Loop Optimizations

Loop Invariant Code Motion
Induction Variables
Outline

• Loop Invariant Code Motion

• Induction Variables Recognition

• Combination of Analyses
Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration, move it out of the loop
Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration, move it out of the loop

\[
\begin{align*}
\text{for } i & = 1 \text{ to } N \\
& \quad \quad x = x + 1 \\
& \quad \quad \text{for } j = 1 \text{ to } N \\
& \quad \quad \quad a(i, j) = 100 \times N + 10 \times i + j + x
\end{align*}
\]
Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration, move it out of the loop

\[
\text{for } i = 1 \text{ to } N \\
\quad x = x + 1 \\
\quad \text{for } j = 1 \text{ to } N \\
\quad \quad \text{a}(i,j) = 100N + 10i + j + x
\]
Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration, move it out of the loop

\[t1 = 100*N \]

\[
\text{for } i = 1 \text{ to } N
\]

\[
\quad x = x + 1
\]

\[
\text{for } j = 1 \text{ to } N
\]

\[
\quad a(i,j) = 100*N + 10*i + j + x
\]
Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration, move it out of the loop

\[t_1 = 100 \times N \]

for \(i = 1 \) to \(N \)
\[
x = x + 1
\]
for \(j = 1 \) to \(N \)
\[
a(i,j) = t_1 + 10 \times i + j + x
\]
Loop Invariant Code Motion

- If a computation produces the same value in every loop iteration, move it out of the loop

\[
t1 = 100 \times N \\
\text{for } i = 1 \text{ to } N \\
\quad x = x + 1 \\
\quad \text{for } j = 1 \text{ to } N \\
\quad \quad a(i,j) = t1 + 10 \times i + j + x
\]
Loop Invariant Code Motion

- If a computation produces the same value in every loop iteration, move it out of the loop

\[
\begin{align*}
t_1 &= 100 \times N \\
& \text{for } i = 1 \text{ to } N \\
& \quad x = x + 1 \\
& \quad \text{for } j = 1 \text{ to } N \\
& \quad \quad a(i,j) = t_1 + 10 \times i + j + x
\end{align*}
\]
Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration, move it out of the loop

\[t_1 = 100 \times N \]

for \(i = 1 \) to \(N \)

\[x = x + 1 \]

\[t_2 = 10 \times i + x \]

for \(j = 1 \) to \(N \)

\[a(i, j) = t_1 + 10 \times i + j + x \]
Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration, move it out of the loop

\[
t_1 = 100 \times N \\
\text{for } i = 1 \text{ to } N \\
\hspace{1cm} x = x + 1 \\
\hspace{1cm} t_2 = 10 \times i + x \\
\hspace{1cm} \text{for } j = 1 \text{ to } N \\
\hspace{2cm} a(i,j) = t_1 + t_2 + j
\]
Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration, move it out of the loop

\[t_1 = 100 \times N \]
\[
\text{for } i = 1 \text{ to } N \\
\quad x = x + 1 \\
\quad t_2 = 10 \times i + x \\
\text{for } j = 1 \text{ to } N \\
\quad a(i,j) = t_1 + t_2 + j
\]

• Correctness and Profitability?
 – Loop Should Execute at Least Once!
Opportunities for Loop Invariant Code Motion

• In User Code
 – Complex Expressions
 – Easily readable code, reduce # of variables

• After Compiler Optimizations
 – Copy Propagation, Algebraic simplification
Usefulness of Loop Invariant Code Motion

• In many programs most of the execution is in loops
• Reducing work inside a loop nest is very beneficial
 – CSE of expression ⇒ x instructions become $x/2$
 – LICM of expression ⇒ x instructions become x/N
Implementing Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration, move it out of the loop
• An expression can be moved out of the loop if all its operands are invariant in the loop
Invariant Operands

- Constants are Invariant
Invariant Operands

• Constants are Invariant
• All the Definitions are outside the Loop
Invariant Operands

• All the Definitions are outside the Loop

\[x = f(...) \]
\[y = g(...) \]
\[\text{for } i = 1 \text{ to } N \]
\[z = z + x \times y \]
Invariant Operands

• All the Definitions are outside the Loop

\[x = f(...) \]
\[y = g(...) \]
\[t = x \times y \]

for \(i = 1 \) to \(N \)

\[z = z + t \]
Invariant Operands

- Operand has only *one* reaching definition *and* that definition is loop invariant

```plaintext
for i = 1 to N
    x = 100
    y = x * 5
```
Invariant Operands

• Operand has only *one* reaching definition *and* that definition is loop invariant

\[
\begin{align*}
\text{for } i = 1 \text{ to } N & \quad \text{for } i = 1 \text{ to } N \\
x &= 100 && x = 100 \\
y &= x \times 5 && y = x \times 5
\end{align*}
\]
Invariant Operands

- Operand has only one reaching definition and that definition is loop invariant

```plaintext
for i = 1 to N
    x = 100
    y = x * 5

for i = 1 to N
    y = x * 5
```

Definition outside the loop, in a basic blocks that dominates the loop header…
Invariant Operands

- Operand has only one reaching definition and that definition is loop invariant

\[
\begin{align*}
\text{for } i & = 1 \text{ to } N \\
 x & = 100 \\
 y & = x \times 5 \\
\end{align*}
\]

\[
\begin{align*}
\text{for } i & = 1 \text{ to } N \\
 y & = 100 \times 5
\end{align*}
\]
Invariant Operands

• Operand has only one reaching definition and that definition is loop invariant

```plaintext
for i = 1 to N
  x = 100
  y = x * 5
```

```plaintext
for i = 1 to N
  if(i > p) then
    x = 10
  else
    x = 5
  y = x * 5
```

• Clearly a single definition is a safe restrictions
 – There could be many definition with the same value
• Statement can be moved only if
 – All the Uses are Dominated by the Statement
Move Or Not To Move….

• Statement can be moved only if
 – All the Uses are Dominated by the Statement
Move Or Not To Move....

- Statement can be moved only if
 - All the Uses are Dominated by the Statement
 - The Exit of the Loop is Dominated by the Statement

- Reaching Definitions (RD) Analysis computes all the definitions of \(x \) and \(y \) which may reach \(t = x \text{ OP } y \)
Conditions for Code Motion

• Correctness: Movement doesn’t change semantics of the program
• Performance: Code is not slowed down

- Basic Ideas: Defines once and for all
 - Control flow
 - Other definitions
 - Other uses
Example: Loop Invariant Code Motion

\[B = \ldots \]
\[C = \ldots \]

\[A = B + C \]

\[E = 2 \]
\[D = A + 1 \]
\[F = E + 2 \]

\[E = 3 \]
Example: Loop Invariant Code Motion

Conditions:

-_defs of B and C outside the Loop
-Uses of A dominated by Statement
-Exit Dominated by Statement
Example: Loop Invariant Code Motion

Conditions:

-Defs of B and C outside the Loop
-Uses of A dominated by Statement
-Exit Dominated by Statement
Example: Loop Invariant Code Motion

Conditions:
-Defs of B and C outside the Loop
-Uses of A dominated by Statement
-Exit Dominated by Statement
Example: Loop Invariant Code Motion

Conditions:
- Defs of B and C outside the Loop
- Uses of A dominated by Statement
- Exit Dominated by Statement
Other Issues

- **Preserve dependencies** between loop-invariant instructions when hoisting code out of the loop

  ```
  for (i=0; i<N; i++) {
    x = y+z;
    t = x*x;
    a[i] = 10*i + x*x;
  }
  ```

  ```
  for(i=0; i<N; i++)
    a[i] = 10*i + t;
  ```

- **Nested loops**: apply loop invariant code motion algorithm multiple times

  ```
  for (i=0; i<N; i++)
    for (j=0; j<M; j++)
      a[i][j] = x*x + 10*i + 100*j;
  ```

  ```
  t1 = x*x;
  for (i=0; i<N; i++)
    for (j=0; j<M; j++)
      a[i][j] = t2 + 100*j;
  ```

  ```
  t2 = t1 + 10*i;
  for (j=0; j<M; j++)
    a[i][j] = t2 + 100*j;
  ```
Handling Nested Loops

• Process Loops from Innermost to Outermost
Handling Nested Loops

- Process Loops from Innermost to Outermost

\[
\begin{align*}
 a &= p \times q \\
 j &= j + a \times i \\
 i &= i + 1
\end{align*}
\]
Handling Nested Loops

• Process Loops from Innermost to Outermost

```plaintext
a = p*q
j = j + a*i
i = i + 1
```
Handling Nested Loops

- Process Loops from Innermost to Outermost
Handling Nested Loops

• Process Loops from Innermost to Outermost

\[i = i + 1 \]
\[t1 = p*q \]
\[t2 = t1*i \]
\[a = t1 \]
\[j = j + t2 \]
Handling Nested Loops

• Process Loops from Innermost to Outermost

```
\begin{align*}
a &= t1 \\
t1 &= p \times q \\
t2 &= t1 \times i \\
i &= i + 1 \\
j &= j + t2
\end{align*}
```
Handling Nested Loops

- Process Loops from Innermost to Outermost
Handling Nested Loops

- Process Loops from Innermost to Outermost

```plaintext
\[
\begin{align*}
\text{t3} &= \text{p*q} \\
\text{i} &= \text{i} + 1 \\
\text{t1} &= \text{p*q} \\
\text{t2} &= \text{t1*i} \\
\text{a} &= \text{t1} \\
\text{j} &= \text{j} + \text{t2}
\end{align*}
\]```
Handling Nested Loops

- Process Loops from Innermost to Outermost
Handling Nested Loops

• Process Loops from Innermost to Outermost

\[ t3 = p \times q \]

\[ i = i + 1 \]
\[ t1 = t3 \]
\[ t2 = t1 \times i \]

\[ a = t1 \]
\[ j = j + t2 \]
Algorithm for Loop Invariant Code Motion

• Observations
  – Loop Invariant
    • Operands are defined outside loop or invariant themselves
  – Code Motion
    • Not all loop invariant instructions can be moved to pre-header.
    • Why?

• Algorithm
  – Find Invariant Expression
  – Check Conditions for Code Motion
  – Apply Code Transformation
Detecting Loop Invariant Computation

**Input:** Basic Blocks and CFG, Dominator Relation, Loop Information

**Output:** Instructions that are Loop Invariant

\[ \text{InvSet} = \varnothing \]

repeat

for each instruction \( i \notin \text{InvSet} \)

if operands are constants, or

have definitions outside the loop, or

have exactly one definition \( d \in \text{InvSet} \);

then

\[ \text{InvSet} = \text{InvSet} \cup \{i\} \]

until no changes in \( \text{InvSet} \);
Code Motion Algorithm

• **Given:** a set of nodes in a loop
  – Compute Reaching Definitions
  – Compute Loop Invariant Computation
  – Compute Dominators
  – Find the exits of the loop, nodes with successors outside the loop
  – Candidate Statement for Code Motion:
    • Loop Invariant
    • In blocks that dominate all the Exits of the Loop
    • Assign to variable not assigned to elsewhere in the loop
    • In blocks that dominate all blocks in the loop that use the variable assigned
  – Perform a depth-first search of the blocks
    • Move candidate to pre-header if all the invariant operations it depends on have been moved
More Examples

B = ...
C = ...

A = B + C

E = 2
E = 3

D = A + 1
F = E + 2

A = B + C
E = 3

D = A + 1
More Aggressive Optimizations

• Gamble On: Most loops get executed
  – Can we relax the constraint of dominating all exits?

• Landing Pads
  while p do s
  if p {
    pre-header
    repeat
    statements
    until not p;
  }
Outline

• Loop Invariant Code Motion
  – Important and Profitable Transformation
  – Precise Definition and Algorithm for Loop Invariant Computation
  – Precise Algorithm for Code Motion

• Combination of Several Analyses
  – Use of Reaching Definitions
  – Use Dominators

• Next: Combination with Loop Induction Variables
Redundancy Elimination

• Two “Optimizations”
  – Common Sub-Expression Elimination (CSE)
  – Loop Invariant Code Motion (LICM)
  – Dead Code Elimination

• Many Others
  – Value Numbering
  – Partial Redundancy Elimination (PRE)

• Focus: Induction Variable Recognition & Elimination
Induction Variables in Loops

• What is an Induction Variable?
  – For a given loop variable \( v \) is an induction variable iff
    • Its value Changes at Every Iteration
    • Is either Incremented or Decremented by a Constant Amount
      – Either Compile-time Known or Symbolically Constant…

• Classification:
  – Basic Induction Variables
    • A single assignment in the loop of the form \( x = x + \text{constant} \)
    • Example: variable \( i \) in for \( i = 1 \) to 10
  – Derived Induction Variables
    • A linear function of a basic induction variable
    • Variable \( j \) in the loop assigned \( j = c_1 \ast i + c_2 \)
Why Are Induction Variables Important?

• **Pervasive in Computations that Manipulate Arrays**
  – Allow for Understanding of Data Access Patterns in Memory Access
    • Support Transformations Tailored to Memory Hierarchy
  – Can Be Eliminated with **Strength Reduction**
    • Substantially reduce the weight of address calculations
    • Combination with CSE

• **Example:**
  
  ```
 for i = 1 to N
 for j = 1 to N
 a(i,j) = b(i,j)
  ```

  ```
 for i = 1 to N
 t1 = @a(i,1)
 t2 = &b(i,1)
 for j = 1 to N
 *t1 = *t2
 t1 += 8
 t2 += 8
  ```
Detection of Induction Variables

- **Algorithm:**
  - Inputs: Loop L with Reaching Definitions and Loop Invariant
  - Output: For each Induction Variable k the triple \((i,c,d)\) s.t. the value of \(k = i \times c + d\)

  - Find the Basic Induction Variables by Scanning the Loop L such that each Basic Induction Variable has \((i,1,0)\)
  - Search for variables \(k\) with a single assignment to \(k\) of the form:
    - \(k = i \times b\), \(k = b \times i\), \(k = i/b\) with \(b\) a constant and \(i\) is a Basic Induction Variable
  - Check if the Assignment to \(k\) is dominated by the definitions for \(i\)
  - If so, \(k\) is a Derived Induction Variable of \(i\)
Strength Reduction & Induction Variables

• Idea of the Transformation
  – Replace the Induction Variable in each Family by references to a common
    induction variable, the basic induction variable.
  – Exploit the Algebraic Properties for the update to the basic variable.

• Algorithm outline
  foreach Basic Induction variable i do
    foreach Induction variable k: (i,c,d) in the family of i do
      create a new variable s
      replace the assignment to k by k = s
      after each assignment i = i + n where n is a constant
      append s = s + c * n
      place s in the family of induction variables of i
    end foreach
    initialize s to c*i + d on loop entry as
    either s = c * i followed by s = s + d (simplify if d = 0 or c = 1)
  end foreach
Detection of Induction Variables Example

\begin{itemize}
  \item \textbf{B1} \hspace{1cm} i = m - 1 \\
  \hspace{1cm} j = n \\
  \hspace{1cm} t1 = 4 \times n \\
  \hspace{1cm} v = a[t1] \\
  \item \textbf{B2} \hspace{1cm} i = i + 1 \\
  \hspace{1cm} t2 = 4 \times i \\
  \hspace{1cm} t3 = a[t2] \\
  \hspace{1cm} \text{if } t3 < v \text{ goto B2} \\
  \item \textbf{B3} \hspace{1cm} j = j - 1 \\
  \hspace{1cm} t4 = 4 \times j \\
  \hspace{1cm} t5 = a[t4] \\
  \hspace{1cm} \text{if } t5 > v \text{ goto B3} \\
  \item \textbf{B4} \hspace{1cm} \text{if } i < j \text{ goto B2}
\end{itemize}
Detection of Induction Variables Example

- Basic Induction Variables:
  - i in B2: single increment, (i,1,1)
  - j in B3: single decrement (j,1,-1)
Detection of Induction Variables Example

- Basic Induction Variables:
  - i in B2: single increment, (i,1,1)
  - j in B3: single decrement (j,1,-1)

- Derived Induction Variables
  - t2 in B2: single assign (i,4,0)
  - t4 in B3: single assign (j,4,0)
Strength Reduction of Induction Variables

- **Basic Induction Variables:**
  - \( i \) in B2: single increment, \((i,1,1)\)
  - \( j \) in B3: single decrement \((j,1,-1)\)

- **Derived Induction Variables**
  - \( t_2 \) in B2: single assign \((i,4,0)\)
  - \( t_4 \) in B3: single assign \((j,4,0)\)

- **Strength Reduction (for \( t_4 \) in B3)**
  - create \( s_4 \) for the expression \( 4\cdot j \)
  - replace \( t_4 = 4\cdot j \) with \( t_4 = s_4 \)
  - replace induction step for \( j \) with \( s_4 = s_4 - 4 \)
    where \(-4\) comes from \(-1\cdot c\)
  - create initialization of \( s_4 \) in pre-header
Eliminating Induction Variables

• After all the “tricks” we might be left with
  – Code that uses the basic induction variables just for conditional
    including the loop control

• Given the linear relation between induction variables
  – we can remove the basic induction variable by rewording the tests with
    a derived induction variable that is used in the code.
  – Check out dead statements (trivial is you use SSA)
  – Check the initialization and remove induction variables.
Strength Reduction of Induction Variables

- **Basic Induction Variables**:
  - i in B2: single increment, (i,1,1)
  - j in B3: single decrement (j,1,-1)

- **Derived Induction Variables**
  - t2 in B2: single assign (i,4,0)
  - t4 in B3: single assign (j,4,0)

- **Strength Reduction (for t4 in B3)**
  - create s4 for the expression 4*j
  - replace t4 = 4*j with t4 = s4
  - replace induction step for j with s4 = s4 - 4
    - where -4 comes from -1*c
  - create initialization of s4 in pre-header

- **Elimination of Induction Variables**
  - replace i < j with s2 < s4
  - copy propagate s2 and s4
Strength Reduction of Induction Variables

- **Basic Induction Variables:**
  - i in B2: single increment, (i,1,1)
  - j in B3: single decrement (j,1,-1)

- **Derived Induction Variables**
  - t2 in B2: single assign (i,4,0)
  - t4 in B3: single assign (j,4,0)

- **Strength Reduction (for t4 in B3)**
  - create s4 for the expression 4*j
  - replace t4 = 4*j with t4 = s4
  - replace induction step for j with s4 = s4 - 4
    where -4 comes from -1*c
  - create initialization of s4 in pre-header

- **Elimination of Induction Variables**
  - replace i < j with s2 < s4
  - copy propagate s2 and s4
Summary

• Loop Invariant Code Motion
  – Important and Profitable Transformation
  – Precise Definition and Algorithm for Loop Invariant Computation
  – Precise Algorithm for Code Motion

• Induction Variables
  – Change Values at Every Iteration of a Loop by a Constant amount
  – Basic and Derived Induction Variables with Affine Relation

• Combination of Various Analyses and Transformations
  – Dominators, Reaching Definitions
  – Strength Reduction, Dead Code Elimination and Copy Propagation and Common Sub-Expression Elimination