Lexical Analysis

DFA Minimization & Equivalence to Regular Expressions
DFA State Minimization

• How to Reduce the Number of States of a DFA?
 – Find unique minimum-state DFA (up to state names)
 – Need to recognize the same language

• Normalization
 – Assume every state has a transition on every symbol
 – If not, just add missing transitions to a dead state

• Key Idea
 – Find string w that distinguishes states s and t

• Algorithm
 – Start with accepting vs. non-accepting states partition of states
 – Refine state groups on all input sequences, i.e. by tracing all transitions
 – Until no refinement is possible
DFA State Minimization

• Algorithm
 – Start with accepting vs. non-accepting states partition of states
 – Refine state groups on all input sequences, i.e. by tracing all transitions
 – Until no refinement is possible

• Does this Terminate?
 – Refinement will end; in the limit 1 partition is 1 state

• What to do When Refinement Terminates?
 – Elect representative state for each partition
 – Merge edges
 – Remove unneeded states in each partition
Minimization Example

\[
\begin{align*}
\text{s}_0 & \rightarrow a \rightarrow c \rightarrow e \\
& \rightarrow d \rightarrow c \rightarrow e \\
\end{align*}
\]
Minimization Example

P_1

- a
- b
- c
- d

P_2

- e
Minimization Example

- Label 0 does not split any partition!
Minimization Example

- Label 1 splits P_1 and P_2 partitions!
Minimization Example

- Label 1 splits P_1 and P_2 partitions!
Minimization Example

P_3 P_1 P_2

a b c d e
Minimization Example

- Label 0 does not split any partition!
Minimization Example

- Label 1 does not split any partition!
Minimization Example

- Elect Representative and Merge Edges
Minimization Example

- Elect Representative and Merge Edges
DFA State Minimization: Algorithm

DFA = \{D, \Sigma, d, s_0, D_F\}

P \leftarrow \{D_F, \{D - D_F\}\}

while (P is still changing)

T \leftarrow \emptyset

for each set p \in P

T \leftarrow T \cup \text{Split}(p)

P \leftarrow T

Split(S)

for each c \in \Sigma

if c splits S into s_1 and s_2

then return \{s_1, s_2\}

return S
DFA to RE: Kleene Construction

• Path Problem over the DFA
 – Starting from state s_1 (numbering of states is 1 … N - important)
 – Label all edges through all states to an accepting state
 – What to do with cycles in the DFA, as they are infinite paths?

• Kleene Construction
 – Iterate and merge path expressions for every pair of nodes i and j
 not going through any node with label higher then k
 – Increase k up to N
 – In the end do the union of all path expressions that start at s_1 and
 end in a final state.
DFA to RE: Kleene Construction

for i = 1 to N
 for j = 1 to N
 $R^0_{ij} = \{ a \mid \delta(s_i, a) = s_j \}$
 if (i = j) then
 $R^0_{ij} = R^0_{ij} \cup \{ \epsilon \}$
 for k = 1 to N
 for i = 1 to N
 for j = 1 to N
 $R^k_{ij} = R^{k-1}_{ik} (R^{k-1}_{kk})^* R^{k-1}_{kj} \cup R^{k-1}_{ij}$
 $L = \{ s_j \in S_F R^N_{1j} \}$
DFA to RE: Kleene Construction

for \(i = 1 \) to \(N \)
for \(j = 1 \) to \(N \)
\[
R^0_{ij} = \{ a \mid \delta(s_i,a) = s_j \}
\]

if \((i = j)\) then
\[
R^0_{ij} = R^0_{ij} \mid \{ \varepsilon \}
\]

for \(k = 1 \) to \(N \)
for \(i = 1 \) to \(N \)
for \(j = 1 \) to \(N \)
\[
R^k_{ij} = R^{k-1}_{ik} (R^{k-1}_{kk})^* R^{k-1}_{kj} \mid R^{k-1}_{ij}
\]

\[
L = \{ s_j \in S_F R^N_{1j} \}
\]
DFA to RE: Kleene Construction

for $i = 1$ to N
 for $j = 1$ to N
 $R^0_{ij} = \{ a \mid \delta(s_i, a) = s_j \}$
 if $(i = j)$ then
 $R^0_{ij} = R^0_{ij} \cup \{ \epsilon \}$

for $k = 1$ to N
 for $i = 1$ to N
 for $j = 1$ to N
 $R^k_{ij} = R^{k-1}_{ik} (R^{k-1}_{kk})^* R^{k-1}_{kj} \cup R^{k-1}_{ij}$

$L = \{ s_j \in S_F \mid R^N_{1j} \}$
DFA to RE: Example

\[R^0_{12} = r \]
\[R^0_{23} = [0..9] \]
\[R^0_{33} = [0..9] \mid \varepsilon \]
DFA to RE: Example

\[R_{13}^1 = R_{11}^0 (R_{11}^0)^* R_{13}^0 \mid R_{13}^0 = \text{nil} \]

\[R_{12}^0 = r \]

\[R_{23}^0 = [0..9] \]

\[R_{33}^0 = [0..9] \mid \epsilon \]

\[R_{kk}^0 = \text{nil otherwise} \]
DFA to RE: Example

\[\begin{align*}
R^1_{13} &= R^0_{11} (R^0_{11})^* R^0_{13} \mid R^0_{13} = \text{nil} \\
R^1_{23} &= R^0_{21} (R^0_{11})^* R^0_{13} \mid R^0_{23} = [0..9] \\
R^1_{33} &= R^0_{31} (R^0_{11})^* R^0_{13} \mid R^0_{13} = [0..9] \mid \epsilon \\
R^2_{13} &= R^1_{12} (R^1_{22})^* R^1_{23} \mid R^1_{13} = r \cdot \epsilon \cdot [0..9] \\
R^2_{33} &= R^1_{32} (R^1_{22})^* R^1_{23} \mid R^1_{33} = [0..9] \mid \epsilon \\
R^2_{33} &= R^1_{32} (R^1_{22})^* R^1_{23} \mid R^1_{33} = [0..9] \mid \epsilon
\end{align*}\]
DFA to RE: Example

\[R^0_{12} = r \]
\[R^0_{23} = \{0..9\} \]
\[R^0_{33} = \{0..9\} \mid \varepsilon \]
\[R^0_{kk} = \text{nil otherwise} \]

\[R^3_{13} = R^2_{13} (R^2_{33})^* R^2_{33} \mid R^2_{13} \]
DFA to RE: Example

\[R_{12}^0 = r \]
\[R_{23}^0 = [0..9] \]
\[R_{33}^0 = [0..9] | \varepsilon \]
\[R_{kk}^0 = \text{nil otherwise} \]

\[R_{13}^3 = R_{13}^2 (R_{33}^2)^* R_{33}^2 | R_{13}^2 \]
\[= (r \cdot \varepsilon \cdot [0..9])([0..9]^*)(([0..9]^*)) | r \cdot \varepsilon \cdot [0..9] \]
\[= (r \cdot [0..9]+) | r \cdot [0..9] \]
\[= (r \cdot [0..9]+) \]
DFA to RE: Example

$L(M) = R^3_{13} = r \cdot [0..9]^+$
DFA, NFA and REs

Kleene’s Construction

DFA Minimization

RE

Thompson’s Construction

NFA

Subset Construction

DFA

Code for a scanner
DFA, NFA and REs

Kleene’s Construction

DFA Minimization

RE

DFA

Code for a scanner

NFA

Subset Construction

Thompson’s Construction

Regular Expressions and FA are Equivalent
Summary

• DFA Minimization
 – Find sequence w that discriminates states
 – Iterate until no possible refinement

• DFA to RE
 – Kleene construction
 – Combine Path Expression for an increasingly large set of states

• DFA and RE are Equivalent
 – Given one you can derive an equivalent representation in the other