your flow graphs from (a) Exercise 8.4.1; (b) Exercise 8.4.2.

Exercise 9.1.4: In Fig. 9.11 is intermediate code to compute the dot product of two vectors A and B. Optimize this code by eliminating common subexpressions, performing reduction in strength on induction variables, and eliminating all the induction variables you can.

```
dp = 0.
i = 0
L: t1 = i*8
t2 = A[t1]
t3 = i*8
t4 = B[t3]
t5 = t2*t4
dp = dp+t5
i = i+1
if i<n goto L
```

Figure 9.11: Intermediate code to compute the dot product