Introduction to Optimization

Control-Flow Analysis

Copyright 2016, Pedro C. Diniz, all rights reserved.

Students enrolled in the Compilers class at the University of Southern California (USC) have explicit permission to make copies of these materials for their personal use.
Outline

• Overview of Optimizations
• Control-Flow Analysis
• Dominators
• Graph Traversal
• Reducible Graphs
• Interval Analysis
• Few Definitions
Anatomy of a Compiler

Program (character stream)

Lexical Analyzer (Scanner)

Token Stream

Syntax Analyzer (Parser)

Parse Tree

Intermediate Code Generator

Intermediate Representation

Intermediate Code Optimizer

Optimized Intermediate Representation

Code Generator

Assembly code
Example

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x + b*y;
    }
    return x;
}
```
Example in Assembly

test:
 subu $fp, 16
 sw zero, 0($fp) # x = 0
 sw zero, 4($fp) # y = 0
 sw zero, 8($fp) # i = 0
lab1: # for(i=0; i<N; i++)
 mul $t0, $a0, 4 # a*4
 div $t1, $t0, $a1 # a*4/b
 lw $t2, 8($fp) # i
 mul $t3, $t1, $t2 # a*4/b*i
 lw $t4, 8($fp) # i
 addui $t4, $t4, 1 # i+1
 lw $t5, 8($fp) # i
 addui $t5, $t5, 1 # i+1
 mul $t6, $t4, $t5 # (i+1)*(i+1)
 addu $t7, $t3, $t6 # a*4/b*i + (i+1)*(i+1)
 lw $t8, 0($fp) # x
 add $t8, $t7, $t8 # x = x + a*4/b*i + (i+1)*(i+1)
 sw $t8, 0($fp)
...
Example in Assembly

...
lw $t0, 4($fp) # y
mul $t1, $t0, a1 # b*y
lw $t2, 0($fp) # x
add $t2, $t2, $t1 # x = x + b*y
sw $t2, 0($fp)

lw $t0, 8($fp) # i
addui $t0, $t0, 1 # i+1
sw $t0, 8($fp)
ble $t0, $a3, lab1

lw $v0, 0($fp)
addu $fp, 16
b $ra
Let’s Optimize...

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x + b*y;
    }
    return x;
}
```
Constant Propagation

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x + b*y;
    }
    return x;
}
```
Constant Propagation

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x + b*y;
    }
    return x;
}
```
Constant Propagation

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x + b*y;
    }
    return x;
}
```
Constant Propagation

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x + b*0;
    }
    return x;
}
```
Algebraic Simplification

int sumcalc(int a, int b, int N)
{
 int i;
 int x, y;
 x = 0;
 y = 0;
 for(i = 0; i <= N; i++) {
 x = x + (4*a/b)*i + (i+1)*(i+1);
 x = x + b*0;
 }
 return x;
}
Algebraic Simplification

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x + b*0;
    }
    return x;
}
```
Algebraic Simplification

int sumcalc(int a, int b, int N)
{
 int i;
 int x, y;
 x = 0;
 y = 0;
 for(i = 0; i <= N; i++) {
 x = x + (4*a/b)*i + (i+1)*(i+1);
 x = x + 0;
 }
 return x;
}
Algebraic Simplification

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x + 0;
    }
    return x;
}
```
Algebraic Simplification

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x;
    }
    return x;
}
```
Copy Propagation

int sumcalc(int a, int b, int N)
{
 int i;
 int x, y;
 x = 0;
 y = 0;
 for(i = 0; i <= N; i++) {
 x = x + (4*a/b)*i + (i+1)*(i+1);
 x = x;
 }
 return x;
}
Copy Propagation

int sumcalc(int a, int b, int N)
{
 int i;
 int x, y;
 x = 0;
 y = 0;
 for(i = 0; i <= N; i++) {
 x = x + (4*a/b)*i + (i+1)*(i+1);
 }
 return x;
}
Common Sub-expression Elimination (CSE)

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
    }
    return x;
}
```
Common Sub-expression Elimination (CSE)

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
    }
    return x;
}
```
Common Sub-expression Elimination (CSE)

int sumcalc(int a, int b, int N)
{
 int i;
 int x, y, t;
 x = 0;
 y = 0;
 for(i = 0; i <= N; i++) {
 t = i+1;
 x = x + (4*a/b)*i + t * t;
 }
 return x;
}

Dead Code Elimination

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y, t;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        t = i+1;
        x = x + (4*a/b)*i + t * t;
    }
    return x;
}
```
Dead Code Elimination

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y, t;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        t = i+1;
        x = x + (4*a/b)*i + t * t;
    }
    return x;
}
```
Dead Code Elimination

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, t;
    x = 0;

    for(i = 0; i <= N; i++) {
        t = i+1;
        x = x + (4*a/b)*i + t * t;
    }

    return x;
}
```
Loop Invariant Removal

int sumcalc(int a, int b, int N)
{
 int i;
 int x, t;
 x = 0;

 for(i = 0; i <= N; i++) {
 t = i+1;
 x = x + (4*a/b)*i + t * t;
 }

 return x;
}
Loop Invariant Removal

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, t;
    x = 0;

    for(i = 0; i <= N; i++) {
        t = i+1;
        x = x + (4*a/b)*i + t * t;
    }

    return x;
}
```
Loop Invariant Removal

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, t, u;
    x = 0;
    u = (4*a/b);
    for(i = 0; i <= N; i++) {
        t = i+1;
        x = x + u *i + t * t;
    }
    return x;
}
```
Strength Reduction

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, t, u;
    x = 0;
    u = (4*a/b);
    for(i = 0; i <= N; i++) {
        t = i+1;
        x = x + u*i + t * t;
    }
    return x;
}
```
Strength Reduction

int sumcalc(int a, int b, int N)
{
 int i;
 int x, t, u;
 x = 0;
 u = (4*a/b);
 for(i = 0; i <= N; i++) {
 t = i+1;
 x = x + u*i + t * t;
 }
 return x;
}

u*0, v=0,

u*1, v=v+u,

u*2, v=v+u,

u*3, v=v+u,

u*4, v=v+u,

... ...

Strength Reduction

int sumcalc(int a, int b, int N)
{
 int i;
 int x, t, u, v;
 x = 0;
 u = (4*a/b);
 v = 0;
 for(i = 0; i <= N; i++) {
 t = i+1;
 x = x + u*i + t*t;
 v = v + u;
 }
 return x;
}
Strength Reduction

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, t, u, v;
    x = 0;
    u = (4*a/b);
    v = 0;
    for(i = 0; i <= N; i++) {
        t = i+1;
        x = x + v + t*t;
        v = v + u;
    }
    return x;
}
```
int sumcalc(int a, int b, int N)
{
 int i;
 int x, t, u, v;
 x = 0;
 u = (4*a/b);
 v = 0;
 for(i = 0; i <= N; i++) {
 t = i+1;
 x = x + v + t*t;
 v = v + u;
 }
 return x;
}
Strength Reduction

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, t, u, v;
    x = 0;
    u = (4*a/b);
    v = 0;
    for(i = 0; i <= N; i++) {
        t = i+1;
        x = x + v + t*t;
        v = v + u;
    }
    return x;
}
```
Strength Reduction

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, t, u, v;
    x = 0;
    u = ((a<<2)/b);
    v = 0;
    for(i = 0; i <= N; i++) {
        t = i+1;
        x = x + v + t*t;
        v = v + u;
    }
    return x;
}
```
Register Allocation

<table>
<thead>
<tr>
<th>Local variable x</th>
<th>fp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local variable y</td>
<td></td>
</tr>
<tr>
<td>Local variable i</td>
<td></td>
</tr>
</tbody>
</table>
Register Allocation

$t9 = X$
$t8 = t$
$t7 = u$
$t6 = v$
$t5 = i$
Optimized Example

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, t, u, v;
    x = 0;
    u = ((a<<2)/b);
    v = 0;
    for(i = 0; i <= N; i++) {
        t = i+1;
        x = x + v + t*t;
        v = v + u;
    }
    return x;
}
```
Optimized Example in Assembly

test:
 subu $fp, 16
 add $t9, zero, zero # x = 0
 sll $t0, $a0, 2 # a<<2
 div $t7, $t0, $a1 # u = (a<<2)/b
 add $t6, zero, zero # v = 0
 add $t5, zero, zero # i = 0

lab1: # for(i=0; i<N; i++)
 addui$t8, $t5, 1 # t = i+1
 mul $t0, $t8, $t8 # t*t
 addu $t1, $t0, $t6 # v + t*t
 addu $t9, t9, $t1 # x = x + v + t*t

 addu $6, $6, $7 # v = v + u

 addui$t5, $t5, 1 # i = i+1
 ble $t5, $a3, lab1

 addu $v0, $t9, zero
 addu $fp, 16
 b $ra
Optimized Example in Assembly

Unoptimized Code

```assembly
test:
    subu $fp, 16
    sw zero, 0($fp)
    sw zero, 4($fp)
    sw zero, 8($fp)

lab1:
    mul $t0, $a0, 4
    div $t1, $t0, $a1
    lw $t2, 8($fp)
    mul $t3, $t1, $t2
    lw $t4, 8($fp)
    addui $t4, $t4, 1
    lw $t5, 8($fp)
    addui $t5, $t5, 1
    mul $t6, $t4, $t5
    addu $t5, $t5, $t6
    lw $t7, 8($fp)
    add $t7, $t7, $t8
    sw $t7, 8($fp)
    lw $t8, 8($fp)
    add $t8, $t8, $t9
    sw $t9, 8($fp)
    mul $t1, $t8, al
    lw $t2, 0($fp)
    add $t2, $t2, $t1
    sw $t2, 0($fp)
    lw $t0, 8($fp)
    addui $t0, $t0, 1
    sw $t0, 8($fp)
    ble $t0, 8($fp)
    addu $v0, 0, $t3
    lw $s0, 0($fp)
    add $s0, $s0, $s0
    b $ra
```

Optimized Code

```assembly
test:
    subu $fp, 16
    add $t9, zero, zero
    sll $t0, $a0, 2
    div $t7, $t0, $a1
    add $t6, zero, zero
    add $t5, zero, zero

lab1:
    addui $t8, $t5, 1
    mul $t0, $a0, 4
    div $t1, $t0, $a1
    lw $t2, 8($fp)
    mul $t3, $t1, $t2
    lw $t4, 8($fp)
    addui $t4, $t4, 1
    lw $t5, 8($fp)
    addui $t5, $t5, 1
    mul $t6, $t4, $t5
    addu $t5, $t5, $t6
    lw $t7, 8($fp)
    add $t7, $t7, $t8
    sw $t7, 8($fp)
    lw $t8, 8($fp)
    add $t8, $t8, $t9
    sw $t9, 8($fp)
    mul $t1, $t8, al
    lw $t2, 0($fp)
    add $t2, $t2, $t1
    sw $t2, 0($fp)
    lw $t0, 8($fp)
    addui $t0, $t0, 1
    sw $t0, 8($fp)
    ble $t0, 8($fp)
    add $v0, 0, $t3
    lw $s0, 0($fp)
    add $s0, $s0, $s0
    b $ra
```

4*ld/st + 2*add/sub + br +
N*(9*ld/st + 6*add/sub + 4* mul + div + br)
= 7 + N*21

6*add/sub + shift + div + br +
N*(5*add/sub + mul + br)
= 9 + N*7
Question: Can you Optimize…

int foobar(int N)
{
 int i, j, k, x, y;
 x = 0;
 y = 0;
 k = 256;
 for(i = 0; i <= N; i++) {
 for(j = i+1; j <= N; j++) {
 x = x + 4*(2*i+j)*(i+2*k);
 if(i>j)
 y = y + 8*(i-j);
 else
 y = y + 8*(j-i);
 }
 }
 return x;
}
Question: Can you Optimize…

```c
int foobar(int N)
{
    int i, j, k, x, y;
    x = 0;
    y = 0;
    k = 256;
    for(i = 0; i <= N; i++) {
        for(j = i+1; j <= N; j++) {
            x = x+8*i*i+4096*i+j*(4*i+2048);
        }
    }
    return x;
}
```
Question: Can you Optimize...

```c
int foobar(int N)
{
    int i, j, x, t0, t1;
    x = 0;
    t1 = 2048;
    for(i = 0; i <= N-1; i++) {
        t0 = (i*i)<<3 + i<<12;
        x = x + (N-i)*t0;
        for(j = i+1; j <= N; j++) {
            x = x + t1*j;
        }
        t1 = t1 + 4;
    }
    return x;
}
```
Question: Can you Optimize…

```c
int foobar(int N)
{
    int i, j, x, t0, t1;
    x = 0;
    t1 = 1024;
    for(i = 0; i <= N-1; i++) {
        t0 = (i*i)<<3 + i<<12;
        x = x + (N-i)*t0 + t1*(N*(N+1)-i*(i+1));
        t1 = t1 + 2;
    }
    return x;
}
```
Outline

• Overview of Optimizations
• Control-Flow Analysis
• Dominators
• Graph Traversal
• Reducible Graphs
• Interval Analysis
• Few Definitions
Constant Propagation

int sumcalc(int a, int b, int N)
{
 int i;
 int x, y;
 x = 0;
 y = 0;
 for(i = 0; i <= N; i++) {
 x = x + (4*a/b)*i + (i+1)*(i+1);
 x = x + b*y;
 }
 return x;
}
Constant Propagation

```c
int sumcalc(int a, int b, int N) {
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x + b*y;
    }
    return x;
}
```
Constant Propagation

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x + b*y;
    }
    return x;
}
```
Constant Propagation

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x + b*0;
    }
    return x;
}
```
Implementing Constant Propagation

• Find an RHS expression that is a Constant
• Replace the use of the LHS variable with the RHS Constant given that:
 – All paths to the use(s) of LHS variable pass through the assignment to the LHS with the constant
 – There are no intervening definition of the RHS variable
• Need to know the “Control-Flow” of the program
Implementing Constant Propagation

```c
int sumcalc(int a, int b, int N)
{
    int i;
    int x, y;
    x = 0;
    y = 0;
    for(i = 0; i <= N; i++) {
        x = x + (4*a/b)*i + (i+1)*(i+1);
        x = x + b*y;
    }
    return x;
}
```
Representing the Control Flow of a Program

• **Most instructions**
 – execute the next instruction
 – straight line control-flow

• **Jump instructions**
 – execute form different location
 – jump in control-flow

• **Branch instructions**
 – execute either the next instruction or from a different location
 – fork in the control-flow
Representing Control Flow

• Forms a Graph

• A Very Large Graph

• Observations:
 – lots of straight-line connections
 – simplify the graph by grouping some instructions
Representing Control Flow

• Forms a Graph

• A Very Large Graph

• Observations:
 – lots of straight-line connections
 – simplify the graph by grouping some instructions
Representing Control Flow

• Forms a Graph

• A Very Large Graph

• Observations:
 – lots of straight-line connections
 – simplify the graph by grouping some instructions
Basic Blocks

• Def: A *Maximal Sequence* of Instructions such that:
 1. Only the first instruction can be reached from outside the basic block
 2. All the instructions are executed consecutively *iff* the first instruction is executed
 • No branch or jump instructions in the basic block
 • Except the last instruction
 • No labels within the basic block
 • Except before the first instruction
Basic Blocks: Algorithm

• Input: Sequence of Three-Address Instructions
• Output: A list of Basic Blocks
• Algorithm:
 – Determine the set of leader instructions - the head of each basic block - using the following:
 • The first statement of the program is a leader
 • Any statement that is the target of a goto (either conditional or not) is a leader instructions
 • Any statement that immediately follows a goto or unconditional goto statement is a leader instruction
 – For each leader instruction, its basic block consists of the leader instruction and all the statements up to but not including the next leader instruction or the end of the program.
Basic Blocks: Example

test:
subu $fp, 16
sw zero, 0($fp)
sw zero, 4($fp)
sw zero, 8($fp)

lab1:
mul $t0, $a0, 4
div $t1, $t0, $a1
lw $t2, 8($fp)
mul $t3, $t1, $t2
lw $t4, 8($fp)
add $t4, $t4, 1
lw $t5, 8($fp)
add $t5, $t5, 1
mul $t6, $t4, $t5
add $t7, $t3, $t6
lw $t8, 8($fp)
add $t8, $t7, $t8
sw $t8, 8($fp)
lw $t0, 4($fp)
mul $t1, $t0, $a1
lw $t2, 0($fp)
add $t2, $t2, $t1
sw $t2, 0($fp)
lw $t0, 8($fp)
add $t0, $t0, 1
sw $t0, 8($fp)
ble $t0, $a3, lab1

lw $v0, 0($fp)
addu $fp, 16
b $ra
Control Flow Graph (CFG)

- Control-Flow Graph $G = <N, E>$
- Nodes(N): Basic Blocks
- Edges(E): $(x,y) \in E$ iff first instruction in the Basic Block y follows the last instruction in the basic block x
 - First instruction in y is the target of branch or jump instruction (last instruction) in the basic block x
 - first instruction of y is next after the last instruction of x in memory and the last instruction of x is not a jump instruction
Control Flow Graph (CFG)

- Block with the first instruction of the procedure is the entry node (block with the procedure label)
- The blocks with the return instruction are exit nodes.
 - Can make a single exit node by adding a special node
Why Control-Flow Analysis?

• Uncover Flow Structure:
 – Loops
 – Convergence and Divergence of Paths

• Loops are Important to Optimize
 – Programs spend a lot of times in loops and recursive cycles
 – Many special optimizations can be done on loops

• Programmers organize code using structured control-flow (if-then-else, for-loops etc)
 – Optimizer can exploit this
 – but need to discover them first
Challenges in Control-Flow Analysis

• Unstructured Control Flow
 – Use of goto’s by the programmer
 – Only way to build certain control structures

 \[
 \begin{align*}
 L1: & \ x = 0 \\
 if\ (y > 0) & \text{ goto } L3 \\
 L2: & \ if\ (y < 0) \text{ goto } L1 \\
 L3: & \ y = y + z \\
 & \text{ goto } L2
 \end{align*}
 \]

• Obscured Control Flow
 – Method Invocations
 – Procedure Variables
 – Higher-Order Functions
 – Jump Tables

 \text{Myobject->run()}

Building CFGs

• Simple:
 – Programs are written in structured control flow
 – Has simple CFG patterns

• Not so!
 – Gotos can create different control-flow patterns than what is given by the structured control-flow
 – Need to perform analyses to identify true control-flow patterns
Identifying Recursive Structures Loops
Identifying Recursive Structures Loops

• Identify **Back** Edges
Identifying Recursive Structures Loops

- Identify **Back** Edges
- Find the nodes and edges in the loop given by the Back Edge
Identifying Recursive Structures Loops

• Identify **Back** Edges
• Find the nodes and edges in the loop given by the Back Edge
• Other than the Back Edge
 – Incoming edges only to the basic block with the back edge head
 – one outgoing edge from the basic block with the tail of the back edge
Identifying Recursive Structures Loops

• Identify **Back** Edges

• Find the nodes and edges in the loop given by the Back Edge

• Other than the Back Edge
 – Incoming edges only to the basic block with the back edge head
 – one outgoing edge from the basic block with the tail of the back edge

• How do I find the Back Edges?
Outline

- Overview of Optimizations
- Control-Flow Analysis
- Dominators
- Graph Traversal
- Reducible Graphs
- Interval Analysis
- Few Definitions
Dominators

• Node x dominates node y (x dom y) if every possible execution path from entry to node y includes node x
Dominators

- Is bb1 dom bb5?
Dominators

• Is bb1 dom bb5?
Dominators

- Is bb1 dom bb5?
Dominators

• Is bb1 dom bb5?
Dominators

- Is bb1 dom bb5?
Dominators

- Is bb1 dom bb5? **Yes!**
Dominators

• Is bb1 dom bb5? Yes!

• Is bb3 dom bb6?
Dominators

- Is bb1 dom bb5? **Yes!**
- Is bb3 dom bb6?
Dominators

• Is bb1 dom bb5? Yes!

• Is bb3 dom bb6?
Dominators

• Is bb1 dom bb5? **Yes**!

• Is bb3 dom bb6?
Dominators

- Is bb1 dom bb5? Yes!

- Is bb3 dom bb6? No!
Dominators
Computing Dominators

• $a \text{ dom } b$ iff
 – $a = b$ or
 – a is the unique immediate predecessor of b or
 – a is a dominator of all immediate predecessor of b

• Algorithm
 – Make dominator set of the entry node itself
 – Make dominator set of the remainder node to be all graph nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

• Algorithm
 – Make dominator set of the entry node has itself
 – Make dominator set of the rest have all the nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

• Algorithm
 – Make dominator set of the entry node has itself
 – Make dominator set of the rest have all the nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

• Algorithm
 – Make dominator set of the entry node has itself
 – Make dominator set of the rest have all the nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

• Algorithm
 – Make dominator set of the entry node has itself
 – Make dominator set of the rest have all the nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

- Algorithm
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

• Algorithm
 – Make dominator set of the entry node has itself
 – Make dominator set of the rest have all the nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

• Algorithm
 – Make dominator set of the entry node has itself
 – Make dominator set of the rest have all the nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

- Algorithm
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

• Algorithm
 – Make dominator set of the entry node has itself
 – Make dominator set of the rest have all the nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change

![Diagram of dominator sets](image.png)
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

• Algorithm
 – Make dominator set of the entry node has itself
 – Make dominator set of the rest have all the nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

Algorithm
- Make dominator set of the entry node has itself
- Make dominator set of the rest have all the nodes
- Visit the nodes in any order
- Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
- Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

Algorithm
- Make dominator set of the entry node has itself
- Make dominator set of the rest have all the nodes
- Visit the nodes in any order
- Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
- Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

• Algorithm
 – Make dominator set of the entry node has itself
 – Make dominator set of the rest have all the nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

• Algorithm
 – Make dominator set of the entry node has itself
 – Make dominator set of the rest have all the nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

• Algorithm
 – Make dominator set of the entry node has itself
 – Make dominator set of the rest have all the nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

• Algorithm
 – Make dominator set of the entry node has itself
 – Make dominator set of the rest have all the nodes
 – Visit the nodes in any order
 – Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 – Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

- **Algorithm**
 - Make dominator set of the entry node has itself
 - Make dominator set of the rest have all the nodes
 - Visit the nodes in any order
 - Make dominator set of the current node intersection of the dominator sets of the predecessor nodes + the current node
 - Repeat until no change
Computing Dominators

• What we just witness was an iterative data-flow analysis algorithm in action:
 – Initialize all the nodes to a given value
 – Visit nodes in some order
 – Calculate the node’s value
 – Repeat until no value changes (fixed-point)

• Will talk about this in the coming lectures
What is a Back Edge?

• An edge \((x, y) \in E\) is a back edge iff \(y \text{ dom } x\)
 – is node \(y\) in the dominator set of node \(x\)
What is a Back Edge?

• An edge \((x, y) \in E\) is a back edge iff \(y \text{ dom } x\)

 – is node \(y\) in the dominator set of node \(x\)

\[
\begin{align*}
&\{bb1\} \\
&\{bb1, bb2\} \\
&\{bb1, bb2, bb3\} \\
&\{bb1, bb2, bb5\} \\
&\{bb1, bb2, bb5, bb6\} \\
&\{bb1, bb2\} \\
&bb2 \\
&bb3 \\
&bb4 \\
&bb5 \\
&bb6 \\
&(5,2)
\end{align*}
\]
What is a Back Edge?

- An edge \((x, y) \in E\) is a back edge iff \(y \text{ dom } x\)
 - is node \(y\) in the dominator set of node \(x\)
Outline

- Overview of Optimizations
- Control-Flow Analysis
- Dominators
- Graph Traversal
- Reducible Graphs
- Interval Analysis
- Few Definitions
Traversing the CFG

• Depth-First Traversal
 – Visit all the descendants of a node before visiting any siblings

• Depth-First Spanning Tree
 – a set of edges corresponding to a depth-first visitation of CFG
Depth-First Spanning Tree
Preorder and Postorder

• In preorder traversal, each node is processed before its descendants in the depth-first tree.

• In postorder traversal, each node is processed after its descendants in the depth-first tree.
Outline

- Overview of Optimizations
- Control-Flow Analysis
- Dominators
- Graph Traversal
- Reducible Graphs
- Interval Analysis
- Few Definitions
Reducible CFGs

• Reducibility formalizes well \textit{structured-ness} of a program
• A graph is reducible iff repeated application of the following two actions yields a graph with only one node
 – Replace self loop by a single node
 – Replace a sequence of nodes such that all the incoming edges are to the first node and all the outgoing edges are to the last node
Reducible CFGs
Reducible CFGs
Reducible CFGs

bb1

bb2x

bb6

bb1

bb2

bb3

bb4

bb5

bb6
Reducible CFGs

bb1

bb2x

bb6

bb1

bb2

bb3

bb4

bb5

bb6
Reducible CFGs
Reducible CFGs
Reducible CFGs
Reducible CFGs
Reducible CFGs
Reducible CFGs
Irreducible graphs
Outline

• Overview of Optimizations
• Control-Flow Analysis
• Dominators
• Graph Traversal
• Reducible Graphs
• Interval Analysis
• Few Definitions
Dominators

- Node x \textit{dominates} node y (x dom y) if every possible execution path from entry to node y includes node x
Dominators

- Node x **strictly dominates** node y ($x \text{ sdom } y$) if
 - $x \text{ dom } y$
 - $x \neq y$

```
{}  bb1

{}  bb2

{bb1, bb2}  bb3

{bb1, bb2}  bb4

{bb1, bb2, bb5}  bb5

{bb1, bb2, bb5}  bb6
```
Dominators

- **Node x immediately dominates node y** (x idom y) if
 - x dom y
 - x \(\neq\) y
 - \(\exists\) c \(\in\) N such that
 - c \(\neq\) x and c \(\neq\) y and
 - x dom c and c dom y
Dominators

- Node x post dominates node y (x pdom y) if every possible execution path from node x to the exit node includes node y
Dominators (dom)

- bb0
 - bb1
 - bb2
 - bb3
 - bb4
 - bb5
 - bb6
 - bb7
 - bb8
 - bb9
Strictly Dominates (sdom)
Dominator Tree
Immediately Dominates (idom)
Post Dominators (pdom)
Summary

• Overview of Optimizations
• Control-Flow Analysis
• Dominators
• Graph Traversal
• Reducible Graphs
• Interval Analysis
• Few Definitions